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1 Background

The history of the theory of distributions is closely connected with the theory of PDEs. Proba-
bly the first to use notions resembling that of distributions in mathematics were Fourier (1822),
Kirchhoff (1882) and Heaviside (1898). More rigorous treatments followed, notably by Bochner
(1932) who used, though implicitly, a notion of distribution in connection with his treatment
of the Fourier transformation, and in their studies of the Cauchy problem, Hadamard (1932)
and M. Riesz (1949) considered certain special distributions. The first to rigorously define
distributions as linear functionals was Sobolev (1936). The closely related concept of weak
derivatives, that arises naturally in the study of PDEs by variational methods, was also used
by Friedrichs (1939). However, it is only in the final form of Schwartz (1945–50), where also
the Fourier transformation is an essential part, that distribution theory has become such a
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convenient and efficient tool for the analysis of PDEs. This course and its sequel B4.4 Fourier
Analysis give an introduction to these topics.

1.1 Why Distributions?

The classical calculus for functions of several variables is inadequate if one seeks a simple and
general theory of PDEs. Borrowing an example from Hörmander (1963) we consider the two
PDEs

∂2u

∂x∂y
= 0 and

∂2u

∂y∂x
= 0

for the real-valued function u = u(x, y) of two variables. The PDEs are equivalent for twice
continuously differentiable functions u, but they are not equivalent for more general functions:
the first PDE is satisfied by every function u = h(x) that depends on x alone, whereas the
second PDE does not make sense for such functions when h(x) is not differentiable. This
is somewhat unnatural and indicates the need for supplementing functions by new objects,
distributions, so that differentiation is always possible and we get a better general notion of
solution. In doing so it is important that we only add what is strictly necessary and that the
new objects obey, as close as possible, the usual calculus rules. In order to motivate the formal
definition we consider the PDE

∂2u

∂x∂y
= f in R2 (1)

where we assume that f = f(x, y) is a given continuous function. Assume first that u is a
twice continuously differentiable solution of (1) and let φ : R2 → R be a twice continuously
differentiable function vanishing outside a bounded set. If we multiply (1) by φ, next integrate
over R2 and perform two integrations by parts on the left-hand side (note the boundary terms
disappear because φ vanishes outside a bounded set) we arrive at∫∫

u
∂2φ

∂y∂x
dxdy =

∫∫
fφ dxdy (2)

Note that we can recover (1) again from (2) when, as above, u is twice continuously differen-
tiable, so that for such functions (1) and (2) are in fact equivalent. The advantage of (2) is
that it makes sense also when u is not twice continuously differentiable, for example it would
suffice to assume that u is continuous (or merely locally integrable). It is also not difficult to
see, that for a given u as above, the identity (2) cannot hold for more than one continuous
function f (compare the Fundamental Lemma of the Calculus of Variations in Subsection 3.4
below). This makes it natural to define ∂2u/∂x∂y = f in the weak sense if the identity (2)
holds for all functions φ that are twice continuously differentiable and vanish off a bounded
set. Since ∂2φ/∂x∂y = ∂2φ/∂y∂x for twice continuously differentiable functions φ it is clear
that the PDEs ∂2u/∂x∂y = f and ∂2u/∂y∂x = f then become equivalent in the weak sense.
The theory of distributions goes a step further and considers the linear functional

φ 7→
∫∫

u
∂2φ

∂x∂y
dxdy
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as a representation for ∂2u/∂x∂y even when there is no continuous function f for which (2)
holds. In order to be able to study PDEs of any order we are thus led to consider linear
functionals on the set of functions vanishing outside bounded sets and having continuous
derivatives of any order.

Perhaps it is still not clear from the above why we should bother to introduce objects,
distributions, that can always be differentiated. Our next example is taken from Strichartz’s
book A Guide to Distribution Theory and Fourier Transforms.

1.1.1 One Dimensional Wave Equation

The equation
∂2u

∂t2
(x, t) = k2

∂2u

∂x2
(x, t) (3)

can be used to model a vibrating string. A function given by

u(x, t) = f(x− kt),

where f is a function of one variable, represents a travelling wave with shape f(x) moving to
the right with velocity k. When f is twice differentiable, one can check that u is a solution
to (3). However, there is no physical reason for the shape of the travelling wave to be twice
differentiable. For instance, the triangular profile
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moving with speed k to the right is perfectly fine! We do not want to throw away physically
meaningful solutions because of technicalities. Looking at the example above, one could think
that if we accepted as solutions to differential equations any function that satisfies the differ-
ential equation except for some points (finitely many, say), where it fails to be differentiable,
then all would be fine. But this would be a much too simplistic general principle, as the next
example shows.

1.1.2 Laplace’s Equation

In the plane R2 we have Laplace’s equation

∆u ..=
∂2u

∂x2
+
∂2u

∂y2
= 0. (4)

A solution to the above equation has the physical interpretation of an electric potential in a
region with no external charges. From physical experience it is known that such potentials
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should be smooth. However, as you may have seen last year,

u = G0 :=
1

4π
log

(
x2 + y2

)
,

is a solution in R2 \ {(0, 0)}. Clearly it cannot be extended to the origin in a smooth manner,
and so it should not be considered as a solution to (4) on the full plane.

Distribution theory allows us, among many other things, to distinguish between the case of
the one dimensional wave equation (3) and Laplace’s equation (4). Indeed, the standing wave
satisfies the one dimensional wave equation in the sense of distributions for any continuous
profile f , whereas

∆G0 = δ0

as distributions, where δ0 is Dirac’s delta function, a distribution.

But there are in fact many other reasons to study distributions, and most of them are
only really appreciated after the fact. Many physical quantities are naturally not defined
pointwise. For instance, being able to measure temperature at a given point in space and time
is an idealization – see the discussion in Strichartz’s book A Guide to Distribution Theory
and Fourier Transforms, §1. Similarly, in the theory of Lebesgue integration as discussed
in the Part A Integration course you encountered Lp functions. Strictly speaking they are
not functions, but equivalence classes of functions under the equivalence relation equal almost
everywhere. Nonetheless, for f ∈ Lp(Rn) and each measurable subset A of Rn the bracket

〈f,1A〉 ..=

∫
A
f(x) dx where now x = (x1 , . . . , xn) (5)

is well-defined and does not depend on the particular representative used to calculate the
integral. Note that if we know that f has a continuous representative, then we can uniquely
determine the value of this continuous representative at all points x ∈ Rn from the values of
the integrals (5) for all measurable subsets A of Rn. In fact, we do not need the values in (5)
for all measurable sets. For instance, it would suffice to know them for all open balls Br(x0)
since we have (denoting the continuous representative again by f) that

1

L n(Br(x0))

∫
Br(x0)

f(x) dx→ f(x0) as r ↘ 0 (6)

for all x0 ∈ Rn. On the other hand, for a general Lp function f , knowing the values of the
integrals (5) for all measurable subsets A of Rn determines f(x) uniquely almost everywhere,
or more precisely, uniquely as an Lp function. (In fact, the assertion (6) remains true for almost
all x0 ∈ Rn when f is a general Lp function: the limit of the left-hand side exists in R for
almost all x0 ∈ Rn and defines a representative for the Lp function. This is a consequence of
Lebesgue’s Differentiation Theorem.) Note that here the indicator function of the set A,

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A
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acts as a test function, or measurement of f , and instead of thinking about f as the basic
object we could equally well consider the functional 1A 7→ 〈f,1A〉 to be the basic object.
(Terminology : Functional means the same as function, but is often used instead if we have
a real or complex-valued function defined on other functions.) It turns out that taking very
nice test functions here is a good idea that allows us to extend aspects of differential calculus
to Lp functions and beyond. This leads to the theory of distributions. Before getting there
we must spend some time developing our notion of a test function. It is worth mentioning
that there is not just one class of test functions. In this course and its sequel Fourier Analysis
we shall systematically investigate two such classes: the compactly supported ones and the
Schwartz ones. But for particular problems it is often the case that it is more natural to use
other classes of test functions. To each class of test functions there corresponds a class of
distributions. The principle to keep in mind here is that the nicer the test functions are, the
rougher the corresponding distributions are allowed to be and vice versa. The general principle
behind all of this is that of duality. You encountered it in a purely algebraic form already in
Linear Algebra and if you follow the Functional Analysis courses this year you will see it again
there.

1.2 A brief review of some Calculus

We start by fixing some notation. On Rd we shall usually employ the standard euclidean norm
that is defined by the dot product:

|x| :=
√
x · x =

√
x21 + . . . + x2d.

Here the dimension d is understood from context and not emphasized in our notation. The
open ball with centre x0 and radius r is

Br(x0) :=
{
x ∈ Rd : |x− x0| < r

}
.

The corresponding closed ball is denoted with a bar on top, Br(x0). Similarly, the closure of
any subset A of Rd is A. Occasionally we shall also write Br(A) which is taken to mean the
r-metric neighbourhood of the set A:

Br(A) :=
⋃
a∈A

Br(a).

For two arbitrary subsets A and B of Rd we define the distance between them to be

dist(A,B) := inf
{
|a− b| : a ∈ A, b ∈ B

}
.

We use the convention that the infimum of the empty set is +∞ so that the distance between
A and B is always defined, but possibly +∞. We record in particular that if K is a compact
subset of an open set V in Rd, then the distance

dist(K,Rd \ V ) := inf
{
|x− y| : x ∈ K, y ∈ Rd \ V

}
> 0. (7)
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For two open subsets U and V of Rd we write U ⋐ V if U is compact and U ⊂ V . Clearly we
then also have that dist(U,Rd \ V ) > 0 when U ⋐ V .

When A = {x} and B is a general subset we write dist(x,B) := dist({x}, B) and it is not
difficult to check that the function Rd 3 x 7→ dist(x,B) is 1-Lipschitz: |dist(x,B)−dist(y,B)| ⩽
|x− y| holds for all x, y ∈ Rd.

1.2.1 Classical derivatives

Next we recall that a function f : S → R defined on a subset S of R is said to be differentiable
at a point x0 if x0 is an interior point of S and the difference quotient

f(x)− f(x0)

x− x0
, x ∈ S \ {x0},

has a limit in R as x→ x0. Of course this limit is the differential quotient of f at x0, denoted
as usual by f ′(x0). The above generalizes in a straight forward manner to the case where
the function f is complex valued, so f : S → C, and to the case where it is Rk-valued, so
f : S → Rk. In all cases we retain the notation f ′(x0) for the differential quotient when it
exists.

It is well-known that we can relate the value of a differentiable function f : (a, b) → R to
its derivative via the Mean Value Theorem. If f is continuously differentiable, then we even
have that

f(x) = f(x0) +

∫ x

x0

f ′(t) dt

for all x, x0 ∈ (a, b) by the Fundamental Theorem of Calculus. While the latter remains
true also for vector-valued functions, the Mean Value Theorem breaks down in that case (for
instance try f(x) = eix, x ∈ R, between 0 and 2π). The following weaker result can then
sometimes be used instead.

Proposition 1.1. (The Mean Value Inequality)

Let I ⊆ R be an open interval and assume that f : I → Rd is differentiable. Then

|f(y)− f(x)| ⩽ |y − x| sup
t∈(0,1)

|f ′
(
x+ t(y − x)

)
|

holds for all x, y ∈ I.

Proof. There is nothing to prove if the supremum on the right-hand side is +∞ (we use the
convention that the supremum of a set that is not bounded above is +∞). Assume therefore
that it is finite and fix

M > sup
t∈(0,1)

|f ′
(
x+ t(y − x)

)
|. (8)

7



Now to prove the desired inequality it suffices to do it for the case where x, y ∈ I satisfy x > y.
We fix such a pair and define the set

E =
{
t ∈ [0, 1] : |f(x+ t(y − x))− f(x)| ⩽Mt|x− y|

}
.

Clearly 0 ∈ E and because f is continuous the set E must be closed relative to [0, 1]. It follows
that it has a largest element, say s = maxE. Because I is open and x+ s(y − x) ∈ I we have
by differentiability that for t > s with t− s sufficiently small,

|f(x+ t(y − x))− f(x+ s(y − x))| ⩽M(t− s)|y − x|.

Consequently we find

|f(x+ t(y − x))− f(x)| ⩽ |f(x+ t(y − x))− f(x+ s(y − x))|+ |f(x+ s(y − x))− f(x)|
⩽ M(t− s)|y − x|+Ms|y − x|
= Mt|y − x|,

hence s = 1. Because M was arbitrary in (8) the proof is complete.

Corollary 1.2. Let I ⊆ R be an open interval and C a closed subset of I. Suppose that
f : I → Rd is continuous, differentiable on I \ C and f(x) = 0 for x ∈ C. If x ∈ C and

f ′(y) → 0 as I \ C 3 y → x, (9)

then f ′(x) exists and equals 0.

Proof. If y ∈ C, then f(y)− f(x) = 0 and all is fine. We then consider the case y ∈ I \C and
can assume that y > x as the situation when y < x is entirely similar. Fix such y and let z be
the point in C ∩ [x, y] that is closest to y (why does it exist?). Then as f is differentiable on
the interval (z, y) we get from the Mean Value Inequality

|f(y)− f(x)| = |f(y)− f(z)| ⩽ |y − z| sup
t∈(0,1)

|f ′(z + t(y − z))|

and so
|f(y)− f(x)|

|y − x|
⩽ sup

t∈(0,1)
|f ′(z + t(y − z))|.

Observe that |z + t(y − z) − x| ⩽ |y − x| for all t ∈ (0, 1) so using the assumption (9), given
ε > 0 we find δ > 0 with the property that

|f ′(a)| < ε for all a ∈ (x, x+ δ) ∩ I \ C

and the conclusion follows.
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Example 1.3. Let P (x) ∈ C[x] be a polynomial and define the function

f(x) =

{
P
(
1
x

)
e−

1
x if x > 0

0 if x ⩽ 0.

Then f is easily seen to be continuous everywhere and differentiable for x 6= 0 with

f ′(x) =

{
e−

1
x
(
P
(
1
x

)
− P ′( 1

x

))
/x2 if x > 0

0 if x < 0.

This is of course just the same form as that of f and so we conclude from Corollary 1.2 (or
simply by use of the definition) that f ′(0) exists and equals 0. An easy induction argument
now shows that f is infinitely often differentiable.

For functions of several variables we have partial derivatives and directional derivatives.
Let {ej}nj=1 be the standard basis for Rn and assume that f : S → R is a real-valued function
(or it could be complex or vector valued), where now S is a subset of Rn. We then say that f
has a partial derivative with respect to xj at x0 if x0 is an interior point of S and the difference
quotient

f(x0 + hej)− f(x0)

h
, h ∈ R \ {0} and x0 + hej ∈ S

has a limit in R as h → 0. This limit is the partial derivative at x0 that we shall denote by
various different symbols, including

∂jf(x0) = ∂xjf(x0) = Djf(x0) =
∂f

∂xj
(x0) = fxj (x0) = . . . . . .

A slight variation of the above yields directional derivatives: replace ej by a general vector
v ∈ Rn \ {0} to define ∂vf(x0). When f has all first order partial derivatives at the point x0
we can collect them in a vector:

∇f(x0) :=
(
∂1f(x0) . . . , ∂nf(x0)

)
=

n∑
j=1

∂jf(x0)ej .

This is the gradient of f at x0. When f is Rd-valued, say f = (f1, . . . , fd)
† (we think of f as a

column vector, hence the transpose) it is customary to collect the first order partial derivatives
(when they exist) in a matrix called the Jacobi matrix for f at x0:

∇f(x0) = Df(x0) :=
[
∂1f(x0) . . . ∂nf(x0)

]
=


∂1f1(x0) . . . ∂nf1(x0)
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
∂1fd(x0) . . . ∂nfd(x0)

 ∈ Rd×n.

It is perfectly possible for a function, say f : R2 → R, to have directional derivatives in all
directions at (0, 0) and at the same time be discontinuous there. It can also happen that
∂vf(0, 0) 6= ∇f(0, 0) ·v for some vectors v. However, these pathological situations are excluded
if the function is continuously differentiable, meaning that ∂1f, . . . , ∂nf all exist and are
continuous. More precisely we have the following:
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Lemma 1.4. Let S be a subset of Rn and let x0 be an interior point of S. Assume the
function f : S → Rd has partial derivatives ∂1f(x), . . . , ∂nf(x) for all x in a neighbourhood
of x0 and that they are all continuous at x0, then f is continuous at x0 and we have that
∂vf(x0) = ∇f(x0)v for all v ∈ Rn \ {0}.

The proof is an exercise.

The higher order partial derivatives are defined inductively. For instance, if we say that the
mixed partial derivative ∂2f/∂xj∂xk exists at the point x0 for the function f : S → Rd, then it
means that x0 is an interior point of S, that ∂f/∂xk exists in a neighbourhood of x0 and has a
partial derivative with respect to xj at x0. Note that in this generality it is important that we
pay attention to the order in which we partially differentiate. We are actually not interested
in such situations and shall mostly be working with classes of functions where this is no issue.

Definition 1.5. Let Ω be a non-empty open subset of Rn and let k ∈ N. Then a function
f : Ω → R (or complex or vector-valued) is said to be k times continuous differentiable if all
partial derivatives of f up to and including order k exist and are continuous throughout Ω.

Example 1.6. The function f is continuously differentiable if f is continuous and all the partial
derivatives ∂f/∂x1, . . . , ∂f/∂xn exist and are continuous on Ω. Note in particular that we
require, for example, ∂f/∂x1 to be jointly continuous in x = (x1, x2, . . . , xn) ∈ Ω.

Likewise, f is twice continuously differentiable if f is continuous and all the partial deriva-
tives ∂f/∂xi, i = 1, . . . , n, ∂2f/∂xj∂xk, j, k = 1, . . . , n exist and are continuous on Ω.

In this connection the following notation is standard.

C(Ω) ..= {u : Ω → R : u is continuous}.

Similarly, for k ∈ N we define

Ck(Ω) ..= {u : Ω → R : u is k times continuously differentiable}.

We say that such functions are Ck functions. When k = 0 we write also C0(Ω) = C(Ω).

Note that Ck(Ω) is descending in k, Ck+1(Ω) ⊊ Ck(Ω). We define

C∞(Ω) ..=
∞⋂
k=0

Ck(Ω),

the class of infinitely differentiable functions on Ω. We remark that under the natural pointwise
definitions of addition, multiplication by scalars, and multiplication, these classes all form
commutative rings with unity and vector spaces.

The same notation will be used for complex and vector-valued functions (where of course in
the vector-valued case the spaces cease to be rings).

Ck functions are well-behaved:
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Lemma 1.7. If f : Ω → R is C2, then

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
(1 ⩽ j, k ⩽ n)

on Ω. Hence the order in which we take (two) partial derivatives is unimportant for C2 func-
tions.

Proof. Let {ej}nj=1 be the standard basis for Rn and denote by

4hf(x) ..= f(x+ h)− f(x)

the increment in f at x corresponding to the increment h in x, where we must assume x, x+h ∈
Ω. Observe that 4sej4rekf(x) = 4rek4sejf(x) holds for x ∈ Ω and s, r ∈ R with |s|, |r|
sufficiently small. Because f is C2 we may apply the Fundamental Theorem of Calculus twice
whereby we find

1

sr
4sej4rekf(x) =

∫ 1

0

∫ 1

0

∂2f

∂xj∂xk
(x+ σsej + ρrek) dσ dρ,

and hence ∣∣∣∣ 1sr4sej4rekf(x)−
∂2f

∂xj∂xk
(x)

∣∣∣∣ → 0

as (r, s) → (0, 0).

We can extend this result to Ck functions and arbitrary k-th order partial derivatives for k ⩾ 2
by induction, and so for such functions we do not have to worry about the order in which
we partially differentiate. When there are many independent variables we shall often rely on
multi-index notation.

1.2.2 Multi-index Notation

A multi-index α is an (ordered) n-tuple of non-negative integers, α = (α1, . . . , αn) ∈ Nn0 . The
length (or order) of α is

|α| ..= α1 + · · ·+ αn.

If α, β ∈ Nn0 and j ∈ N0, then also α + jβ ∈ Nn0 . For a multi-index α ∈ Nn0 we define its
factorial as

α! := α1!α2! . . . αn!

and for an n-tuple x = (x1, . . . , xn) of real or complex numbers we write

xα := xα1
1 · . . . · xαnn .
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Hence a complex polynomial in n indeterminates x = (x1, . . . , xn), say P (x) ∈ C[x] can be
written as

P (x) =
∑

|α|⩽m
cαx

α

where cα ∈ C and m ∈ N0. When u ∈ Ck(Ω) and |α| ⩽ k, we write

∂αu(x) = Dαu(x) ..=
∂|α|u

∂xα1
1 . . . ∂xαnn

(x)

and by convention set ∂0u(x) = D0u(x) ..= u(x).

Example 1.8. For α = (1, 2), β = (0, 2) and u ∈ C3(Ω), where Ω ⊂ R2, we have

∂αu =
∂3u

∂x1∂x22
, ∂βu =

∂2u

∂x22
.

Likewise, when u ∈ C5(Ω),

∂α+βu =
∂5u

∂x1∂x42
.

Note that by lemma 1.7, ∂α+βu = ∂α(∂βu) = ∂β(∂αu) = ∂β+αu. In a sense, lemma 1.7 justifies
using multi-index notation for partial derivatives.

