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Chapter 1

Banach spaces and Hilbert spaces

1.1 Normed spaces and Banach spaces

1.1.1 Definitions and basic properties

Definition 1.1.1. Let X be a vector space (over either F =R or F = C).
A norm || - || : X = R is a function so that Vr,y € X, VA €T

(N1) ||| > 0 with ||z]| = 0 < 2 = 0
(N2) [[Az| = [Al]|=||

(N3) ||z +y|| < ||z|| + ||yl (Triangle inequality)

We call a pair (X, || - ||) @ normed space.
Recall that every norm || - || induces a metric
d: X xX —=R
via d(z,y) := ||z — y|| and hence all standard notions and properties of a metric space

encountered in part A are applicable:
We recall in particular:

e Definition of convergence of a sequence (z,,):

Ty, — T = ||xn—x||7H—O>OO

n—o0

e (1,,) is a Cauchy-sequence if Ve > 0 3N so that Vn,m > N

[0 — @ml| <

5
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A function f: (X, ||x) = (Y, |- |ly) is continuous if and only if for every x € X and
every sequence (x,) in X

Tp — T —> f(xn>_>f(x)v

i.e.
[zn —z||x = 0 = [[f(zn) = f(2)]y = 0.

A set Q C X is open if for every xq € () there exists a r > 0 so that

B (xg) :={zx € X : ||z — x| <r} C Q.

By definition, a set F' C X is closed if F¢ is open and we have the following equivalent
characterisations of closed sets:

— Fis closed if and only if F' contains all its limit points

— Fis closed if and only if for every sequence (z,,) that consists of elements x,, € F
and that converges x,, — x in X we have that the limit x is again an element of

F.

We also recall that x +— ||z|| is a continuous map and hence that if z,, — x then of
course also ||z,| — ||z

Notation: We will use the convention that A C B simply means that A is a subset of B,
not necessarily a proper subset, i.e. allowing for A = B. If our assumption is that A is
proper subset of B then we will either explicitly say so or write A ;Cé B.

We also recall that two norms || - || and || - ||" are equivalent if and only if there exist a
constant C' > 0 so that for all z € X

CHz|l < 2]l < O,
or equivalently if there exist two constants C' » € R so that for all z € X
[z]] < Cillz]|" and [|z|" < Col|z|],

and that equivalent norms lead to equivalent definitions of convergence, Cauchy sequences,
open and closed sets,....

One of the key objects we study in this course are Banach spaces and linear maps between
such spaces.

Definition 1.1.2. A normed space (X, ||-||) is a Banach space if it is complete, i.e. if every
Cauchy sequence in X converges.
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We first note that for any given subspace Y of a normed space (X, || -||) we obtain a norm
on Y simply by restricting the given norm to Y. For the resulting normed space (Y, |- ||) we
have

Proposition 1.1.3. Let (X, || -||) be a Banach space, Y C X a subspace. Then
(Y, - |l) is complete <Y C X is closed .

Proof.

“j”:

Let (y,) be so that y, € Y, y, — x € X. Then (y,) is a Cauchy sequence in Y so converges
in (Y,]| - ||) to some y € Y. Hence x =y € Y by uniqueness of limits. Hence Y is closed.

“C” :
If (y,) is a Cauchy sequence in (Y, || - ||), it is also a Cauchy sequence in (X, || - ||) and must
hence converge in X, say y, — =z € X. But as Y is closed we must have that x € Y and
hence that (y,) converges in (Y, || - ||). Thus Y is complete. O

WARNING. Many properties of finite dimensional normed spaces are NOT true for general
infinite dimensional spaces, or maps between such spaces. A few examples of this are:

e Linear maps from R™ to R™ (or indeed, as we shall see later, linear maps from any
finite dimensional space to any normed space Y ) are always continuous,
BUT
not all linear maps L : (X, | - ||x) = (Y, || - |ly) from a Banach space (X,| - ||x) are
continuous.

e Bounded, closed sets in R™ are compact (Heine-Borel-Theorem),
BUT
while compact sets are always bounded and closed, the converse is WRONG for infinite
dimensional spaces

o Fvery subspace of R™ is a closed set,
BUT
not all subspaces of infinite dimensional spaces are closed.

Our intuition can further be wrong as we are used to thinking about Euclidean spaces
R™ whose norm is introduced by an inner product via ||z|| = (z,z)"/2.

We recall that an inner product (+,-) : X x X — R is a map that is symmetric (x,y) =
(y,z) if F = R, respectively hermitian (z,y) = (y,z) if F = C, that is linear in the first
variable and positive definite and call a vector space X together with an inner product (-, -)
an inner product space.
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WARNING. There are several important properties that hold true in R™, and more gen-
erally in Hilbert spaces, but that do not hold for general Banach spaces. Examples of this
include

e InR" (and indeed any Hilbert space as we will see later on) minimal distances to closed
subspaces are attained, i.e. given any closed subspace S C R™ and any p € R™ there
exists a unique element sqg € S so that

Ip — soll = inf lIp — 5.
In Banach spaces this does not hold true in general.

o [fR" =WV for two orthogonal subspaces W and V' then the projection Py : v+w
v 18 Sso that
1Py ()] < Iz

This is not true for general direct sums R™ = W@V of subspaces that are not orthogonal
(a picture illustrates that nicely) and is in particular not true for general Banach spaces
X =W & W where there is not even a notion of “orthogonal”.

1.1.2 Examples
(R[] - llp) and (C", |- ||;), 1 < p < o0
Consider R”, or C", equipped with

1/p
|z, = (Z |xi|p> for 1 <p< oo

respectively
|20 := sup |z
i€{1,...,n}
One can show that these are all norms, with the challenging bit being the proof of the
A-inequality
1/p
o+ ylly = (3 Jzi+wil”) < Nzl + gl

()

WARNING. This inequality does not hold if we were to extend the definition of || - ||, to
0 < p <1, and hence the above expression does not give a norm on R™ if p < 1.

A useful property to deal with the p norms 1 < p < oo (and their generalisations to
sequence and functions spaces) is Holder’s inequality.
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Lemma 1.1.4 (Hélder’s inequality in R™). For 1 < p,q < oo with

1 1
* -+-=1
) Sty

we have that for any x,y € C"
n
1> wa| < lalpllyle
i=1
In (%) we use the convention that % = 0 for p = 0o, and one often calls numbers p,q €

[1, 0] satisfying (x) conjugate exponents.

Proof. The proof of this inequality (both for C" as well as the analogues for the sequence
and function spaces 7 and LP) can be found in most textbooks and is left as an exercise. [J

Remark 1.1.5. As you will show on Problem sheet 1, we have that for all 1 < p < 0o
lz]lse < llzllp < 0Pl

Hence the co-norm is equivalent to every p-norm and thus, by transitivity, we have that || - ||,
is equivalent to || - ||, for every 1 < p,q < oo.

