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Example 1
Consider

−u′′(x) + c u(x) = f (x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where c ≥ 0 and f ∈ C ([0, 1]). The finite difference approximation of this
boundary-value problem on the mesh {xi : i = 0, . . . ,N} of uniform
spacing h = 1/N, with N ≥ 2, and xi = ih, i = 0, . . . ,N, is given by

−Ui+1 − 2Ui + Ui−1
h2

+ c Ui = f (xi ), i = 1, . . . ,N − 1,

U0 = 0, UN = 0.
(1)

In terms of matrix notation, this can be rewritten as the linear system:

AU = F (2)

where A is an (N−1)× (N−1) symmetric tridiagonal matrix, with distinct
positive eigenvalues Λk , k = 1, . . . ,N − 1, F = (f (x1), . . . , f (xN−1))T, and
U = (U1, . . . ,UN−1)T is the associated vector of unknowns.
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Example 2
Similarly, if one considers the elliptic boundary-value problem

−∆u + cu = f (x , y) in Ω,

u = 0 on Γ := ∂Ω,

where c ≥ 0 is a given real number and f ∈ C (Ω), whose finite difference
approximation posed on a uniform mesh {(xi , yj) : i , j = 0, . . . ,N} of
spacing h = 1/N, N ≥ 2, in the x and y directions, is

−
Ui+1,j − 2Ui ,j + Ui−1,j

h2
−

Ui ,j+1 − 2Ui ,j + Ui ,j−1
h2

+ c Ui ,j = f (xi , yj), i , j = 1, . . . ,N − 1,

Ui ,j = 0 for (xi , yj) ∈ Γh,

(3)

where, Γh is the set of mesh-points on Γ, then this, too, can be rewritten
as a system of linear algebraic equations of the form AU = F , where now
A is an (N − 1)2 × (N − 1)2 symmetric matrix with positive eigenvalues,
Λk,m, k,m = 1, . . . ,N − 1.
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Objective

We shall be interested in developing a simple iterative method for the
approximate solution of systems of linear algebraic equations of the form

AU = F ,

where A ∈ RM×M is a symmetric matrix with positive eigenvalues, which
are contained in a nonempty closed interval [α, β], with 0 < α < β,
U ∈ RM is the vector of unknowns and F ∈ RM is a given vector.
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We consider the following iteration for the approximate solution of the
linear system AU = F :

U(j+1) := U(j) − τ(AU(j) − F ), j = 0, 1, . . . , (4)

where U(0) ∈ RM is a given initial guess, and τ > 0 is a parameter to be
chosen so as to ensure that the sequence of iterates {U(j)}∞j=0 ⊂ RM

converges to U ∈ RM as j →∞.
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As U = U − τ(AU − F ), by subtracting (4) from this equality we have that

U − U(j+1) = U − U(j) − τA(U − U(j))

= (I − τA)(U − U(j)), j = 0, 1, . . . , (5)

where I ∈ RM×M is the identity matrix. Hence,

U − U(j) = (I − τA)j(U − U(0)), j = 1, 2, . . . .
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Recall that if ‖ · ‖ is a(ny) norm on RM , then the induced matrix norm is
defined, for a matrix B ∈ RM×M , by

‖B‖ := sup
V∈RM\{0}

‖BV ‖
‖V ‖

.

Thus, ‖BV ‖ ≤ ‖B‖‖V ‖ for all V ∈ RM , and hence, by induction

‖B jV ‖ ≤ ‖B‖j‖V ‖, j = 1, 2 . . .

for all V ∈ RM .

Therefore, with B := I − τA and V := U − U(0), we have that

‖U − U(j)‖ = ‖(I − τA)j(U − U(0))‖ ≤ ‖I − τA‖j‖U − U(0)‖. (6)
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We shall take ‖ · ‖ to be the Euclidean norm on RM :

‖V ‖ :=

(
M∑
i=1

V 2
i

)1/2

, V = (V1, . . . ,VM)T ∈ RM .

Recall that a symmetric matrix B ∈ RM×M has real eigenvalues {λi}Mi=1,
and the associated set of orthonormal eigenvectors {ei}Mi=1 spans RM .
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For any vector
V = α1e1 + · · ·+ αMeM ,

expanded in terms of the eigenvectors of B, thanks to orthonormality:

‖V ‖ =

(
M∑
i=1

α2
i

)1/2

and ‖BV ‖ =

(
M∑
i=1

α2
i λ

2
i

)1/2

.