A convenient fact about multi-index notation is that it makes many calculus formulas for
functions of several variables appear as when there is only one variable. Here we record two
such instances.

Theorem 1.9 (Taylor’s Formula). Assume f ∈ Ck(Br(x0)). Then for x ∈ Br(x0) we have

f(x) =
∑
|α|<k

∂αf(x0)

α!
(x− x0)

α + k

∫ 1

0
(1− t)k−1

∑
|α|=k

∂αf
(
x0 + t(x− x0)

)
α!

(x− x0)
α dt.

The proof follows by applying, for a fixed x ∈ Br(x0), the Chain Rule and the 1-dimensional
Taylor formula to the function s 7→ f(x0+s(x−x0)). We record the following application that
is often useful:

Corollary 1.10. If f ∈ Ck(Br(x0)) for some k ∈ N, then f(x)−f(x0) =
∑n

j=1(x−x0)jfj(x),
where fj ∈ Ck−1(Br(x0)), ∂

αfj(x0) = ∂α∂jf(x0)/(1 + |α|) and

sup
Br(x0)

|∂αfj | ⩽ sup
Br(x0)

|∂α∂jf |

for each |α| < k.

12



Proof. We use the formula for k = 1, which actually amounts to the Fundamental Theorem of
Calculus, whereby the Corollary is seen to hold with

fj(x) =

∫ 1

0
(∂jf)

(
x0 + t(x− x0)

)
dt.

The assertions about fj all follow by inspection.

Theorem 1.11 (Generalized Leibniz Rule). Let f, g ∈ Ck(Ω). Then fg ∈ Ck(Ω) and for
α ∈ Nn0 , |α| ⩽ k, we have

∂α(fg) =
∑
β⩽α

(
α

β

)
∂βf∂α−βg,

where β ⩽ α means βi ⩽ αi for all i = 1, . . . n,(
α

β

)
..=

α!

β!(α− β)!
.

Proof. This can be proven by induction on the order |α| of differentiation, using the Leibniz
rule

∂j(fg) = g∂jf + f∂jg

in the induction step.

Remark 1.12. The set {α ∈ Nn0 : |α| = k} of multi-indices of length k ∈ N0 is clearly a finite
set. It is not too difficult to count its elements and show that the cardinality is

m(n, k) =

(
n+ k − 1

k

)
and consequently that the cardinality of the set {α ∈ Nn0 : |α| ⩽ k} of multi-indices of length
at most k ∈ N0 is

M(n, k) =

(
n+ k

k

)
.

2 Test functions

2.1 Support of a continuous function

For u ∈ C(Ω) we define the support of u as

supp(u) ..= Ω ∩ {x ∈ Ω : u(x) 6= 0},

that is, the closure of the set {u 6= 0} relative to Ω. As such, supp(u) is closed in Ω, but need
not be closed in Rn.

13



Example 2.1. Define u1 : R → R by

u1(x) =

{
1− |x|, |x| < 1,
0, |x| ⩾ 1.

Then supp(u1) = [−1, 1]. If instead we consider the restriction of u1 to Ω = (−1, 1), that is,
u2(x) = 1− |x|, x ∈ (−1, 1), then supp(u2) = (−1, 1).

One sees that the support of a function u depends on the domain Ω, and we could emphasize
this and instead write suppΩ(u). However, for our purposes it will suffice to write supp(u),
where Ω will be understood from context.

In the following we shall be particularly interested in having compact support.

Definition 2.2. Let Ω be a non-empty open subset of Rn. Then

D(Ω) ..=
{
u ∈ C∞(Ω) : supp(u) is compact

}
is the class of smooth compactly supported test functions.

Remark 2.3. Note that for u ∈ D(Ω) we always have dist(supp(u), ∂Ω) > 0, see (7).

We also write
Ckc (Ω)

..= {u ∈ Ck(Ω) : supp(u) is compact}

for k ∈ N0 ∪ {∞}. So in fact D(Ω) = C∞
c (Ω). As before, we can define ring operations in

the standard way, making Ckc (Ω) and D(Ω) into commutative rings (without unity) and vector
spaces (over R or C).

We have defined a test function to be any smooth and compactly supported function, but so
far we have seen no example. If we take the polynomial P (x) = 1 in Example 1.3, then we get
the C∞ function f(x) = e−1/x for x > 0 and f(x) = 0 for x ⩽ 0. Now put B(x) = f

(
1− |x|2

)
,

x ∈ Rn. Clearly B is C∞ by the chain rule and its support is B1(0), so B is a test function on
Rn.

2.2 Construction of test functions.

For later reference we record our first non-trivial test function:

Lemma 2.4. The function

B(x) =

{
exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ⩾ 1

is in C∞(Rn) with supp(B) = B1(0). In particular, B ∈ D(Rn).

14



Note that
B ⩾ 0 and 0 < B(x) ⩽ B(0) = 1

e for |x| < 1.

For this reason we sometimes refer to B as a bump function. We also record that B is a radial
function, meaning that its value B(x) at x only depends on |x|.

We can now easily produce more bump functions:

Example 2.5. We want a bump in Br(x0) and put

φ(x) ..= B
(
x− x0
r

)
, x ∈ Rn.

By the Chain Rule, we see that φ ∈ C∞(Rn). Clearly, supp(φ) = Br(x0), and so φ ∈ D(Rn).

It is remarkable that once we have just one nontrivial bump function, then we can construct
all the test functions we need to get Distribution Theory going. In order to make more refined
constructions, still using the bump B from Lemma 2.4 as a building block, we shall use the
operation of convolution that you encountered in Integration.

2.2.1 Convolution of functions

Recall that when f, g ∈ L1(Rn), then

(f ∗ g)(x) ..=

∫
Rn
f(x− y)g(y) dy (10)

is well-defined for almost every x ∈ Rn, and f ∗ g ∈ L1(Rn). This follows from the Fubini-
Tonelli theorems. Let us more precisely recall how it goes. First we choose representatives,
again denoted by f and g. Then the product σ-algebra was defined so that the function
(x, y) 7→

∣∣f(x − y)g(y)
∣∣ is measurable and by Tonelli’s theorem we may then calculate (note

that we also use that the Lebesgue measure is translation invariant)∫
Rn×Rn

∣∣f(x− y)g(y)
∣∣ d(x, y) = ∫

Rn

∫
Rn

∣∣f(x− y)g(y)
∣∣ dx dy

= ‖f‖1‖g‖1 <∞.

At this stage we can then use Fubini’s theorem. Accordingly the function y 7→ f(x− y)g(y) is
for almost all x ∈ Rn integrable and the integral

x 7→
∫
Rn
f(x− y)g(y) dy (11)

is defined almost everywhere and (assigning arbitrary values in the points of the null set where
it is not defined) is an integrable function. We emphasize that the integral in (11) is defined
at x ∈ Rn precisely when ∫

Rn

∣∣f(x− y)g(y)
∣∣dy <∞

15



and that this condition is independent of the chosen representatives used to calculate the in-
tegral. We therefore see that the set of points x ∈ Rn where the convolution (10) is defined
and its value only depend on the L1 functions f and g, and not on the particular representa-
tives used to calculate it. In this connection we also record that (again using the translation
invariance of Lebesgue measure)∫

Rn

∣∣f(x− y)g(y)
∣∣ dy =

∫
Rn

∣∣f(z)g(−z + x)
∣∣ dz

holds for all x ∈ Rn, in the sense that either both sides are defined and equal at x or both are
undefined there. Since addition is commutative on Rn (so −z + x = x− z above) we conclude
that also (g ∗ f)(x) = (f ∗ g)(x) holds for all x ∈ Rn in the sense that either both sides are
defined and equal at x or both are undefined there.

There are many other situations where it is possible to define convolution by the formula
(10). One such instance is when one function is continuous and compactly supported and the
other is an Lp function for some p ∈ [1,∞] (the case p = 1 is of course already covered by the
remark above about convolutions of L1 functions). We shall explore this and other possibilities
in the next sections.

Example 2.6. If f ∈ Lp, g ∈ Lq and 1
p +

1
q = 1, then the convolution (f ∗ g)(x) is well-defined

for all x ∈ Rn since by Hölder’s inequality and translation-invariance of Lebesgue measure we
have ∫

Rn

∣∣f(x− y)g(y)
∣∣dy ⩽ ‖f‖p‖g‖q < +∞

In fact, this situation is special and more can be said about the convolution of f and g in this
case. See Problem Sheet 1.

Exercise. Let f ∈ Cj(R), g ∈ Ckc (R), where j, k ∈ N0. Show that the convolution f ∗ g is
well-defined everywhere and that it is of class Cj+k. Next show that if f is also compactly
supported, then

supp(f ∗ g) ⊆ supp(f) + supp(g)

holds. Generalize the results of this exercise to n dimensions.

2.2.2 The Standard Mollifier in Rn.

Notice that for all x ∈ Rn,

e−
4
31B1/2(0)(x) ⩽ B(x) ⩽ e−11B1(0)(x),

so we obviously have that

cn ..=

∫
Rn

B(x) dx
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is well-defined and e−
4
3L n(B1/2(0)) ⩽ cn ⩽ e−1L n(B1(0)). Here we record that one can show

that the n-dimensional Lebesgue measure of a ball of radius r > 0 is

L n
(
Br(0)

)
= L n

(
B1(0)

)
rn =

ωn−1

n
rn =

2π
n
2

nΓ
(
n
2

) ,
where ωn−1 is the (n− 1)-dimensional surface area of Sn−1 and Γ is Euler’s gamma function.
Note in particular that ω0 = 2, ω1 = 2π and ω2 = 4π in dimensions one, two and three,
respectively.

Define

ρ(x) ..=
1

cn
B(x), x ∈ Rn. (12)

We refer to ρ as the standard mollifier kernel and record the properties: ρ ∈ D(Rn), ρ ⩾ 0,
supp(ρ) = B1(0) and ∫

Rn
ρ(x) dx = 1.

For each ε > 0 we put

ρε(x) ..=
1

εn
ρ
(x
ε

)
, x ∈ Rn.

Then ρε ∈ D(Rn), ρε ⩾ 0, supp (ρε) = Bε(0) and∫
Rn
ρε(x) dx = 1.

Definition 2.7. We call the family of functions (ρε)ε>0 the standard mollifier on Rn.

We also emphasize that the functions ρε are all radial, meaning that the value ρε(x) only
depends on |x|.

Proposition 2.8. Let 1 ⩽ p <∞ and u ∈ Lp(Ω). Define u to be zero outside Ω. Then

(i) ρε ∗ u ∈ C∞(Ω),

(ii) ‖ρε ∗ u‖p ⩽ ‖u‖p, and

(iii) ‖ρε ∗ u− u‖p → 0 as ε↘ 0.

We require the following auxiliary results for the proof.

Lemma 2.9. Let 1 ⩽ p ⩽ ∞, φ ∈ D(Ω), and u ∈ Lp(Ω). Define u to be zero outside of Ω.
Then φ ∗ u ∈ C1(Ω) and for each 1 ⩽ j ⩽ n,

∂(φ ∗ u)
∂xj

=

(
∂φ

∂xj

)
∗ u.
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Proof. This is straight forward and we omit the details.

The next is an approximation result.

Lemma 2.10. Let Ω be an open nonempty subset of Rn and 1 ⩽ p <∞. Then Cc(Ω) is dense
in Lp(Ω).

The proof is elementary but a little technical.

Proof. (The proof is not examinable.) We first consider the case where Ω = Rn and start by recording that the space of simple functions

L
simple

(Rn
) := span

{
1A : A ⊂ Rn

is measurable and Ln
(A) < ∞

}
is a dense subspace of Lp(Rn). Indeed in the process of defining the (Lebesgue) integral one shows that any nonnegative measurable
function can be approximated pointwise from below by nonnegative simple functions. Hence given f ∈ Lp(Rn) we select a representative,

again denoted by f , write it in its positive and negative parts, f = f+ − f−, and find sequences of nonnegative simple functions (s+j ), (s−j )

with s+j ↗ f+, s−j ↗ f− as j ↗ ∞. Now sj = s+j − s−j ∈ Lsimple(Rn) and

‖f − sj‖
p
p =

∫
Rn

(
(f

+ − s
+
j )

p
+ (f

− − s
−
j )

p)
dx ↘ 0 as j ↗ ∞

by Lebesgue’s monotone convergence theorem. It therefore suffices to show that we can approximate an indicator function for a measurable
subset of finite Lebesgue measure by compactly supported continuous functions in Lp(Rn). Fix a measurable subset A of Rn with Ln(A) <
∞ and let ε > 0 be given. We first show that we can find a finite number of closed cubes Q1, . . . , QN in Rn such that

Ln(
A∆

N⋃
j=1

Qj
)
< ε

where ∆ denotes symmetric set-difference: S∆T := (S \ T ) ∪ (T \ S). This is essentially a matter of how we defined Lebesgue measure and
what it means to be measurable. Recall that the outer Lebesgue measure on Rn is defined for any subset E of Rn by

Ln
∗ (E) := inf

∞∑
j=1

vol(Qj)

where the infimum is taken over all countable families {Qj}j∈N of closed cubes with E ⊂
⋃

j∈N Qj . A closed cube Q has the form

Q = [a1, a1 + ℓ] × . . . × [an, an + ℓ] and its n-dimensional volume is vol(Q) = ℓn. Recall that the set E is (Lebesgue) measurable if for
any t > 0 we can find an open set O in Rn so E ⊆ O and Ln

∗ (O \ E) < t. It was shown in the Integration course that the family of
measurable sets in Rn is a σ-algebra that contains the open sets and that Ln

∗ is σ-additive on this σ-algebra. The Lebesgue measure Ln is
the restriction of Ln

∗ to the σ-algebra of measurable sets. We now return to the measurable set A and choose a countable family of closed
cubes so that

A ⊂
⋃
j∈N

Qj and
∞∑
j=1

vol(Qj) ⩽ Ln
(A) +

ε

2
.

Because Ln(A) < ∞, the series converges and we can find N ∈ N such that the tail
∑∞

j=N+1 vol(Qj) < ε/2. Now with B =
⋃N

j=1 Qj we

have by additivity and monotonicity of Ln (measurability is used in the third line):

Ln(
A∆B

) ⩽ Ln(
A \ B

)
+ Ln(

B \ A
)

⩽ Ln( ∞⋃
j=N+1

Qj
)
+ Ln( ∞⋃

j=1

Qj \ A
)

⩽
∞∑

j=N+1

vol(Qj) +
∞∑
j=1

vol(Qj) − Ln
(A)

⩽ ε.

Because ‖1A − 1B‖pp = Ln(
A∆B

)
we see that it suffices to show that we can approximate the indicator function of a closed rectangle

R in Rn by Cc(Rn) functions in Lp(Rn). In the one-dimensional case R = [a, b] and we can take a continuous piecewise linear function ψ
defined by

ψ(x) =

{
1 if a ⩽ x ⩽ b,
0 if x ⩽ a− ε or x ⩾ b + ε,

and with ψ linear on the intervals [a− ε, a] and [b, b + ε]. Then ‖1R − ψ‖p < (2ε)
1
p . In the general n-dimensional case, it suffices to note

that the indicator function of a closed rectangle is the product of indicator functions of closed intervals. Thus, the desired Cc(Rn) function
is simply the product of functions like ψ above.
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Finally we must deal with the case of a general nonempty open set Ω. Let f ∈ Lp(Ω) and ε > 0. We may consider f ∈ Lp(Rn) simply
by defining f = 0 on Rn \Ω. By the above we can then find g ∈ Cc(Rn) so ‖f − g‖p < ε. For each j ∈ N we consider the set of points in Ω
whose distance to the boundary is larger than 1/j:

Ωj =
{
x ∈ Ω : dist(x, ∂Ω) > 1/j

}
.

Observe that by Lebesgue’s monotone convergence theorem (since f = 0 off Ω)

‖f1Rn\Ωj
‖p → 0 as j → ∞.

Put ηj(x) = dist(x,Rn \ Ωj) and ηj,k(x) = min{1, kηj(x)} for x ∈ Rn. Then ηj,k is continuous and has support Ωj . Furthermore

ηj,k(x) ↗ 1Ωj
(x) pointwise in x ∈ Rn and j ∈ N as k ↗ ∞, so by another application of Lebesgue’s monotone convergence theorem

‖f − ηj,kg‖p → ‖f − 1Ωj
g‖p as k → ∞

for each j ∈ N. Take j ∈ N so ‖f1Rn\Ωj
‖p < ε and next k ∈ N so ‖f − ηj,kg‖p < ‖f − 1Ωj

g‖p + ε. Check that φ = ηj,kg ∈ Cc(Ω) and

‖f − φ‖p < ‖f − 1Ωj
g‖p + ε

⩽ ‖f1Rn\Ωj
‖p + ‖1Ωj

(f − g)‖p + ε

< 3ε.

Proof of Proposition 2.8. Part (i) follows by applying Lemma 2.9 inductively. For part (ii),
we use Hölder’s inequality. Let

1

p
+

1

q
= 1

and write for each x and almost every y,

|ρε(x− y)u(y)| = ρε(x− y)
1
q ρε(x− y)

1
p |u(y)|.

Integrating over y ∈ Rn and using Hölder’s inequality,∫
Rn

|ρε(x− y)u(y)| dy ⩽
(∫

Rn
ρε(x− y) dy

) 1
q
(∫

Rn
ρε(x− y)|u(y)|p dy

) 1
p

=

(∫
Rn
ρε(x− y)|u(y)|p dy

) 1
p

.

Integrating over x ∈ Ω,∫
Ω
|(ρε ∗ u)(x)|p dx ⩽

∫
Ω

∫
Rn
ρε(x− y)|u(y)|p dy dx

†
=

∫
Rn

|u(y)|p
∫
Ω
ρε(x− y) dx dy

⩽
∫
Rn

|u(y)|p
∫
Rn
ρε(x− y) dx dy = ‖u‖pp,
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where in † we used Fubini–Tonelli. For (iii), let τ > 0 and use Lemma 2.10 to find v ∈ Cc(Ω)
such that ‖u− v‖p ⩽ τ . Using Minkowski’s inequality, we have

‖ρε ∗ u− u‖p ⩽ ‖ρε ∗ (u− v)‖p + ‖ρε ∗ v − v‖p + ‖v − u‖p
(ii)

⩽ 2‖v − u‖p + ‖ρε ∗ v − v‖p

< 2τ + ‖ρε ∗ v − v‖∞L n
(
Bε(supp(v))

) 1
p
.

Because v is continuous and compactly supported, so in particular uniformly continuous, we
can find ε0 = ε0(τ) > 0 such that

‖ρε ∗ v − v‖∞L n
(
Bε(supp(v))

) 1
p
< τ

for all ε ∈ (0, ε0]. Consequently, ‖ρε ∗ u− u‖p < 3τ for ε ∈ (0, ε0].

Remark 2.11. The result of Proposition 2.8 (i) and (ii) are also true when p = ∞, however (iii)
is false (why?)

We are now ready to prove two useful technical results.

2.2.3 Cut-off Functions and Partitions of Unity

Theorem 2.12. Let K be a compact subset of Ω. There exists ϕ ∈ D(Ω) such that 0 ⩽ ϕ ⩽ 1
and ϕ ≡ 1 on K. We refer to ϕ as a cut-off function between K and Rn \ Ω.

Proof. Put d ..= dist(K, ∂Ω) > 0 and fix δ ∈
(
0, d4

]
. Put K̃ = B2δ(K). Recall that by definition,

K̃ = {x ∈ Rn : dist(x,K) ⩽ 2δ}.

Let (ρε)ε>0 be the standard mollifier and put ϕ ..= ρδ ∗ 1K̃ . Then ϕ ∈ C∞(Rn), supp(ϕ) ⊂
Bδ(K̃) = B3δ(K), and since δ ⩽ d

4 , then supp(ϕ) ⊂ Ω and hence ϕ ∈ D(Ω). Next, 0 ⩽ ϕ ⩽ 1,

and for x ∈ K we have Bδ(x) ⊂ K̃, so

ϕ(x) =

∫
Rn
ρδ(x− y)1K̃(y) dy =

∫
Rn
ρδ(x− y) dy = 1.

Note that ρδ(x− y) is supported in Bδ(x).

Remark 2.13. For a multi-index α we have

|Dαϕ(x)| =
∣∣∣∣∫

Rn
δ−|α|(Dαρ)δ(x− y)1K̃(y) dy

∣∣∣∣
⩽ δ−|α|

∫
Rn

|(Dαρ)δ(x− y)| dy

= δ−|α|‖Dαρ‖1,
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hence if we take δ = d/4, then we arrive at the bound

|Dαϕ| ⩽ cαd
−|α|,

where cα = cα(n, ρ) = 4|α|‖Dαρ‖1, a constant that only depends on α, n and ρ.

The next result refines Theorem 2.12 and is used in connection with localization of distri-
butions.

Theorem 2.14. Let Ω =
⋃m
j=1Ωj, where Ω1, . . . , Ωm are open, non-empty, potentially over-

lapping sets. For K ⊂ Ω compact there exist ϕ1, . . . , ϕm ∈ D(Ω) satisfying supp(ϕj) ⊂ Ωj,
0 ⩽ ϕj ⩽ 1,

m∑
j=1

ϕj ⩽ 1 on Ω (13)

and
m∑
j=1

ϕj = 1 on K. (14)

We refer to ϕ1, . . . , ϕm as a smooth partition of unity on K subordinate to the cover Ω1, . . . , Ωm.