Sequence spaces (7, || - ||,)

An infinite dimensional analogue of (R™, || - ||,), respectively (C",|| - ||,) are the spaces of
sequences (7] - ||,), 1 < p < oo, where for 1 <p < o0

* = {(xj)jeN ; i 2P < oo}

j=1
while £* denotes the space of bounded sequences, equipped with || - ||, where for 1 < p < oo
> 1/p
ol = (Dl
j=1

while for p = 0o

1(5) ][0 == sup [;].
J

For any 1 < j < oo we have that (7, - ||,) is a normed space (where we define addition
and scalar-multiplication component-wise) and one can furthermore prove:
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e the spaces (¢, || - ||,) are all complete and hence Banach spaces, we carry out the proof
of this for p = 2 in the next section.

e the Holder inequality holds true, i.e. for every 1 < p,q < oo with ]lo + é = 1 and any
(x;) € 7 and (y;) € {9 we have that ) x;y; converges and

3wl < 1@l @)l

We will sometimes also consider the subspace

co :={(z,) €L : 2, — 0}

n—o0

of £*°, which is closed and hence, when equipped with the £°°- norm a Banach space.

Function spaces with supremum-norm

If we consider vector spaces of bounded functions f : 2 — F, €2 some given subset of R or
R™, such as

o FU(Q):={f:Q — F bounded},
o Cy(Q2) :={f:Q — F continuous and bounded} ,

or on compact sets simply C(Q) := {f : Q@ — F continuous} = C,(£2), we can consider the
supremum norm, denoted either by || - [l Or || - ||sup Or (in case of Cy) often also by || - ||co
that is simply defined by

| fllsup == sup{[f(x)] : = € Q}.

Similarly, on spaces of differentiable functions (with bounded derivatives) such as C*(]0, 1])
we will generally use norms that are built using the sup norm of both the function and its
derivative such as || f|lc1 := || fllsup + ||| sup-

It is important to note that convergence with respect to the supremum norm is the same
as uniform convergence of functions, so as seen in Prelims and Part A analysis lectures,
one often proves convergence of a given sequence f, in three steps: First we prove that the
sequence converges pointwise to some function f which is then the only candidate for the
limit of f,, as uniform convergence implies pointwise convergence. We then need to check
that f is in the corresponding space and finally to establish uniform convergence of f, to f.
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Function spaces (L(Q), || - ||z»), 1 <p < o0

Let 2 C R be an interval, or more generally any measurable subset of R". Consider for
1 < p < oo the space of functions

Lr(Q) == { £:9Q = R (or C) measurable so that /Q |f]Pdx < oo}

respectively
L= {f : 2 = R (or C) measurable so that IM with |f| < M a.e.}.

Here and in the following all integrals are computed with respect to the Lebesgue measure
and we shall only ever consider functions that are measurable so you may assume in any
application that the functions you encounter are measurable without having to provide a
proof for this. Conversely, we recall that not all measurable functions are integrable and
that indeed for a general measurable function the integral might not even be defined, so
justification is needed to consider integrals in general. However we also recall that the
integral of a non-negative functions f is always defined though might be infinite.

We equip these spaces with

1/p
HfHLp::(/Q]ﬂpdx) for 1 <p< oo

respectively

| fllzee := ess sup|f| :=inf{M : |f| < M a.e. }.
We note that || - || is only a seminorm on £ with ||f — g||z» = 0 if and only if f = ¢ a.e.
We can hence turn (£?, || - ||) into a normed space by taking the quotient with respect to the

equivalence relation
f~g&s f=gae.
The resulting quotient space

LP(Q2) := LP/ ~ equipped with || - ||z»

is one of the most important spaces of functions in the modern theory of PDE (as devel-
oped e.g. in the course C4.3 Functional analytic methods for PDEs) and has the following
properties: For any (measurable) set 2 C R"

e [7(Q), 1 < p < oo is a Banach space (completeness of L' was proven in A.4 Integra-
tion).

e The so called Minkowski-inequality (=triangle inequality for || - ||z») holds true

1f+gller < 1 Fllze + llgll e
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e Holder’s inequality holds: If f € LP(2) and g € L9(2) where é + % = 1 then their
product fg is integrable with

| [ o] < 1l lolon

None of the L? norms are equivalent, though when {2 has positive and finite measure, we
can estimate the LP norm of functions by their L? norm if p < ¢ and we have

L®(Q) S LYUQ) S LP(Q) S LY(Q) for any 1 < p < ¢ < oo. (1.1)

As an example consider 2 = (0,2) C R and p = 2, ¢ = 4. Adding in a multiplication by the
constant function ¢ = 1 we can estimate, using Holder’s inequality,

1913 = [ 11t < WsPeittee = ([ rtae)™ ([ 1ae) = v,

0

so we get || f|lz2 < V2| f||zs and in particular that every f € L*([0,2]) is also an element of
L*([0,2]). The general case is discussed on the first problem sheet.

WARNING. The inclusion (1.1)) is wrong for unbounded domains, e.g. the constant func-
tion f =1 is an element of L>°(R) but isn’t contained in any LP(R), 1 < p < oo.

Remark 1.1.6. In practice it is can be useful to extend || - ||z to a function from the space
of all (measurable) functions to [0,00) U {oo} by simply setting || f||» = oo if [|f]F = o0
(respectively for p = oo if f ¢ L), and we note that also with this ‘abuse of notation’
the triangle and Holder-inequality still hold (with the convention that 0 - oo = 0 for Hélder’s
inequality). Similarly we can extend ||-||, to a function that maps all sequences to [0, co)U{oo}
but we stress that while this notation/convention can be useful and used in the literature, these
functions into [0,00) U{oo} are not norms as a norm is by definition a function into [0,00).

WARNING. Note that the inclusions of the function spaces LP(§2) for sets Q2 with bounded
measure are the “other way around” compared with the inclusions of the sequence spaces (P.

Product of normed spaces

Given two normed spaces (X, || - [|x) and (Y, || - [[y) we can define a norm on X x Y e.g. by

Iz, )l = (] + [l )2 (1.2)

or more generally using any of the p-norms on R? to define

G, )l == 1l Ny = (2 ll” + Nyll?) ' respectively [|(z, )| == max(||]], [ly])



1.1. NORMED SPACES AND BANACH SPACES 13

where here and in the following we simply write || - || instead of || - | x and || - ||y if it is clear
from the context what norm we are using.

We note that for all of these norms on X X Y we obtain that X X Y is again a Banach
space if both X and Y are Banach spaces. If X and Y are inner product spaces then one
uses in general the norm as for this choice of norm also the product X x Y will again
be a inner product space with inner product ((z,y), (z',y")) = (z,2")x + (y, )y, while none
of the norms with p # 2 preserve the structure of an inner product space.

Sums of subspaces

If Xy, Xy C X are subspaces of a normed space (X, || - ||x) then also
X1 —|—X2 = {:cl + X2 X1 € Xl,IQ € XQ}
is again a subspace of X, but

WARNING.
X1, Xy C Xclosed = X1 + X5 closed.