Clearly,
‖BV ‖ ≤ max

i=1,...,M
|λi | ‖V ‖ ∀V ∈ RM ,

and the inequality becomes an equality if V is the eigenvector of B
associated with the largest in absolute value eigenvalue of B. Thus,

‖B‖ = max
i=1,...,M

|λi |,

where now ‖ · ‖ is the matrix norm induced by the Euclidean norm.
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Returning to (6), ‖I − τA‖ on the r.h.s. of (6) is therefore equal to the
largest in absolute value eigenvalue of the symmetric matrix I − τA.

As the eigenvalues of A are assumed to belong to the interval [α, β], where
0 < α < β, and the parameter τ is by assumption positive, the eigenvalues
of I − τA are contained in the interval [1− τβ, 1− τα]. Thus,

‖I − τA‖ ≤ max{|1− τβ|, |1− τα|}.

To ensure that the iterative method (4) converges as fast as possible, we
shall choose τ so that: ‖I − τA‖ < 1 and ‖I − τA‖ is as small as possible.

We shall therefore seek τ > 0 s.t.

min
τ>0

max{|1− τβ|, |1− τα|} < 1.
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As 0 < α < β, by plotting the continuous piecewise linear function

τ 7→ max{|1− τβ|, |1− τα|}

for τ ∈ [0,∞), we observe that it attains its minimum at τ = 2
α+β where

1− τβ = τα− 1. Thus,

min
τ>0

max{|1−τβ|, |1−τα|} = max{|1−τβ|, |1−τα|}|τ= 2
α+β

=
β − α
β + α

< 1.
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Hence, the optimal choice of the parameter τ in the iterative method

U(j+1) := U(j) − τ(AU(j) − F ), j = 0, 1, . . . ; U(0) ∈ RM ,

for the approximate solution of the linear system AU = F is

τ =
2

β + α
,

where [α, β] is a closed subinterval of (0,∞) that contains all eigenvalues
of the symmetric matrix A ∈ RM×M . Furthermore,

‖U − U(j)‖ ≤
(
β − α
β + α

)j

‖U − U(0)‖, j = 1, 2, . . . .
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An alternative, computable bound on the iteration error

We note that by multiplying (5) by the matrix A and recalling that
AU = F , one has that

F − AU(j+1) = (I − τA)(F − AU(j)),

and therefore, by proceeding as above,

‖F − AU(j)‖ ≤ ‖I − τA‖j‖F − AU(0)‖ ≤
(
β − α
β + α

)j

‖F − AU(0)‖. (7)

If α and β are available, because F , A and the initial guess U(0) are
known, it is possible to quantify the number of iterations required to
ensure that the Euclidean norm of the so-called residual F − AU(j) of
the j-th iterate becomes smaller than a chosen tolerance TOL > 0.
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A sufficient condition for this is that the right-hand side of (7) is smaller
than TOL, which will hold as soon as

j > log
‖F − AU(0)‖

TOL

[
log

(
β + α

β − α

)]−1
. (8)

We will show that for both examples of boundary-value problems stated at
the beginning of the lecture

β − α
β + α

= 1− Const.h2

and therefore (because log(1− Const.h2) ∼ −Const.h2 as h→ 0) the
right-hand side of the inequality (8) is ∼ Const. h−2 log(1/TOL).

We see in particular that the smaller the value of the mesh-size h the
larger the number of iterations j will need to be to ensure that

‖F − AU(j)‖ < TOL.

14 / 22



Example 1

Consider the eigenvalue problem:

−u′′(x) + c u(x) = λu(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where c ≥ 0 is a real number.

A nontrivial solution u(x) 6≡ 0 of this is called an eigenfunction, and the
corresponding λ ∈ C for which such a nontrivial solution exists is called an
eigenvalue. A simple calculation reveals that there is an infinite sequence
of eigenfunctions uk and eigenvalues λk , k = 1, 2, . . . , where

uk(x) := sin(kπx) and λk := c + k2π2, k = 1, 2, . . . .

Clearly, c + π2 ≤ λk for all k = 1, 2, . . ., and λk → +∞ as k → +∞.
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The finite difference approximation of this eigenvalue problem on the mesh
{xi : i = 0, . . . ,N} of uniform spacing h = 1/N, with N ≥ 2, and xi = ih,
i = 0, . . . ,N, is given by

−Ui+1 − 2Ui + Ui−1
h2

+ c Ui = ΛUi , i = 1, . . . ,N − 1,

U0 = 0, UN = 0.

