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The discrete maximum principle

Theorem (Discrete maximum principle for the 6-scheme)

The 0-scheme for the Dirichlet initial-boundary-value problem for the heat
equation, with 0 < 6 <1 and pu(1 —6) < % yields a sequence of numerical
approximations {Uf”}j:o,_“?J; m=0,..,M Satisfying

Unin < Ujm < Unax
where
Urnin = min {mi”{U(T}%:o’ mi"{UJQ}JJ:m min{UT}AmAZO}

and

Unax = max { max{Ug"}_o, max{UH_o, max{UJ'} o}




PRrROOF: We rewrite the 0-scheme as

(1+20p) Ut = 0 (Ut + Ut
(1= ) (UF + UPy) + [L—2(1 — 0)u] U,
and recall that, by hypothesis,
O >0 (1-60)u>0, 1-2(1—-0)u>0.

Suppose that U attains its maximum value Ujerl at an internal mesh
point (Xj, tmy1) where j € {1,...,J =1}, me {0,...,M —1}. If this
is not the case, the proof is complete.

We define

* . m+1 +1 m m m
U™ == max{U17", Ui, U, Uy, U }-



Then,

(14 20p) U < 200" +2(1 — 0)uU*
+[1—2(1-0)u]U* = (14 26u) U™,

and therefore
umtt < U*
/] < U~.

However, also,
* m+1
Ut < umtt,
as Ujerl is assumed to be the overall maximum value. Hence,

urtt = U,



Thus the maximum value is also attained at all mesh points neighbouring
(Xj, tm+1) present in the stencil of the #-scheme.

The same argument then applies to these neighbouring points, and we can
then repeat this process until the boundary at x =aorx=boratt=0
is reached, in a finite number of steps.

The maximum is therefore attained at a boundary point.

By an identical argument the minimum is attained at a boundary point. ¢



In summary then, for
1
pl=0)=3

the f-scheme satisfies the discrete maximum principle.
This condition is clearly more demanding than the #,-stability condition:

for 0<6<

N =
NI

u(1—20) <

E.g., the Crank-Nicolson scheme is unconditionally stable in the > norm,
yet it only satisfies the discrete maximum principle when p := (AATtV <1



Convergence of the #-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation
in one space-dimension with the convergence analysis of the #-scheme for
the Dirichlet initial-boundary-value problem.

We begin by rewriting the scheme as follows:

(1+200) U = o (U + U
+(1-0)p(UN+U) +[1—2(1—0)u] U
The scheme is considered subject to the initial condition

Ujpzuo(xj), j=0,...,J,

and the boundary conditions

Ugh = Atmar), UTH = Bltmer), m=0,... .M 1.



The consistency error for the f-scheme is defined by

™t ym um. — 2u + u
Tm — J J 1-0 Jj+1
— ) (Ax)

J At
m+1 ) m+1 m+1 .
_9u1+1 u.j +uj_1 ./:]-a"'vJ_la
(Ax)? ’ m=0,....,M—1,

where u = u(x;, tm), and therefore

(1+20p) u; mtl — gy ( J":{l + um+1) + (1 =0 (uty +uly)

+[1—2(1 = O)u] u" + AT/, {J:L-wJ—l,

m=0...,M—1.



Define the global error, that is the discrepancy at a mesh-point between
the exact solution and its numerical approximation, by

- . j=0,...,J,
e := U(Xj,tm)—Uja { m=0,..., M.

It then follows that
et =0, et =0,e =0 j=0,...,J
and

(1+201) &1 = 0p (51 + €31 ) + (1= O (el + €7)
j=1,...,0-1,

+[1—2(1—9)M]ej +AtTJ’ ’ { m=0,....,M—-1

We define,

E™ = max le"| and T" = max. \T’"]
0<j< 1<j<



As, by hypothesis,
O >0, (1-0)u>0, 1-2(1-0)u>0,
we have that
(14 20p)E™Y < 20uE™ 4 E™ + AtT™.

