Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute University of Oxford 2024

Lecture 7

Example 1

Consider

$$\begin{aligned} -u''(x) + c \ u(x) &= f(x), \qquad x \in (0,1), \\ u(0) &= 0, \quad u(1) = 0, \end{aligned}$$

where $c \ge 0$ and $f \in C([0, 1])$. The finite difference approximation of this boundary-value problem on the mesh $\{x_i : i = 0, ..., N\}$ of uniform spacing h = 1/N, with $N \ge 2$, and $x_i = ih$, i = 0, ..., N, is given by

$$-\frac{U_{i+1}-2U_i+U_{i-1}}{h^2}+c U_i=f(x_i), \quad i=1,\ldots,N-1, \\ U_0=0, \quad U_N=0.$$
(1)

In terms of matrix notation, this can be rewritten as the linear system:

$$AU = F \tag{2}$$

where A is an $(N-1) \times (N-1)$ symmetric tridiagonal matrix, with distinct positive eigenvalues Λ_k , k = 1, ..., N-1, $F = (f(x_1), ..., f(x_{N-1}))^T$, and $U = (U_1, ..., U_{N-1})^T$ is the associated vector of unknowns.

Example 2

Similarly, if one considers the elliptic boundary-value problem

$$\begin{aligned} -\Delta u + cu &= f(x, y) & \text{ in } \Omega, \\ u &= 0 & \text{ on } \Gamma := \partial \Omega, \end{aligned}$$

where $c \ge 0$ is a given real number and $f \in C(\overline{\Omega})$, whose finite difference approximation posed on a uniform mesh $\{(x_i, y_j) : i, j = 0, ..., N\}$ of spacing h = 1/N, $N \ge 2$, in the x and y directions, is

$$-\frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{h^2}-\frac{U_{i,j+1}-2U_{i,j}+U_{i,j-1}}{h^2}+c\ U_{i,j}=f(x_i,y_j),$$
$$U_{i,j}=0$$
(3)

where, Γ_h is the set of mesh-points on Γ , then this, too, can be rewritten as a system of linear algebraic equations of the form AU = F, where now A is an $(N-1)^2 \times (N-1)^2$ symmetric matrix with positive eigenvalues, $\Lambda_{k,m}$, $k, m = 1, \ldots, N-1$.

Objective

We shall be interested in developing a simple iterative method for the approximate solution of systems of linear algebraic equations of the form

$$AU = F$$
,

where $A \in \mathbb{R}^{M \times M}$ is a symmetric matrix with positive eigenvalues, which are contained in a nonempty closed interval $[\alpha, \beta]$, with $0 < \alpha < \beta$, $U \in \mathbb{R}^{M}$ is the vector of unknowns and $F \in \mathbb{R}^{M}$ is a given vector.

We consider the following iteration for the approximate solution of the linear system AU = F:

$$U^{(j+1)} := U^{(j)} - \tau (AU^{(j)} - F), \qquad j = 0, 1, \dots,$$
(4)

where $U^{(0)} \in \mathbb{R}^M$ is a given initial guess, and $\tau > 0$ is a parameter to be chosen so as to ensure that the sequence of iterates $\{U^{(j)}\}_{j=0}^{\infty} \subset \mathbb{R}^M$ converges to $U \in \mathbb{R}^M$ as $j \to \infty$.

As $U = U - \tau (AU - F)$, by subtracting (4) from this equality we have that

$$U - U^{(j+1)} = U - U^{(j)} - \tau A(U - U^{(j)})$$

= $(I - \tau A)(U - U^{(j)}), \qquad j = 0, 1, \dots,$ (5)

where $I \in \mathbb{R}^{M \times M}$ is the identity matrix. Hence,

$$U - U^{(j)} = (I - \tau A)^j (U - U^{(0)}), \qquad j = 1, 2, \dots$$

Recall that if $\|\cdot\|$ is a(ny) norm on \mathbb{R}^M , then the induced matrix norm is defined, for a matrix $B \in \mathbb{R}^{M \times M}$, by

$$\|B\|:=\sup_{V\in\mathbb{R}^M\setminus\{0\}}rac{\|BV\|}{\|V\|}.$$

Thus, $||BV|| \le ||B|| ||V||$ for all $V \in \mathbb{R}^M$, and hence, by induction $||B^j V|| \le ||B||^j ||V||, \qquad j = 1, 2...$

for all $V \in \mathbb{R}^M$.