Proof. (The proof is not examinable.) Let x ∈ K ∩ Ωj . Because Ωj is open, we can find rj(x) > 0 such that Brj(x)(x) ⊂ Ωj . The set

{
Brj(x)(x) : x ∈ K, 1 ⩽ j ⩽ m

}
is an open cover of K, so by compactness it admits a finite subcover, say

{
Bs

..= Brjs
(xs)(xs), 1 ⩽ s ⩽ N

}
.

Put Jj ..= {s : js(xs) = j}, so that ⋃
s∈Jj

Bs ⊂ Ωj .

Now Kj = K ∩
(⋃

s∈Jj
Bs

)
is compact, Kj ⊂ Ωj and K =

⋃m
j=1Kj . We now apply Theorem 2.12 to each Kj , Ωj to find corresponding

cut-off functions ψj ∈ D(Ωj) satisfying 0 ⩽ ψj ⩽ 1 and ψj ≡ 1 on Kj . We extend ψj to Ω \ Ωj by zero and, denoting this extension again

by ψj , have ψj ∈ D(Ω). Now define ϕ1
..= ψ1, ϕ2

..= ψ2(1 − ψ1), . . . , ϕm
..= ψm

∏m−1
j=1 (1 − ψj). By repeated use of the Leibniz rule we

see that ϕ1, . . . , ϕm ∈ C∞(Ω). Clearly supp(ϕj) ⊂ Ωj , and 0 ⩽ ϕj ⩽ 1. Finally, we have by induction on m that

m∑
j=1

ϕj − 1 = −
m∏

j=1

(1 − ψj)

and this easily implies (13) and (14). □

2.3 Convergence in the sense of test functions

Before defining distributions corresponding to smooth compactly supported test functions we
must first discuss a notion of convergence in D(Ω). Later when other notions of test functions
are introduced we shall be more precise and refer to the present mode of convergence as D(Ω)-
convergence.
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Definition 2.15. Let (ϕj) be a sequence in D(Ω) and ϕ ∈ D(Ω). We say

ϕj → ϕ in D(Ω)

if there exists a compact set K ⊂ Ω such that supp(ϕ), supp(ϕj) ⊂ K for all j, and for each
multi-index α

sup
K

|∂α(ϕj − ϕ)| → 0.

In words, ϕj → ϕ in D(Ω) if and only if all supports are contained in a fixed compact set in
Ω, and we have uniform convergence of ϕj − ϕ together with all partial derivatives to the zero
function.

Remark 2.16. Convergence in D(Ω) is a strong requirement. The requirement of all supports
being contained in a fixed compact set is needed to ensure that ϕ(x− j) does not converge to
zero in D(R) when ϕ 6= 0.

Remark 2.17. It is possible to define a topology T on D(Ω) in such a way that ϕj → ϕ in D(Ω)
corresponds to ϕj → ϕ in the topological space (D(Ω), T ). Furthermore, in this topology the
vector space operations can be shown to be continuous so that (D(Ω), T ) is an example of a
topological vector space. It can furthermore be shown that the topology T is not metrizable:
there does not exist a metric d on D(Ω) such that T is the family of open sets corresponding
to d. The fact that the convergence can be defined in terms of a topology plays no direct role
in this course.

Example 2.18. Let φ ∈ D(Rn) and v ∈ Rn \ {0}. Then

∆tvφ

t
→ ∂vφ in D(Rn) as t→ 0.

We simply check the definition: Put K = B1(supp(φ)). Then K is compact and for 0 <
|t| < 1/|v| we have that ∆tvφ/t and ∂vφ are supported in K. Furthermore we have for any
multi-index α that

∂α
∆tvφ

t
=

∆tv∂
αφ

t
and ∂α∂vφ = ∂v∂

αφ

and it is not difficult to see that

max
K

∣∣∣∣∆tv∂
αφ

t
− ∂v∂

αφ

∣∣∣∣ → 0 as t→ 0.

Example 2.19. Let (ρε)ε>0 be the standard mollifier and φ ∈ D(Rn). Then

ρε ∗ φ→ φ in D(Rn) as ε↘ 0.

We leave it as an exercise to check the definition.
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3 Distributions

3.1 The definition.

Definition 3.1. (Laurent Schwartz 1940s) A functional u : D(Ω) → R (or u : D(Ω) → C) is
a distribution on Ω if

(i) u is linear: u(ϕ+ tψ) = u(ϕ) + tu(ψ) for ϕ, ψ ∈ D(Ω), t ∈ R (or C), and

(ii) u is continuous in the sense that u(ϕj) → u(ϕ) whenever ϕj → ϕ in D(Ω).

The set of all distributions on Ω is denoted by D ′(Ω).

Remark 3.2. Firstly, because of linearity, the continuity condition (ii) holds if and only if it
holds at ϕ = 0. Indeed, if u(ϕj) → 0 whenever ϕj → 0 in D(Ω) and ψj → ψ in D(Ω), then we
take ϕj = ψj − ψ and note that ϕj → 0 in D(Ω). Then by assumption, u(ϕj) → 0. But u is
linear, so u(ϕj) = u(ψj)− u(ψ) and so u(ψj) → u(ψ). In the following we shall often refer to
the continuity condition (ii) as D-continuity.

Secondly, when u : D(Ω) → R is linear (and defined everywhere on D(Ω)), then chances
are that u is D-continuous and thus is a distribution on Ω. Indeed, the only counterexamples
I know are obtained by use of a Hamel basis for D(Ω). In turn that such Hamel bases exist
follows from the Axiom of Choice.

Bracket notation. When u ∈ D ′(Ω) and ϕ ∈ D(Ω), we often use the bracket notation and
write 〈u, ϕ〉 instead of u(ϕ):

〈u, ϕ〉 := u(ϕ).

Note that D ′(Ω) becomes a vector space (over R or C depending on whether we consider real-
or complex-valued distributions) by the definition:

(u+ tv)(ϕ) := u(ϕ) + tv(ϕ) for each ϕ ∈ D(Ω)

for u, v ∈ D ′(Ω) and t ∈ R (or t ∈ C).
Example 3.3. If f ∈ Lp(Ω), p ∈ [1,∞], then

〈Tf , ϕ〉 =
∫
Ω
f(x)ϕ(x) dx, ϕ ∈ D(Ω)

defines a distribution on Ω. Linearity follows from linearity of the integral, and continuity fol-
lows from the Dominated Convergence Theorem. In particular we note that each test function
φ ∈ D(Ω) also defines a distribution Tφ ∈ D ′(Ω).

Note that since each ϕ ∈ D(Ω) has compact support in Ω and since we defined convergence in
D(Ω) by requiring all supports to be in a fixed compact set in Ω, the above distribution Tf
would also be well-defined if f was only locally in Lp.
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3.2 Local Lebesgue Spaces.

Definition 3.4. Let p ∈ [1,∞]. Then a function f : Ω → R (or f : Ω → C) is locally Lp on Ω
if f is measurable and for each compact subset K of Ω we have that

∫
K
|f(x)|p dx <∞ when p <∞

ess.supK |f | <∞ when p = ∞.

The space Lploc(Ω) is now defined as the usual Lp spaces, so is the space of equivalence classes
of functions f : Ω → R that are locally Lp on Ω for the equivalence relation equal almost
everywhere. Like the usual Lp spaces also Lploc(Ω) are vector spaces.

Example 3.5. The function x−1 /∈ L1(0,∞), but x−1 ∈ L1
loc(0,∞) and, in fact, x−1 ∈ Lploc(0,∞)

for all p ∈ [1,∞]. Note that Ω determines what local means. For example, x−1 ∈ L1
loc(0,∞),

but x−1 /∈ L1
loc(−1, 1).

Example 3.6. Summarizing a previous discussion, each f ∈ Lploc(Ω), p ∈ [1,∞], gives rise to a
distribution on Ω via

〈Tf , ϕ〉 =
∫
Ω
f(x)ϕ(x) dx

for each ϕ ∈ D(Ω).

Example 3.7 (Dirac’s delta function at x0 ∈ Ω). The map

ϕ 7→ 〈δx0 , ϕ〉 ..= ϕ(x0)

for ϕ ∈ D(Ω) is clearly a distribution on Ω. Furthermore, so is ϕ 7→ (Dαϕ)(x0) for any
multi-index α.

Example 3.8. Let µ be a locally finite Borel measure on Ω (so µ is a countably additive set
function defined on the Borel subsets of Ω such that µ(K) < ∞ for all compact subsets K of
Ω). Then

〈Tµ, φ〉 :=
∫
Ω
φdµ, φ ∈ D(Ω)

defines a distribution on Ω. Linearity is clear and the continuity condition follows, for instance,
from the Dominated Convergence Theorem.

3.3 The boundedness property and the order of a distribution.

While the continuity condition (ii) in Definition 3.1 often is not an issue, it is nonetheless useful
to reformulate it using linearity as follows.

Theorem 3.9. A linear functional u : D(Ω) → R (or C) is a distribution if and only if for
every compact set K ⊂ Ω there exist constants c = c(K) > 0 and m = m(K) ∈ N0 such that

|〈u, ϕ〉| ⩽ c
∑

|α|⩽m
sup
K

|Dαϕ| (15)
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for all ϕ ∈ D(K) ..= {ϕ ∈ D(Ω) : supp(ϕ) ⊂ K}.

Proof. If ϕj → 0 in D(Ω), then for some compact set K ⊂ Ω we have ϕj ∈ D(K) for all j.
Then by assumption we can find c = c(K) > 0 and m = m(K) ∈ N0 such that (15) holds. But
then

|〈u, ϕj〉| ⩽ c
∑

|α|⩽m
sup
K

|∂αϕj | → 0.

For the converse, we argue by contradiction. Assume there exists u ∈ D(Ω) and a compact set
K ⊂ Ω such that (15) is violated for all choices of c and m. In particular, for c = m = j we
can find ϕj ∈ D(K) with

|〈u, ϕj〉| > j
∑
|α|⩽j

sup
K

|∂αϕj |.

Put λj = 〈u, ϕj〉. Then λj 6= 0, ψj ..=
ϕj
λj

∈ D(K),
∣∣〈u, ψj〉∣∣ = 1, and

1 > j
∑
|α|⩽j

sup
K

|∂αψj |.

Thus |Dαψj | < j−1 on Ω for j ⩾ |α|, and in particular ψj → 0 in D(Ω). But 〈u, ψj〉 = 1, which
does not converge to zero.

Definition 3.10. Let u ∈ D ′(Ω). If there exists an m ∈ N0 with the property that for all
compact subsets K ⊂ Ω there exists a constant c = cK > 0 such that

|〈u, ϕ〉| ⩽ c
∑

|α|⩽m
sup
K

|∂αϕ|

for all ϕ ∈ D(K), then we say u has order at most m. The set of these distributions is denoted

D ′
m(Ω) :=

{
u ∈ D ′(Ω) : u has order at most m

}
.

We say u has order 0 if u has order at most 0. For m ∈ N we say u has order m if u has
order at most m, but not order at most m− 1.

We say u has order infinity if u does not have order at most m for any m ∈ N0.

Note that by Theorem 3.9, any distribution has locally finite order.

Example 3.11. Let f ∈ L1
loc(Ω). Then the corresponding distribution has order 0. Indeed, if

K ⊂ Ω is compact and φ ∈ D(K), then

|〈Tf , φ〉| =
∣∣∣∣∫

Ω
f(x)φ(x) dx

∣∣∣∣
⩽

∫
K
|f ||φ| dx

⩽ sup
K

|φ|
∫
K
|f |dx,
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and so |〈Tf , φ〉| ⩽ c supK |φ|. The same calculation applies when µ is a locally finite Borel
measure on Ω and shows that also the distribution Tµ has order 0.

Example 3.12. Let x0 ∈ Ω and α ∈ Nn0 . Define

〈T, φ〉 ..= (∂αφ)(x0)

for φ ∈ D(Ω). Then T ∈ D ′(Ω) as T is clearly linear and for compact K ⊂ Ω and φ ∈ D(K),

|〈T, φ〉| = |(∂αφ)(x0)| ⩽ sup
K

|∂αφ|.

It also shows that T has order at most |α|. If α = 0 so that T = δx0 , we see that T has order 0.
Assume |α| > 0. We shall prove that T has order |α|. Suppose, for contradiction, that T has
order at most |α| − 1. Take r ∈ (0, min{1,dist(x0, ∂Ω)}) and put K = Br(x0). Then K ⊂ Ω
is compact. By assumption, we can then find c = cK ⩾ 0 such that

|〈T, φ〉| = |(∂αφ)(x0)| ⩽ c
∑

|β|⩽|α|−1

sup
K

|∂βφ| (16)

for all φ ∈ D(K). Take ψ ∈ D(B1(0)) with ψ(0) = 1 (for instance ψ(x) = ρ(x)/ρ(0) with ρ
the standard mollifier kernel will do) and define, for ε ∈ (0, r),

φ(x) ..=
(x− x0)

α

α!
ψ

(
x− x0
ε

)
, x ∈ Ω.

Note that φ is C∞ and supp(φ) ⊆ Bε(x0) ⊂ K, so that φ ∈ D(K). Also,

∂β
(
(x− x0)

α

α!

)∣∣∣∣
x=x0

=

{
1 if β = α
0 if β 6= α

,

so that ∂αφ(x0) = 1. If β ∈ Nn0 is any multi-index with length |β| ⩽ |α| − 1 and γ is a
multi-index with γ ⩽ β, then for x ∈ Bε(x0) we have∣∣∣∣∂γx ((x− x0)

α

α!

)∣∣∣∣ ⩽ ε|α|−|γ|.

This follows because when γ ⩽ α, then∣∣∣∣∂γx ((x− x0)
α

α!

)∣∣∣∣ ⩽ |(x− x0)
α−γ |,

whereas if γj > αj for some j, then ∂γx(x−x0)α = 0. We can now estimate for x ∈ K using the
generalized Leibniz rule and noticing that terms involving ψ(x−x0ε ) vanish when |x− x0| ⩾ ε:

|∂βφ(x)| ⩽
∑
γ⩽β

(
β

γ

) ∣∣∣∣∂γx ((x− x0)
α

α!

)∣∣∣∣ ∣∣∣∣∂β−γx ψ

(
x− x0
ε

)∣∣∣∣
⩽

∑
γ⩽β

2|β|ε|α|−|γ|ε|γ|−|β|max
{
|∂ζψ(x)| : |ζ| ⩽ |α| − 1, x ∈ Bε(x0)

}
⩽ cψ,αε

|α|−|β|,
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where we defined the constant

cψ,α ..= 2|α|
(
|α|+ n

)
max

{
|∂ζψ(x)| : |ζ| ⩽ |α| − 1, x ∈ B1(0)

}
.

We plug this φ into (16) and use the above estimates to get

1 = |〈T, φ〉| ⩽ c
∑

|β|⩽|α|−1

sup
K

|∂βφ|

⩽ c
∑

|β|⩽|α|−1

cψ,αε
|α|−|β|

⩽ ccψ,α
(
|α|+ n

)
ε = cε,

where we introduced the new constant

c := ccψ,α
(
|α|+ n

)
and used that ε ∈ (0, 1). The contradiction is reached if we take ε ∈ (0, r) so cε < 1.

A generalization of the above example goes as follows. Let xj , where j ∈ J is a countable or
finite index set, be distinct points in Ω so that the set {xj | j ∈ J} has no limit points in Ω
(that is, if there are any limit points, then they must be on ∂Ω). For any set of multi-indices
αj ∈ Nn0 , j ∈ J , put

〈T, φ〉 ..=
∑
j∈J

(∂αjφ)(xj)

for φ ∈ D(Ω). Then T ∈ D ′(Ω) and it can be shown that the order of T is supj∈J |αj |.
The next is an extension result for distributions of finite order.

Theorem 3.13. Let u ∈ D ′
m(Ω). Then u can be uniquely extended to a linear functional

ū : Cmc (Ω) → C with the boundedness property: for each compact subset K of Ω there exists a
constant c = c(K) so ∣∣〈ū, φ〉∣∣ ⩽ c

∑
|α|⩽m

sup
K

|∂αφ| (17)

holds for all φ ∈ Cmc (Ω).

Notation. We shall usually also denote this unique extension by u.

Proof. Existence: Let ψ ∈ Cmc (Ω). Take a compact set K ⊂ Ω with supp(ψ) ⊆ K. Put
d = dist(K, ∂Ω)/2 and ψj = ρ1/j ∗ ψ, where (ρε)ε>0 is the standard mollifier. If K̃ = Bd(K),

then K̃ ⊂ Ω is compact and ψj ∈ D(K̃) when j > 1/d. Because u is of order at most m we
can find a constant cK̃ so ∣∣〈u, φ〉∣∣ ⩽ cK̃

∑
|α|⩽m

sup
K

|∂αφ| (18)
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holds for all φ ∈ D(K̃). Take φ = ψj − ψk with j, k > 1/d we see that∣∣〈u, ψj〉 − 〈u, ψk〉
∣∣ ⩽ cK̃

∑
|α|⩽m

sup
K̃

|∂αψj − ∂αψk|.

Now ∂αψ is uniformly continuous when |α| ⩽ m, so ∂αψj → ∂αψ uniformly as j → ∞ and
hence (∂αψj) is a uniform Cauchy sequence. But then it follows that

lim
j,k→∞

∣∣〈u, ψj〉 − 〈u, ψk〉
∣∣ = 0,

so
(
〈u, ψj〉

)
is a Cauchy sequence in C and we may define

〈ū, ψ〉 = lim
j→∞

〈u, ψj〉.

It is easy to see that hereby ū : Cmc (Ω) → C is linear and that (17) holds with c(K) = cK̃ .

Uniqueness: This is a straight forward exercise.

Definition 3.14. A linear functional u : Cc(Ω) → C with the boundedness property: for any
compact set K ⊂ Ω we can find a constant cK ⩾ 0 such that∣∣〈u, φ〉∣∣ ⩽ cK sup

K
|φ|

for all φ ∈ Cc(Ω) with supp(φ) ⊆ K, is called a Radon measure on Ω.

Corollary 3.15. A distribution of order 0 on Ω extends uniquely to a Radon measure on Ω.

The next result is important and it also justifies the terminology Radon measure:

Theorem 3.16. (Riesz-Markov representation theorem) Let u : Cc(Ω) → C be a Radon
measure on Ω and assume u is positive:

if φ ∈ Cc(Ω) and φ ⩾ 0, then 〈u, φ〉 ⩾ 0.

Then there exists a unique locally finite Borel measure µ on Ω so

〈u, φ〉 =
∫
Ω
φdµ, φ ∈ Cc(Ω).

We omit the proof.

Theorem 3.17. Let u ∈ D ′(Ω) be a positive distribution:

〈u, φ〉 ⩾ 0 if φ ∈ D(Ω) and φ ⩾ 0.

Then there exists a unique locally finite Borel measure µ on Ω so u = Tµ.
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Proof. It suffices to check that u has order 0. To that end we fix a compact subset K ⊂ Ω. Put
d = dist(K, ∂Ω)/4 and ψ = ρd ∗ 1Bd(K)

, where (ρε)ε>0 is the standard mollifier. If φ ∈ D(K)

is real-valued, then 0 ⩽ ‖φ‖∞ψ ± φ ∈ D(Ω), hence by positivity and linearity of u also

0 ⩽ 〈u, ‖φ‖∞ψ ± φ〉 = ‖φ‖∞〈u, ψ〉 ± 〈u, φ〉

and consequently, |〈u, φ〉| ⩽ cK‖φ‖∞ with cK := 〈u, ψ〉. When φ ∈ D(K) is complex valued,
we apply the above to the real and imaginary parts of φ and use linearity: if φ1 = Re(φ),
φ2 = Im(φ), then clearly φ1, φ2 ∈ D(K) and∣∣〈u, φ〉∣∣ ⩽ ∣∣〈u, φ1〉

∣∣+ ∣∣〈u, φ2〉
∣∣

⩽ cK
(
‖φ1‖∞ + ‖φ2‖∞

)
⩽ 2cK‖φ‖∞.

3.4 The fundamental lemma of the Calculus of Variations.

When f ∈ Lploc(Ω), then as remarked before

〈Tf , ϕ〉 =
∫
Ω
f(x)ϕ(x) dx, ϕ ∈ D(Ω)

defines a distribution on Ω. It is natural to ask if the distribution Tf determines f , that is, if
for f, g ∈ Lploc(Ω) we have Tf = Tg, must it be the case that f = g almost everywhere? The
answer is affirmative and relies on the following.

Lemma 3.18 (The Fundamental Lemma of the Calculus of Variations). If f ∈ L1
loc(Ω) and∫

Ω
f(x)ϕ(x) dx = 0

for all ϕ ∈ D(Ω), then f = 0 almost everywhere.

Remark 3.19. The result is also sometimes called the Du Bois-Reymond Lemma.

Proof. Let O be a non-empty open subset of Ω such that O is compact and O ⊂ Ω. (Recall
that we use the short-hand O ⋐ Ω for this situation.)