Quotient spaces

Given a vector space X and a semi-norm |-| on X, i.e. a function |-| : X — [0, 00) satisfying
(N2) and (N3), we can consider the quotient space X/X, where X, := {z € X : |z| = 0}.
Then one can define a norm on X/Xj by defining ||z + Xy|| := |z|, see problem sheet 1 for
details.

This is the process whereby LP spaces are obtained from the corresponding L£P spaces by
identifying functions which are equal a.e.

1.1.3 Completeness

The spaces discussed above are all complete. The proof of completeness often follows the
following rough pattern: Given a Cauchy sequence (z,) in a normed space (X, || - || x)

1. Identify a candidate x for lim x,,
2. Show that x € X and ||z — x,||x — 0 as n — oc.

We illustrate this by proving the completeness of some of the spaces introduced in the
previous section:
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Completeness of (C,(Q,R), | - |sup), Q2 C R
Given a Cauchy sequence (f,) in (Cy(£2), || - ||sup) We have that for every z € 2

|fu(z) = fn(z)] = 0 as n,m — o0

i.e. (fn(z))is a Cauchy sequence in R so, as R is complete, converges to some limit. We define
as candidate for the limit of the sequence of functions f,, the function f(z) := lim, o fn(2)
obtained by this pointwise convergence and now show that

Claim: f € (,(Q2) and || f,, — fllsup — 0 (ie. f,, = f uniformly).

Proof. Let € > 0. As (f,) is a Cauchy sequence, there exists some N so that for every
n,m>N
||fn - fm“sup S .

Thus for every x € {2, n > N we have
fule) = F@)] = |fule) — lim_fu(2)] <.

This implies in particular that f is bounded, namely that sup,cq |f(2)| < ||fn]lsup + €, and
that for every n > N, || f — fullsup < €. As € > 0 was arbitrary this proves that f,, converges
to f with respect to the supremum norm. Finally we obtain that f € Cy(£2) as f is uniform
limit of a sequence of continuous functions and hence continuous (c.f. Analysis IT and Part
A Metric spaces, is proved using /3 argument).

Completeness of (L*(Q,R), |- [|z=), Q cCRY

The proof is more or less similar to the one we see above, except that we have to tend to the
almost everywhere nature of things.

Proof. Let (f,) be a Cauchy sequence in L>*(€,R). Fix some ¢ > 0 for the moment. Then
there exists N such that

| fo = [l < e for all n,m > N.
This means that, for each n,m > N, there is a null subset Z, ,, of €2 such that
|[fo(2) = fin(z)| < e for z € Q\ Z, .
Let Z = U, ;m>NZn, m, Which, as a countable union of null set, is null. Then,

|fu(z) = fin(z)| < e foralln,m > N,z € Q\ Z. (1.3)
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So for almost all z € Q, (f,(x)) is Cauchy, and hence converges to some f(z).
Being an almost everywhere limit of measurable functions, f is measurable. Sending
m — oo while keeping n fixed in (1.3) we get

|fu(z) — f(x)] <eforalln > N,z € Q\ Z.

This shows that || f, — f|/z~ < e for all n > N. This implies on one hand that f, — f and
hence f belong to L>(€2) and on the other hand that f, — f in L*>(9). O

Completeness of (L?(Q,R), || - ||lzr), 1<p<oo, QCR?

This proof is slightly more involved with 2 twists: (1) the limit object arises now as a limit
a long a subsequence, and (2) the norm is not preserved under taking limit.

Proof. Let (f,) be a Cauchy sequence in LP(§2, R).
Step 1: We show that (f,) is Cauchy in measure, i.e. for every § > 0,
Hz € Q:|fu(x) — fiu(x)] > 0} — 0 as n,m — oo.

Fix some € > 0 for the moment. Then there exists N such that
1fn— FullZy = / o — fulPdz < & for all n,m > N,
Q

Shrinking the domain of integration to {z € Q : |f.(z) — fim(z)| > d}, we obtain
Pz e Q:|fulx) — frn(x)| > 0} < P for all n,m > N.
Sending € — 0 (but keeping 0 fixed), we obtain Step 1.

Step 2: Birth of the limit.

For this we use a general result from Integration, which asserts that every Cauchy-in-
measure sequence of measurable functions has a subsequence which converges a.e. So by
Step 1, there exists a subsequence (f,,;) which converges a.e. to f(x), which is measurable.

Step 3: Bounding || f, — f]lze-
Fix € > 0 for the moment. We know that

||fn—fnj||1£pZ/Q|fn—fnj|pdx§5p for all n,n; > N.

As j — oo, the a.e. limit of the integrand is |f, — f|’. Moreover, the integrand is non-
negative. By Fatou’s lemma, we have

/|fn—f]pd:c§hminf/|fn—fnj|pd:c§5p for all n > N.
Q J7oe Ja

In other words, || f, — f|lz» < € for all n > N. This implies on one hand that f, — f and
hence f belong to LP(2) and on the other hand that f,, — f in L?(). O
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Completeness of (2(R), | - ||2)

Let (z(™), 20" = (x

gn))jeN, be a Cauchy-sequence in (¢2 || - ||2). As for every j € N

2 = < o = 2™y — 0

7,1M—+00

the sequence (xﬁn)) C R is Cauchy so converges, say x

Claim: z = (z;) € /2 and ||z — 2|y — 0.
n—oo
Proof: Let ¢ > 0. Then as (z(™) is Cauchy there exists N so that for all n,m > N

(n)

T poo Y

Hiﬂ(n) _ x(m)HQ <e.

Thus for every K € N and for all n > N we have that

K

K
E |$§~)—Ij| :mh_rgog |x§)—x§- )| §€2.
=1 j=1

As this holds for every K we can take K — oo to get that ||2(™ — x||2 < &2 for every n > N.
As € > 0 was arbitrary, we thus obtain that ||z — x|, — 0. As above we also get that
n—o0

x € (? as

20 (n)
[z]l2 < [|a™) — zf]s + 2™ |2 < .

(Note that here we use the above mentioned “abuse of notation” of defining ||| for arbitrary
sequence by setting ||z||2 = oo if x ¢ 2 to be able to already talk of ||zl when we do not
yet know that x € (2.) O

Useful results to prove completeness

For the proof of completeness it is often useful to note:

Lemma 1.1.7. Let (z,) be a Cauchy sequence in a normed space (X,| - ). Then the
following are equivalent:

(i) (x,) converges,
(ii) (x,) has a convergent subsequence.

Proof. (i) = (i4) is trivial.
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(i) = (i)
Suppose x,, — x. Given any € > 0, we can choose N so that for all n,m > N
|z, — x| < e/2
and furthermore choose K so that for k > K
| zn, — || <e/2.

Then for n > N we have, choosing some k£ > K so that n, > N,

A
lo = nll < flz = 2n, || + [l2n, —@nll <e/2+e/2=e¢.

