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The implicit scheme: stability, consistency and convergence

For M ≥ 2, we define ∆t := T/M, and for J ≥ 2 the spatial step is taken
to be ∆x := (b − a)/J. We let xj := a+ j∆x for j = 0, 1, . . . , J and
tm := m∆t for m = 0, 1, . . . ,M.

On the space-time mesh {(xj , tm) : 0 ≤ j ≤ J, 0 ≤ m ≤ M} we consider
the finite difference scheme

Um+1
j − 2Um

j + Um−1
j

∆t2
− c2

Um+1
j+1 − 2Um+1

j + Um+1
j−1

∆x2
= f (xj , tm+1) for

{
j = 1, . . . , J−1,
m = 1, . . . ,M−1,

U0
j = u0(xj) for j = 0, 1, . . . , J,

U1
j = U0

j +∆t u1(xj) for j = 1, 2, . . . ,J−1,

Um
0 = 0 and Um

J = 0 for m = 1, . . . ,M.

(1)
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The second numerical initial condition, featuring in equation (1)3, stems

from the observation that if ∂2u
∂t2

∈ C ([a, b]× [0,T ]) then

u(xj ,∆t)− U0
j

∆t
=

u(xj ,∆t)− u(xj , 0)

∆t

=
∂u

∂t
(xj , 0) +O(∆t) = u1(xj) +O(∆t);

thus, by ignoring the O(∆t) term and replacing u(xj ,∆t) by its numerical
approximation U1

j we obtain (1)3.

Once the values of Um−1
j and Um

j , for j = 0, . . . , J, have been computed
(or have been specified by the initial data, in the case of m = 1), the
subsequent values Um+1

j , j = 0, . . . , J, are computed by solving a system

of J − 1 linear algebraic equations for the J − 1 unknowns Um+1
j ,

j = 0, . . . , J − 1, for m = 0, . . . ,M − 1. The finite difference scheme (1) is
therefore referred to as the implicit scheme for the initial-boundary-value
problem.
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Stability of the implicit scheme

Consider the inner products

(U,V ) :=
J−1∑
j=1

∆x Uj Vj ,

(U,V ] :=
J∑

j=1

∆x Uj Vj ,

and the associated norms, respectively, ∥ · ∥ and ∥·]|, defined by

∥U∥ := (U,U)
1
2 and ∥U]| := (U,U]

1
2 .
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Note that for two mesh functions A and B defined on the computational
mesh {xj : j = 1, . . . , J − 1} one has that

(A− B,A) =
1

2
(∥A∥2 − ∥B∥2) + 1

2
∥A− B∥2.

Thus, by taking A = Um+1 − Um and B = Um − Um−1, we have

(Um+1 − 2Um + Um−1,Um+1 − Um)

=
1

2
(∥Um+1 − Um∥2 − ∥Um − Um−1∥2) + 1

2
∥Um+1 − 2Um + Um−1∥2.

Similarly as above, for two mesh functions A and B defined on the
computational mesh {xj : j = 1, . . . , J} we have that

(A− B,A] =
1

2
(∥A]|2 − ∥B]|2) + 1

2
∥A− B]|2.
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Hence, by summation by parts and taking A = D−
x Um+1 and B = D−

x Um:(
−D+

x D−
x Um+1,Um+1 − Um

)
= (D−

x Um+1,D−
x (Um+1 − Um)]

= (D−
x Um+1 − D−

x Um,D−
x Um+1]

=
1

2
(∥D−

x Um+1]|2 − ∥D−
x Um]|2)

+
1

2
∥D−

x (Um+1 − Um)]|2.

By taking the (·, ·) inner product of (1)1 with Um+1 − Um and using the
identities stated above we therefore obtain:

1

2

(∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2 − ∥∥∥∥Um − Um−1

∆t

∥∥∥∥2
)

+
1

2
∆t2

∥∥∥∥Um+1 − 2Um + Um−1

∆t2

∥∥∥∥2
+

c2

2
(∥D−

x Um+1]|2 − ∥D−
x Um]|2) + c2

2
∆t2

∥∥∥∥D−
x

(
Um+1 − Um

∆t

)]∣∣∣∣2
= (f (·, tm+1),U

m+1 − Um).

(2)
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In the special case when f is identically zero the equality (2) gives∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2 + c2∥D−
x Um+1]|2 ≤

∥∥∥∥Um − Um−1

∆t

∥∥∥∥2 + c2∥D−
x Um]|2. (3)

Let us define:

M2(Um) :=

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2 + c2∥D−
x Um+1]|2.