Therefore, with $B := I - \tau A$ and $V := U - U^{(0)}$, we have that

$$\|U - U^{(j)}\| = \|(I - \tau A)^{j}(U - U^{(0)})\| \le \|I - \tau A\|^{j}\|U - U^{(0)}\|.$$
 (6)

We shall take $\|\cdot\|$ to be the Euclidean norm on \mathbb{R}^M :

$$\|V\| := \left(\sum_{i=1}^{M} V_i^2\right)^{1/2}, \qquad V = (V_1, \ldots, V_M)^{\mathrm{T}} \in \mathbb{R}^M.$$

Recall that a symmetric matrix $B \in \mathbb{R}^{M \times M}$ has real eigenvalues $\{\lambda_i\}_{i=1}^M$, and the associated set of orthonormal eigenvectors $\{e_i\}_{i=1}^M$ spans \mathbb{R}^M .

For any vector

$$V = \alpha_1 e_1 + \cdots + \alpha_M e_M,$$

expanded in terms of the eigenvectors of B, thanks to orthonormality:

$$\|V\| = \left(\sum_{i=1}^{M} \alpha_i^2\right)^{1/2} \quad \text{and} \quad \|BV\| = \left(\sum_{i=1}^{M} \alpha_i^2 \lambda_i^2\right)^{1/2}$$

Clearly,

$$\|BV\| \le \max_{i=1,...,M} |\lambda_i| \|V\| \qquad \forall V \in \mathbb{R}^M,$$

and the inequality becomes an equality if V is the eigenvector of B associated with the largest in absolute value eigenvalue of B. Thus,

$$||B|| = \max_{i=1,\dots,M} |\lambda_i|,$$

where now $\|\cdot\|$ is the matrix norm induced by the Euclidean norm.

.

Returning to (6), $||I - \tau A||$ on the r.h.s. of (6) is therefore equal to the largest in absolute value eigenvalue of the symmetric matrix $I - \tau A$.

As the eigenvalues of A are assumed to belong to the interval $[\alpha, \beta]$, where $0 < \alpha < \beta$, and the parameter τ is by assumption positive, the eigenvalues of $I - \tau A$ are contained in the interval $[1 - \tau \beta, 1 - \tau \alpha]$. Thus,

$$\|I - \tau A\| \le \max\{|1 - \tau \beta|, \ |1 - \tau \alpha|\}.$$

To ensure that the iterative method (4) converges as fast as possible, we shall choose τ so that: $||I - \tau A|| < 1$ and $||I - \tau A||$ is as small as possible.

We shall therefore seek $\tau > 0$ s.t.

$$\min_{\tau>0} \max\{|1-\tau\beta|, \ |1-\tau\alpha|\} < 1.$$

As $0 < \alpha < \beta$, by plotting the continuous piecewise linear function

$$\tau \mapsto \max\{|1-\tau\beta|, |1-\tau\alpha|\}$$

for $\tau \in [0,\infty)$, we observe that it attains its minimum at $\tau = \frac{2}{\alpha+\beta}$ where $1 - \tau\beta = \tau\alpha - 1$. Thus,

$$\min_{\tau>0} \max\{|1-\tau\beta|, |1-\tau\alpha|\} = \max\{|1-\tau\beta|, |1-\tau\alpha|\}|_{\tau=\frac{2}{\alpha+\beta}} = \frac{\beta-\alpha}{\beta+\alpha} < 1.$$

Hence, the optimal choice of the parameter τ in the iterative method

$$U^{(j+1)} := U^{(j)} - au(AU^{(j)} - F), \qquad j = 0, 1, \dots; \quad U^{(0)} \in \mathbb{R}^M,$$

for the approximate solution of the linear system AU = F is

$$\tau = \frac{2}{\beta + \alpha},$$

where $[\alpha, \beta]$ is a closed subinterval of $(0, \infty)$ that contains all eigenvalues of the symmetric matrix $A \in \mathbb{R}^{M \times M}$. Furthermore,

$$\|U - U^{(j)}\| \leq \left(\frac{\beta - \alpha}{\beta + \alpha}\right)^j \|U - U^{(0)}\|, \qquad j = 1, 2, \dots$$

An alternative, computable bound on the iteration error

We note that by multiplying (5) by the matrix A and recalling that AU = F, one has that

$$F - AU^{(j+1)} = (I - \tau A)(F - AU^{(j)}),$$

and therefore, by proceeding as above,

$$\|F - AU^{(j)}\| \le \|I - \tau A\|^{j}\|F - AU^{(0)}\| \le \left(\frac{\beta - \alpha}{\beta + \alpha}\right)^{j}\|F - AU^{(0)}\|.$$
(7)

If α and β are available, because F, A and the initial guess $U^{(0)}$ are known, it is possible to quantify the number of iterations required to ensure that the Euclidean norm of the so-called residual $F - AU^{(j)}$ of the *j*-th iterate becomes smaller than a chosen tolerance TOL > 0.