O

As a consequence we obtain that a normed space is complete if and only if absolute
convergence of series implies convergence of series:

Corollary 1.1.8. Let (X, || -||) be a normed space. Then the following are equivalent
(i) (X,||-||) is a Banach space,

(1i) Absolute convergence of series implies convergence, i.e. for sequences (x,) in X and
. : R
the corresponding partial sums s, ==, _, x; we have
oo

Z |zn]] <00 = s, converges to some s € X.
i=1

Proof. (i) = (ii)

If >>° | |lzn|| < oo then s, is a Cauchy sequence in (X, || - ||) since for m >n > N
m A m oo
lsn = smll =11 Y @l < D lawll < Y ol = 0as N — oo
k=n+1 k=n-+1 k=N+1
As (X, || - ||) is complete we thus obtain that s, converges to some element s € X.

(1) = (i)

Let (z,) be a Cauchy sequence. Select a subsequence z,, so that
||.Tn]. - xanrlH S 2_J’

where the existence of such a subsequence is ensured by the fact that x,, is Cauchy. Then
> gy 1Tn,y — 2oyl <1 < 0o so (ii) ensures that » 77 (z,,,, — ;) converges. Hence
T, = Ty + Zf;ll (Tn;,, — Tp,) converges, so (x,) has a convergent subsequence and must

thus, by Lemma [1.1.7] itself converge. n
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Incomplete spaces

Example 1.1.9 (Examples of incomplete spaces). We can construct many examples of non-
complete spaces by equipping a well known space such as Cy, C*, (P, LP with the ‘wrong’
norm, or by choosing a subspace of a Banach space that is not closed. As an example we
show that C°([0, 1)) equipped with || f||z1 = fol | fldx is not complete.

Proof. We give two examples: one by direct argument and the other via Corollary [1.1.8]
Example 1: Let

) @x)m forz €[0,1/2),
gn(x) - {1 for x € [1/27 1]-

For n < m, we have

1 1
2n+1) 2(m+1)

1/2
19 — Gunlli = / [@2)" — (20)™) dx =

s0 (gy) is Cauchy. On the other hand, (g, ) is a decreasing sequence of non-negative functions
which is bounded from above by 1. Its pointwise limit is the characteristic function of the
interval [1/2,1]. By Lebesgue’s dominated convergence theorem, g, converges to x[i/2,1) in
L' and this limit is discontinuous, hence not in C([0, 1]). In other words (g,) has no limit in
c([0,1)).

Example 2: For

0 else

fi(z) = {1 —nz  for z € [0, 5]

we have that || fullrr = 557 50 || fullr: converges. However - f,, cannot converge to an
element of C'([0,1]). Indeed suppose, seeking a contradiction, that Y. f,, — f converges in L!
to a function f € C([0,1]). Then, as continuous functions on compact sets are bounded, there
exists some M € R so that f < M on [0,1]. Hence choosing N € N so that N > 2(M + 1)

we obtain that for any n > N and any z € [0, #]

n N
> fil@)—f Z%_ ) > N/2—-M>1

and thus in particular || 337, f; — fllo1 > 532 = 0. 0

Example 1.1.10 (Examples of incomplete spaces). The space of polynomials on R admits
no complete norms.

This is a consequence of the Baire category theorem, which will be proved in B4.2 Func-
tional Analysis 2: A complete metric space is never a countable union of nowhere dense
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subsets. (A nowhere dense set is a set whose closure has empty interior.) Clearly the space
of polynomials is a countable union of the spaces of polynomials of degree < n. It is easy to
see that a proper subspace of a space is always nowhere dense. The incompleteness of the
space of polynomials follows.

1.2 Inner product spaces and Hilbert spaces

1.2.1 Definitions and basic properties

An important special case of Banach spaces are spaces whose norm is induced by an inner
product.

Definition 1.2.1. An inner (scalar) product in a linear vector space X over R is a real-
valued function on X x X, denoted as (x,y), having the following properties:

(i) Bilinearity. For fized y, (x,y) is a linear function of z, and for fized x, (x,y) is a
linear function of y.

(i1) Symmetry. (x,y) = (y,x) for all x,y € X.
(111) Positivity. (x,z) > 0 for z # 0.

When X is a vector space over C, (x,y) is complex-valued and properties (i) and (ii) are
replaced by

(1’) Sesquilinearity. For fized y, (z,y) is a linear function of x, and for fixed z, (x,y) is a
skewlinear function of y, i.e.

(az,y) = al{x,y) and (z,ay) = a(z,y) for alla € C,z,y € X.

(i1’) Skew symmetry. (z,y) = (y,z) for all z,y € X.

WARNING. In some textbooks, the sesquilinearity property is reversed: {(x,y) is required
instead to be skewlinear in x and linear in y.

The inner product (-, -) generates a norm, denoted by || - ||, as follows:
]| = (z,2)">.
It should be clear that the positivity of the norm || - || follows from the positivity property
(iii), and the homogeneity of || - || follows from the bi/sequi-linearity property (i)/(i’). To

prove the triangle inequality, we use:
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Theorem 1.2.2 (Cauchy-Schwarz inequality). For z,y € X,

(2, 9)] < ll=l[lly]]-
Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the conclusion is clear. Assume henceforth that y # 0. Replacing x by ax
with |a] = 1 so that a(x,y) is real, we may assume without loss of generality that (x,y) is
real.

For t € R, we compute using sesquilinearity and skew symmetry:

o+ tyll* = (@ + ty, & + ty) = [[2]|* + 2t Re (z, y) + [|y]|*. (1.4)
By positivity, this quadratic polynomial in ¢ is non-negative for all ¢t. This implies that
(Re (z,9))* — [l=[P*[lylI* < 0,

which gives the desired inequality. If equality holds, then there is some ty such that z+tyy =
0. The conclusion follows. O

If we set ¢ = £1 in ((1.4) and add the resulting identities, we obtain the so-called paral-
lelogram law:
lz + ylI* + llz = ylI* = 2[|z]|* + 2[ly||* for all 2,y € X. (1.5)

It is a fact that if a norm satisfies the parallelogram law (|1.5)), then it comes from an inner
product, which can be retrieved from the norm using polarisation:

1
(,y) = (e + ylI> = Iz —yl*)
for real scalar field and
1 2 2 L 2 P
(@, y) = F(lz +ylI" = llz = ylI") + Jillle + iy " = lle — y[)
for complex scalar field.

Definition 1.2.3. A linear vector space with an inner product is called an inner product
space. If it is complete with the induced norm, it is called a Hilbert space.

Given an inner product space, one can complete it with respect to the induced norm.
Since the inner product is a continuous function on its factors, it can be extended to the
completed space. The completed space is therefore a Hilbert space.
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1.2.2 Examples
Example 1.2.4. The space C™ or R™ is a Hilbert space with the standard inner product

k=1

Example 1.2.5. The space (> = {(x1,%a,...) = () : Yoy |2a]? < 00} is a Hilbert space
with the inner product

n=1

Example 1.2.6. The space C[0,1] of continuous functions on the interval [0,1] is an in-
complete inner product space with the inner product

<f,g>=/0 fgde.