Hence,
EMTL < E™ L AtT™.

As E0 =0, upon summation,

m—1
E™ < At E T"
n=0
<mAt max T"
0<n<m-1
<T max max |T/"],
0<m<M—1 1<j<J—1
which then implies that
max max [u(xj,tm) — U"| < T max max | T"].
0<j<J 0<m<M 1<j<J—1 0<m<M-1
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Recall that the consistency error of the 0-scheme is

{ O ((Ax)? + (At)?) for 0 =1/2,

7= 0((ax)? + At for 6 £1/2.

J

For the explicit/implicit Euler schemes, for which

T" =0 ((Ax)* + At),

one has the following bound on the global error:

; — UM < . 2
Joax  max u(xj, tm) — U] < Const. ((Ax)* + At),

while for the Crank—Nicolson scheme, which has consistency error

" =0 ((Ax)? + (At)?),

one has

max max [u(x, tm) — U"| < Const. ((Ax)* + (At)?).

0<j<J 0<m<M
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Finite difference approximation in two space-dimensions

Consider the heat equation

ou 0*u  0%u
a_ﬁ+87)/2’ (x,y) € Q:=(a,b) x (c,d), t€(0,T],

subject to the initial condition

u(x,y,0) = wo(x,y),  (x,y) €la b] x[c,dl,
and the Dirichlet boundary condition

ulgq = B(x,y, t), (x,y) €0Q, te(0,T],

where 0N is the boundary of Q.

We begin by considering the explicit Euler finite difference scheme for this
problem.
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The explicit Euler scheme

Let
62U := Ups1j — 2U; + Ui,

and
5)2/UU = U,'7j+1 — 2UU + U,',_,'_l.

Let, further, Ax := (b—a)/Jx, Ay :=(d —c)/Jy, At := T /M, and define
X; = a+ iAx, i=0,...,Jy,

yj = c+jAy, J=0,...,J,,
tm = mAL, m=0,...,M.
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The explicit Euler finite difference scheme for the unsteady heat equation
on the space-time domain € x [0, T] is then:

m+-1 m 2 2
U,-j — U,-j B ozum 5yU,57’

x=ij

At (Ax)? ~ (Ay)*

fori=1,...,x—1,j=1,...,J,—1, m=0,1,...,M — 1, subject to
the initial condition

Up =uw(xiy), i=0,....0, j=0,....J,
and the boundary condition

Uj' = B(xi, yj; tm), at the boundary mesh points, for m=1,..., M.
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The implicit Euler scheme

Let Ax := (b—a)/Jx, Ay :=(d —c)/J,, At := T /M, and define

x; = a+ iAx, i=0,...,J,
yj = c+jAy, Jj=0,....J,
tm = mAL, m=20,..., M.

The implicit Euler finite difference scheme for the problem is then

m+1 _ ym 21 m+1 2 1 m+1
U,-J- U,-J- oz U’ (5in]

X7y

At (Ax)2 0 (Ay)p

fori=1,...,0c—1,j=1,...,0, -1, m=0,1,....,M—1,
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subject to the initial condition
Up =uw(xiy), i=0,....0 j=0,....J,
and the boundary condition

U&"H = B(xi, yj, tm+1), at the boundary mesh points,
form=0,....,M—1.
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The 6-scheme

Let Ax = (b—a)/Jx, Ay :=(d —c)/J,, At:=T/M, and, for
6 € [0, 1], consider the finite difference scheme

m+1 2 2 21 m+1 21 m+1
UPR =R g (B9, BYS RUPT 85U
At (Ax)2 ~ (Ay)? (Ax)?  (Ay)?

fori=1,...,k—1,j=1,...,J,—1, m=0,1,...,M — 1, subject to
the initial condition

U}J)-: uo(xi,yj), 1=0,...,J, j=0,...,J,,
and the boundary condition

Ug’Jrl = B(Xi, ¥j, tmt1), at the boundary mesh points,
form=0,..., M —1.
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