With this notation (3) becomes

M2(Um) ≤ M2(Um−1), for all m = 1, . . . ,M − 1,

and therefore

M2(Um) ≤ M2(U0), for all m = 1, . . . ,M − 1.
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The mapping
U 7→ max

m∈{0,...,M−1}
[M2(Um)]1/2

is a norm on the linear space of mesh functions U defined on the
space-time mesh {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M} such that
Um
0 = Um

J = 0 for all m = 0, 1, . . . ,M, called the discrete energy norm.

Thus we have shown that when f is identically zero the implicit scheme
(1) is (unconditionally) stable in this norm.
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We now return to the general case when f is not identically zero. Our
starting point is the equality (2). By the Cauchy–Schwarz inequality,

(f (·, tm+1),U
m+1 − Um) ≤ ∥f (·, tm+1)∥ ∥Um+1 − Um∥

=
√
∆t T ∥f (·, tm+1)∥

√
∆t

T

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥
≤ ∆t T

2
∥f (·, tm+1)∥2 +

∆t

2T

∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2 ,
(4)

where in the transition to the last line we used the elementary inequality

αβ ≤ 1

2
α2 +

1

2
β2, for α, β ∈ R.
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Substituting (4) into (2) we deduce that(
1− ∆t

T

)(∥∥∥∥Um+1 − Um

∆t

∥∥∥∥2 + c2∥D−
x Um+1]|2

)

≤
∥∥∥∥Um − Um−1

∆t

∥∥∥∥2 + c2∥D−
x Um]|2 +∆t T ∥f (·, tm+1)∥2.

(5)

By recalling the definition of M2(Um) we can rewrite (5) in the following
compact form:(

1− ∆t

T

)
M2(Um) ≤ M2(Um−1) + ∆t T ∥f (·, tm+1)∥2.
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As, by assumption, M ≥ 2, it follows that ∆t := T/M ≤ T/2, whereby
∆t/T ≤ 1/2. By noting that

1− x ≥ 1

1 + 2x
∀ x ∈

[
0, 12
]
,

it follows with x = ∆t/T that

M2(Um) ≤
(
1 +

2∆t

T

)
M2(Um−1) + ∆t T

(
1 +

2∆t

T

)
∥f (·, tm+1)∥2

≤
(
1 +

2∆t

T

)
M2(Um−1) + 2∆t T ∥f (·, tm+1)∥2.
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We need the following result, which is easily proved by induction.

Lemma

Suppose that M ≥ 2 is an integer, {am}M−1
m=0 and {bm}M−1

m=1 are
nonnegative real numbers, α > 0, and

am ≤ α am−1 + bm for m = 1, 2, . . . ,M − 1.

Then,

am ≤ αma0 +
m∑

k=1

αm−kbk for m = 1, 2, . . . ,M − 1.
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We shall apply Lemma 1 with

am = M2(Um), bm = 2∆t T ∥f (·, tm+1)∥2, α = 1 +
2∆t

T

to deduce that, for m = 1, 2, . . . ,M − 1,

M2(Um) ≤
(
1 +

2∆t

T

)m

M(U0) + 2∆t T
m∑

k=1

(
1 +

2∆t

T

)m−k

∥f (·, tk+1)∥2.

We note that(
1 +

2∆t

T

)m

≤
(
1 +

2∆t

T

)M

=

(
1 +

2∆t

T

) T
∆t

≤ e2,

where the last inequality follows from the inequality

(1 + 2x)
1
x ≤ e2 ∀ x ∈

(
0, 12
]
,

with x = ∆t/T .
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Thus we deduce the following stability result for the implicit scheme (1).

Theorem

The implicit finite difference approximation (1) of the initial-boundary-
value problem, on a finite difference mesh of spacing ∆x = (b − a)/J with
J ≥ 2 in the x-direction and ∆t = T/M with M ≥ 2 in the t-direction, is
(unconditionally) stable in the sense that, for m = 1, . . . ,M − 1,

M2(Um) ≤ e2M2(U0) + 2 e2 T
m∑

k=1

∆t ∥f (·, tk+1)∥2 , ,

independently of the choice of ∆x and ∆t.