Example 1.2.7. Let (E,pn) be a measure space, e.g. E is a subset of R" and u is the
Lebesgue measure. The space L*(E, ) of all complex-valued square integrable functions is a
Hilbert space with the inner product

<f,9>=/Ef§du-

The completeness of L*(E, j1) is a special case of the Riesz-Fischer theorem on the complete-
ness of the Lebesques space LP(E, ).

Example 1.2.8. A closed subspace of a Hilbert space is a Hilbert space.

Example 1.2.9 (Bergman space). Let D be the open unit disk in C. The space A*(D)
consists of all functions which are square integrable and holomorphic in D is a closed subspace
of L*(D) and is thus a Hilbert space.

Example 1.2.10 (Hardy space). The space H*(T) of all functions f € L*(—m,w) whose
Fourier series are of the form ano a, €M is a closed subspace of L*(—m, ) and is thus a
Hilbert space.

1.2.3 Orthogonality

Definition 1.2.11. Two vectors x and y in an inner product space X are said to be orthog-
onal if (x,y) = 0.
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Definition 1.2.12. Let Y be a subset of an inner product space X. We define Y+ as the
space of all vectors v € X which are orthogonal to'Y, i.e. (v,y) =0 for ally € Y.
When'Y is a subspace of X, Y+ is called the orthogonal complement of Y in X.

Proposition 1.2.13. Let Y be a subset of an inner product space X. Then
(i) Y+ is a closed subspace of X.
(i) Y C Y+t
(isi) If Y C Z C X, then Z+ C Y+,
(iv) (spanY)* =Y.
(v) IfY and Z are subspaces of X such that X =Y + 7 and Z C Y+, then Y+ = Z.
Proof. Exercise. ]

Theorem 1.2.14 (Closest point in a closed convex subset). Let K be a non-empty closed
conver subset of a Hilbert space X. Then, for every x € X, there is a unique point y € K
which 1s closer to x than any other points of K.

Proof. Let
d=inf ||z —z|| >0
zeK

and ¥y, € K be a minimizing sequence, i.e.

lim d,, = d, d, = ||z — yn||-

n—oo

Applying the parallelogram law (L.F]) to 1(z — y,) and 1(z — y,,) yields

H 1( + >H2+ 1|| [ 1(d2+d2>
T — = Un 'm “NYn — Ym = = .
Q?J Yy 4 Yy Yy o \“n m

Since K is convex, (v, +ym) € K and so Hx — 5 (Yn+ Ym) H > d. This and the above implies

that (y,) is a Cauchy sequence. Let y be the limit of this sequence, which belongs to K as
K is closed. We then have by the continuity of the norm that ||z — y|| = lim ||z — y,,|| = d,
i.e. y minimizes the distance from x.

That y is the unique minimizer follows from the same reasoning above. If ¢ is also a
minimizer, we apply the parallelogram law to 1(z — y) and 1(z — ') to obtain

2 1 1
+3ly =9I = Sl =yl + e — y|P) = &

1 1
@+ 7l —yI* < o - 5w +y)

This implies that y = v/. O
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Theorem 1.2.15 (Projection theorem). If Y is a closed subspace of a Hilbert space X, then
Y and Yt are complementary subspaces: X =Y @Y™L, i.e. every x € X can be decomposed
uniquely as a sum of a vector in'Y and in Y+,

Proof. Certainly Y N Y+ = {0}. It remains to show that X =Y + Y.

Take any z € X and, since Y is a non-empty closed convex subset of X, there is a point
Yo € Y which is closer to x than any other points of Y by Theorem [1.2.14l To conclude, we
show that  — yy € Y*. Indeed, for all y € Y and t € R, we have

lz = yoll* < llz = (o — ty) I* = [l — woll* + 2t Re (z — yo, y) +* ||y *.
——

ey

It follows that 2t Re (x — yo,y) + t*||y||* > 0 for all ¢ € R. This implies Re (z — yo,y) = 0.
This concludes the proof if the scalar field is real.

If the scalar field is complex, we proceed as before with ¢ replaced by it to show that
Im (x — yo,y) = 0. O

WARNING. It follows from Theorem that every closed subspace of a Hilbert space

has a closed complement. This is not true for all Banach spaces.
Corollary 1.2.16. If Y is a closed subspace of a Hilbert space X, then Y = Y+,

Definition 1.2.17. The closed linear span of a set S in a Hilbert space X is the smallest
closed linear subspace of X containing S, i.e. the intersection of all such subspaces.

It is easy to see that the closed linear span of a set S is the closure of the linear span
Span S.

Proposition 1.2.18. Let S be a set in a Hilbert space X. Then the closed linear span'Y of
S is St

Proof. Exercise. O

Definition 1.2.19. A subset S of a Hilbert space X is called an orthonormal set if ||z| = 1
forallx € S and (x,y) =0 for allz £y € S.

S is called an orthonormal basis (or a complete orthonormal set) for X if S is an or-
thonormal set and its closed linear span is X.

Theorem 1.2.20. Fvery Hilbert space contains an orthonormal basis.

Proof. We will only give a proof in the case when the Hilbert space X under consideration
is separable, i.e. it contains a countable dense subset S. The proof in the more general case
draws on more sophisticated arguments such as Zorn’s lemma.
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Label the elements of S as y1,9s, ... Applying the Gram-Schmidt procesﬂ we obtain an

orthonormal set B = {z1,73,...} such that, for every n, the span of {x,...,x,} contains
Y1, -+, Yn- As S = X, this implies that X = span B, and so X is the closed linear span of
B. ]

Theorem 1.2.21 (Pythagorean theorem). Let X be a Hilbert space and S = {x1,x2,...,Tm}
be a finite orthonormal set in X. For every x € X, there holds

l2ll? = > 1w, w2+ o = Y. z)an
n=1 n=1

The proof of this is a direct computation and is omitted. An immediate consequence is:

2

Lemma 1.2.22 (Bessel’s inequality). Let X be a Hilbert space and S = {x1,x5,...} be an
orthonormal sequence in X. Then, for every x € X, there holds

o0

> lwza)” < [l=)*.
n=1

We have the following characterisation of the closed linear span of an orthonormal se-
quence, whose proof will be done in B4.2 Functional Analysis II.

Theorem 1.2.23. Let X be a Hilbert space and S = {x1, s, ...} be an orthonormal sequence
in X. Then the closed linear span of S consists of vectors of the form

x = f:an Tn, (1.6)
n=1

where the sequence of scalar (ay,as,...) belongs to £*. The sum in (1.6) converges in the
sense of the Hilbert space norm. Furthermore

oo
]| = Z |an|® (Parserval’s identity)
n=1

and

an = (x,T,).

!The Gram-Schmidt process is usually applied to a set of finitely many linearly independent vectors
yielding an orthogonal basis of the same cardinality. In our setting, we will lose the latter property as the
vectors y;’s are not necessarily linearly independent.