A simple calculation yields the nontrivial solution: Ui := Uk(xi ) where

Uk(x) := sin(kπx), x ∈ {x0, x1, . . . , xN} and Λk := c +
4

h2
sin2 kπh

2

for k = 1, 2, . . . ,N − 1.
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This can be verified by inserting

Ui = Uk(xi ) = sin(kπxi ) and Ui±1 = Uk(xi±1) = sin(kπxi±1)

into the finite difference scheme and noting that

sin(kπxi±1) = sin(kπ(xi ± h)) = sin(kπxi ) cos(kπh)± cos(kπxi ) sin(kπh)

and

1− cos(kπh) = 2 sin2 kπh

2

for k = 1, 2, . . . ,N − 1 and i = 1, 2, . . . ,N − 1.
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Using matrix notation the finite difference approximation of the eigenvalue
problem can be written as

2
h2

+ c − 1
h2

0
− 1

h2
2
h2

+ c − 1
h2

. . .
. . .

. . .

− 1
h2

2
h2

+ c − 1
h2

0 − 1
h2

2
h2

+ c




U1

U2
...

UN−2
UN−1

 = Λ


U1

U2
...

UN−2
UN−1

 ,

or, more compactly, AU = ΛU, where A is the symmetric tridiagonal
(N − 1)× (N − 1) matrix displayed above, and U = (U1, . . . ,UN−1)T is a
column vector of size N − 1. The calculation performed above implies that
the eigenvalues of the matrix A are

Λk = c +
4

h2
sin2 kπh

2
, k = 1, 2, . . . ,N − 1

and the corresponding eigenvectors are, respectively,

(Uk(x1), . . . ,Uk(xN−1))T, k = 1, . . . ,N − 1.
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Clearly,

c + 8 ≤ Λk ≤ c +
4

h2
for all k = 1, 2, . . . ,N − 1.

The first of these inequalities follows by noting that

Λk ≥ Λ1 = c +
4

h2
sin2 πh

2
for k = 1, . . . ,N − 1

and sin x ≥ 2
√
2

π x for x ∈ [0, π4 ] (recall that h ∈ [0, 12 ] because N ≥ 2,

whereby 0 < πh
2 ≤

π
4 ).

The second inequality is the consequence of 0 ≤ sin2 x ≤ 1 for all x ∈ R.
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Example 2

Exercise

Let Ω = (0, 1)2 ⊂ R2, and consider the problem

−∆u + cu = λu in Ω,

u = 0 on Γ := ∂Ω,

where c ≥ 0 is a given real number.

Find the eigenfunctions and the associated eigenvalues for the boundary-
value problem, as well for its finite difference approximation on a mesh of
uniform spacing h = 1/N in the x and y directions.
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Solution:

uk,m(x , y) = sin(kπx) sin(mπy), λk,m = c+(k2+m2)π2, k,m = 1, 2, . . . .

The finite difference approximation of this eigenvalue problem posed on a
uniform mesh {(xi , yj) : i , j = 0, . . . ,N} of spacing h = 1/N, N ≥ 2, is:

−Ui+1,j − 2Ui,j + Ui−1,j

h2
− Ui,j+1 − 2Ui,j + Ui,j−1

h2
+ c Ui,j = ΛUi,j , i , j = 1, . . . ,N − 1,

Ui,j = 0 for (xi , yj) ∈ Γh,

where, Γh is the set of all mesh-points on Γ = ∂Ω. This can be rewritten
as an algebraic eigenvalue problem of the form AU = ΛU, where now A is
a symmetric (N − 1)2 × (N − 1)2 matrix with positive eigenvalues

Λk,m = c +
4

h2

(
sin2 kπh

2
+ sin2 mπh

2

)
,

with c + 16 ≤ Λk,m ≤ c + 8
h2

, and eigenvectors/(discrete) eigenfunctions

Ui ,j = Uk,m(xi , yj), where

Uk,m(x , y) = sin(kπx) sin(mπy),

for i , j = 1, . . . ,N − 1 and k ,m = 1, . . . ,N − 1. �
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Conclusions

In the case of the finite difference scheme (1), α = c + 8 and β = c + 4
h2

,

while in the case of (3), α = c + 16 and β = c + 8
h2

. In both cases

β − α
β + α

= 1− Const. h2;

thus, while the sequence of iterates {U(j)}∞j=0 defined by the iterative
method (4) is guaranteed to converge to the exact solution U of the linear
system AU = F , the speed of convergence will deteriorate as h→ 0:

‖U − U(j)‖ ≤
(
β − α
β + α

)j

‖U − U(0)‖. (9)
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