Put g = f1O and extend g to Rn \ Ω by zero. Because O ⊂ Ω is compact, we have g ∈
L1(Rn). For the standard mollifier (ρε)ε>0 we know, by proposition 2.8, that ‖ρε ∗ g− g‖1 → 0
as ε↘ 0. Now note that for x ∈ O,

(ρε ∗ g)(x) =
∫
Rn
ρε(x− y)g(y) dy

=

∫
O
ρε(x− y)f(y) dy.
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If we take x ∈ O and ε ∈ (0, dist(x, ∂O)), then, denoting ϕx(y) ..= ρε(x− y) for y ∈ Ω, we have
ϕx ∈ C∞(Ω) and supp(ϕx) = Bε(x) ⊂ O ⊂ Ω, so ϕx ∈ D(Ω). By assumption,

0 =

∫
Ω
f(y)ϕx(y) dy =

∫
O
f(y)ρε(x− y) dy = (ρε ∗ g)(x).

It follows that (ρε ∗g)(x) → 0 as ε↘ 0 pointwise in x ∈ O. From Fatou’s Lemma, we therefore
get ∫

O
|g|dx ⩽ lim inf

ε↘0

∫
O
|ρε ∗ g − g|dx

⩽ lim
ε↘0

∫
Rn

|ρε ∗ g − g|dx = 0.

Thus f = g = 0 almost everywhere in O and since O ⋐ Ω was arbitrary, we conclude that
f = 0 almost everywhere.

Notation and terminology. When f ∈ Lploc(Ω), we shall also use f to denote the distribution
Tf . Thus we simply identify Tf with f :

Tf = f.

This is of course an abuse of notation, but it is convenient and should not cause too much
trouble. Furthermore, we refer to the distributions that correspond to an Lploc(Ω) function as
regular distributions on Ω.

Lemma 3.20. If µ and ν are two locally finite Borel measures on Ω and Tµ = Tν , then µ = ν.

Proof. It suffices to prove that µ(K) = ν(K) for all compact subsets K of Ω, so fix such a
set K. For each ε ∈ (0, dist(K, ∂Ω)) we define φε = ρε ∗ 1K , where (ρε)ε>0 is the standard
mollifier. Then φε ∈ D(Ω) and so by hypothesis∫

Ω
φε dµ = 〈Tµ, φε〉 = 〈Tν , φε〉 =

∫
Ω
φε dν.

The conclusion follows if we take ε↘ 0 and use the Dominated Convergence Theorem.

Notation. In view of this lemma we shall also identify the distribution Tµ with µ from now
on.

3.5 Convergence in the sense of distributions.

Later when other notions of distributions are introduced we shall be more precise and refer to
the present mode of convergence as D ′(Ω)-convergence.
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Definition 3.21. Let (uj) be a sequence in D ′(Ω) and let u ∈ D ′(Ω). We say uj converges to
u in the sense of distributions on Ω and write

uj −→ u in D ′(Ω)

if
〈uj , φ〉 −→ 〈u, φ〉

for each φ ∈ D(Ω).

Remark 3.22. As with convergence in D(Ω), one can define a topology T ′ on D ′(Ω) so that
uj → u in D ′(Ω) corresponds to uj → u in the topological space (D ′(Ω), T ′). As was the
case for the space of test functions it can be shown that also this topology is not metrizable.
Furthermore, (D ′(Ω), T ′) is a so-called topological vector space, in fact exactly the dual space
of (D(Ω), T ). We shall not pursue this abstract viewpoint here as it is not really necessary for
the work with distributions that we cover in this course.

Whereas convergence in the sense of test functions was an extremely strong condition, conver-
gence in the sense of distributions is an extremely weak condition. We illustrate this with an
example.

Example 3.23. Let p ∈ [1,∞] and fj , f ∈ Lp(Ω). If fj → f in Lp(Ω), then fj → f in D ′(Ω).
This is easy to see. The converse, however, is false:

(i) Let fj(x) = sin(jx), x ∈ (0, 1). Then fj → 0 in D ′(0, 1), but fj 6→ 0 in Lp(0, 1) for any
p ∈ [1,∞].

(ii) Let gj(x) = g(jx), x ∈ (0, 1), where g is T -periodic and on (0, T ] is given by

g = −1171(0,T
2
] + 1171(T

2
,T ] =

{
−117 on (0, T2 ]

+117 on (T2 , T ]

Clearly ‖gj‖1 = 117 6→ 0. On Problem Sheet 3 you will be asked to prove that gj → 0 in
D ′(0, 1).

(iii) Let hj(x) = jg(jx), x ∈ (0, 1), where g is as in (ii). Then hj → 0 in D ′(0, 1).

Example 3.24. Let v ∈ Cc(Rn) and for x0 ∈ Ω and ε > 0 put

vε(x) ..= ε−nv

(
x− x0
ε

)
, x ∈ Ω.

Then vε ∈ D ′(Ω) and vε →
∫
Rnv dx δx0 in D ′(Ω) as ε ↘ 0. Indeed, it is clear that vε ∈ D ′(Ω)

for all ε > 0, and for φ ∈ D(Ω) we have

〈vε, φ〉 =
∫
Ω
ε−nv

(
x− x0
ε

)
φ(x) dx

=

∫
Rn
v(y)φ(x0 + εy) dy

−→
ε↘0

∫
Rn
v(y)φ(x0) dy =

∫
Rn
v dy 〈δx0 , φ〉,
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where in the second line we made the change of variables y = ε−1(x− x0).

When
∫
Rnv dx = 1 and we take x0 = 0 above, then the family (vε)ε>0 is called an ap-

proximate unit (or an approximate identity). In particular, the standard mollifier (ρε)ε>0 is
therefore an approximate unit and it has the property that

ρε → δ0 in D ′(Rn) as ε↘ 0.

4 Operations on distributions

4.1 Adjoint identities.

The title of this subsection refers to a principle that often allows us to extend well-known
operations on test functions to corresponding operations on distributions. In more technical
terms, it amounts to defining operations on distributions from operations on test functions by
duality.

Let T be an operation on test functions, that is, assume T : D(Ω) → D(Ω) is a linear
map. We would like to extend T to distributions on Ω. Suppose there exists a linear map
S : D(Ω) → D(Ω) satisfying ∫

Ω
T (φ)ψ dx =

∫
Ω
φS(ψ) dx (19)

for all φ, ψ ∈ D(Ω). We call (19) an adjoint identity. If S is D-continuous, meaning that,
S(ψj) → S(ψ) in D(Ω) whenever ψj → ψ in D(Ω), then we can extend T to distributions u
by the rule

〈T̄ (u), ψ〉 ..= 〈u, S(ψ)〉, ψ ∈ D(Ω). (20)

Because S is linear and D-continuous, it follows that T̄ (u) ∈ D ′(Ω), and therefore that we have
defined a map T̄ : D ′(Ω) → D ′(Ω). We can view D(Ω) as a subspace of D ′(Ω) (recall that we
decided to identify φ with its corresponding distribution Tφ) so from (19) and our definition of
T̄ follow that T̄ |D(Ω) = T , so we have indeed an extension of T . We record that the definitions
immediately give that T̄ is linear: T̄ (u + λv) = T̄ (u) + λT̄ (v) for u, v ∈ D ′(Ω), λ ∈ C, since
for ψ ∈ D(Ω),

〈T̄ (u+ λv), ψ〉 = 〈u+ λv, S(ψ)〉 = 〈u, S(ψ)〉+ λ〈v, S(ψ)〉 = 〈T̄ (u), ψ〉+ λ〈T̄ (v), ψ〉.

The definitions also give that T̄ is D ′-continuous, meaning that if uj → u in D ′(Ω), then also
T̄ (uj) → T̄ (u) in D ′(Ω). Indeed for each ψ ∈ D(Ω) we have

〈T̄ (uj), ψ〉 = 〈uj , S(ψ)〉 −→ 〈u, S(ψ)〉 = 〈T̄ (u), ψ〉.

We can now apply this procedure, that we shall refer to as the adjoint identity scheme, and
extend some well-known operations to distributions.
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Example 4.1. (Differentiation) Let T = d
dx = D on D(R). For φ, ψ ∈ D(R) integration by

parts yields ∫
R
φ′ψ dx = [φψ]+∞

−∞ −
∫ ∞

−∞
φψ′ dx =

∫
R
φ(−ψ′) dx,

hence we have an adjoint identity with S = −D. Clearly, S : D(R) → D(R) is linear and
D-continuous, so we may extend differentiation to distributions u ∈ D ′(R) by the rule

〈D̄u, ψ〉 = 〈u, −Dψ〉, ψ ∈ D(R)

We know this is consistent for test functions in the sense that D̄φ = Dφ when φ ∈ D(R) (D̄
extends D), but what about for C1 functions? Suppose u ∈ C1(R) and consider also u as an
element of D ′(R). We recall again that we identify u with the corresponding distribution Tu,
but perhaps it is useful in this example to be more precise and temporarily use the notation
Tu again for the corresponding distribution. In such terms we would like to know the relation
between the distributional derivative D̄Tu defined above and the distribution corresponding to
the usual derivative TDu. We have by our definitions:

〈D̄Tu, ψ〉 = 〈u, −Dψ〉 =
∫ ∞

−∞
u(−Dψ) dx = − [uψ]+∞

−∞ +

∫ ∞

−∞
ψDu,dx = 〈TDu ψ〉

for all ψ ∈ D(R), and so D̄Tu = TDu. That is, they are the same! We are therefore justified
in identifying the distributional and usual derivatives for C1 functions and accordingly we will
write D̄u = Du when u ∈ C1(R).
Example 4.2. (Multiplication by smooth functions) For f ∈ C∞(R) define T (φ) ..= fφ for each
φ ∈ D(R). Clearly T : D(R) → D(R) is linear and S = T trivially yields the adjoint identity:∫

R
fφψ dx =

∫
R
φfψ dx

for φ, ψ ∈ D(R). It is clear that S : D(R) → D(R) is linear and D-continuous (checked by
Leibniz), so we may extend T to distributions by the rule

〈fu, ψ〉 ..= 〈u, fψ〉

for u ∈ D ′(R), ψ ∈ D(R). Clearly we have consistency here: when u ∈ L1
loc(R), then fu ∈

L1
loc(R) and fu can be identified with the above distribution. What the consistency means

more precisely can be expressed as

Tfu = fTu when u ∈ L1
loc(R).

Example 4.3. Many other useful operations admit extensions to distributions. We list some
elementary operations:

Translation: T = τh defined by τhφ(x) = φ(x+h) yields adjoint identity with S = τ−h. Thus
for u ∈ D ′(R), τhu ∈ D ′(R) is defined by the rule

〈τhu, ψ〉 ..= 〈u, τ−hψ〉
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for ψ ∈ D(R).
Dilation: T = dr defined by drφ(x) = φ(rx), r > 0, yields the adjoint identity with S = 1

rd 1
r
.

Thus for u ∈ D ′(R), dru ∈ D ′(R) is defined by the rule

〈dru, ψ〉 ..=

〈
u,

1

r
d 1
r
ψ

〉
for ψ ∈ D(R).
Reflection through the origin: (Tφ)(x) = φ̃(x) = φ(−x) admits the adjoint identity with
S = T . Thus for u ∈ D ′(R), ũ ∈ D ′(R) is defined by the rule

〈ũ, ψ〉 ..= 〈u, ψ̃〉

for ψ ∈ D(R).
Push-forward/composition by C∞ diffeomorphism: A function Φ: R → R is called a C∞

diffeomorphism if Φ is C∞, bijective and Φ′(x) 6= 0 for all x ∈ R. Using the usual substitution
formula we have for test functions φ, ψ ∈ D(R) that∫ ∞

−∞
φ(Φ(x))ψ(x) dx =

∫ ∞

−∞
φ(y)

ψ(Φ−1(y))∣∣Φ′
(
Φ−1(y)

)∣∣ dy.
Since ψ ◦ Φ−1/

∣∣Φ′ ◦ Φ−1
∣∣ ∈ D(R) we have an adjoint identity with T (φ) = φ ◦ Φ and S(ψ) =

ψ ◦ Φ−1/
∣∣Φ′ ◦ Φ−1

∣∣. We sometimes also denote this operation by Φ∗φ, that is, Φ∗φ = φ ◦ Φ
Using the chain and Leibniz rules we check that S : D(R) → D(R) is D(R)-continuous and so
may extend Φ∗ to distributions u ∈ D ′(R) by the rule

〈Φ∗u, φ〉 := 〈u, φ ◦ Φ−1∣∣Φ′ ◦ Φ−1
∣∣〉

for φ ∈ D(R). Note that we have consistency for u ∈ L1
loc(R) in the sense that Φ∗Tu = Tu◦Φ.

Indeed for φ ∈ D(R) we have by integration by substitution:

〈Φ∗Tu, φ〉 =
∫ ∞

−∞
u
φ ◦ Φ−1∣∣Φ′ ◦ Φ−1

∣∣ dx
=

∫ ∞

−∞
u ◦ Φφdy = 〈Tu◦Φ, φ〉.

We recover translation, dilation and reflection through the origin as special cases when we take
Φ(x) to be x+ h, rx and −x, respectively.
Example 4.4. (Convolution with a test function) For θ ∈ D(R), Tφ = θ ∗ φ admits an adjoint
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identity with Sψ = θ̃ ∗ ψ. Indeed, by Fubini,∫ ∞

−∞
(θ ∗ φ)(x)ψ(x) dx =

∫ ∞

−∞

∫ ∞

−∞
θ(x− y)φ(y) dyψ(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
θ(x− y)ψ(x) dxφ(y) dy

=

∫ ∞

−∞
(θ̃ ∗ ψ)(y)φ(y) dy.

Thus for u ∈ D ′(R), θ ∗ u ∈ D ′(R) is defined by the rule

〈θ ∗ u, ψ〉 ..= 〈u, θ̃ ∗ ψ〉

for ψ ∈ D(R). On Sheet 3 you will be asked to prove that θ ∗ u ∈ C∞(R).

Let us highlight the definitions of differentiation, multiplication by smooth functions and con-
volution with test function in n dimensions.

4.1.1 Differentiation in the sense of distributions

Definition 4.5. Let Ω be a non-empty open subset of Rn. Let u ∈ D ′(Ω) and j ∈ {1, . . . , n}.
The j-th partial derivative of u, D̄ju, in the sense of distributions is defined by the rule

〈D̄ju, φ〉 ..= 〈u, −Djφ〉

for φ ∈ D(Ω).

Note that Dj fits into the adjoint identity scheme with T = Dj and S = −Dj , and so is
well-defined. Also note that D̄j is continuous in the sense that if uk → u in D ′(Ω), then
D̄juk → D̄ju in D ′(Ω). As in the one-dimensional case, when u ∈ C1(Ω) the distributional
D̄1u, . . . , D̄nu and the classical partial derivatives D1u, . . . ,Dnu coincide. In view of this we
shall henceforth use the same notation for distributional derivatives as for the corresponding
classical derivatives, so any of the symbols Dju = ∂ju = ∂u/∂xj = uxj etc can stand for both
the usual partial derivative and for the distributional partial derivative. What is meant exactly
will be clear from context (and if it is not, then it will not matter because the derivatives can
be identified). Moreover, note that since for φ ∈ D(Ω) we have

∂2φ

∂xj∂xk
=

∂2φ

∂xk∂xj
,

we also have ∂j∂ku = ∂k∂ju for u ∈ D ′(Ω). We can therefore also use multi-index notation for
distributional derivatives. For u ∈ D ′(Ω) and α ∈ Nn0 we have

〈∂αu, φ〉 = (−1)|α|〈u, ∂αφ〉
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for φ ∈ D(Ω), where we recall that α = (α1, . . . , αn), |α| = α1 + · · ·+ αn, and

∂αφ =
∂|α|φ

∂xα1
1 . . . ∂xαnn

.

We emphasize that u 7→ ∂αu is D ′(Ω)-continuous.

When u ∈ D ′(Ω) we define its distributional gradient to be

∇u :=
(
∂1u, . . . , ∂nu

)
.

Thus ∇u is an example of a vector valued distribution, meaning it is of the form v =(
v1, . . . , vn

)
where each component vj ∈ D ′(Ω) is a distribution. The set of vector valued

distributions is denoted by D ′(Ω)n. For such distributions v we can define the distributional
divergence as

divv := ∂1v1 + . . . + ∂nvn.

As in the usual vector calculus we have the relation that ∆u = div∇u when u ∈ D ′(Ω), where
now ∆u := ∂21u+ . . . + ∂2nu is the distributional Laplacian.

4.1.2 Multiplication by smooth function

Definition 4.6. Let u be a distribution and f be a smooth function. Then the product fu in
the sense of distributions is defined by the rule

〈fu, φ〉 ..= 〈u, fφ〉

for φ ∈ D(Ω).

This definition also fits into the adjoint identity scheme with T (ϕ) = fϕ = S(ϕ) and so is
well-defined. It is clearly consistent for L1

loc functions, as in the one-dimensional case. It is
clear that we can define the product uf too and that we always have fu = uf .

Example 4.7. The Heaviside function is the function

H(x) =

{
0 x < 0

1 x ⩾ 0.

Note that the value of H(x) at x = 0 is not particularly important and is sometimes taken to
be 0 instead (or in some other contexts even 1

2). Clearly H ∈ L1
loc(R), so H ∈ D ′(R) and we

have H ′ = δ0. We check the latter and calculate for φ ∈ D(R):

〈H ′, φ〉 = 〈H, −φ′〉

=

∫ ∞

−∞
H(x)(−φ′(x)) dx

= −
∫ ∞

0
φ′(x) dx

FTC
= − [φ(x)]x→∞

x=0 = φ(0) = 〈δ0, φ〉.
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Note also that by iteration of the above we find for m ∈ N that〈
dm

dxm
δ0, φ

〉
= 〈δ0, (−1)mφ(m)〉 = (−1)mφ(m)(0).

A slight extension of the above formula for H ′ is obtained by differentiation of a piecewise C1

function

h(x) =

{
f(x) x < 0

g(x) x ⩾ 0,

where f , g ∈ C1(R). This will be addressed on Sheet 2.

Example 4.8. We can define 4h = τh − 1 for h ∈ R on distributions u ∈ D ′(R) by the adjoint
identity scheme: for φ ∈ D(R) put

〈4hu, φ〉 =
〈
u,

(
τ−h − 1

)
φ
〉
,

where
(
τ−h − 1

)
φ(x) = φ(x− h)− φ(x). If u ∈ C1(R), then clearly we have convergence

4hu(x)

h
=
u(x+ h)− u(x)

h
−→
h→0

u′(x)

locally uniformly in x. What happens when u ∈ D ′(R)? Recall that according to Example
2.18 we have

τ−h − 1

h
φ −→
h→0

−φ′ in D(R)

and therefore 4hu/h −→
h→0

Du in D ′(R).

Theorem 4.9 (Leibniz Rule). If u ∈ D ′(Ω), f ∈ C∞(Ω), and j ∈ {1, . . . , n}, then

∂j(fu) = (∂jf)u+ f∂ju

in D ′(Ω). In fact, the Generalized Leibniz Rule also holds for distributions: for a multi-index
α ∈ Nn0 ,

∂α(fu) =
∑
β⩽α

(
α

β

)
∂βf∂α−βu.

Proof. We only prove the basic case, the general case can be proved by induction, or simply
by using the formula for test functions. First note that ∂j(fu), (∂jf)u + f∂ju ∈ D ′(Ω) and
that for φ ∈ D(Ω):

〈∂j(fu), φ〉 = 〈fu, −∂jφ〉 = 〈u, −f∂jφ〉,

〈(∂jf)u+ f∂ju, φ〉 = 〈(∂jf)u, φ〉+ 〈f∂ju, φ〉
= 〈u, (∂jf)φ〉+ 〈∂ju, fφ〉
= 〈u, (∂jf)φ〉+ 〈u, −∂j(fφ)〉
= 〈u, (∂jf)φ− ∂j(fφ)〉
= 〈u, −f∂jφ〉,

and we are done.
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4.1.3 Convolution with test function

Definition 4.10. Let u ∈ D ′(Rn) and θ ∈ D(Rn). Then the convolution u ∗ θ is defined by

〈u ∗ θ, φ〉 := 〈u, θ̃ ∗ φ〉, φ ∈ D(Rn),

where, as in the 1-dimensional case, we define θ̃(x) := θ(−x).

Using the adjoint identity scheme it is easy to check that hereby u ∗ θ ∈ D ′(Rn). Because
addition is commutative on Rn we have that u ∗ θ = θ ∗ u (with the obvious definition of the
right-hand side).

Example 4.11. If we follow the trail of definitions we easily obtain the following result: for
u ∈ D ′(Rn), θ ∈ D(Rn) and any multi-index α ∈ Nn0 we have in the sense of distributions on
Rn that

∂α(u ∗ θ) = (∂αu) ∗ θ = u ∗ (∂αθ).

4.2 Mollification and approximation of distributions.

If we convolve the distribution u ∈ D ′(Rn) with ρε from the standard mollifier we obtain the
so-called mollified distribution u ∗ ρε:

〈u ∗ ρε, φ〉 = 〈u, ρε ∗ φ〉 , φ ∈ D(Rn) (21)

Note that we have used ρ̃ε = ρε to simplify the above formula.

