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Finite difference approximation of parabolic equations

As a simple but representative model problem we focus on the unsteady
diffusion equation (heat equation) in one space dimension:
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which we shall consider for x € (—o0,00) and t > 0, subject to the initial
condition
u(x,0) = up(x), x € (—00,00),

where ug is a given function.

The solution of this initial-value problem can be expressed explicitly in
terms of the initial datum wg.

We summarize here the derivation of this expression.



We recall that the Fourier transform of a function v is defined by

[e.e]

2(€) = FIVI(E) = / v(x) <€ dx.
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We shall assume henceforth that the functions under consideration are
sufficiently smooth and that they decay to 0 as x — 400 sufficiently fast
in order to ensure that our manipulations make sense.

By Fourier-transforming the PDE (1) we obtain
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(X7 t) eilx5 dX = . @

(x,t)e ¢ dx.



After (formal) integration by parts on the right-hand side and ignoring
‘boundary terms’ at 400, we obtain

0
aﬁ(ga t) = (Zg)zﬁ(éa t)’
whereby
(&, t) = e (¢, 0),

and therefore .
u(x,t) = F1 (e‘t£ ﬁo) .



The inverse Fourier transform of a function is defined by

) = FHR00 = 5 [ oo

After some lengthy calculations, which we omit, we find that

U(X7 t) = Fil (eitg[)o(é.)) = / W(X -y, t)UO(y) dy:
where the function w, defined by
w(x, t) = —— o ¥/0),

At

is called the heat kernel. So, finally,

u(x, t) = e ) o (y) dy,  x € (—o0,00),
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Boundedness in the L., norm

This formula gives an explicit expression of the solution of the heat
equation (1) in terms of the initial datum wug. Because w(x,t) > 0 for all
x € (—00,00) and all t > 0, and

/ w(y,t)dy =1 for all t > 0,

—00
we deduce from (2) that if up is a bounded continuous function, then
Supxe(—oo,-i—oo)‘u(xﬂ t)’ < Supxe(—oo,oo)‘uo(x)’a t>0. (3)

In other words, the ‘largest’ and ‘smallest’ values of u(-,t) at t > 0 cannot
exceed those of wg(-).



Boundedness in the L, norm

We need the following important technical result.

Lemma (Parseval's identity)

Suppose that u € Ly((—o0,00)). Then, i € Ly((—o0,0)), and the
following equality holds:

.
[l L ((—00,00)) = Wor 181l L2((=00,00))

() 1/2
fellisoeoen = ([ 0P ax)

—00

where




PrROOF. We begin by observing that

JARGIGIEE /_Z(/_Z
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u(x)e ¢ dx> v(&)d¢

v(€)e ¢ d£> u(x)dx

= /_ Z u(x) 0(x) dx.

We then take

v(€) = a(€) = 2nF[a)(€)

and substitute this into the identity above.

<



Returning to equation (1), we thus have by Parseval’s identity that
.
||u('v t)HLg((—oo,oo)) = \/72? Hu('a t)HLz((—oo,oo))v t > 0.
Therefore,

1 2
HU(‘vt)HLz((foo,oo)) = \/72?“6 *® UO(')HLz((—oo,oo))

1 .
< e [ ol L,((—o0,00))
= Juoll L,((=s0,00)) t > 0.
Thus we have shown that
[u( )l a((—00,00)) < ol Ly((—00,00))  forall > 0. (4)



Stability with respect to perturbation of the data

Suppose that up and f are two functions contained in L((—o0, c0)) and
denote by u and I the solutions to (1) resulting from the initial data ug
and g, respectively.

Then u — ii solves the heat equation with initial datum ug — g, and
therefore, by (4), we have that

u(-st) = G0 ) L ((—s0,00)) < [lto = dol| Ly((—o0,00)) for all t > 0.

Analogously, from (3) we have that

sup  |u(x,t) —d(x,t)] <  sup  |up(x) — do(x)] for all t > 0.

Xx€(—00,00) X€(—00,00)
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Finite difference approximation of the heat equation
We take our computational domain to be

{(x,t) € (—o0,0) x [0, T]},
where T > 0 is a given final time.