14 / 22



Consistency of the implicit scheme

We define the consistency error of the scheme by

Tm+1
j :=

um+1
j − 2umj + um−1

j

∆t2
−c2

um+1
j+1 − 2um+1

j + 2um+1
j−1

∆x2
−f (xj , tm+1),

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

and

T 1
j :=

u1j − u0j
∆t

− u1(xj), j = 1, . . . , J − 1,

where umj := u(xj , tm).
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By Taylor series expanions with remainder terms:

|Tm+1
j | ≤ 1

12
c2∆x2M4x +

5

3
∆tM3t ,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

(6)

where

M4x := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂4u

∂x4
(x , t)

∣∣∣∣ and M3t := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂3u

∂t3
(x , t)

∣∣∣∣ .
Furthermore, again by Taylor series expansion with a remainder term:

|T 1
j | ≤

1

2
∆t M2t , j = 1, . . . , J − 1,

where

M2t := max
(x ,t)∈[a,b]×[0,T ]

∣∣∣∣∂2u

∂t2
(x , t)

∣∣∣∣ .
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Convergence of the implicit scheme

We define the global error

emj := u(xj , tm)− Um
j ,

{
j = 0, . . . , J,
m = 0, . . . ,M.

It follows from the definitions of Tm+1
j and T 1

j that

em+1
j − 2emj + em−1

j

∆t2
− c2

em+1
j+1 − 2em+1

j + 2em+1
j−1

∆x2
= Tm+1

j ,

for j = 1, . . . , J − 1 and m = 1, . . . ,M − 1, and

e1j = e0j +∆t T 1
j , j = 1, . . . , J − 1.

Furthermore, e0j = 0 for j = 0, 1, . . . , J, and em0 = emJ = 0 for
m = 1, . . . ,M.
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Hence, the global error e satisfies an identical finite difference scheme as
U, but with f (xj , tm+1) replaced by Tm+1

j , U0
j = u0(xj) replaced by

e0j = 0, and u1(xj) replaced by T 1
j .

Theorem 2 with Um replaced by em, U0 replaced by e0 and f (xj , tk+1)
replaced by T k+1

j for j = 1, . . . , J − 1 and k = 1, . . . ,M − 1, gives that

M2(em) ≤ e2M2(e0) + 2 e2 T
m∑

k=1

∆t
∥∥∥T k+1

∥∥∥2 , for m = 1, . . . ,M − 1.

It remains to bound the terms on the r.h.s. of this inequality.
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Because (J − 1)∆x ≤ b − a, it follows from (6) that

max
1≤k≤m

∥∥∥T k+1
∥∥∥2 = max

1≤k≤m

J−1∑
j=1

∆x |T k+1
j |2

≤ (b − a)

[
1

12
c2∆x2M4x +

5

3
∆tM3t

]2
.
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On the other hand,

M2(e0) =

∥∥∥∥e1 − e0

∆t

∥∥∥∥2 + ∥D−
x e1]|2 = ∥T 1∥2 + ∥D−

x e1]|2

≤ (b − a)

[
1

2
∆t M2t

]2
+ ∥D−

x e1]|2.

Since

D−
x e1j = D−

x e0j +∆t D−
x T 1

j = ∆t D−
x T 1

j =

∫ ∆t

0

(∆t − t)D−
x

∂2u

∂t2
(xj , t)dt

=
1

∆x

∫ ∆t

0

(∆t − t)

∫ xj

xj−1

∂3u

∂x ∂t2
(x , t)dx dt,

we have that

|D−
x e1j | ≤

1

2
∆t2 M1x2t , where M1x2t := max

(x,t)∈[a,b]×[0,T ]

∣∣∣∣ ∂3u

∂x∂t2

∣∣∣∣ ,
whereby

∥D−
x e1]|2 ≤ (b − a)

[
1

2
∆t2M1x2t

]2
.
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Therefore,

M2(e0) ≤ (b − a)

[
1

2
∆t M2t

]2
+ (b − a)

[
1

2
∆t2M1x2t

]2
.

Hence, finally,

M2(em) ≤ e2(b − a)

[
1

2
∆t M2t

]2
+ e2(b − a)

[
1

2
∆t2M1x2t

]2
+ 2e2 T 2(b − a)

[
1

12
c2∆x2M4x +

5

3
∆tM3t

]2
for m = 1, . . . ,M − 1. Thus, provided that M2t , M1x2t , M4x and M3t are
all finite, we have that

max
m∈{1,...,M−1}

[M2(um − Um)]
1
2 = O(∆x2 +∆t).
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Summary:

The implicit scheme exhibits second order convergence with respect to the
spatial discretization step ∆x and first-order convergence with respect to

the temporal discretization step ∆t in the norm maxm∈{1,...,M−1}[M2(·)]
1
2 .

Thanks to the unconditional stability of the implicit scheme, its
convergence is also unconditional in the sense that there is no limitation
on the size of the time step ∆t in terms of the spatial mesh-size ∆x for
convergence of the sequence of numerical approximations to the solution
of the wave equation to occur as ∆x and ∆t tend to 0.
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