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The implicit scheme: stability, consistency and convergence

For M > 2, we define At := T /M, and for J > 2 the spatial step is taken
to be Ax :=(b—a)/J. Welet x; ;== a+ jAx for j=0,1,...,J and
tm = mAt for m=0,1,... M.

On the space-time mesh {(xj, tm) : 0 <j < J, 0 < m < M} we consider
the finite difference scheme

Ujmﬂ —2U" Ujm_l - UJTI—I — 2Ujm+1 ha Ujmjl = f(Xj, tms1) for{ et
At? Ax? Jo tmtl m=1,...,M—1,
Ujp:UO(Xj) forj=0,1,...,J,
U= U + Atui(x) for j=1,2,...,J—1,
U'=0 and U7 =0 form=1,..., M.

(1)



The second numerical initial condition, featuring in equation (1)3, stems
from the observation that if % € C([a, b] x [0, T]) then

U(Xj’At) — UJQ _ u()(J'?At) — u(vao)
At B At
ou

= 5. (x,0) + O(At) = tn(x)) + O(At);

thus, by ignoring the O(At) term and replacing u(x;, At) by its numerical
approximation UJ-1 we obtain (1)3.

Once the values of U™ ! and Uj’”, for j=0,...,J, have been computed
(or have been specified by the initial data, in the case of m = 1), the
subsequent values UJ-'"H, J=0,...,J, are computed by solving a system
of J —1 linear algebraic equations for the J — 1 unknowns U™,
j=0,...,J—1 form=0,...,M— 1. The finite difference scheme (1) is
therefore referred to as the implicit scheme for the initial-boundary-value
problem.



Stability of the implicit scheme

Consider the inner products

J-1
(U, V) =) AxU; Vv,
j=1
J
(U, V=) AxU; v,
j=1
and the associated norms, respectively, || - || and ||-]|, defined by

1U]| := (U, U)? and U] := (U, U]=.



Note that for two mesh functions A and B defined on the computational
mesh {x; : j=1,...,J — 1} one has that

1 1
(A-B,A)= §(||A||2 —1BI1%) + slA- BJ%.
Thus, by taking A= U™ — U™ and B = U™ — U™, we have

(Um+1 _ 2Um + Um—l’ Um+1 _ Um)
1 m m m m— 1 m m m—
= S>UmTE = Um P = U = U £ S U 20T 4 U

Similarly as above, for two mesh functions A and B defined on the
computational mesh {x; : j =1,...,J} we have that

(A~ B, A = (A~ |BIP) + 5| A~ BIP.



Hence, by summation by parts and taking A= D_ U™+ and B = D, U™:

(—D;r D; Um+1’ Um+1 ) ( - Um+1 ;(Um+1 _ Um)]
D; Um+1 D; Um, D; Um+1]

—~~

(D5 U™~ D5 U™IP)

N —

1
+ S0 (U= UM

By taking the (-,-) inner product of (1); with U™*! — U™ and using the
identities stated above we therefore obtain:

m+1 _ pym (|2 2
1<HUU . >+ AP

C m — m
+ 5 (107 U™ 2 = D UmP?) + At

Um+1_2um_|_Um 112

At2

m+1 m 2
o ()
At

um — Um—l
At

(F(-, tme1), U™ — U™).



In the special case when f is identically zero the equality (2) gives

Um+1 —_ym 2 ) um— Umfl 2
A D~ m+1712 <
||+ rorume < [
Let us define:
Um+1 —_ym 2

MA(U™) = H + c?||D; U™ )12

At
With this notation (3) becomes

M2U™) < M2(U™Y,  forallm=1,...,M—1,
and therefore

M2U™) < M2(U°),  forallm=1,...,M—1.

+ D UM (3)



The mapping
U max  [M2(U™)]Y?
me{0,...,M—1}
is a norm on the linear space of mesh functions U defined on the
space-time mesh {(xj,tm) : j=0,1,...,J, m=0,1,..., M} such that
Uy' = U7 =0forall m=0,1,..., M, called the discrete energy norm.

Thus we have shown that when f is identically zero the implicit scheme
(1) is (unconditionally) stable in this norm.



We now return to the general case when f is not identically zero. Our
starting point is the equality (2). By the Cauchy-Schwarz inequality,

(F(s tmya), U™ = U™) < I tmg) I IUTE = U™

At |fumtt —ym
= VAL T (-, tmi1) ||/ = ||[———

At T
S )P +

(4)
At 2

Um+1 _ym
ﬁ

At

IN

where in the transition to the last line we used the elementary inequality

1 1
af < 5(12 + Eﬁz, for a, B € R.



Substituting (4) into (2) we deduce that

2=

um — Um—l
At

+cp; um+11|2>
(5)

< + DU+ AT I, tmra) 1.

By recalling the definition of M2?(U™) we can rewrite (5) in the following
compact form:

<1 - Art> MA(U™) < MP(UT ) + AL T |F(, tmga) P
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As, by assumption, M > 2, it follows that At := T/M < T /2, whereby
At/T <1/2. By noting that

1 1
1_XZ]_—|—2X VXE[O,E],
it follows with x = At/ T that
2 At 2 At
Mz(Um) < (1 + T) MZ(Um_l) +AtT <1 + -,-) Hf('a tm-‘rl)H2

2At
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We need the following result, which is easily proved by induction.