Chapter 2

Bounded linear operators between
normed vector spaces

The most important class of maps between normed spaces are:

Definition 2.0.1. Let (X, || | x) and (Y, ||-|ly) be normed spaces (aways assumed to be over
the same field F). Then we say that T : X — Y is a bounded linear operator if T is linear,
i.e. T(x+ax)=Tr+aTz for all x,7 € X and o € F, and T has the property that there
exists some number M € R so that

ITz||y < M|z||x for all x € X. (2.1)

We let
B(X,Y):={T: X =Y bounded linear operator }

which we always equip with the so called operator norm, which is defined by
T (x,y) := inf{M : (2.1) holds true}, T € B(X,Y).

We will often abbreviate the space #(X, X) of bounded linear operators from a normed
space (X, || - |) to itself by Z(X). In some texts, B(X,Y) is also denoted as Z(X,Y).

We will later see that an important special case is the space of ‘bounded linear func-
tionals’, i.e. bounded linear functions from a normed vector space to the corresponding
field F = R (respectively F = C for complex vector spaces) and this so called dual space
X*:= B(X,F) will be discussed in far more detail in chapters [6| and

One can easily check that || - [|(x,y) is a norm on Z(X,Y) and as this is the only norm
on A(X,Y) that we shall use, we will often write for short ||T’|| for the norm of an operator
T € B(X,Y) (provided it is clear from the context what X and Y are and with respect
to which norms on X and Y the operator norm has to be computed). In applications the
following equivalent expressions for the norm of an operator are often more useful than the
above definition

25
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Remark 2.0.2. (i) For T € #(X,Y), X # {0}, we have

Tx
|7 zxy) = sup 1] _ sup  |[[Tz[|= sup [Tz
vexzz0 || 7] z€X,||z)|=1 zEX,|z||<1

and we have in particular that for any x € X
[Tl < T Il

i.e. the infimum in the definition of the norm of a bounded linear operator is actually
a minimum. Conversely, the supremum in the above expressions for the norm of an
operator is in general not achieved, and we shall see examples of this later.

(i1) Moreover, if X andY are Hilbert spaces, then

1Tl x.y) = sup{[{Tz,y)| - v € X,y €Y, [zl x = [lylly = 1}.
This is a consequence of (i) and the fact that ||Tx|ly = sup,ey,yy<1 (T, y)!.

WARNING. T being a bounded linear operator does not mean that T(X) C Y is bounded.
Indeed, the only linear operator with a bounded image is the trivial operator that maps each
re X toT(x)=0.

One of the main reasons why %(X,Y’) gives a very natural class of operators between
normed spaces is that it can be equivalently characterised as the space of continuous linear
maps:

Proposition 2.0.3. Let (X, || -||) and (Y,|| - ||) be normed spaces and let T : X — Y be
linear. Then the following are equivalent:

(i) T is Lipschitz continuous,
(i1) T is continuous,
(iii) T is continuous at xy =0,
(w) T € B(X,Y).

Proof. (i) = (ii) = (iii) are trivial.

(1i1) = (iv)
Suppose that T' is continuous at o = 0. Then there is some § > 0 such that

|Tx|| = ||Tz —T0|| <1 for ||z] = 4.
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It follows that, for any = # 0,

[zl / oz k4l
Te| = g < 12
17l =73 (HxH) =75

Clearly, this continues to holds for x = 0. Hence 7" is bounded with ||T']| <
(iv) = (4)

1
5

Let M € R be so that (2.1) holds. Then as 7T is linear we obtain that for any =,z € X
[Tw — Tkl = |T(x — 2)|| < M|z — ],

i.e. T is Lipschitz continuous. O
In order to prove that a map 7" : (X, || - ||) — (Y, || - ||) is a bounded linear operator we
need to

(1) Check that T is well defined, in particular that Tx € Y for all x € X,

(2) Check that T is linear (which is usually routine and in such situations does not need
a long explanation or proof),

(3) Find some M so that for all z € X
[Ty < Mjz]x.

As (1) and (3) often require similar arguments, in particular when working with spaces like
(P or L? where the key step is to be able to bound a sum/integral respectively to prove that
it is finite, one often discusses these two steps at the same time.

We remark that to show that a linear map 7' : X — Y is an element of #(X,Y") we just
require some (possibly far from optimal) number M for which (3) holds and that any such
M will be an upper bound on the operator norm. If we need to additionally determine the
norm of 7" then we usually proceed as follows:

(i) Determine a candidate M for ||T'|| and show that
|Tx|| < M||z| for every z € X.
This proves that ||T]| < M.

(ii) Prove that there exists a sequence (x,) in X so that

[T |

— M.
[

This establishes that ||T'|] > M.
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Instead of (ii) one might be tempted to try to find some element = € X so that || Tz|| = M||z||,
but

WARNING. For general bounded linear operators, one cannot expect that there exists x €

X so that | Tx|| = M||z||, i.e. the supremum sup,_, ”\C\Z;ICIH is in general not achieved.

We note that for any 7" € A(X,Y) both the kernel ker(T) := {x € X : T(x) = 0} of
T and its image TX =: {Tx : x € X} are subspaces (of X respectively Y'), but that while
ker(7T") is always closed, as it can be viewed as the preimage of the closed set {0} under a
continuous operator, the image T'X is in general not closed.

2.1 Examples

Shift operators and projections on /, 1 <p <
Define the shift operators L, R : (7 — (P by
R((x1, 9, x3,...)) == (0,21, 29, 23, ...) and L((z1,x9,x3,...)) := (z2, 73,24, .. .)

and for k € N the projections 7y : /F — F by 7((x1, 22, 23, ...)) = X

Claim: L,R € B((?) = B(*,(P) with ||L|| = |R|| = 1 while 7 € Z((P,F) = (£7)* also
with ||| = 1.

Proof: Clearly all three operators are linear and well defined and for every x € /7 we
have ||Rz||, = ||z||, and hence of course R € A(¢*,(?) with ||R|| = 1 (indeed R preserves

norms, i.e. is so called isometric which is a much stronger property than merely having
|R|| = 1). For L and 7, we immediately see from the definition of the /# norm that

[Lxfl, < [l as well as |mx ()] < ||z,

so that both are bounded linear operators (namely L € (7, (") and 7, € (¢?)*) and the
corresponding operator norms are bounded from above by ||L|| < 1 and |7 < 1. To see
that also ||L]] > 1 we may use that ||L(0,1,0,...)|l, = [[(1,0,..)], =1 = |[[(0,1,0,...)],,
while choosing = e®), the sequence that is defined by e®*) = (6;;);en, We also get that
1 = |mg(x)| = ||=||, and hence that ||mg| > 1.

Definition 2.1.1. We call a linear function T : X — Y isometric if for every x € X we
have | Tx| = ||z|.

