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Example 1

Consider

—u"(x) + cu(x) = f(x), x €(0,1),
u(0)=0, wu(l)=0,

where ¢ > 0 and f € C([0,1]). The finite difference approximation of this
boundary-value problem on the mesh {x; : i =0,..., N} of uniform
spacing h=1/N, with N > 2, and x; = ih, i =0,..., N, is given by

Uit1 —2Ui + Uiy

- % +CUi:f(Xi), i=1,...,N—1,

(1)
Up=0, Uy=D0.

In terms of matrix notation, this can be rewritten as the linear system:
AU =F (2)

where Ais an (N —1) x (N — 1) symmetric tridiagonal matrix, with distinct
positive eigenvalues Ag, k =1,...,N—1, F = (f(x1),..., f(xy_1))", and
U= (Ui,...,Un_1)" is the associated vector of unknowns.



Example 2

Similarly, if one considers the elliptic boundary-value problem

—Au+ cu=f(x,y) in Q,
u=~0 on [ :=0Q,

where ¢ > 0 is a given real number and f € C(Q), whose finite difference
approximation posed on a uniform mesh {(x;,y;) : i,j=0,..., N} of
spacing h=1/N, N > 2, in the x and y directions, is

LU =204 Uinsy Ui =20+ Uijoy gy )

h? h?
U,'J =0

(3)

where, 'y, is the set of mesh-points on I, then this, too, can be rewritten
as a system of linear algebraic equations of the form AU = F, where now
Ais an (N —1)% x (N — 1)? symmetric matrix with positive eigenvalues,
Nemy k,m=1,...,N —1.



Objective

We shall be interested in developing a simple iterative method for the
approximate solution of systems of linear algebraic equations of the form

AU = F,

where A € RMXM g 4 symmetric matrix with positive eigenvalues, which
are contained in a nonempty closed interval [, (], with 0 < a < 3,
U € RM is the vector of unknowns and F € RM is a given vector.



We consider the following iteration for the approximate solution of the
linear system AU = F:

pUu+h .— ybv) - T(AUU) - F), j=01,..., (4)

where U ¢ RM is a given initial guess, and 7 > 0 is a parameter to be
chosen so as to ensure that the sequence of iterates {U(f)}j’io C RM

converges to U € RM as j — 0.



As U = U — 7(AU — F), by subtracting (4) from this equality we have that

U— Ul =y -yl — rAU — UY)
=(I-7rAWU-UY)), j=0,1,..., (5)

where | € RM*M is the identity matrix. Hence,

U—UY = (1 - rAY(U - UO), j=1,2,....



Recall that if || - || is a(ny) norm on RM, then the induced matrix norm is

defined, for a matrix B € RM*M by

BV
Bl:= sup 1BV
verm\ (o} IV

Thus, |BV]| < ||B]||| V|| for all V € RM, and hence, by induction
IBVI<IBFIVI,  j=12...
for all V € RM.

Therefore, with B:=1 —7Aand V := U — U(O), we have that

1U—=UY) = [(1 =AY (U = U] < |l = AP ||U — U]

(6)



We shall take || - || to be the Euclidean norm on RM:

M 1/2
v = (Z \/,-2) . V=(W,...,Vu)" eRM
i=1

Recall that a symmetric matrix B € RM*M has real eigenvalues {\;}M,,
and the associated set of orthonormal eigenvectors {e;}M, spans RM.



For any vector
V=aie + - +amewm,

expanded in terms of the eigenvectors of B, thanks to orthonormality:
M 1/2 M 1/2
W= (3oe) s tevi= ()
i=1 i=1

Clearly,
1BV < max [NV ¥V ERY,
i=1,...,

and the inequality becomes an equality if V is the eigenvector of B
associated with the largest in absolute value eigenvalue of B. Thus,

18] = max |,

i=1,...,

where now || - || is the matrix norm induced by the Euclidean norm.



Returning to (6), ||/ — TA|| on the r.h.s. of (6) is therefore equal to the
largest in absolute value eigenvalue of the symmetric matrix | — TA.

As the eigenvalues of A are assumed to belong to the interval [« 5], where
0 < a < B, and the parameter 7 is by assumption positive, the eigenvalues
of I — TA are contained in the interval [1 — 73,1 — 7a]. Thus,

I = 7A|l < max{|1 = 78], |1 —7al}.

To ensure that the iterative method (4) converges as fast as possible, we
shall choose 7 so that: ||/ — TA|| < 1 and ||/ — TA|| is as small as possible.

We shall therefore seek 7 > 0 s.t.

miB\ max{|l1 — 70|, |1 —Tal} < 1.
T>



As 0 < o < 3, by plotting the continuous piecewise linear function

T max{|1 —706|,|1 — Tal|}

for 7 € [0, 00), we observe that it attains its minimum at 7 = ﬁ where
1—78=7a—1. Thus,

inmax{[1 7], [1-ral} = max{[1-76], 1 ~ral}l,__» =2 —% <1
min max{|1— - = max{|1— — = .
min T/, Ta Th], Tal}l_ 2 it a
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Hence, the optimal choice of the parameter 7 in the iterative method
uutt .= yi) — 7AUY) — F),  j=0,1,...; UOcRrRM,

for the approximate solution of the linear system AU = F is

2
=G

T

where [a, (] is a closed subinterval of (0, c0) that contains all eigenvalues
of the symmetric matrix A € RM*M - Furthermore,

. b — « J .
HUUU)HS(M> U vy, =12
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An alternative, computable bound on the iteration error

We note that by multiplying (5) by the matrix A and recalling that
AU = F, one has that

F — AUUHY = (] — 7A)(F — AUY)),
and therefore, by proceeding as above,

B—
B+

) ) J
IF = AUD| < |t = rAp | - AU@ < (552) 1P - AUCY. (1)

If o and f3 are available, because F, A and the initial guess U(©) are
known, it is possible to quantify the number of iterations required to
ensure that the Euclidean norm of the so-called residual F — AUY) of
the j-th iterate becomes smaller than a chosen tolerance TOL > 0.
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A sufficient condition for this is that the right-hand side of (7) is smaller
than TOL, which will hold as soon as

F — AU© -
Jj > log HTOLH [Iog (gigﬂ . (8)

We will show that for both examples of boundary-value problems stated at
the beginning of the lecture
b —«
B+«

=1 — Const.h?

and therefore (because log(1 — Const.h?) ~ —Const.h? as h — 0) the
right-hand side of the inequality (8) is ~ Const. h~2log(1/TOL).