Lemma 4.12. Let u ∈ D ′(Rn) and
(
ρε
)
ε>0

be the standard mollifier on Rn. Then, for each
ε > 0, u ∗ ρε ∈ C∞(Rn),

(u ∗ ρε)(x) =
〈
u, ρε(x− ·)

〉
,

that is, u acting on the test function y 7→ ρε(x − y). Furthermore, u ∗ ρε → u in D ′(Rn) as
ε↘ 0.

Remark 4.13. Inspection of the proof below reveals that the only properties of the standard
mollifier kernel ρ on Rn that are really needed are that ρ ∈ D(Rn) and

∫
Rnρdx = 1. Thus the

result of Lemma 4.12 remains true if we replace the standard mollifier by the family
(
θε
)
ε>0

,
where

θε(x) :=
1

εn
θ
(x
ε

)
and θ ∈ D(Rn) and

∫
Rnθ(x) dx = 1.

Proof. The proof starts by observing that, for each fixed ε > 0, the convolution ρε∗φ appearing
on the right-hand side of (21) can be calculated as a Riemann integral and therefore obtained
as a limit of Riemann sums in a very strong sense. In order to make this precise we shall
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introduce some convenient notation. For k ∈ N we understand by a k-th generation dyadic
cube a cube Q of the form

Q = cQ + (0, 2−k]n = (cQ1 , c
Q
1 + 2−k]× . . . × (cQn , c

Q
n + 2−k]

where its left cornerpoint cQ belongs to the dilated integer grid 2−kZn. The collection of all
k-th generation dyadic cubes is denoted by Dk and we clearly have that Rn =

⋃
Dk as a

disjoint union. Now for each x ∈ Rn and k ∈ N the (finite!) sum

Rk(x) :=
∑
Q∈Dk

ρε(x− cQ)φ(cQ)L n(Q)

is a Riemann sum for (ρε ∗ φ)(x). It is easy to check, using uniform continuity, that Rk(x) →
(ρε ∗ φ)(x) uniformly in x ∈ Rn as k → ∞. We assert that Rk are test functions and that the
convergence in fact takes place in the sense of test functions. It is clear that Rk are C∞ and
if we let K = Bε(supp(φ)), then K is a compact set with the property that supp(Rk) ⊂ K for
all k ∈ N. Next if α ∈ Nn0 is a multi-index, then we have

(∂αRk)(x) =
∑
Q∈Dk

(∂αρε)(x− cQ)φ(cQ)L n(Q) →
(
(∂αρε) ∗ φ

)
(x)

uniformly in x ∈ Rn as k → ∞ by uniform continuity of ∂αρε and φ. But this is exactly the
asserted convergence in D(Rn). Now note that by linearity of u we have

〈u,Rk〉 =
∑
Q∈Dk

〈
u, ρε(· − cQ)

〉
φ(cQ)L n(Q). (22)

Because u is D ′(Rn)-continuous we know that the limit of the left-hand side equals the right-
hand side in (21). In order to deal with the right-hand side of (22) we rely on the following.

Auxiliary Lemma. Let u ∈ D ′(Rn) and θ ∈ D(Rn). Then the function

h(x) := 〈u, θ(x− ·)〉

is C1 and ∂jh(x) = 〈u, (∂jθ)(x− ·)〉 for each 1 ⩽ j ⩽ n.

Sketch of proof for Auxiliary Lemma. The details are left as an exercise (or see Theorem 5.9
below for a general result of this type). Let (ej)

n
j=1 be the standard basis for Rn and consider

the difference quotient

h(x+ tej)− h(x)

t
=

〈
u,
θ(x+ tej − ·)− θ(x− ·)

t

〉
t ∈ R \ {0}.

Show that for fixed x ∈ Rn,

θ(x+ tej − ·)− θ(x− ·)
t

→ (∂jθ)(x− ·) in D(Rn) as t→ 0.
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Next observe that x 7→ (∂jθ)(x− ·) is continuous from Rn into D(Rn). □
We return to the right-hand side of (22) and apply an induction argument using the

Auxiliary Lemma for the base case and in each induction step. Hereby we deduce that
x 7→ 〈u, ρε(x−·)〉 = 〈u, ρε(·−x)〉 is Ck for any k ∈ N with ∂αx 〈u, ρε(x−·)〉 = 〈u, (∂αρε)(x−·)〉 for
all multi-indices α. Finally, since x 7→ 〈u, ρε(x−·)〉φ(x) is uniformly continuous and compactly
supported we may pass to the limit k → ∞ in (22) whereby we find

〈u, ρε ∗ φ〉 =
∫
Rn
〈u, ρε(x− ·)〉φ(x) dx.

This concludes the proof.

In fact we can do a little better and even approximate a general distribution by test func-
tions:

Lemma 4.14. Let u ∈ D ′(Rn). Then we can find a sequence (uj) of test functions so uj → u
in D ′(Rn).

Proof. We have from Lemma 4.12 that u ∗ ρε ∈ C∞(Rn) and u ∗ ρε → u in D ′(Rn) as ε ↘ 0.
The only issue is that u ∗ ρε will not in general have compact support. We fix this as follows:
By virtue of Theorem 2.12 we may find χ ∈ D(B2(0)) with χ = 1 on B1(0). We extend χ to
Rn \B2(0) by 0 and put χε(x) := χ(εx), x ∈ Rn. Define

uε := χεu ∗ ρε.

Clearly supp(uε) ⊆ B2/ε(0) so uε ∈ D(Rn) and since for φ ∈ D(Rn) we have

〈uε, φ〉 = 〈u ∗ ρε, χεφ〉

and χεφ = φ when supp(φ) ⊂ B1/ε(0) the proof is finished. (The sequence (uj) can evidently
be obtained from the family (uε) if we take uj := uεj for any choice of null sequence εj ↘ 0.)

The last result can be elaborated further to apply also to distributions defined on arbitrary
open sets.

Theorem 4.15. Let Ω be a non-empty open subset of Rn and u ∈ D ′(Ω). Then there exists a
sequence (uj) in D(Ω) so uj → u in D ′(Ω).

We have all the necessary ingredients for the proof but omit the details here. (In fact, from
the perspective of Functional Analysis in the context of topological vector spaces this density
result is not surprising at all. But since we have preferred to give a hands-on approach and
avoid the abstract general theory we of course have to work a bit more occasionally.)

It is however interesting to return to the adjoint identity scheme for extending operations on
test functions to operations on distributions. Recall that the starting point is that we have an
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operation on test functions, a linear map T : D(Ω) → D(Ω), that we would like to extend to
distributions u ∈ D ′(Ω). We saw that such an extension was indeed possible if we had another
linear and D(Ω)-continuous map S : D(Ω) → D(Ω) satisfying the adjoint identity (19). The
extension T̄ was then given in (20). As remarked before, this extension T̄ : D ′(Ω) → D ′(Ω) is
linear and D ′(Ω)-continuous. In fact, it follows now from Theorem 4.15 that T̄ is the extension
of T = T̄ |D(Ω) to D ′(Ω) by D ′(Ω)-continuity. This gives rise to an often useful procedure
for proving results about distributions: first establish the desired result for test functions (or
for smooth functions) and then extend it to distributions by approximation. We shall see an
example of this when we prove the constancy theorem for distributions in Section 5.

4.3 The Gauss-Green formula and some of its consequences.

Most of you will have seen a statement of the divergence theorem in a multi-variate calculus
course, but these courses often do not provide any proof of the result. Here we also do not
give a proof. Instead the aim is to give a precise statement of a basic case that suffices for the
applications in this course. We start by giving some requisite definitions.

Definition 4.16. Let Ω be a non-empty open subset of Rn. An open subset ω of Ω is called a
C1 subset of Ω if there exists Ψ ∈ C1(Ω) so

ω =
{
x ∈ Ω : Ψ(x) < 0

}
, Ω ∩ ∂ω =

{
x ∈ Ω : Ψ(x) = 0

}
and ∇Ψ(x) 6= 0 for all x ∈ Ω ∩ ∂ω.
The function Ψ is called a defining function for ω. Its gradient ∇Ψ(x) is an outward pointing
normal to ω at each point x ∈ Ω ∩ ∂ω, hence

ν(x) :=
∇Ψ(x)

|∇Ψ(x)|

is the outward unit normal to ω at each point x ∈ Ω ∩ ∂ω.

Remark 4.17. Comment on surface integrals. The condition on the defining function Ψ that
∇Ψ(y) 6= 0 at each y ∈ Ω ∩ ∂ω is essential and implies (by the Implicit Function Theorem)
that in some small ball Br(y) ⋐ Ω the boundary Br(y) ∩ ∂ω admits a C1 parametrization.
More precisely, if for instance ∂1Ψ(y) 6= 0, then writing x = (x1, x

′) we can find a C1 function
ψ = ψ(x′) so

Br(y) ∩ ω =
{
x ∈ Rn : |x− y| < r and x1 < ψ(x′)

}
,

Br(y) ∩ ∂ω =
{
(ψ(x′), x′) : |x′ − y′| < r

}
.

In terms of this parametrization we define for a continuous function f : Br(y) → C the surface
integral ∫

Br(y)∩∂ω
f(x) dSx :=

∫
{x′∈Rn−1: |x′|<r}

f(ψ(x′), x′)
√
1 + |∇ψ(x′)|2 dx′. (23)

Using a change-of-variables formula it can be shown that the value of the integral on the right-
hand side does not depend on the particular parametrization used. The surface integral of a
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continuous and compactly supported function f : Ω → C is then defined by use of a partition
of unity to add up the finitely many contributions (23) in the support of f (again, one can
show that this will not depend on how we cover the support of f with small balls where we
have local parametrizations or on the used partition of unity).

Example 4.18. The open ball BR(y) is a C1 subset of Rn: we can use Ψ(x) = |x − y|2 − R2,
x ∈ Rn, as a defining function. Note that the outward unit normal is

ν(x) =
x− y

R
x ∈ ∂BR(y).

In this case one can also use polar coordinates about y to calculate the surface integral over
the sphere ∂BR(y).

The ring domain A = BR(y) \ Br(y), 0 < r < R, is a C1 subset of Rn: we can use Ψ(x) =(
|x − y|2 − R2

)(
r2 − |x − y|2

)
, x ∈ Rn, as a defining function. Note that the outward unit

normal is

ν(x) =


x− y

R
for |x− y| = R

−x− y

r
for |x− y| = r.

Theorem 4.19. (The Gauss-Green Formula.) Let Ω be a non-empty open subset of Rn and
ω a C1 subset of Ω. Then for each V ∈ D(Ω)n we have∫

ω
divV dx =

∫
∂ω
V · ν dSx.

Remark 4.20. The result is sometimes also called the divergence theorem, and in fact it holds
in a much more general form. However, the above will suffice for the applications we have in
mind. Note that for n = 1 and ω = (a, b) it reduces to the fundamental theorem of calculus.

We end this subsection by calculating some important distributional derivatives.

Example 4.21. The distributional derivative of the indicator function of a C1 subset ω of Ω:

∇1ω = −ν dSx. (24)

Of course we can express this in coordinates as ∂j1ω = −νj dSx for each 1 ⩽ j ⩽ n. Indeed, if
φ ∈ D(Ω) we use the divergence theorem to calculate with V = φej that

〈∂j1ω, φ〉 = −〈1ω, ∂jφ〉

= −
∫
ω
divV dx

= −
∫
∂ω
V · ν dSx

= −
∫
∂ω
φνj dSx

and hence the conclusion.
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Example 4.22. Let y ∈ Rn and denote

Gy(x) = Gny (x) :=


− 1

(n−2)ωn−1
|x− y|2−n if n ∈ N \ {2}

1
ω1

log |x− y| if n = 2,

where we recall that ωn−1 denotes the (n− 1)-dimensional area of the unit sphere Sn−1 in Rn
(so that ω0 = 2, ω1 = 2π, ω2 = 4π). We emphasize the 2-dimensional case

G2
y(x) =

1

4π
log

(
(x1 − y1)

2 + (x2 − y2)
2
)

that is known as the logarithmic potential and the 3-dimensional case

G3
y(x) = − 1

4π

1√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

that is known as the Newtonian potential.

Clearly, regardless of the dimension n, Gy is C∞ away from y and it is routine to check that
∆Gy = 0 there. If we use polar coordinates with centre at y it is not difficult to see that
Gy ∈ L1

loc(Rn), so we can consider Gy as a (regular) distribution on Rn. We assert that

∆Gy = δy in D ′(Rn).

We can assume that y = 0 and must then prove that

I :=

∫
Rn

∆φG0 dx = φ(0)

holds for all φ ∈ D(Rn). Fix φ ∈ D(Rn). First we note that if for each r > 0 we put

I(r) :=

∫
|x|>r

∆φG0 dx,

then I(r) → I as r ↘ 0. Next, because φ has compact support we may find R > 0 so
supp(φ) ⊂ BR(0), hence with A := {x ∈ Rn : r < |x| < R} we have

I(r) =

∫
A
∆φG0 dx.

Now G0 is C∞ on A and ∆G0 = 0 there, so using the divergence theorem and that ∇φ(x) = 0
for |x| = R we find

I(r) =

∫
A
∆φG0 dx =−

∫
A
∇φ · ∇G0 dx+

∫
|x|=r

G0∇φ · ν dSx

=−
∫
|x|=r

φ∇G0 · ν dSx +
∫
|x|=r

G0∇φ · ν dSx,
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where ν is the outward unit normal on the boundary of A. On the sphere |x| = r, we have
∇G0 · ν = − 1

ωn−1
r1−n and therefore

−
∫
|x|=r

φ∇G0 · ν dSx = 1
ωn−1

∫
Sn−1

φ(rx) dSx → φ(0) as r ↘ 0.

The last integral vanishes in the limit r ↘ 0:∣∣∣∣∣
∫
|x|=r

G0∇φ · ν dSx

∣∣∣∣∣ ⩽ 1
|n−2|ωn−1

r2−n sup |∇φ|ωn−1r
n−1

= sup |∇φ|
|n−2| r → 0.

Example 4.23. The Cauchy-Riemann differential operators

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
act on distributions defined on open subsets of C. As usual we identify C ' R2 corresponding
to x+ iy ' (x, y). Since ∆ = 4∂2/∂z̄∂z and ∆

(
log |z|

)
= 2πδ0 in D ′(C) we calculate

πδ0 =
∂2

∂z̄∂z

(
log |z|2

)
=

∂

∂z̄

(
∂

∂z
log(zz̄)

)
=

∂

∂z̄

(
1

z

)
and consequently,

∂

∂z̄

(
1

πz

)
= δ0. (25)

Likewise we can show that
∂

∂z

(
1

πz̄

)
= δ0. (26)

5 Some calculus for distributions

5.1 The basic theorems.

These are the constancy theorem and the fundamental theorem of calculus. We start with the
former.
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5.1.1 The constancy theorem

Theorem 5.1. (The constancy theorem) Let Ω be a non-empty open and connected subset of
Rn. If u ∈ D ′(Ω) and

∇u = 0 in D ′(Ω)n,

then u = c for some constant c ∈ C.

Proof. We only give the details for the case Ω = Rn. The general case can be obtained along
the same lines, but is more technical and therefore omitted here.

Let
(
ρε
)
ε>0

be the standard mollifier. Then we have ∇(ρε ∗ u) = ρε ∗ ∇u = 0 in D ′(Rn)n.
According to Lemma 4.12, ρε ∗u ∈ C∞(Rn) and ρε ∗u→ u in D ′(Rn) as ε↘ 0. By consistency
of distributional derivatives for C1 functions we have that ∇(ρε ∗ u) = 0 on Rn in the usual
sense. But then the usual constancy theorem implies that ρε ∗ u is constant: ρε ∗ u = cε on Rn
for some constant cε ∈ C. Now we calculate for the standard mollifier kernel ρ (= ρ1)

cε =

∫
Rn
cερ dx =

∫
Rn
(ρε ∗ u)ρdx

=
〈
ρε ∗ u, ρ

〉
→ 〈u, ρ〉 as ε↘ 0.

Hence if we put c := 〈u, ρ〉 and take φ ∈ D(Rn), then

cε

∫
Rn
φdx =

∫
Rn
(ρε ∗ u)φdx

=
〈
u, ρ̃ε ∗ φ

〉
→ 〈u, φ〉 as ε↘ 0,

and thus 〈u, φ〉 = c
∫
Rnφdx as required.

Example 5.2. We prove the constancy theorem in a special case by construction of a suitable
test function. Variants of this technique are quite common and used also in other contexts.
Assume u ∈ D ′(R) and that u′ = 0 in D ′(R). The assumption means, by definition, that

0 = 〈u′, φ〉 = −〈u, φ′〉

holds for all φ ∈ D(R). Let ρ ∈ D(R) be the standard mollifier kernel on R. Now for φ ∈ D(R)
we put

cφ ..=

∫
R
φdx

and

ψ(x) ..=

∫ x

−∞
(φ(t)− cφρ(t)) dt, x ∈ R.

Take a, b ∈ R with a < b so that φ(t) = 0 = ρ(t) for t ⩽ a or t ⩾ b. Then clearly ψ(x) = 0 for
x ⩽ a, while for x ⩾ b,

ψ(x) =

∫ x

−∞
(φ(t)− cφρ(t)) dt =

∫ ∞

−∞
(φ(t)− cφρ(t)) dt = 0.
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By the fundamental theorem of calculus, ψ is C1 with ψ′(x) = φ(x) − cφρ(x) and hence it
follows that in fact ψ is C∞. Since also supp(ψ) ⊆ [a, b], we have shown that ψ ∈ D(R). Now

〈u, φ〉 = 〈u, ψ′ + cφρ〉
= 〈u, ψ′〉+ cφ〈u, ρ〉
= 〈−u′, ψ〉+ cφ〈u, ρ〉
= cφ〈u, ρ〉,

so

〈u, φ〉 = 〈u, ρ〉
∫
R
φ(x) dx = c

∫
R
φ(x) dx,

where we denoted c = 〈u, ρ〉.

5.1.2 The fundamental theorem of calculus for distributions

Theorem 5.3. (The fundamental theorem of calculus for distributions.) Let f ∈ D ′(a, b).
Then there exists F ∈ D ′(a, b) such that F ′ = f in D ′(a, b). Furthermore, if u ∈ D ′(a, b) and
u′ = f in D ′(a, b), then u = F + c for some constant c ∈ C.

Remark 5.4. We emphasize the following formula, found in the proof below, for a distributional
primitive to f ∈ D ′(a, b):

〈F,φ〉 := −〈f,E(φ)〉 φ ∈ D(a, b),

where E(φ) is defined at (27).

Proof. We start by choosing χ ∈ D(a, b) with
∫ b
aχdx = 1 (χ(x) = ρε(x−x0) for suitable ε > 0

and x0 ∈ (a, b) will do.) Define for φ ∈ D(a, b),

E(φ)(x) :=

∫ x

a
φ(t) dt−

∫ b

a
φ(t) dt

∫ x

a
χ(t) dt, x ∈ (a, b). (27)

From the fundamental theorem of calculus it follows that E(φ) is C1 with

E(φ)′(x) = φ(x)−
∫ b

a
φ(t) dtχ(x).

The last expression shows that E(φ) is C∞. By assumptions of compact supports in (a, b) we
can find a compact interval [c, d] ⊂ (a, b) that contains the supports of both χ and φ. Then
we clearly have E(φ)(x) = 0 for x ∈ (a, c). For x ∈ (d, b) we calculate

E(φ)(x) =

∫ b

a
φ(t) dt−

∫ b

a
φ(t) dt

∫ b

a
χ(t) dt = 0
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since φ = χ = 0 on (d, b). Thus supp(E(φ)) ⊆ [c, d] and we conclude that E(φ) ∈ D(a, b). By
inspection the map E : D(a, b) → D(a, b) is linear. We assert that it is also D(a, b)-continuous:
if φj → 0 in D(a, b), that is, for some compact interval [ā, b̄] ⊂ (a, b),{

supp(φj) ⊂ [ā, b̄],

sup |φ(m)
j | → 0 as j → ∞ for each m ∈ N.

Without loss in generality we may assume that also supp(χ) ⊂ [ā, b̄] and have then that
suppE(φj) ⊂ [ā, b̄] for all j too. We also have as j → ∞,

sup |E(φj)| ⩽ (b̄− ā)
(
1 +

∫ b

a
|χ| dt

)
sup |φj | → 0

and for each k ∈ N,

sup |E(φj)
(k)| ⩽ sup |φ(k−1)

j |+ (b̄− ā) sup |χ(k−1)| sup |φj | → 0.

Thus E(φj) → 0 in D(a, b) as asserted.

In view of the fundamental theorem of calculus, E is a left-inverse to d
dx on D(a, b):

E(φ′) = φ for φ ∈ D(a, b).

If therefore we define 〈F,φ〉 = −〈f,E(φ)〉, then clearly F ∈ D ′(a, b) and F ′ = f . Finally, the
statement about u now follows from the constancy theorem.

Corollary 5.5. Let f ∈ C(a, b). If u ∈ D ′(a, b) and u′ = f in D ′(a, b), then u ∈ C1(a, b) and
we have u′ = f in the usual sense on (a, b).

Proof. Take x0 ∈ (a, b) and put F (x) =
∫ x
x0
f(t) dt, x ∈ (a, b). Then F is C1 and F ′ = f by

the fundamental theorem of calculus. Now u − F ∈ D ′(a, b) and (u − F )′ = 0 in D ′(a, b) so
u− F = c for some constant c ∈ C by the constancy theorem.

