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Finite difference approximation of parabolic equations

As a simple but representative model problem we focus on the unsteady
diffusion equation (heat equation) in one space dimension:

∂u

∂t
=
∂2u

∂x2
, (1)

which we shall consider for x ∈ (−∞,∞) and t ≥ 0, subject to the initial
condition

u(x , 0) = u0(x), x ∈ (−∞,∞),

where u0 is a given function.

The solution of this initial-value problem can be expressed explicitly in
terms of the initial datum u0.

We summarize here the derivation of this expression.
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We recall that the Fourier transform of a function v is defined by

v̂(ξ) = F [v ](ξ) =

∫ ∞
−∞

v(x) e−ıxξ dx .

We shall assume henceforth that the functions under consideration are
sufficiently smooth and that they decay to 0 as x → ±∞ sufficiently fast
in order to ensure that our manipulations make sense.

By Fourier-transforming the PDE (1) we obtain∫ ∞
−∞

∂u

∂t
(x , t) e−ıxξ dx =

∫ ∞
−∞

∂2u

∂x2
(x , t) e−ıxξ dx .
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After (formal) integration by parts on the right-hand side and ignoring
‘boundary terms’ at ±∞, we obtain

∂

∂t
û(ξ, t) = (ıξ)2û(ξ, t),

whereby
û(ξ, t) = e−tξ

2
û(ξ, 0),

and therefore
u(x , t) = F−1

(
e−tξ

2
û0

)
.
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The inverse Fourier transform of a function is defined by

v(x) = F−1[v̂ ](x) =
1

2π

∫ ∞
−∞

v̂(ξ) eıxξ dξ.

After some lengthy calculations, which we omit, we find that

u(x , t) = F−1
(
e−tξ

2
û0(ξ)

)
=

∫ ∞
−∞

w(x − y , t)u0(y) dy ,

where the function w , defined by

w(x , t) =
1√
4πt

e−x
2/(4t),

is called the heat kernel. So, finally,

u(x , t) =
1√
4πt

∫ ∞
−∞

e−(x−y)2/(4t)u0(y) dy , x ∈ (−∞,∞), t > 0.

(2)
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Boundedness in the L∞ norm

This formula gives an explicit expression of the solution of the heat
equation (1) in terms of the initial datum u0. Because w(x , t) > 0 for all
x ∈ (−∞,∞) and all t > 0, and∫ ∞

−∞
w(y , t) dy = 1 for all t > 0,

we deduce from (2) that if u0 is a bounded continuous function, then

supx∈(−∞,+∞)|u(x , t)| ≤ supx∈(−∞,∞)|u0(x)|, t > 0. (3)

In other words, the ‘largest’ and ‘smallest’ values of u(·, t) at t > 0 cannot
exceed those of u0(·).
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Boundedness in the L2 norm

We need the following important technical result.

Lemma (Parseval’s identity)

Suppose that u ∈ L2((−∞,∞)). Then, û ∈ L2((−∞,∞)), and the
following equality holds:

‖u‖L2((−∞,∞)) =
1√
2π
‖û‖L2((−∞,∞)),

where

‖u‖L2((−∞,∞)) =

(∫ ∞
−∞
|u(x)|2 dx

)1/2

.
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Proof. We begin by observing that∫ ∞
−∞

û(ξ) v(ξ) dξ =

∫ ∞
−∞

(∫ ∞
−∞

u(x) e−ıxξ dx

)
v(ξ) dξ

=

∫ ∞
−∞

(∫ ∞
−∞

v(ξ) e−ıxξ dξ

)
u(x) dx

=

∫ ∞
−∞

u(x) v̂(x) dx .

We then take
v(ξ) = û(ξ) = 2πF−1[ū](ξ)

and substitute this into the identity above. �
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Returning to equation (1), we thus have by Parseval’s identity that

‖u(·, t)‖L2((−∞,∞)) =
1√
2π
‖û(·, t)‖L2((−∞,∞)), t > 0.

Therefore,

‖u(·, t)‖L2((−∞,∞)) =
1√
2π
‖e−tξ2

û0(·)‖L2((−∞,∞))

≤ 1√
2π
‖û0‖L2((−∞,∞))

= ‖u0‖L2((−∞,∞)), t > 0.

Thus we have shown that

‖u(·, t)‖L2((−∞,∞)) ≤ ‖u0‖L2((−∞,∞)) for all t > 0. (4)
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Stability with respect to perturbation of the data

Suppose that u0 and ũ0 are two functions contained in L2((−∞,∞)) and
denote by u and ũ the solutions to (1) resulting from the initial data u0

and ũ0, respectively.