Lemma

Suppose that M > 2 is an integer, {am M=} and {bm}M=1 are
nonnegative real numbers, o > 0, and

am < aam—1+ bm form=1,2,...,M—1.
Then,

m
amgamao+2am_kbk form=1,2...,M—1.
k=1
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We shall apply Lemma 1 with

am = M32(U™), bp=2AtT|f(tme)|?, a=1+ —

to deduce that, for m=1,2,... ., M —1,

2 At m m 2 At m—k
M2(U"7) < (1+T) M(UO)+2AtTZ <1—|—T) ||f(',tk+1)||2.
k=1

We note that

.
2AL\" 2A\M 2AL\ 2,
<1+T>_<1+T> (1+T> < é?,

where the last inequality follows from the inequality
(1 +2x)§ <e® Vxe (0, %],

with x = At/T.



Thus we deduce the following stability result for the implicit scheme (1).

Theorem

The implicit finite difference approximation (1) of the initial-boundary-
value problem, on a finite difference mesh of spacing Ax = (b — a)/J with
J > 2 in the x-direction and At = T /M with M > 2 in the t-direction, is
(unconditionally) stable in the sense that, form=1,..., M —1,

M2(U™) < MP(U0) +262 T Y At (-, tia)l?
k=1

independently of the choice of Ax and At.




Consistency of the implicit scheme

We define the consistency error of the scheme by

Tml . ”JmH — 20" + “Jm_l 2 “J{Til - 2“Jm+1 + 2UJT£1 f
A A2 —C AX2 —F0g: tmi),
and . o
ut — i
I ,
T, = Ar — u1(xj), j=1...,J-1,
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By Taylor series expanions with remainder terms:

1 5 i=1,...,J-1
m+1 -2 2 e J ) ) )
‘Tl ’S 12C AX M4x+3AtM3t7 { m:].,...,M—]_, (6)
where
0*u ABu
May = —(x,t d Mz = —(x,0)|.
¢ (x,t)e{g,i]xX[O,T] ox* ()] an 3t (x,t)efg,%]xx[o,r] ot3 (x )’

Furthermore, again by Taylor series expansion with a remainder term:
1 1 .
]7'J-|§§At/\/lgt, j=1...,J-1,

where

0cu

2
w(xa t)‘-

20 el X [0.T]
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Convergence of the implicit scheme

We define the global error

B j=0,...,J,
efn = U(Xjatm)_UJm’ { mZO,--~7M-

It follows from the definitions of Tj’"“ and T} that

m+1 m m—1 m+1 m+1 m+1
& 2ej +e 2 €11 2ej + 2ej_1 J—
At? Ax? ;o

forj=1,...,J—1land m=1,.... M—1, and

ejl:ejQ+At7'jl, j=1,...,J—-1.

Furthermore, ej‘-) =0forj=0,1,...,J, and ]’ = e =0 for
m=1,...,M.

)
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Hence, the global error e satisfies an identical finite difference scheme as
U, but with f(x;, tmy1) replaced by Tj’"H, UJQ = up(x;) replaced by
eJQ =0, and ui(x;) replaced by le.

Theorem 2 with U™ replaced by e™, U° replaced by €® and f(x;, tx+1)
replaced by Tij forj=1,...,J—1and k=1,...,M — 1, gives that

m 2
M?(e™) < e M3(2) +262 T ZAt HT"H‘ , form=1,...,M—1.

k=1

It remains to bound the terms on the r.h.s. of this inequality.



Because (J — 1)Ax < b — a, it follows from (6) that

5 J-1
max ’TkHH = max g Ax|TK?
1<k<m 1<k<m 4 = J
J:

2

1
< (b-a) |:12C2AX2M4X + gAtM3t
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On the other hand,

2
+ Dz el = [ TH? + | D e']?

1_ g0

At

M2(e°) =

1 2
<(b-a) LAt Mzt} + ||D;e1]|2.

Since
At 8%u
Def =Dy +AtD; T} = AtD; T} = /0 (Atft)D;a2(xJ,t)dt
1 [At %N 0%u
= At —t ——(x,t)dxdt
axf, B0 [ gatoa
we have that
|D; et| < 1At2 Mio: where My,o; = max ﬁ
xTh=2 ’ (x,t)€la,b]x[0,T] | OxOt2 |’
whereby

1 2
||D;e1]|2 S (b — a) |:2At2M1X2t:| .
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Therefore,

M?(%) < (b — a) [;At Mzt} 2 +(b—a) B AtQMlxzr}

Hence, finally,

2
M?(e™ < e?(b—a) [;At I\/Izt] +e?(b — a) [; At2M1X2t]

1 5 2
+2¢2 T?(b — a) [lzczAx2M4X + 3Atl\/13t]

2

form=1,...,M — 1. Thus, provided that My, Mix2¢, Myx and Ms; are

all finite, we have that

2. m _ ym 1
me !y T U

= O(AX? + At).
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Summary:

The implicit scheme exhibits second order convergence with respect to the
spatial discretization step Ax and first-order convergence with respect to

. . : 1
the temporal discretization step At in the norm maxme{le_l}[/\/ﬁ(-)]E.

Thanks to the unconditional stability of the implicit scheme, its
convergence is also unconditional in the sense that there is no limitation
on the size of the time step At in terms of the spatial mesh-size Ax for
convergence of the sequence of numerical approximations to the solution
of the wave equation to occur as Ax and At tend to O.