Example 5.6. Let f ∈ C∞(a, b) and g ∈ D ′(a, b). We seek the general solution to the ODE

y′ + fy = g

in D ′(a, b). Fix x0 ∈ (a, b) and put F (x) =
∫ x
x0
f(t) dt, x ∈ (a, b). Clearly, eF ∈ C∞(a, b) is an

integrating factor, so that if y ∈ D ′(a, b) is a solution, then

d

dx

(
eF y

)
= eF

(
y′ + fy

)
= eF g.

From the fundamental theorem of calculus for distributions we infer that (in the notation of
its proof) 〈eF y, ϕ〉 = −〈eF g,E(ϕ)〉 for ϕ ∈ D(a, b), and hence that for some constant c ∈ C,

〈y, ϕ〉 := −
〈
g, eFE

(
e−Fϕ

)〉
+ c

∫ b

a
e−Fϕ dx (ϕ ∈ D(a, b))
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Conversely we check that each of these distributions satisfy the ODE, so that we have indeed
found the general solution. Note in particular that if g ∈ C∞(a, b) then also all solutions belong
to C∞(a, b). It is not difficult to show that if the distribution g has order at most 1, then all
solutions have order 0 (exercise!).

Example 5.7. We seek the general solution to the ODE y′′ + 4y′ + 3y = 0 in D ′(a, b). The
characteristic equation has roots −1 and −3, so we have the factorization

d2

dx2
+ 4

d

dx
+ 3I =

(
d

dx
+ I

)(
d

dx
+ 3I

)
(I = identity map)

We therefore consider first the ODE z′ + z = 0 in D ′(a, b). Multiply by ex, use Leibniz’ rule
and the constancy theorem to find

z = ce−x

where c ∈ C. Next, consider the ODE y′+3y = ce−x in D ′(a, b). Multiply by e3x, use Leibniz’
rule and the constancy theorem to find

y = c1e
−3x +

c

2
e−x

where c1 ∈ C. In turn it is easy to check that this is a solution, so that we have shown that
the general solution in D ′(a, b) is y = Ae−3x +Be−x, where A, B ∈ C are arbitrary.

Corollary 5.5 has an n-dimensional version too:

Proposition 5.8. Let Ω be a non-empty open subset of Rn. If u ∈ D ′(Ω) and ∇u ∈ C(Ω)n,
then u ∈ C1(Ω).

Proof. (The proof is not examinable.) We only give the proof in the special case Ω = Rn, where it is quite similar to that of the constancy
theorem. For the standard mollifier

(
ρε

)
ε>0

we have by Lemma 4.12, ρε ∗ u ∈ C∞(Rn) and ρε ∗ u → u in D′(Rn) as ε ↘ 0. Now by the

fundamental theorem of calculus and the chain rule we have for each x ∈ Rn and ε > 0,

(ρε ∗ u)(x) = (ρε ∗ u)(0) +

∫ 1

0
(ρε ∗ ∇u)(tx) · x dt. (28)

Multiply by ρ(x) and integrate over x ∈ Rn to get

〈
ρε ∗ u, ρ

〉
= (ρε ∗ u)(0) +

∫
Rn

∫ 1

0
(ρε ∗ ∇u)(tx) · x dtρ(x) dx.

Here we have, as ε ↘ 0, 〈
ρε ∗ u, ρ

〉
→

〈
u, ρ

〉
and ρε ∗ ∇u → ∇u locally uniformly on Rn, hence

∫
Rn

∫ 1

0
(ρε ∗ ∇u)(tx) · x dtρ(x) dx →

∫
Rn

∫ 1

0
∇u(tx) · x dtρ(x) dx.

Consequently,

(ρε ∗ u)(0) → c :=
〈
u, ρ

〉
−

∫
Rn

∫ 1

0
∇u(tx) · x dtρ(x) dx

as ε ↘ 0. Hence, returning to (28) we see that, as ε ↘ 0, (ρε ∗ u)(x) converges locally uniformly in x ∈ Rn, and since it also converges
distributionally to u it is not hard to see that u is a continuous function and that the local uniform convergence in x ∈ Rn is in fact to

u(x). To see that u is C1 we write x = (xj , x
′) ∈ Rn and note that for fixed x′ ∈ Rn−1 the fundamental theorem of calculus yields

(ρε ∗ u)(xj , x
′
) = (ρε ∗ u)(0, x′) +

∫ xj

0
(ρε ∗ ∂ju)(t, x

′
) dt
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for each xj ∈ R. Pass to the limit ε ↘ 0 to get

u(xj , x
′
) = u(0, x

′
) +

∫ xj

0
(∂ju)(t, x

′
) dt

for each xj ∈ R. Since the distributional derivative ∂ju is continuous we infer that the partial function xj 7→ u(xj , x
′) is differentiable with

derivative (∂ju)(xj , x
′). But then u must be C1 as we wanted to show. □

The last result of this subsection is technical and we have encountered it before in special
cases. The proof is merely a formalization of the proof we have sketched for the special case
of mollification of a distribution.

Theorem 5.9. (Differentiation behind the distribution sign) Let Ω, Ξ be nonempty open sub-
sets of Rn, Rm, respectively. Assume Φ ∈ C∞(Ω × Ξ) and that there exists a compact set
K ⊂ Ω such that Φ(x, y) = 0 whenever x /∈ K, y ∈ Ξ. Then the function

y 7→
〈
u,Φ(·, y)

〉
is a C∞ function on Ξ for each u ∈ D ′(Ω), and for each multi-index α ∈ Nm0 ,

∂αy
〈
u,Φ(·, y)

〉
=

〈
u,

(
∂αyΦ

)
(·, y)

〉
.

Proof. (The proof is not examinable.) For fixed y ∈ Ξ we get by Taylor’s formula

Φ(x, y + h) = Φ(x, y) +
m∑

j=1

∂Φ

∂yj
(x, y)hj + R(x, y, h),

where the remainder term

R(x, y, h) = 2

∫ 1

0
(1 − t)

∑
|α|=2

∂2Φ

∂yα
(x, y + th)h

α
dt.

Fix d > 0 so d < dist(y, ∂Ξ). Then we have for each multi-index β ∈ Nn
0 that

sup
x∈Ω

∣∣∂βxR(x, y, h)
∣∣ ⩽ cβ |h|2

for all |h| < d, where we have defined the constant

cβ :=
∑

|α|=2

sup
K×Bd(y)

∣∣∂βx∂αy Φ
∣∣

that by the assumptions on Φ is finite. Using the boundedness property of u on K we find cK ⩾ 0, mK ∈ N0 so

∣∣〈u, φ〉∣∣ ⩽ cK
∑

|γ|⩽mK

sup
K

|∂γφ|

holds for all φ ∈ D(K). We apply this with φ = R(·, y, h) ∈ D(K) whereby we arrive at

∣∣〈u,R(·, y, h)〉
∣∣ ⩽ cK

∑
|γ|⩽mK

cγ |h|2 =: c̄|h|2

for all |h| < d. Consequently we get (using Landau notation to simplify)

〈u,Φ(·, y + h)〉 − 〈u,Φ(·, y)〉 =
m∑

j=1

〈
u,

∂Φ

∂yj
(·, y)

〉
hj + O(|h|2)

and it follows that all first order partial derivatives exist at y and equal the coefficients to hj on the right-hand side. We also see that they

must be continuous in y. Using induction on the order of differentiation we can apply the above argument in the induction step to ∂αy Φ to

conclude the proof. □
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5.1.3 Characterization of monotone functions

Many other results from calculus have analogues in distribution theory. A rather pleasant one
is the following. Recall that a function u : (a, b) → R is increasing provided u(x) ⩽ u(y) when
x, y ∈ (a, b) and x ⩽ y. If u is differentiable, then the mean value theorem implies that u
is increasing if and only if u′(x) ⩾ 0 for all x ∈ (a, b). A similar result of course holds for
decreasing functions (where a function u is decreasing if −u is increasing).

Theorem 5.10. Let u ∈ D ′(a, b). Then u is defined by an increasing function if and only if
u′ ⩾ 0 in D ′(a, b).

Remark 5.11. We clarify aspects of the statement of the theorem and its proof below. First,
note that a monotone function u : (a, b) → R, meaning either an increasing or a decreasing func-
tion, is a regular distribution: Indeed, u is (Borel-) measurable since for all y ∈ R, u−1(y,∞)
is an interval (in the wide sense) and u is locally bounded since for [c, d] ⊂ (a, b) we have

sup
[c,d]

|u| ⩽ max
{
|u(c)|, |u(d)|

}
,

so that in particular, u ∈ L1
loc(a, b). Next, note that a regular distribution f on (a, b) is positive

if and only if f(x) ⩾ 0 for almost all x ∈ (a, b).

Proof. We suppose for simplicity that (a, b) = R and use mollification (the general case is
omitted, but can be done along similar lines). Let

(
ρε
)
ε>0

be the standard mollifier on R.
Step 1. Assume that u ∈ C∞(R).
We clearly have that u is increasing if and only if u′(x) ⩾ 0 for all x, and since distributional
derivatives are just the usual ones for C∞ functions, we have that the latter holds if and only
if u′ ⩾ 0 in D ′(R).
Note that the shifted function ρ+(x) = ρ(x− 1), x ∈ R, satisfies

ρ+ ⩾ 0,

∫
R
ρ+ dx = 1 and supp(ρ+) = [0, 2].

We put as usual ρ+ε (x) := ε−1ρ
(
ε−1x− 1

)
, x ∈ R and ε > 0. Then

(
ρ+ε

)
ε>0

is an approximate
unit with essentially the same properties as the standard mollifier on R, the only difference is
that we have shifted the support to have supp(ρ+ε ) = [0, 2ε]. Now, because of the support of
ρ+, we have

(u ∗ ρ+ε )(x) =
∫ 2

0
u(x− εy)ρ+(y) dy

is an increasing function of x ∈ R and a decreasing function of ε > 0.

Step 2. The general case u ∈ D ′(R).
Assume u′ ⩾ 0 in D ′(R). Then ρε ∗ u ∈ C∞(R) and

(
ρε ∗ u

)′
= ρε ∗ u′ ⩾ 0 so ρε ∗ u is an

increasing function on R. Consider for ε̄ > 0 and x ∈ R the function (ρε ∗ u) ∗ ρ+ε̄ (x). This
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function is then increasing in x ∈ R and decreasing in ε̄ > 0. Since, as ε↘ 0,(
(ρε ∗ u) ∗ ρ+ε̄

)
(x) → (u ∗ ρ+ε̄ )(x)

pointwise in x ∈ R and ε̄ > 0, it follows that also (u ∗ ρ+ε̄ )(x) is increasing in x ∈ R and
decreasing in ε̄ > 0. Define

sup
ε̄>0

(u ∗ ρ+ε̄ )(x) =: u0(x) ∈ R ∪ {∞}

and observe that it is a monotone increasing limit as ε̄ ↘ 0. Hence the function u0 : R →
R ∪ {∞} is increasing, meaning in particular, that if for some x0 ∈ R we have u0(x0) = ∞,
then u0(x) = ∞ for all x ⩾ x0. But we also have for φ ∈ D(R) with φ ⩾ 0 that

〈u ∗ ρ+ε̄ , φ〉 → 〈u, φ〉 as ε̄↘ 0.

By Lebesgue’s monotone convergence theorem also

〈u ∗ ρ+ε̄ , φ〉 =
∫
R
u ∗ ρ+ε̄ , φ dx↗

∫
R
u0φdx as ε̄↘ 0,

so we can exclude the value ∞ and have then that u0 : R → R is a real-valued increasing
function. Clearly also u = u0 concluding the proof of this direction. Conversely, if u ∈ D ′(R)
is defined by an increasing function (that we denote u again), then so is ρε ∗ u:

(ρε ∗ u)(x) =
∫
R
u(x− εy)ρ(y) dy is increasing in x ∈ R.

But also ρε ∗ u ∈ C∞(R) so 0 ⩽
(
ρε ∗ u

)′
= ρε ∗ u′ and taking φ ∈ D(R), φ ⩾ 0 we get

0 ⩽ 〈ρε ∗ u′, φ〉 → 〈u′, φ〉 as ε↘ 0, as required.

Remark 5.12. Recall that a positive distribution by the Riesz-Markov representation theorem
is a locally finite Borel measure, so the distributional derivative of an increasing function is a
locally finite Borel measure. The next example explores the converse of this.

Example 5.13. Let µ be a locally finite Borel measure on (a, b). Fix x0 ∈ (a, b) and put

u(x) =

{
µ
(
[x0, x]

)
if x ∈ [x0, b)

−µ
(
[x, x0)

)
if x ∈ (a, x0).

(29)

Then u is an increasing function (hence a regular distribution) and we will show that u′ = µ
in D ′(a, b).

Simply calculate for φ ∈ D(a, b) using Fubini’s theorem to swap integration orders:

〈u′, φ〉 =− 〈u, φ′〉

=−
∫ b

x0

µ
(
[x0, x]

)
φ′(x) dx+

∫ x0

a
µ
(
[x, x0)

)
φ′(x) dx

=−
∫
[x0,b)

∫ b

t
φ′(x) dx dµ(t) +

∫
(a,x0)

∫ t

a
φ′(x) dx dµ(t)

=

∫ b

a
φdµ
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where we also used the usual fundamental theorem of calculus. (Note that the function u
defined above satisfies u(y) − u(x) = µ(x, y] for all x < y in (a, b) and compare it to how
one can define Lebesgue-Stieltjes measures on (a, b). In particular, we emphasize that when µ
is a probability measure, so µ(a, b) = 1, then the cumulative distribution function is usually
defined as u(x) := µ(a, x], x ∈ (a, b), and the above calculation applies and gives u′ = µ in
D ′(a, b).)

Returning to the general case (29), it is easy to check that the function u is continuous at the
point x ∈ (a, b) precisely when µ({x}) = 0. Hence u is a continuous function precisely when
the measure µ is atom-free, meaning that µ({x}) = 0 for all x ∈ (a, b).

Example 5.14. Let f ∈ L1
loc(a, b). What are the distributional primitives of f? We could of

course employ the fundamental theorem of calculus for distributions, but here it is easier to
just repeat the calculation with Fubini’s theorem done in Example 5.13. Hereby we find

F (x) =

∫ x

x0

f(t) dt+ c,

where x0 ∈ (a, b) and c ∈ C. In particular we record that the fundamental theorem of calculus
holds for F if by F ′ we understand the distributional derivative and we assume that it is a
regular distribution F ′ ∈ L1

loc(a, b):

F (d)− F (c) =

∫ d

c
F ′(t) dt whenever [c, d] ⊂ (a, b).

When f ∈ L1
loc(a, b) and f ⩾ 0, then in the set-up of Example 5.13 we have the measure

µ(A) =

∫
A
f dt for Borel sets A ⊂ (a, b).

Measures that admit such a representation are called absolutely continuous (with respect to
Lebesgue measure L 1 on (a, b)).

5.2 Sobolev functions.

The functions encountered in the example of the previous subsection are important and have
a name:

Definition 5.15. A function F : (a, b) → C is absolutely continuous if there exists f ∈ L1(a, b)
so

F (x) = F (x0) +

∫ x

x0

f(t) dt, x, x0 ∈ (a, b).

It is locally absolutely continuous if only f ∈ L1
loc(a, b) above.

Remark 5.16. (Not examinable.) It is possible to characterize absolute continuity as follows: the function F : (a, b) → C is absolutely
continuous if and only if for each ε > 0 there exists δ > 0 so

m∑
j=1

∣∣F (bj) − F (aj)
∣∣ < ε
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whenever m ∈ N and (a1, b1], . . . , (am, bm] are disjoint subintervals of (a, b) with total length
∑m

j=1

(
bj − aj

)
< δ. In fact, this is usually

taken as the definition of absolute continuity.

It is not difficult to see that a complex function is absolutely continuous precisely when its real and imaginary parts are absolutely continuous.
It is possible to characterize absolute continuity of real-valued functions in terms of usual differentiability as follows:

Theorem A: A function F : (a, b) → R is locally absolutely continuous if and only if the following three conditions are satisfied:

(i) F is continuous,

(ii) F is differentiable almost everywhere in (a, b) and F ′ ∈ L1
loc(a, b),

(iii) F has the Luzin (N) property: L 1(F (N)
)
= 0 whenever N ⊂ (a, b) and L 1(N) = 0.

If we strengthen condition (ii) above and require differentiability everywhere then (iii) can be shown to follow and we have the following
sufficient condition for local absolute continuity:

Theorem B: A function F : (a, b) → R is locally absolutely continuous if F is differentiable at all points of (a, b) and F ′ ∈ L1
loc(a, b).

The condition that the usual derivative must be locally integrable is necessary and not automatic. For example

F (x) =

{
x sin 1

x
if x ∈ (−1, 1) \ {0}

0 if x = 0

is differentiable everywhere in (−1, 1), but F ′ /∈ L1
loc(−1, 1).

The signed versions of the functions encountered in Example 5.13 are important and have a
name:

Definition 5.17. A function F : (a, b) → C is of locally bounded (essential) variation if
F ∈ L1

loc(a, b) and F
′ ∈ D ′

0(a, b) (so the distributional derivative is of order 0).

Remark 5.18. (Not examinable.) A function F : (a, b) → C is of bounded variation if its total variation on (a, b), TV(F, (a, b)) is finite.
The total variation is defined as

TV(F, (a, b)) := sup
P

n−1∑
j=0

∣∣F (aj+1) − F (aj)
∣∣

where the supremum is taken over all partitions

P : a = a0 < a1 < . . . < an = b, n ∈ N,

of (a, b). The function F : (a, b) → C is of locally bounded variation if it has bounded variation on each compact subinterval [c, d] ⊂ (a, b).

It is easy to check that a complex valued function is of locally bounded variation precisely when its real and imaginary parts are. That
real-valued functions of locally bounded variation is closely related to monotone functions is established in the following theorem.

Theorem C: The function F : (a, b) → R is of locally bounded variation if and only if there exist two increasing functions F+, F− : (a, b) → R
such that F = F+ − F−.

It is interesting to compare this result with the Hahn decomposition of a Radon measure (see Definition 3.14): any real-valued Radon measure
u : Cc(Ω) → R can be written as a difference u = u+ − u− of two positive Radon measures u+, u−.

From Theorems 5.10 and C we infer that F : (a, b) → C is of locally bounded (essential) variation precisely when it admits a representative
of locally bounded variation.

The generalization of the above to higher dimensions is very important, but we can only cover
very little in this direction here. However, we can give a central definition:

Definition 5.19. Let Ω be a nonempty open subset of Rn, m ∈ N and p ∈ [1,∞]. Then any
u ∈ Lp(Ω) for which ∂αu ∈ Lp(Ω) for all multi-indices α ∈ Nn0 of length |α| ⩽ m is called a
Wm,p Sobolev function. The set of all these is denoted by

Wm,p(Ω) :=
{
u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ⩽ m

}
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and is called a Sobolev space. It is not difficult to check that it is a vector subspace of Lp(Ω)
and that

‖u‖Wm,p :=



 ∑
|α|⩽m

‖∂αu‖pp

 1
p

if p ∈ [1,∞)

max
|α|⩽m

‖∂αu‖∞ if p = ∞

is a norm on Wm,p(Ω) in the same sense that ‖ · ‖p is a norm on Lp(Ω) (so it is a norm on the
vector space of equivalence classes under the equivalence relation equal almost everywhere).
One can show that hereby Wm,p(Ω) is an example of a Banach space (and a Hilbert space when
p = 2). These general notions are important and discussed in Functional Analysis 1 and 2.
However, they do not play any immediate role in this course.

Example 5.20. (W1,p Sobolev functions on a bounded interval (a, b))

The Sobolev space
W1,p(a, b) =

{
u ∈ Lp(a, b) : u′ ∈ Lp(a, b)

}
is normed by

‖u‖W1,p :=


(∫ b

a
|u|p dx+

∫ b

a
|u′|p dx

) 1
p

if p ∈ [1,∞)

max
{
‖u‖∞, ‖u′‖∞

}
if p = ∞

and because (a, b) is assumed bounded the family is strictly descending in the exponent p:

W1,1(a, b) ⊃ W1,p(a, b) ⊃ W1,q(a, b) ⊃ W1,∞(a, b)

when 1 < p < q <∞.

Comparing our definitions we see that an integrable function u : (a, b) → C is W1,1 Sobolev
precisely when it has an absolutely continuous representative. For this absolutely continuous
representative the fundamental theorem of calculus holds in the sense that

u(y)− u(x) =

∫ y

x
u′(t) dt (30)

holds for every x, y ∈ (a, b), where u′ is the distributional derivative (but see also Theorem A
in Remark 5.16 above).

When the exponent p increases we get better continuity properties of W1,p Sobolev functions.
Indeed if u ∈ W1,p(a, b) and u is its absolutely continuous representative, then we can ap-
ply Hölder’s inequality on (30) with Hölder conjugate exponents p, q (and for the ensuing
calculation assume x < y):

|u(y)− u(x)| ⩽‖1[x,y]‖q‖u′‖p

=|x− y|1−
1
p ‖u′‖p
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We express this by saying that u is (1− 1
p)-Hölder continuous on (a, b). In the endpoint case

p = ∞ we get
|u(y)− u(x)| ⩽ |x− y|‖u′‖∞

which of course is Lipschitz continuity. It can be shown that W1,∞(a, b) is exactly the space of
L∞(a, b) functions that admit a representative that is Lipschitz continuous (see Problem Sheet
4). One cannot characterize the W1,p Sobolev functions in such simple terms when p <∞.