We consider a finite difference mesh with spacing Ax > 0 in the
x-direction and spacing At = T /M in the t-direction, with M > 1, and
we approximate the partial derivatives appearing in (1) using divided
differences as follows.

Let x; = jAx and t;, = mAt, and note that

Ou u(j, tmy1) — u(js tm)
iytm) =~
8t(XJ’ m) At
and
82” ~ U(Xj—i-la tm) — 2U(XJ'7 tm) + U(Xj—la tm)

o2 9 tm) (Ax)?
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This motivates us to approximate the heat equation at the point (x;, t)
by the following explicit Euler scheme:

m+1
Uj B Ujm _ J{il - 2U.Im + UJr21 i —0.4+1.4+2
At (Ax)? v ST LTS

U =uw(x), Jj=0+1,+2,...

Equivalently, we can write this as
1
UM = U+ (Ui =207 + U),

U =uw(x), Jj=0+1,+2,...

where p = ax?-

Thus, UJ-erl can be explicitly calculated, for all j = 0,+1,+2,..., from

the values Uj’il, UJ-’", and Uj”_’1 from the previous time level.
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Alternatively, if instead of time level m the expression on the right-hand
side of the explicit Euler scheme is evaluated on the time level m + 1, we
arrive at the implicit Euler scheme:

m+1 m+1 m+1 m+1
i S W S/ W ST S
At (Ax)?

U =uw(x), j=0+1,%2,....
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The explicit and implicit Euler schemes are special cases of a more general
one-parameter family of numerical methods for the heat equation, called
the f-method, with a parameter 6 € [0, 1].

The 0-method is defined as follows:

m—+1 m m m m m+1 m+1 m+1
ljj — UJ _ (1 _ 0) ljj"rl B 2UJ + ij_l 0 ljj+1 B 2ljJ + ljj_l
At (Bx)? (Ax) ’
UJO = UO(XJ'), J=0,£1,£2,...,

where 6 € [0, 1] is a parameter. Special cases:
0 = 0: explicit Euler scheme

6 = 1: implicit Euler scheme
6 = 1/2: Crank—Nicolson scheme
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Accuracy of the #-method

In order to assess the accuracy of the 6-method for the heat equation we
define its consistency error by

m+1 m m m m+1 m+1 m+1
— u; — qu" T uly — 2uj +u,y 9 uly — 2uj +uy
S At (Ax)? (Ax)? ’
where
u" = u(xj, tm).
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We shall explore the size of the consistency error by performing a Taylor
series expansion about the point (x;, tmi1/2) = (JAx, (m + IAL)).

Note that
m+1/2
. 1 1/1 \° 1/1 \°
Uj = u—+ EAt us + 5 (2At) Ut + 6 (2At) Uttt + - ' P
J
m+1/2
. 1 1/1 \? 1/1 \°
Uj = |f,l — EAt ut + 5 <2At> U — 6 <2At> Ut + - '
J
Therefore,
u{"‘H’l —ym |: 1 m+1/2
J J 2
e e— Ut+i(At) uttt+"':|
At 24 ;
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Similarly,

m m m m+1 m m
(1-0) ulty — 2uj +uy Lo le 2uj oy uj_tl
(Ax)? (Ax)?
m+1/2
= |:uxx + — (AX) Uscxxx + (AX) Usxxxxx + :|
J
1 m+1/2
+ <0 - 2> At |:Uxxt + —= 12 (AX) Usexxt 1+ :|
J
1
+= (At)z [Uxxtt +--- ]Jm+1/2 .

8
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Combining these, we deduce that

T = |[ur — uxx]m+1/2

r/1 1 ) m+1/2
+ _(2 — 9> At U — 0 (Ax) UXXXXL

1 m+1/2
+ | = (At g — 2 (At) Ut
| 24 8 ;
11 2 2 4 m+1/2
+ _E <2 - 0>At(AX) Usxxxt — 5 (AX) uXXXXXx:|j 4o

Note however that the term contained in the box vanishes, as v is a
solution to the heat equation u; = uy. Hence,

m_{0 ((Ax)? + (At)?)  for 6 =1/2 (Crack-Nicolson scheme)
I O((Ax)?+ At) for 8 #1/2 (e.g. Euler scheme(s)).
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