Then u − ũ solves the heat equation with initial datum u0 − ũ0, and
therefore, by (4), we have that

‖u(·, t)− ũ(·, t)‖L2((−∞,∞)) ≤ ‖u0 − ũ0‖L2((−∞,∞)) for all t > 0.

Analogously, from (3) we have that

sup
x∈(−∞,∞)

|u(x , t)− ũ(x , t)| ≤ sup
x∈(−∞,∞)

|u0(x)− ũ0(x)| for all t > 0.
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Finite difference approximation of the heat equation
We take our computational domain to be

{(x , t) ∈ (−∞,∞)× [0,T ]},

where T > 0 is a given final time.

We consider a finite difference mesh with spacing ∆x > 0 in the
x-direction and spacing ∆t = T/M in the t-direction, with M ≥ 1, and
we approximate the partial derivatives appearing in (1) using divided
differences as follows.

Let xj = j∆x and tm = m∆t, and note that

∂u

∂t
(xj , tm) ≈

u(xj , tm+1)− u(xj , tm)

∆t

and
∂2u

∂x2
(xj , tm) ≈

u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

(∆x)2
.
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This motivates us to approximate the heat equation at the point (xj , tm)
by the following explicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 0,±1,±2, . . .

U0
j = u0(xj), j = 0,±1,±2, . . .

Equivalently, we can write this as

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1),

U0
j = u0(xj), j = 0,±1,±2, . . .

where µ = ∆t
(∆x)2 .

Thus, Um+1
j can be explicitly calculated, for all j = 0,±1,±2, . . . , from

the values Um
j+1, Um

j , and Um
j−1 from the previous time level.
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Alternatively, if instead of time level m the expression on the right-hand
side of the explicit Euler scheme is evaluated on the time level m + 1, we
arrive at the implicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . .

U0
j = u0(xj), j = 0,±1,±2, . . . .
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The explicit and implicit Euler schemes are special cases of a more general
one-parameter family of numerical methods for the heat equation, called
the θ-method, with a parameter θ ∈ [0, 1].

The θ-method is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

U0
j = u0(xj), j = 0,±1,±2, . . . ,

where θ ∈ [0, 1] is a parameter. Special cases:

θ = 0: explicit Euler scheme
θ = 1: implicit Euler scheme
θ = 1/2: Crank–Nicolson scheme
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Accuracy of the θ-method

In order to assess the accuracy of the θ-method for the heat equation we
define its consistency error by

Tm
j :=

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where
umj ≡ u(xj , tm).
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We shall explore the size of the consistency error by performing a Taylor
series expansion about the point (xj , tm+1/2) = (j∆x , (m + 1

2 ∆t)).

Note that

um+1
j =

[
u +

1

2
∆t ut +

1

2

(
1

2
∆t

)2

utt +
1

6

(
1

2
∆t

)3

uttt + · · ·

]m+1/2

j

,

umj =

[
u − 1

2
∆t ut +

1

2

(
1

2
∆t

)2

utt −
1

6

(
1

2
∆t

)3

uttt + · · ·

]m+1/2

j

.

Therefore,
um+1
j − umj

∆t
=

[
ut +

1

24
(∆t)2 uttt + · · ·

]m+1/2

j

.
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Similarly,

(1− θ)
umj+1 − 2umj + umj−1

(∆x)2
+ θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2

=

[
uxx +

1

12
(∆x)2 uxxxx +

2

6!
(∆x)4 uxxxxxx + · · ·

]m+1/2

j

+

(
θ − 1

2

)
∆t

[
uxxt +

1

12
(∆x)2 uxxxxt + · · ·

]m+1/2

j

+
1

8
(∆t)2 [uxxtt + · · · ]m+1/2

j .
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Combining these, we deduce that

Tm
j = [ut − uxx ]

m+1/2
j

+

[(
1

2
− θ
)

∆t uxxt −
1

12
(∆x)2 uxxxx

]m+1/2

j

+

[
1

24
(∆t)2 uttt −

1

8
(∆t)2 uxxtt

]m+1/2

j

+

[
1

12

(
1

2
− θ
)

∆t (∆x)2 uxxxxt −
2

6!
(∆x)4 uxxxxxx

]m+1/2

j

+ · · · .

Note however that the term contained in the box vanishes, as u is a
solution to the heat equation ut = uxx . Hence,

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
for θ = 1/2 (Crack–Nicolson scheme)

O
(
(∆x)2 + ∆t

)
for θ 6= 1/2 (e.g. Euler scheme(s)).
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