Before the next example we need a convenient result about distributional partial derivatives.

Lemma 5.21. Assume the dimension n ⩾ 2 and let f ∈ C1(Rn \ {0})∩ L1
loc(Rn). If the usual

partial derivatives ∂jf ∈ L1
loc(Rn) for each direction 1 ⩽ j ⩽ n, then we have∫

Rn
∂jfφ dx = −

∫
Rn
f∂jφdx

for all φ ∈ D(Rn). In other words, the usual partial derivatives coincide with the distributional
partial derivatives.

You will be asked to prove the result on Problem Sheet 4.

Example 5.22. (Sobolev functions can be discontinuous in higher dimensions)

For α > 0 and n ⩾ 2 we consider the function

u(x) := |x|−α, x ∈ B1(0) ⊂ Rn.

Of course it is not really defined for x = 0 but that is not a problem when discussing member-
ship of Lp or W1,p.

Claim: u ∈ Lp(B1(0)) if and only if α < n
p .

We calculate in polar coordinates:∫
B1(0)

|x|−αp dx =

∫ 1

0

∫
∂Br(0)

|x|−αp dSx dr

= ωn−1

∫ 1

0
r−αp+n−1 dr <∞

precisely when n− αp > 0, which is the claim.

Next we assume α < n
p so that u is regular distribution.

Claim: u ∈ W1,p(B1(0)) precisely for α < n
p − 1 when p ∈ [1, n) (and never when α > 0 and

p ⩾ n).

Calculate the usual partial derivatives ∂ju = −α|x|−α−2xj for each direction 1 ⩽ j ⩽ n. Here
∂ju ∈ Lp(B1(0)) for each 1 ⩽ j ⩽ n precisely when

n∑
j=1

|∂ju| ∈ Lp(B1(0)). (31)
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We simplify the latter using the inequalities n∑
j=1

|yj |2
 1

2

⩽
n∑
j=1

|yj | ⩽ n
1
2

 n∑
j=1

|yj |2
 1

2

.

Indeed (31) holds therefore precisely when n∑
j=1

|∂ju|2
 1

2

= α|x|−α−1 ∈ Lp(B1(0)).

Again we calculate in polar coordinates:∫
B1(0)

|x|−(α+1)p dx =

∫ 1

0

∫
∂Br(0)

|x|−(α+1)p dSx dr

= ωn−1

∫ 1

0
r−(α+1)p+n−1 dr <∞

exactly for n − (α + 1)p > 0, whereby, in view of Lemma 5.21, we have found that u ∈
W1,p(B1(0)) precisely if α < n

p − 1 and p ∈ [1, n). It can be shown that for p > n all W1,p

Sobolev functions admit a continuous representative (this follows from the so-called Sobolev
embedding theorems).

5.3 Localization of distributions

We would like to think about distributions as generalized functions. While it is not possible in
general to assign pointwise values to a distribution u ∈ D ′(Ω), it is easy to define its restriction
to an open subset ω of Ω. Indeed, any test function φ ∈ D(ω) can be extended to a test
function on Ω by simply defining φ(x) = 0 for x ∈ Ω \ ω so we may consider D(ω) as a
subspace of D(Ω) and then define the restriction of u to ω, denoted by u|ω, to be

〈
(
u|ω

)
, φ〉 := 〈u, φ〉, φ ∈ D(ω).

Proceeding a bit more formally, if eω,Ω : D(ω) → D(Ω) is the map extending each φ ∈ D(ω) to
eω,Ω(φ) ∈ D(Ω) by 0, then eω,Ω is clearly linear and D(ω)-continuous. The map rΩ,ω : D ′(Ω) →
D ′(ω) restricting each u ∈ D ′(Ω) to ω is then given as

〈rΩ,ωu, φ〉 = 〈u, eω,Ωφ〉, φ ∈ D(ω).

What is interesting is that distributions are in fact locally determined: if u, v ∈ D ′(Ω) and
each x ∈ Ω admits an open neighbourhood ωx in Ω so u|ωx = v|ωx , then u = v. This is the
content of
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Theorem 5.23. If u ∈ D ′(Ω) and for each x ∈ Ω there exists an open neighbourhood ωx of x
in Ω so u|ωx = 0, then u = 0.

Proof. This is a typical smooth partition of unity argument. Let φ ∈ D(Ω). Since we clearly
have

suppφ ⊂
⋃{

ωx : x ∈ Ω
}
,

the compactness of suppφ means that we can find a finite subcover, say

suppφ ⊂ ω1 ∪ · · · ∪ ωm,

where we wrote ωj = ωxj . Using Theorem 2.14 we find a smooth partition of unity ϕ1, . . . , ϕm ∈
D(Ω) with suppϕj ⊂ ωj , 0 ⩽ ϕj ⩽ 1, and

∑m
j=1 ϕj = 1 on suppφ. Thus

〈u, φ〉 =

〈
u,

m∑
j=1

φϕj

〉
=

m∑
j=1

〈u, φϕj〉 = 0.

Example 5.24. (Cauchy’s integral formula) Let Ω be a nonempty open subset of C and ω ⋐ Ω
be a C1 subset. Then for ϕ ∈ D(Ω) and z0 = x0 + iy0 ∈ ω:

ϕ(x0, y0) =
1

2πi

∫
∂ω

ϕ(x, y)

z − z0
dz − 1

π

∫
ω

∂ϕ/∂z̄

z − z0
d(x, y) (32)

where the usual identification C ' R2 via z = x + iy ' (x, y) is in force and the ∂ω in the
contour integral is traversed so that ω is to the left of ∂ω. (We note that the assumptions on
ω mean that its boundary consists of a finite number of closed simple C1 curves.)

There are many ways to derive this formula. Here we use distributions and their localization.
First recall from Example 4.23 that ∂

∂z̄

(
1
πz

)
= δ0 and consequently that ∂

∂z̄

(
1

π(z−z0)
)
= δz0 .

Now u = 1ω/π(z − z0) ∈ L1
loc(Ω) and since z0 ∈ ω this distribution is locally in Ω of the form

distribution times C∞ function, so we may apply the Leibniz rule to calculate its derivatives:

∂u

∂z̄
=
∂

∂z̄

(
1

π(z − z0)

)
1ω +

1

π(z − z0)

∂

∂z̄

(
1ω

)
=δz0 +

1

π(z − z0)

∂

∂z̄

(
1ω

)
.

For φ ∈ D(Ω) calculate:

〈 ∂
∂z̄

(
1ω

)
, φ〉 = −

∫
ω

∂φ

∂z̄
d(x, y)

= −1

2

∫
ω

(
∂xφ+ i∂yφ

)
d(x, y).
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For simplicity let us assume that the boundary ∂ω consists of only one closed C1 curve that is
then traversed in the anti-clockwise direction. Fix a point p ∈ ∂ω and let s denote arc length
on ∂ω measured from p anti-clockwise. Then, if ℓ is the length of ∂ω, [0, ℓ] 3 s 7→

(
x(s), y(s)

)
is a parametrization of ∂ω. The derivative τ =

(
x′(s), y′(s)

)
is a unit tangent to ∂ω and

τ⊥ =
(
−y′(s), x′(s)

)
= −ν is the unit inward normal on ∂ω. We are lined up for use of the

divergence theorem: put V = (φ, iφ) ∈ D(Ω)2 so that divV = ∂xφ+ i∂yφ and we get

−1

2

∫
ω

(
∂xφ+ i∂yφ

)
d(x, y) = −1

2

∫
∂ω
V · ν dS

= −1

2

∫ ℓ

0

(
φν1 + iφν2

)
ds

= −1

2

∫ ℓ

0
φ
(
x(s), y(s)

)(
y′(s)− ix′(s)

)
ds

=
1

2

∫ ℓ

0
iφ
(
x(s), y(s)

)(
x′(s) + iy′(s)

)
ds

=
i

2

∫
∂ω
φdz.

Thus 〈
∂

∂z̄

(
1ω

π(z − z0)

)
, ϕ

〉
= ϕ(x0, y0) +

〈
1

π(z − z0)

∂

∂z̄

(
1ω

)
, ϕ

〉
= ϕ(x0, y0) +

〈
∂

∂z̄

(
1ω

)
,

ϕ

π(z − z0)

〉
= ϕ(x0, y0) +

i

2

∫
∂ω

ϕ(x, y)

π(z − z0)
dz

and this rearranges easily to (32).

5.3.1 Support and singular support of a distribution

Definition 5.25. Let u ∈ D ′(Ω). Then the support of u, denoted by supp(u), is the set of
points x ∈ Ω having no open neighbourhood to which the restriction of u is 0. Thus Ω\ supp(u)
is the open set of points having an open neighbourhood in which u vanishes. By Theorem 5.23,
Ω \ supp(u) contains all open subsets of Ω where u vanishes, hence must be the largest such
open subset of Ω.

We record that the support of u ∈ D ′(Ω) is a relatively closed subset of Ω, and that for
φ ∈ D(Ω),

〈u, φ〉 = 0 whenever supp(u) ∩ supp(φ) = ∅. (33)

As an easy exercise one can check that when u ∈ C(Ω), then the support of u as a continuous
function coincides with the support of u as a distribution. We are therefore justified in using
the same notation for both.
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Closely related to the notion of support is the notion of singular support:

Definition 5.26. Let u ∈ D ′(Ω). Then the singular support of u, denoted by sing.supp(u),
is the set of points x ∈ Ω having no open neighbourhood to which the restriction of u is a C∞

function. By Theorem 5.23, Ω \ sing. supp(u) contains all open subsets of Ω where u is a C∞

function, hence must be the largest such open subset of Ω.

We record that the singular support of u ∈ D ′(Ω) is a relatively closed subset of Ω. Since the
zero function in particular is C∞ we also have the inclusion sing.supp(u) ⊆ supp(u).

Example 5.27. Let x0 ∈ Ω and ω be an open subset of Ω. Then for the distributions δx0 and
1ω we have supp(δx0) = {x0} = sing.supp(δx0) and supp(1ω) = Ω∩ω, sing.supp(1ω) = Ω∩∂ω.

In Theorem 3.13 it was shown that a distribution of order at most m can be uniquely extended
to the space of Cmc functions as a linear functional with the boundedness property (17). We
now return to the theme of extension of the domain for a distribution using the above ideas
and start by considering regular distributions: When u ∈ L1

loc(Ω), then the integral
∫
Ωuφdx

is well-defined for all φ ∈ C∞(Ω) with supp(u) ∩ supp(φ) compact. In fact, the set{
φ ∈ C∞(Ω) : supp(u) ∩ supp(φ) is compact

}
is a linear subspace of C∞(Ω) and the map φ 7→

∫
Ωuφdx is well-defined and linear there. This

extension procedure can be generalized:

Theorem 5.28. Let u ∈ D ′(Ω) and let A be a relatively closed subset of Ω so supp(u) ⊆ A.
Then there exists a unique linear functional

U :
{
φ ∈ C∞(Ω) : A ∩ supp(φ) is compact

}
→ C

so U(φ) = 〈u, φ〉 for φ ∈ D(Ω) and U(φ) = 0 for φ ∈ C∞(Ω) with A ∩ supp(φ) = ∅.

Remark 5.29. The domain of U is largest when we take A = supp(u), but we need the unique-
ness part of the result also for more general sets. We shall denote the unique such extension
U by u again.

Proof. It is clear that the set
{
φ ∈ C∞(Ω) : A ∩ supp(φ) is compact

}
is a linear subspace of

C∞(Ω), so the statement makes sense.

Uniqueness: Let φ ∈ C∞(Ω) with A∩supp(φ) =: K compact. Take a cut-off function ψ ∈ D(Ω)
so ψ = 1 near K. Then ψφ ∈ D(Ω) and A ∩ supp

(
(1− ψ)φ

)
= ∅, so if U is an extension of u

with the asserted property, then we must have

U(φ) =U
(
ψφ+ (1− ψ)φ

)
=U(ψφ) + U

(
(1− ψ)φ

)
=U(ψφ) = 〈u, ψφ〉.

Thus there is only one possible such extension.
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Existence: If φ ∈ C∞(Ω) with A ∩ supp(φ) compact, then we can write φ = ψφ+ (1− ψ)φ as
above. Assume that we have another such representation, say that also φ = ψ0φ+ (1− ψ0)φ.
Then ψφ− ψ0φ ∈ D(Ω) and since

A ∩ supp(ψφ− ψ0φ) = A ∩ supp
(
(1− ψ)φ− (1− ψ0)φ

)
= ∅

we must have by (33) that 〈u, ψφ − ψ0φ〉 = 0, hence 〈u, ψφ〉 = 〈u, ψ0φ〉. Consequently, we
may consistently define U(φ) := 〈u, ψφ〉.

5.3.2 Compactly supported distributions

It is interesting to apply the extension result from the previous subsection in the case of
compact support. Assume u ∈ D ′(Ω) has compact support. Then we can define 〈u, φ〉 for all
φ ∈ C∞(Ω): simply take a cut-off function ψ ∈ D(Ω) with ψ = 1 near supp(u). According to
the above we must then define for φ ∈ C∞(Ω) that

〈u, φ〉 := 〈u, ψφ〉.

Invoking the boundedness property of u on K := supp(ψ) we find cK ⩾ 0, mK ∈ N0 so∣∣〈u, φ〉∣∣ ⩽cK ∑
|α|⩽mK

sup
K

∣∣∂α(ψφ)∣∣
⩽c

∑
|α|⩽m

sup
K

∣∣∂αφ∣∣
where the last inequality follows by use of the Generalized Leibniz rule and we wrote m = mK .
Note that the inequality holds for all φ ∈ C∞(Ω). We also note that a compactly supported
distribution always has a finite order.

Conversely suppose that u : C∞(Ω) → C is linear and for some compact subset L ⊂ Ω we can
find c ⩾ 0, m ∈ N0 such that ∣∣u(φ)∣∣ ⩽ c

∑
|α|⩽m

sup
L

|∂αφ|

holds for all φ ∈ C∞(Ω). Then the restriction of u to D(Ω) is a distribution with support
contained in L and clearly u(φ) = 0 for φ ∈ C∞(Ω) with supp(φ) ∩ L = ∅. By the uniqueness
part of Theorem 5.28 we conclude that u is the unique such extension of u|D(Ω).

In order to summarize, denote by E ′(Ω) the set of all linear functionals u : C∞(Ω) → C for
which there exists a compact subset K = Ku of Ω and constants c = cu ⩾ 0, m = mu ∈ N0

such that ∣∣〈u, φ〉∣∣ ⩽ c
∑

|α|⩽m
sup
K

∣∣∂αφ∣∣ (34)

holds for all φ ∈ C∞(Ω). We have then shown the following result:
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Theorem 5.30. The set of distributions with compact support in Ω coincides with E ′(Ω) in
the following sense:

(i) each distribution with compact support in Ω admits a unique extension to a linear func-
tional on C∞(Ω) satisfying a bound of the form (34) for a compact neighbourhood K of
its support;

(ii) the restriction of a functional in E ′(Ω) to D(Ω) is a distribution with compact support
in Ω (if the bound (34) holds, then K will contain the support).

By a compact neighbourhood of a set A we mean a compact set K such that A is contained
in the interior of K.

Example 5.31. It is in general not possible to take K = supp(u) in (34): Define for φ ∈ D(R)

〈u, φ〉 :=
∞∑
j=1

φ
(
1
j

)
− φ

(
−1
j

)
j

.

It is not difficult to see that for φ ∈ D(R) we always have∣∣∣∣∣φ
(
1
j

)
− φ

(
−1
j

)
j

∣∣∣∣∣ ⩽ 2 max
[−1,1]

|φ′|j−2

and consequently that ∣∣〈u, φ〉∣∣ ⩽
2

∞∑
j=1

1
j2

max
[−1,1]

|φ′|.

It follows that u ∈ D ′(R) has order at most 1. By inspection we see that

supp(u) =
{
1
j : j ∈ Z \ {0}

}
∪ {0}

so that in particular u has compact support. Suppose that (34) holds for u with K = supp(u).
Let s ∈ N and take φ ∈ D(R) so φ = 1 near {1, 1/2, . . . , 1/s} and φ = 0 near the complement
supp(u) \ {1, 1/2, . . . , 1/s}. Then we have 〈u, φ〉 =

∑s
j=1 1/j and from (34) for some fixed

constant c the bound
∑s

j=1 1/j ⩽ c, which is impossible for large s.

The compact set K in (34) can be any compact neighbourhood of the support supp(u), but if
we shrink K then we have to enlarge the corresponding constant c.

We end this section with a characterization of distributions whose support is a singleton:

Theorem 5.32. Let u ∈ D ′(Ω) and x0 ∈ Ω. If suppu = {x0}, then u ∈ span{∂αδx0 : α ∈ Nn0}.

Proof. (The proof is not examinable.) For each ε > 0 we put ψε = ρε ∗ 1B2ε(0), where
(
ρε

)
ε>0

is the standard mollifier in Rn. Then

ψε ∈ D(Rn) is supported in B3ε(0) and ψε = 1 on Bε(0). In view of the discussion above we then have

〈u, φ〉 = 〈u, ψεφ〉
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for all φ ∈ C∞(Rn) and all ε > 0. We also know that u has a finite order, say m ∈ N0, and that there exists a constant c ⩾ 0 so

∣∣〈u, φ〉∣∣ ⩽ c
∑

|α|⩽m

sup
B1(0)

∣∣∂αφ∣∣ (35)

holds for all φ ∈ C∞(Rn). Now for each multi-index α ∈ Nn
0 of length |α| ⩽ m we put cα = (−1)|α|〈u, (· − x0)〉/α! and assert that

u =
∑

|α|⩽m

cα∂
α
δx0 .

To prove it we fix φ ∈ D(Rn) and get from Taylor’s formula

φ(x) =
∑

|α|⩽m

∂αφ(x0)

α!
(x− x0)

α
+ Rm(x),

where

Rm(x) = (m + 1)

∫ 1

0
(1 − t)

m
∑

|α|=m+1

∂αφ(x0 + t(x− x0))

α!
(x− x0)

α
dt.

Now

〈u, φ〉 =
∑

|α|⩽m

〈
u,
∂αφ(x0)

α!
(· − x0)

α

〉
+ 〈u,Rm〉

=

〈 ∑
|α|⩽m

cα∂
α
δx0

, φ

〉
+ 〈u, ψεRm〉

for each ε > 0. To see that the last term is 0 we use (35) and the Leibniz rule:

∣∣〈u, ψεRm〉
∣∣ ⩽ c

∑
|β|⩽m

sup
B1(x0)

∣∣∂β(ψεRm)
∣∣

and

∣∣∂β(ψεRm)
∣∣ =

∣∣∣∣∣∣
∑
γ⩽β

(
β

γ

)
∂
γ
ψε∂

β−γ
Rm

∣∣∣∣∣∣
⩽

∑
γ⩽β

(
β

γ

)
O(ε

−|γ|
)O(ε

m+1−|β|+|γ|
)

⩽O(ε),

where for convenience we used Landau notation. Taking ε ↘ 0 concludes the proof. □

6 Convolution of distributions and fundamental solutions

6.1 Convolution of distributions.

In this subsection we define the convolution of two distributions one of which must have
compact support. It is done in three steps. The first is the familiar convolution of a distribution
and a test function that was defined using the adjoint identity scheme: if u ∈ D ′(Rn), θ ∈
D(Rn), then u ∗ θ ∈ D ′(Rn) was defined by the rule

〈u ∗ θ, φ〉 = 〈u, θ̃ ∗ φ〉, φ ∈ D(Rn).

Proceeding as in the proof of Lemma 4.12 (see also Remark 4.13 and Problem Sheet 3 for the
one-dimensional case) we establish:
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Lemma 6.1. If u ∈ D ′(Rn), θ ∈ D(Rn), then u ∗ θ ∈ C∞(Rn), (u ∗ θ)(x) = 〈u, θ(x − ·)〉,
x ∈ Rn, and ∂α(u ∗ θ) = (∂αu) ∗ θ = u ∗ (∂αθ) for all α ∈ Nn0 . Furthermore,

supp(u ∗ θ) ⊆ supp(u) + supp(θ).

Proof. We only give the details for the assertion about the supports since the rest has been
covered before (note also that we can refer to Theorem 5.9 for the C∞ and differentiation
behind the distribution sign). The definitions of reflection in the origin and translation given
in Example 4.3 carry over to the n-dimensional case without modification. In these terms we
then have

(u ∗ θ)(x) = 〈u, θ(x− ·)〉 = 〈u, τ−xθ̃〉 (36)

for all x ∈ Rn. Since u ∗ θ in particular is a continuous function we have that supp(u ∗ θ) is
the closure of the set {x ∈ Rn : (u ∗ θ)(x) 6= 0}. In view of (36) and the definition of support
for a distribution we have

(u ∗ θ)(x) = 0 whenever supp(u) ∩ supp(τ−xθ̃) = ∅.