We note that if T € Z(X,Y) is both isometric and bijective, then we have that also 7!
is linear and isometric (so in particular a bounded linear operator) as for every x € X

1T~ ]| = | T(T )l = |||

Such a map is called an isometric isomorphism and the spaces X and Y are called isomet-
rically isomorphic, written for short as X =Y.
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Multiplication by functions (i)

Let X = C°([0,1]), as always equipped with the supremum norm and let g € C°([0, 1]).
Then
T: X — X defined by (T'f)(z) := f(x)g(z)

is linear, well defined (as the product of continuous functions is continuous) and bounded as

1T fllsup < N9l sep [[f 1] sup-
In particular ||T|| < ||g||sup and choosing f =1 we get T'f = g so as || f||sup = 1 also

1T = sup [ Thllsup = I TFIl = 9]l sup;

REX, ||| sup=1

so indeed [T = [|g]sup-

Multiplication by functions (ii)

Consider instead g € L*([0,1]) and let X = L*([0,1]) (equipped of course with the L2
norm). Then the map 7" : X — X defined as above is well defined as

/ITf )Pat = /f (0t < gl [ 170

T fllrz < |lgllz||fllz2 for all f € X

and thus ||T|| < ||g||z~. Indeed one can show that || T'|| = ||g||L~, though to prove this for
general functions requires a careful argument using some techniques from Part A integration.
To illustrate some idea, we only consider as an example g(t) = t. Then ||g||L~ = 1, so the
above calculation implies that ||T|| < 1 while choosing f,, := Xj—1 1) gives

SO

1
T fall72 = / e > (1 D)%
1—1

s0 as || fu][32 = + we have H”Tff”””L; >1-—1 > 1soalso||T|| >1and hence ||T|| =1 = |g]| .
nllp
At the same time one can show that for any f € L?([0, 1])
ITflle < [ f]lz2
(this proof is a nice exercise related to the part A course in integration) so this gives an
Izsl -

example of an operator for which the supremum sup;_, aiis is not attained for any element
of the Banach space X = L?([0,1]).

(A kind of converse to the above is true: If a measurable g is such that T'f = fg € X for
all f € X, then T € #(X) and g is an element of L*>([0,1]). This is a consequence of the
Closed graph theorem, which will be treated in B4.2 Functional Analysis 2.)



30 CHAPTER 2. BOUNDED LINEAR OPERATORS

Linear maps between Euclidean Spaces

We know that any linear map 7" : R — R™ can be written as
Tz = Ax for some A € M,,«,(R).

There are several different norms on the space of matrices, including the analogues of the
p-norms on R™. Particularly useful is the analogue of the Euclidean norm (i.e. of the case

p = 2) given by
3
JAl = (D o)
i,J

which is also called the Frobenius norm or the Hilbert-Schmidt norm and is widely used in
Numerical Analysis. A useful property of this norm is that it gives a simple way of obtaining
an upper bound on the operator norm of the corresponding map 7" : R” — R™

Lemma 2.1.2. Let T : R" — R™ be defined by Tx = Ax for some A € Mp,«n(R) where we
equip R™ and R™ with the FEuclidean norm. Then T € Z(R"™ R™) and its operator norm is
bounded by the Hilbert-Schmidt norm of A:

1] < [|Al-
Remark 2.1.3. For most matrices we have
|T]| < [|Al

and computing ||T|| can be difficult. For symmetric n X n matrices however we can easily
show (using material from Prelims Linear Algebra) that

IT|| = max{|A1],.... | |}, i the eigenvalues of A.
Proof of Lemma[2.1.2.

2 CS.

ITal? = Y (Ae)2 =3 (Y avas) < D (Doat) - (Xa3) = 14 lal?

i=1 i=1  j=1 i=1  j=1 j=1

Integral operator on C(|0,3],R):

Let X = C([0, 3]) as always be equipped with the sup-norm. Given any k € C([0, 3] x [0, 3])
we map each x € X to the function T'z : [0, 3] — R that is given by

Tx(t) ::/0 k(s,t)x(s)ds
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where the integral is well defined as the integrand is bounded,
|k (s, ) ()] < [Fllsup - 1] sups

and thus (Lebesgue) integrable over the bounded interval [0,3]. Here the supremum norms
of k and x are computed over the corresponding domains, i.e. [0, 3] x [0, 3] respectively [0, 3].
Claim: T € #(X).

Proof. T is obviously linear and for any ¢ € [0, 3] we can bound

3
[T (t)] < / |k (s, )a(s)|ds < 3|[E|sup 2] sup-
0

Provided we show that T : X — X is actually well defined, we will thus obtain that
T € A(X) with |T|| < 3||k||sup- To prove that 7" is well defined we have to show that
for any function x € C([0,3]) also Tz is continuous on [0, 3], i.e. that for any ¢, € [0, 3]
and any sequence t, — to Tx(t,) — Tx(ty). To this end we set f,(s) := k(s,t,)z(s) and
f(s) :=k(s,tg)x(s) and observe that

o f.(s) — f(s) for every s € [0,3], so in particular f, — f a.e.

e |fu| < g on [0,3] for the constant function ¢ := ||k||supl|Z||sup Which is of course inte-
grable over the interval [0, 3].

Hence, by the dominated convergence theorem of Lebesgue, we have that

3

Hm (Tz)(t,) = lim [ fo(s)ds "Z" /0 lim fods = /0 F(s)ds = (Tz)(to)

n—oo n—oo 0

as claimed.
O

2.2 Properties of (the space of) bounded linear oper-
ators

2.2.1 Completeness of the space of bounded linear operators

An important property of the space of bounded linear operators is that it “inherits” the
completeness of the target space.

Theorem 2.2.1. Let (X,|| - ||) be any normed space and let (Y,|| - ||) be a Banach space.
Then B(X,Y) (equipped with the operator norm) is complete and thus a Banach space.
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Proof. Let (T,,) be a Cauchy-sequence in #(X,Y). Then for every 2 € X we have that

|Toz = Tzl < 1T = Tl |2 — 0

m— 00

so (T,x) is a Cauchy sequence in Y and, as Y is complete, thus converges to some element
in Y which we call Tz.

We now show that the resulting map = +— Tz is an element of Z(X,Y) and T,, — T in
B(X,Y), e |[T—T,| — 0.

We first note that the linearity of 7,, (and (AOL)) implies that also 7" is linear. Given
any £ > 0 we now let N be so that for m,n > N we have ||T,, — T,,|| < e. Given any z € X
we thus have

|Tx — Tox|| = || lim Tphx —Thx| = lim || T — Thxl| < ez
m—0o0 m—0o0

Hence T is bounded (as || Tz|| < (||T.|| 4+ ¢)||z|| for all ) and so an element of Z(X,Y") with
|T —T,|| <ceforalln> N, soase >0 was arbitrary we obtain that 7,, — T in the sense
of B(X,Y). O

We note in particular that if X is a Banach-space then the space Z(X) := Z(X, X) of
bounded linear operators from X to itself is a Banach space and that for any normed space
(X, ||-1]) the dual space X* = B(X,R) (respectively X* = Z(X,C) if X is a complex vector
space) is complete as both R and C are complete.