We see in particular that the smaller the value of the mesh-size h the
larger the number of iterations j will need to be to ensure that

|F — AUY)|| < TOL.



Example 1

Consider the eigenvalue problem:

—u"(x) 4+ c u(x) = u(x), x € (0,1),
u(0) =0, u(l)=0,

where ¢ > 0 is a real number.

A nontrivial solution u(x) # 0 of this is called an eigenfunction, and the
corresponding A € C for which such a nontrivial solution exists is called an
eigenvalue. A simple calculation reveals that there is an infinite sequence
of eigenfunctions uk and eigenvalues A\, k =1,2 ..., where

u¥(x) :=sin(krx) and X\, = c+ k>72, k=1,2,....

Clearly, c+m2 <M forall k=1,2,..., and Ay — 400 as k — +00.
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The finite difference approximation of this eigenvalue problem on the mesh
{xi : i=0,...,N} of uniform spacing h =1/N, with N > 2, and x; = ih,
i=0,...,N, is given by

U =2Uit Ui g ap i1 N1

h2
Up=0, Uy=0.

A simple calculation yields the nontrivial solution: U; := Uk(x;) where

4 kmh
UK(x) :=sin(knx), x € {x0,x1,...,xy} and A, :=c+ ﬁsin2 %

for k=1,2,...,N —1.
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This can be verified by inserting

U, = Uk(x,-) =sin(krx;) and Uiz = Uk(x,-il) = sin(kmxj+1)
into the finite difference scheme and noting that
sin(kmx;j+1) = sin(kmw(x; £ h)) = sin(kmx;) cos(kmh) 4 cos(kmx;) sin(kmh)

and K
1 — cos(kmh) = 2sin? %

fork=1,2,...,N—landi=12...,N—1.
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Using matrix notation the finite difference approximation of the eigenvalue

problem can be written as

[ 2 1 Tr 7 r 7
"2 +c R 0 U1 U1
1 1
s v +cC > U2 U2
. . = /\ : )
1 2 1
2 gmtC —m Un—-2 Un_>
I O -5 %+C_ | Un-1 | | Un-1 |

or, more compactly, AU = AU, where A is the symmetric tridiagonal

(N — 1) x (N — 1) matrix displayed above, and U = (Uy,...,Uy_1)T isa
column vector of size N — 1. The calculation performed above implies that
the eigenvalues of the matrix A are

4 kmh
/\k:c—l—ﬁsin2%, k=1,2,...,N—1
and the corresponding eigenvectors are, respectively,
(UK(x1), ..., UKve)Y,  k=1,...,N—1.



Clearly,

4
c—i—8§/\kgc+ﬁ forall k=1,2,...,N—1.

The first of these inequalities follows by noting that

4 h
/\k2/\1:c+ﬁsin2% fork=1,...,N—1

and sin x > %x for x € [0, 2] (recall that h € [0, 3] because N > 2,
whereby 0 < %h <)

The second inequality is the consequence of 0 < sin®x < 1 for all x € R.
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Example 2

Exercise

Let Q = (0,1)? C R?, and consider the problem

—Au+cu=Au in €,
u=20 onl := 0%,

where ¢ > 0 is a given real number.
Find the eigenfunctions and the associated eigenvalues for the boundary-

value problem, as well for its finite difference approximation on a mesh of
uniform spacing h = 1/N in the x and y directions.
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Solution:
ukm(x,y) = sin(krx)sin(mry),  Am = c+(K2+m*)n?, k,m=1,2,....
The finite difference approximation of this eigenvalue problem posed on a

uniform mesh {(x;,y;) : i,j=0,..., N} of spacing h=1/N, N > 2, is:

B Uitr,j —2Uij+ Ui—yj B Uijr1 —2U;j + Ui j—1
h? h?

+CU,‘7j:/\Uj,j, I',_]':].,...,/V*].7
U,j=0 for (xi,y;) € I,

where, ', is the set of all mesh-points on I = 0€2. This can be rewritten

as an algebraic eigenvalue problem of the form AU = AU, where now A is
a symmetric (N — 1)2 x (N — 1)2 matrix with positive eigenvalues

4 kmh h
/\,(7,,,:<:—i-<sin2 T + sin? mn ),

h? 2 2

with ¢ +16 <Ay, < c+ %, and eigenvectors/(discrete) eigenfunctions
Uij = U™ (x;,y;), where

Uk™(x,y) = sin(knx) sin(mry),
fori,j=1,....N—land k,m=1,.... N—-1. O



Conclusions

In the case of the finite difference scheme (1), « =c+8and S =c+ %,
while in the case of (3), a =c+ 16 and S =c+ %. In both cases

b — «
B+a

=1 — Const. h*;

thus, while the sequence of iterates {U(f)}j’io defined by the iterative
method (4) is guaranteed to converge to the exact solution U of the linear
system AU = F, the speed of convergence will deteriorate as h — 0:

. _ J
ju-uo < (522) o - ve. ©)
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