Note that supp(τ−xθ̃) = x− supp(θ) and that since supp(θ) is compact and supp(u) is closed,
the set A :=

{
x ∈ Rn : supp(u) ∩ supp(τ−xθ̃) = ∅

}
is open. We also have that u ∗ θ = 0 on

A, so supp(u ∗ θ) ⊆ Rn \ A. In order to conclude we note that if x /∈ supp(u) + supp(θ), so
x− y /∈ supp(u) for all y ∈ supp(θ), then

(
x− supp(θ)

)
∩ supp(u) = ∅, hence x ∈ A.

Our next task is to define the convolution of a compactly supported distribution and a general
C∞ function: if v ∈ E ′(Rn) and ψ ∈ C∞(Rn), then we define v ∗ ψ by the rule

〈v ∗ ψ,φ〉 := 〈v, ψ̃ ∗ φ〉, φ ∈ D(Rn). (37)

To see that hereby v ∗ ψ ∈ D ′(Rn) we first note that ψ̃ ∗ φ is well-defined by

(ψ̃ ∗ φ)(x) =
∫
Rn
ψ(y − x)φ(y) dy, x ∈ Rn.

It is not difficult to check that ψ̃ ∗ φ ∈ C∞(Rn) with ∂α(ψ̃ ∗ φ) = (∂αψ̃) ∗ φ = ψ̃ ∗ (∂αφ) for
all multi-indices α ∈ Nn0 . Consequently, v ∗ ψ : D(Rn) → C is well-defined and linear. In order
to see that it is also D(Rn)-continuous we check that it has the boundedness property. Fix a
compact set K in Rn and let φ ∈ D(Rn) with support in K. If L is a compact neighbourhood
of the support of v, then the boundedness property (34) ensures existence of constants c ⩾ 0,
m ∈ N0 so ∣∣〈v ∗ ψ,φ〉∣∣ =∣∣〈v, ψ̃ ∗ φ〉

∣∣
⩽c

∑
|α|⩽m

sup
L

∣∣∂α(ψ̃ ∗ φ)
∣∣

=c
∑

|α|⩽m
sup
L

∣∣(∂αψ̃) ∗ φ∣∣.
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Here we estimate for each x ∈ L:∣∣((∂αψ̃) ∗ φ)(x)∣∣ ⩽ ∫
Rn

|∂αψ̃(y)φ(x− y)| dy

⩽
∫
L−K

|∂αψ̃(y)|dy sup
K

|φ|

=

∫
K−L

|∂αψ|dy sup
K

|φ|

and consequently ∣∣〈v ∗ ψ,φ〉∣∣ ⩽c ∑
|α|⩽m

∫
K−L

|∂αψ| dy sup
K

|φ|

=C sup
K

|φ|,

where we have defined

C := c
∑

|α|⩽m

∫
K−L

|∂αψ|dy.

Because K −L is compact (as image under the continuous map (x, y) 7→ x− y of the compact
set K ×L) we see that C ∈ [0,∞). Note that we have shown that v ∗ψ ∈ D ′

0(Rn). But in fact
the distribution is much more regular as we show next:

Lemma 6.2. If v ∈ E ′(Rn), ψ ∈ C∞(Rn), then v ∗ ψ ∈ C∞(Rn), (v ∗ ψ)(x) = 〈v, ψ(x − ·)〉,
x ∈ Rn, and ∂α(v ∗ ψ) = (∂αv) ∗ ψ = v ∗ (∂αψ) for all α ∈ Nn0 . Furthermore,

supp(v ∗ ψ) ⊆ supp(v) + supp(ψ).

We omit the details of the proof that are very similar to those of Lemma 6.1. Before proceeding
to the third and final step of the convolution definition we make some preliminary observations.
First, if φ, θ ∈ D(Rn), ψ ∈ C∞(Rn), then by change of integration order we establish the
associative rule:

(ψ ∗ θ) ∗ φ = ψ ∗ (θ ∗ φ)

and since we already know that the commutative rule holds we can permute the terms in all
possible combinations above. Next, if u ∈ D ′(Rn) and v ∈ E ′(Rn), then we have

(u ∗ θ) ∗ φ = u ∗ (θ ∗ φ) (38)

and
(v ∗ ψ) ∗ φ = v ∗ (ψ ∗ φ). (39)

64



Let us prove (39) and leave the entirely similar proof for (38) as an exercise:

〈(v ∗ ψ) ∗ φ, θ〉 =〈v ∗ ψ, φ̃ ∗ θ〉
=〈v, ψ̃ ∗ (φ̃ ∗ θ)〉
=〈v, (ψ̃ ∗ φ̃) ∗ θ〉
=〈v, (ψ ∗ φ)̃ ∗ θ〉
=〈v ∗ (ψ ∗ φ), θ〉

as required. We now come to the third step:

Definition 6.3. Let u ∈ D ′(Rn), v ∈ E ′(Rn). Then we define u ∗ v, v ∗ u ∈ D ′(Rn) by the
rules

〈u ∗ v, φ〉 := 〈u, ṽ ∗ φ〉, φ ∈ D(Rn)

and
〈v ∗ u, φ〉 := 〈v, ũ ∗ φ〉, φ ∈ D(Rn).

It follows from Lemmas 6.1 and 6.2 that ũ ∗φ ∈ C∞(Rn) and ṽ ∗φ ∈ D(Rn), respectively, and
it is then not difficult to check that u∗v and v ∗u are both well-defined distributions. We omit
the definition chasing. Instead we prove

(u ∗ v) ∗ θ = u ∗ (v ∗ θ) (40)

and
(v ∗ u) ∗ θ = v ∗ (u ∗ θ) (41)

hold for all θ ∈ D(Rn). We prove (40) and leave the proof of (41) as an exercise. For φ ∈ D(Rn)
we have 〈

(u ∗ v) ∗ θ, φ
〉
=
〈
u ∗ v, θ̃ ∗ φ

〉
=
〈
u, ṽ ∗ (θ̃ ∗ φ)

〉
(39)
=

〈
u, (ṽ ∗ θ̃) ∗ φ

〉
=
〈
u, (v ∗ θ)̃ ∗ φ

〉
=
〈
u ∗ (v ∗ θ), φ

〉
as required. Next we calculate for φ, θ ∈ D(Rn):

(u ∗ v) ∗ (φ ∗ θ) (40)
= u ∗

(
v ∗ (φ ∗ θ)

)
(39)
= u ∗

(
(v ∗ φ) ∗ θ

)
=u ∗

(
θ ∗ (v ∗ φ)

)
(40)
= (u ∗ θ) ∗ (v ∗ φ)
=(v ∗ φ) ∗ (u ∗ θ)
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where we also used the commutative rule for convolution of a test function with a C∞ function
twice. For the standard mollifier on Rn,

(
ρε
)
ε>0

, we take first φ = ρε above and then pass to
the limit ε↘ 0 whereby we get

(u ∗ v) ∗ θ = v ∗ (u ∗ θ).

Here we take θ = ρε and then pass to the limit ε↘ 0 to get

u ∗ v = v ∗ u. (42)

Above we have used that u 7→ u ∗ v is continuous in the sense that if uj → u in D ′(Rn), then
uj ∗ v → u ∗ v in D ′(Rn), and likewise that v 7→ u ∗ v is continuous in the sense that if vj → v
in D ′(Rn) and for some fixed compact set K in Rn all the supports of vj , v are contained in
K, then u ∗ vj → u ∗ v. Both results are straight forward consequences of definitions and so
we leave the verifications as an exercise. Instead we turn to the important

Theorem 6.4. Let u ∈ D ′(Rn), v ∈ E ′(Rn). Then ∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv) for all
α ∈ Nn0 . Furthermore,

supp(u ∗ v) ⊆ supp(u) + supp(v) (43)

and
sing.supp(u ∗ v) ⊆ sing.supp(u) + sing.supp(v). (44)

Proof. Take φ = ρs, θ = ρt (s, t > 0) above to get

(u ∗ v) ∗ (ρs ∗ ρt) = (ρs ∗ u) ∗ (ρt ∗ v)

so by Lemmas 6.1 and 6.2 we get

∂α(u ∗ v) ∗ (ρs ∗ ρt) = (ρs ∗ ∂αu) ∗ (ρt ∗ v)
= (ρs ∗ u) ∗ (ρt ∗ ∂αv).

Taking first s ↘ 0 and then t ↘ 0 we arrive at ∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv). From (40),
(u ∗ v) ∗ ρε = u ∗ (v ∗ ρε) and so by Lemmas 6.1 and 6.2 again:

supp
(
u ∗ (v ∗ ρε)

)
⊆supp(u) + supp(v ∗ ρε)
⊆supp(u) + supp(v) + supp(ρε)

=supp(u) + supp(v) +Bε(0).

If φ ∈ D(Rn) and
(
supp(u) + supp(v)

)
∩ supp(φ) = ∅, then because supp(u) + supp(v) is a

closed set (see Problem Sheet 4) and supp(φ) is compact we have for small ε0 > 0 that(
supp(u) + supp(v) +Bε0(0)

)
∩ supp(φ) = ∅
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too. But then for ε ∈ (0, ε0),

0 =
〈
(u ∗ v) ∗ ρε, φ

〉
= 〈u ∗ v, ρε ∗ φ〉
→ 〈u ∗ v, φ〉 as ε↘ 0.

Therefore u ∗ v vanishes on the open set Rn \
(
supp(u) + supp(v)

)
and (43) follows. We turn

to (44) and assume first that both u, v have compact support. Write u1 = u, u2 = v and
Ki = sing.supp(ui). Let ε > 0, put Ai = Bε(Ki) and take ψi = ρε ∗ 1Ai . Then ψi ∈ D(Rn),
ψi = 1 on Ki and supp(ψi) ⊆ B2ε(Ki) = Ki +B2ε(0). Now

u1 ∗ u2 =
(
ψ1u1 + (1− ψi)u1

)
∗
(
ψ2u2 + (1− ψ2)u2

)
=(ψ1u1) ∗ (ψ2u2) + (ψ1u1) ∗

(
(1− ψ2)u2

)
+
(
(1− ψ1)u1

)
∗ (ψ2u2) +

(
(1− ψ1)u1

)
∗
(
(1− ψ2)u2

)
.

Since (1−ψi)ui ∈ D(Rn) it follows from Lemma 6.1 that the last three terms are C∞ functions.
Therefore

sing.supp(u1 ∗ u2) = sing.supp
(
(ψ1u1) ∗ (ψ2u2)

)
⊆ supp

(
(ψ1u1) ∗ (ψ2u2)

)
(43)

⊆ supp(ψ1u1) + supp(ψ2u2)

⊆ supp(ψ1) + supp(ψ2)

⊆K1 +K2 +B4ε(0).

Because K1+K2 is compact the inclusion (44) follows by taking the intersection over all ε > 0
on the above right-hand side.

We return to the general case and note that (44) will follow if we can show

sing.supp(u ∗ v) ∩B1(x) ⊆
(
sing.supp(u) + sing.supp(v)

)
∩B1(x)

holds for all x ∈ Rn. Fix x ∈ Rn and take R ⩾ 1 so large that supp(v) ⊂ BR(0) and R ⩾ |x|.
Put

ψ = ρR ∗ 1B5R(0),

whereby ψ ∈ D(Rn), ψ = 1 on B4R(0) and supp(ψ) ⊆ B6R(0). If we let u1 = ψu and
u2 = (1− ψ)u, then u = u1 + u2 and supp(u1) ⊆ B6R(0), supp(u2) ⊆ Rn \B4R(0). From (43)
we have

supp(u2 ∗ v) ⊆
(
Rn \B4R(0)

)
+BR(0) ⊂ Rn \B3R(0)

and since also B1(x) ⊂ B2R(0) it follows that u2 ∗v = 0 on B1(x). Because u1, v have compact
supports we can apply the first part of the proof to conclude that

sing.supp(u1 ∗ v) ⊆ sing.supp(u1) + sing.supp(v),
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and consequently

sing.supp(u ∗ v) ∩B1(x) = sing.supp(u1 ∗ v) ∩B1(x)

⊆
(
sing.supp(u1) + sing.supp(v)

)
∩B1(x)

⊆
(
sing.supp(u) + sing.supp(v)

)
∩B1(x)

as required.

Example 6.5. For all u ∈ D ′(Rn) we have u ∗ δ0 = u and hence for each α ∈ Nn0 we then get

∂αu = u ∗ ∂αδ0.

A PDE ∑
|α|⩽k

cα∂
αu = f in D ′(Ω)

can therefore be equivalently expressed as a convolution equation g ∗ u = f in D ′(Ω), where

g =
∑
|α|⩽k

cα∂
αδ0.

6.2 Fundamental solutions.

A linear differential operator with constant coefficients can conveniently be expressed in multi-
index notation as

p(∂) =
∑
|α|⩽k

cα∂
α (cα ∈ C)

If for some multi-index α of length k we have cα 6= 0, then p(∂) is said to be of order k. If
also the coefficients cα satisfy cα = 0 for all |α| < k, then we say that p(∂) is homogeneous
of order k. Thus the Laplace operator ∆ is homogeneous of order 2 and the Cauchy-Riemann
operators ∂/∂z̄ and ∂/∂z are both homogeneous of order 1.

In the study of questions of existence and regularity of solutions to PDEs the following notion
is often useful:

Definition 6.6. A distribution E ∈ D ′(Rn) is called a fundamental solution of the differential
operator p(∂) if p(∂)E = δ0

The importance of fundamental solutions is due to the following two consequences of the
definition and Theorem 6.4:

E ∗ p(∂)u = u for u ∈ E ′(Rn), (45)

p(∂)(E ∗ f) = f for f ∈ E ′(Rn). (46)
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Thus convolution with E is both a left and a right inverse of p(∂) on E ′(Rn) (mapping into
D ′(Rn)), and it follows that the PDE p(∂)u = f has a solution u = E ∗ f ∈ D ′(Rn) for every
f ∈ E ′(Rn). The identity (45) makes it possible to obtain information on say the singularities
of u from those of f .

In Examples 4.22 and 4.23 we found fundamental solutions to the Laplacian and the Cauchy-
Riemann operators, respectively. We shall have more to say about the topic of fundamental
solutions in the course B4.4 Fourier Analysis, but at this stage we record that the fundamental
solutions E we found for the Laplace and Cauchy-Riemann operators satisfy sing.supp(E) =
{0} and therefore that the following result applies in these cases:

Theorem 6.7. Assume that E is a fundamental solution to the differential operator p(∂) and
that sing.supp(E) = {0}. Then for any nonempty open subset Ω of Rn we have

sing.supp(u) = sing.supp(p(∂)u)

for all u ∈ D ′(Ω).

Proof. On Problem Sheet 3 we saw that it is always true that sing.supp(p(∂)u) ⊆ sing.supp(u).
For u ∈ E ′(Rn) we obtain from (45) and Theorem 6.4 that

sing.supp(u) = sing.supp
(
E ∗ (p(∂)u)

)
⊆ sing.supp

(
p(∂)u

)
showing that the assertion is valid for u ∈ E ′(Rn). In the general case we fix an open subset
ω ⋐ Ω and take ψ ∈ D(Ω) so ψ = 1 on ω. It follows that ψu ∈ E ′(Rn) if we define 〈ψu, φ〉 :=
〈u, ψφ〉 for φ ∈ C∞(Rn), and hence

ω ∩ sing.supp
(
p(∂)u

)
= ω ∩ sing.supp

(
p(∂)(ψu)

)
= ω ∩ sing.supp(ψu)

= ω ∩ sing.supp(u)

as required.

6.3 Elliptic regularity

The next result is classical and is due to Hermann Weyl. He published it in 1940 in a form that
in the terminology of this course would correspond to considering only regular distributions.
The extension to general distributions is however routine and is also named after him:

Theorem 6.8 (Weyl’s Lemma). Assume u ∈ D ′(Ω) and ∆u = 0 in D ′(Ω). Then u ∈ C∞(Ω)
and u is harmonic.

Corollary 6.9. Let Ω ⊂ C be open and assume f ∈ D ′(Ω) satisfies

∂f

∂z̄
= 0

in D ′(Ω) . Then f is holomorphic.
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Proof. This is clear since we obviously also have that

∆f = 4
∂

∂z

(
∂

∂z̄
f

)
= 0

in D ′(Ω). Weyl’s Lemma then implies that f is C∞, in which case distributional and classical
derivatives coincide. Thus f satisfies the usual Cauchy–Riemann equations and is a holomor-
phic function.

Note that in view of Example 4.22 we can deduce Weyl’s lemma from Theorem 6.7. Here we
shall give a proof that is independent of this and in the spirit of Weyl’s original proof.

Proof of Weyl’s Lemma. Let (ρε)ε>0 be the standard mollifier. Fix Ω′ ⋐ Ω and put ε0 =
dist(Ω′, ∂Ω). For each x ∈ Ω′ and ε ∈ (0, ε0) the function

y 7−→ ρε(x− y)

belongs to D(Ω) and so we may consider 〈u, ρε(x − ·)〉. We assert that it is independent of
ε ∈ (0, ε0). To prove it we calculate d

dερε(x− y) for x, y ∈ Rn. Recall that

ρε(x− y) = ε−nρ

(
x− y

ε

)
where the standard mollifier kernel ρ on Rn was defined at (12). If we put

θ(t) =

{
1
cn
e

1
t−1 if t < 1,

0 if t ⩾ 1,

then ρ(x) = θ(|x|2). Clearly θ ∈ C∞(R) satisfies θ(t) = 0 for t ⩾ 1. Now calculate

d

dε

(
ε−nρ

(
x− y

ε

))
= −nε−n−1ρ

(
x− y

ε

)
− ε−n∇ρ

(
x− y

ε

)
· x− y

ε2

= − 1

εn+1

(
nρ

(
x− y

ε

)
+∇ρ

(
x− y

ε

)
· x− y

ε

)
.

Put K(x) = −nρ(x)−∇ρ(x) · x so that

d

dε

(
ε−nρ

(
x− y

ε

))
=

1

εn+1
K

(
x− y

ε

)
.

In terms of ρ(x) = θ(|x|2) we get

K(x) = −div (ρ(x)x) = −div
(
θ(|x|2)x

)
and if we set

Θ(t) =
1

2

∫ ∞

t
θ(s) ds,

70



then Θ ∈ C∞(R) with Θ(t) = 0 for t ⩾ 1, and Θ′(t) = −1
2θ(t). Consequently

−θ(|x|2)x = ∇
(
Θ(|x|2)

)
,

and soK(x) = div∇
(
Θ(|x|2)

)
= (∆Φ)(x), where Φ(x) = Θ(|x|2). Observe that Φ ∈ D(B1(0)),

and

− 1

εn+1

(
nρ

(
x− y

ε

)
+∇ρ

(
x− y

ε

)
· x− y

ε

)
=

1

εn+1
∆y

(
Φ

(
x− y

ε

))
= ∆y

(
ε1−nΦ

(
x− y

ε

))
.

Here y 7→ ε1−nΦ
(x−y

ε

)
is supported in Bε(x) ⊂ Ω, and so by assumption〈

u, ∆y

(
ε1−nΦ

(
x− y

ε

))〉
= 0.

Now by considering difference quotients we see that

d

dε
〈u, ρε(x− ·)〉 =

〈
u,

d

dε
ρε(x− ·)

〉
.

Indeed, for ε, ε′ > 0 we have

ρε+ε′(x− y)− ρε(x− y)

ε′
FTC
=

∫ 1

0

d

dt
ρε+tε′(x− y) dt

−→
ε′↘0

d

ds

∣∣∣∣
s=ε

ρs(x− y)

in D ′(Ω) with respect to y, provided x ∈ Ω′ and 0 < ε < ε0 (since we may differentiate both
sides with respect to y). But then d

dε〈u, ρε(x− ·)〉 = 0, and so 〈u, ρε(x− ·)〉 = 〈u, ρε1(x− ·)〉
for all ε ∈ (0, ε0), where ε1 ∈ (0, ε0). Now let φ ∈ D(Ω′). Then, by the usual trick when
convolving distributions with test functions,∫

Ω′
〈u, ρε(x− ·)〉φ(x) dx =

〈
u,

∫
Ω′
ρε(x− ·)φ(x) dx

〉
= 〈u, ρε ∗ φ〉,

and so for ε ∈ (0, ε1) we have

〈u, ρε ∗ φ〉 =
∫
Ω′
〈u, ρε1(x− ·)〉φ(x) dx.

Hence, as ρε ∗ φ→ φ in D(Ω) as ε↘ 0, we get

〈u, φ〉 =
∫
Ω′
〈u, ρε1(x− ·)〉φ(x) dx.

Consequently u|Ω′ ∈ C∞(Ω′), and since Ω′ was arbitrary, we are done.
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Remark 6.10. The above proof is inspired by the mean value property that is known to char-
acterize harmonic functions in the following sense. Let h ∈ C(Ω). Then h is harmonic in the
usual sense (so h ∈ C2(Ω) and ∆h = 0) if and only if for all balls Br(x0) ⋐ Ω we have

h(x0) =
1

ωn−1rn−1

∫
∂Br(x0)

h(x) dSx.

Using polar coordinates about x0 we see that when h is harmonic, then for Br(x0) ⋐ Ω

h(x0) = (ρr ∗ h)(x0).
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