A sufficient condition for this is that the right-hand side of (7) is smaller than TOL, which will hold as soon as

$$j > \log \frac{\|F - AU^{(0)}\|}{\text{TOL}} \left[\log \left(\frac{\beta + \alpha}{\beta - \alpha} \right) \right]^{-1}.$$
 (8)

We will show that for both examples of boundary-value problems stated at the beginning of the lecture

$$\frac{\beta - \alpha}{\beta + \alpha} = 1 - \text{Const.} h^2$$

and therefore (because $\log(1 - \text{Const.}h^2) \sim -\text{Const.}h^2$ as $h \to 0$) the right-hand side of the inequality (8) is $\sim \text{Const.}h^{-2}\log(1/\text{TOL})$.

We see in particular that the smaller the value of the mesh-size h the larger the number of iterations j will need to be to ensure that

$$\|F - AU^{(j)}\| < \texttt{TOL}.$$

Example 1

Consider the eigenvalue problem:

$$\begin{aligned} -u''(x) + c \, u(x) &= \lambda u(x), \qquad x \in (0,1), \\ u(0) &= 0, \quad u(1) = 0, \end{aligned}$$

where $c \ge 0$ is a real number.

A nontrivial solution $u(x) \neq 0$ of this is called an eigenfunction, and the corresponding $\lambda \in \mathbb{C}$ for which such a nontrivial solution exists is called an eigenvalue. A simple calculation reveals that there is an infinite sequence of eigenfunctions u^k and eigenvalues λ_k , k = 1, 2, ..., where

$$u^k(x) := \sin(k\pi x)$$
 and $\lambda_k := c + k^2\pi^2$, $k = 1, 2, \dots$

Clearly, $c + \pi^2 \leq \lambda_k$ for all $k = 1, 2, ..., \text{ and } \lambda_k \to +\infty$ as $k \to +\infty$.

The finite difference approximation of this eigenvalue problem on the mesh $\{x_i : i = 0, ..., N\}$ of uniform spacing h = 1/N, with $N \ge 2$, and $x_i = ih$, i = 0, ..., N, is given by

$$-\frac{U_{i+1}-2U_i+U_{i-1}}{h^2}+c \ U_i=\Lambda U_i, \quad i=1,\ldots,N-1,$$
$$U_0=0, \quad U_N=0.$$

A simple calculation yields the nontrivial solution: $U_i := U^k(x_i)$ where

$$U^k(x) := \sin(k\pi x), \quad x \in \{x_0, x_1, \dots, x_N\} \text{ and } \Lambda_k := c + \frac{4}{h^2} \sin^2 \frac{k\pi h}{2}$$

for $k = 1, 2, \dots, N - 1$.

This can be verified by inserting

$$U_i = U^k(x_i) = \sin(k\pi x_i)$$
 and $U_{i\pm 1} = U^k(x_{i\pm 1}) = \sin(k\pi x_{i\pm 1})$

into the finite difference scheme and noting that

$$\sin(k\pi x_{i\pm 1}) = \sin(k\pi(x_i\pm h)) = \sin(k\pi x_i)\cos(k\pi h) \pm \cos(k\pi x_i)\sin(k\pi h)$$

 and

$$1 - \cos(k\pi h) = 2\sin^2rac{k\pi h}{2}$$
for $k = 1, 2, \dots, N-1$ and $i = 1, 2, \dots, N-1$.

Using matrix notation the finite difference approximation of the eigenvalue problem can be written as

$$\begin{bmatrix} \frac{2}{h^{2}} + c & -\frac{1}{h^{2}} & & \mathbf{0} \\ -\frac{1}{h^{2}} & \frac{2}{h^{2}} + c & -\frac{1}{h^{2}} & & \\ & \ddots & \ddots & \ddots & \\ & & -\frac{1}{h^{2}} & \frac{2}{h^{2}} + c & -\frac{1}{h^{2}} \\ \mathbf{0} & & & -\frac{1}{h^{2}} & \frac{2}{h^{2}} + c \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \\ \vdots \\ U_{N-2} \\ U_{N-1} \end{bmatrix} = \Lambda \begin{bmatrix} U_{1} \\ U_{2} \\ \vdots \\ U_{N-2} \\ U_{N-1} \end{bmatrix}$$

or, more compactly, $AU = \Lambda U$, where A is the symmetric tridiagonal $(N-1) \times (N-1)$ matrix displayed above, and $U = (U_1, \ldots, U_{N-1})^T$ is a column vector of size N-1. The calculation performed above implies that the eigenvalues of the matrix A are

$$\Lambda_k = c + \frac{4}{h^2} \sin^2 \frac{k \pi h}{2}, \qquad k = 1, 2, \dots, N-1$$

and the corresponding eigenvectors are, respectively,

$$(U^{k}(x_{1}),\ldots,U^{k}(x_{N-1}))^{\mathrm{T}}, \qquad k=1,\ldots,N-1.$$

Clearly,

$$c+8\leq \Lambda_k\leq c+rac{4}{h^2}$$
 for all $k=1,2,\ldots,N-1.$

The first of these inequalities follows by noting that

$$\Lambda_k \ge \Lambda_1 = c + \frac{4}{h^2} \sin^2 \frac{\pi h}{2}$$
 for $k = 1, \dots, N-1$

and $\sin x \ge \frac{2\sqrt{2}}{\pi}x$ for $x \in [0, \frac{\pi}{4}]$ (recall that $h \in [0, \frac{1}{2}]$ because $N \ge 2$, whereby $0 < \frac{\pi h}{2} \le \frac{\pi}{4}$).

The second inequality is the consequence of $0 \le \sin^2 x \le 1$ for all $x \in \mathbb{R}$.

Example 2

Exercise

Let $\Omega = (0,1)^2 \subset \mathbb{R}^2$, and consider the problem

$$\begin{aligned} -\Delta u + cu &= \lambda u & \text{ in } \Omega, \\ u &= 0 & \text{ on } \Gamma := \partial \Omega, \end{aligned}$$

where $c \ge 0$ is a given real number.

Find the eigenfunctions and the associated eigenvalues for the boundaryvalue problem, as well for its finite difference approximation on a mesh of uniform spacing h = 1/N in the x and y directions.

Solution:

$$u^{k,m}(x,y) = \sin(k\pi x)\sin(m\pi y), \quad \lambda_{k,m} = c + (k^2 + m^2)\pi^2, \quad k,m = 1,2,\ldots,$$

The finite difference approximation of this eigenvalue problem posed on a uniform mesh $\{(x_i, y_j) : i, j = 0, ..., N\}$ of spacing h = 1/N, $N \ge 2$, is:

$$-\frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{h^2}-\frac{U_{i,j+1}-2U_{i,j}+U_{i,j-1}}{h^2}+c\ U_{i,j}=\Lambda U_{i,j},\qquad i,j=1,\ldots,N-1,\\ U_{i,j}=0\qquad \qquad \text{for }(x_i,y_j)\in \Gamma_h,$$

where, Γ_h is the set of all mesh-points on $\Gamma = \partial \Omega$. This can be rewritten as an algebraic eigenvalue problem of the form $AU = \Lambda U$, where now A is a symmetric $(N-1)^2 \times (N-1)^2$ matrix with positive eigenvalues

$$\Lambda_{k,m}=c+\frac{4}{h^2}\left(\sin^2\frac{k\pi h}{2}+\sin^2\frac{m\pi h}{2}\right),$$

with $c + 16 \le \Lambda_{k,m} \le c + \frac{8}{h^2}$, and eigenvectors/(discrete) eigenfunctions $U_{i,j} = U^{k,m}(x_i, y_j)$, where

$$U^{k,m}(x,y)=\sin(k\pi x)\sin(m\pi y),$$

for $i, j = 1, \dots, N-1$ and $k, m = 1, \dots, N-1$. \Box

Conclusions

In the case of the finite difference scheme (1), $\alpha = c + 8$ and $\beta = c + \frac{4}{h^2}$, while in the case of (3), $\alpha = c + 16$ and $\beta = c + \frac{8}{h^2}$. In both cases

$$\frac{\beta - \alpha}{\beta + \alpha} = 1 - \text{Const. } h^2;$$

thus, while the sequence of iterates $\{U^{(j)}\}_{j=0}^{\infty}$ defined by the iterative method (4) is guaranteed to converge to the exact solution U of the linear system AU = F, the speed of convergence will deteriorate as $h \to 0$:

$$\|U - U^{(j)}\| \le \left(\frac{\beta - \alpha}{\beta + \alpha}\right)^j \|U - U^{(0)}\|.$$
(9)