2.2.2 Composition and invertibility of bounded linear operators

Given any normed spaces (X, | - [|x), (Y] - |lv) and (Z,] - ||z) and any linear operators
T e B(X,)Y)and S € B(Y,Z) we can consider the composition ST = SoT : X — Z and
observe that

Proposition 2.2.2. The composition ST of two bounded linear operators S € B(Y,Z) and
T € B(X,Y) between normed spaces X,Y, Z is again a bounded linear operator and we have

15T | 2(x,2) < |Sllv,z) 1T | spx.y)-
Proof. Clearly ST is linear. Given any x € X we can furthermore bound
[1STz|| = |S(Tz)|| < IS T < ISTTI {l]]

which implies the claim. O
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Remark 2.2.3. The proposition implies in particular that for sequences T,, — T in B(X,Y)
and S, — S in B(Y,Z) also
SpT, — ST in B(X, Z)

since
A
150 T = ST < [|(Sh = S)Tull + 19T = DI < 150 = STl + ISIIT% = TN — 0
where we use in the last step that ||T,|| is bounded since T,, converges.

We also note that for operators T' € Z(X) from a normed space (X, || -||) to itself we can
consider the composition of T" with itself, and more generally powers T" =T oT o...0T &€
Z(X) which, by the above proposition have norm

[ < [|7]]".
We conclude in particular

Remark 2.2.4. Let X be a Banach space and let A € B(X). Then
() =3

converges in B(X) and hence exp(A) is a well defined element of B(X).
Proof. We know that

= exp([|A]]) <

ZII Ak”l <

i.e. that the series converges absolutely. As X is complete and thus, by Theorem also
P(X) is complete we hence obtain from Corollary that the series converges. O]

o0

k

In many applications, including spectral theory which will be discussed in B4.2 Functional
Analysis 11, the following lemma turns out to be useful to prove that an operator is invertible:

Lemma 2.2.5 (Convergence of Neumann-series). Let X be a Banach space and let T €
B(X) be so that || T|| < 1. Then the operator Id — T is invertible with

(Id—T)~ ZTJE%'

Here and in the following we use the following definition.
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Definition 2.2.6. An element T' € H(X) is called invertible (short for invertible in A(X))
if there exists S € B(X) so that ST =TS = Id.

If we only talk about 7" : X — X being ‘invertible as a function between sets’, we
sometimes say that T is algebraically invertible and that a function S : X — X is an
algebraic inverse of T"if ST = T'S = Id (but not necessarily S € #(X)).

Corollary 2.2.7. Let T € B(X) be invertible. Then for any S € B(X) with |S|| < || T~
we have that T — S is invertible.

Proof of Lemma[2.2.5. As ||T|| < 1 we know that >_ ||A*|] < >~ [JA||* < oo so, by Corollary
11.1.8] the series converges

S, ::Xn:T’“TH—OzS:iT’“ in (X).

k=0 k=0
As
(Id—T)S, =Id—A+A—-A* 4+ A* — . — A"+ A" — A" =1d — A"
and ||A"™|| < ||A]|"™" — 0 we can pass to the limit n — oo in the above expression to
obtain that (Id — T')S = Id and similarly S(Id —T) =Id so S = (Id — T")~*. O

Proof of Corollary[2.2.7. As T is invertible (which by definition means that also 77! €
A(X)) we obtain can write T — S = T(Id — T~'S) and note that T71S € Z(X) with
| TS| zx) < IT7H||IS] < 1. By Lemma we thus find that (Id — 771S) is invertible
with (Id = 7718)~" = 377 (T7'S)? € #(X) and hence T — S is the composition of two
invertible operators and thus invertible, compare also Q.1 on Problem Sheet 2. O
Remark 2.2.8. We obtain in particular that if T € A(X) is so that |[Id —T| < 1 then T

15 wnwvertible. Denoting by
GA(X) ={T € B(X) : T is invertible }

we thus know that the open unit ball By(Id) := {T € B(X) : |T — Id|| < 1} around the
identity is fully contained in GA(X), and more generally that for any T € GA(X) the ball
Bs(T) with § = = > 0 is contained in GAB(X). It follows that GAB(X) is an open subset

of BUD), 7]

Remark 2.2.9. As you will show on Problem sheet 2, for S € (X)) algebraically invertible
we have that S™' € B(X) if and only if

(%) 36 > 0 so that Vo € X we have ||S(z)|| > d||z||.

We will furthermore see that for any S € B(X,Y) satisfying (x) we have that the image SX
15 closed.



Chapter 3

Finite dimensional normed spaces

In this chapter we will explain why for finite dimensional spaces most of the questions raised
in the previous chapters do not arise, and hence why you never had to discuss issues of
continuity, completeness,... in your prelims/part A courses on Linear Algebra. We shall see
in particular that

e all norms on a finite dimensional space are equivalent,
e all linear maps defined on a finite dimensional space are bounded,

e all finite dimensional spaces are complete.

We shall furthermore see that the Theorem of Heine-Borel seen in part A and Prelims
for R and R"”, that assures that bounded and closed sets in R™ are compact, remains valid in
general finite dimensional normed spaces and that indeed a normed space is finite dimensional
if and only if the assertion of this theorem holds.

To begin with, we prove the following important special case of the equivalence of norms,
upon which we shall later base the proof of this result for general finite dimensional spaces:

Proposition 3.0.1. Any norm || - || on R™, m € N, is equivalent to the Euclidean norm

Izl = (X0, 1’12)1/2 and hence all norms on R™ are equivalent.

Proof. We first remark that the last part of the proposition simply follows from the transi-
tivity of the relation of norms being equivalent, so it remains to show that for any norm || - ||
there exist constants C 5 € R so that for every x € R™

2]l < Cillzlz and [lz]lz < Coll].

To get the first inequality we note that for any « = (21,...,2,) = Y o) ,6; € R™

A s /<& N\ /2 1/2
ol < S lail leal < (D 1aal?) (X leali®) ™ = Gl (3.1)
=1 =1 =1

35
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where we set C := (221 H6i|l2)1/2-

For the proof of the reverse inequality we give two slightly different variants, which are
however based on the same core idea and use in particular the Theorem of Heine-Borel in
Euclidean space (R™, || - ||2)-

Variant 1 (Using that continuous functions on compact sets achieve their minimum:)
We note that the function f(z) := ||| is a Lipschitz-continuous function from (R™, | - [|2)
to R (though of course not an element of (R™ R) as not linear) as the reverse triangle

inequality combined with (3.1 allows us to bound

(@) = f@)l = [llzll = yll] < llz =yl < Cille = yll2-

As the (Euclidean) unit sphere S = {z € R™ : ||z||» = 1} is a closed and bounded subset
of (R™,]| - |l2) and hence by Heine-Borel compact, we know that f|s achieves its minimum
in some point z* € S. As || - || is a norm, we know that f(z*) > 0 and set Cy := f(i*). With
this choice of C5 we then get that for every x € X

xz

(]2
~—~—
es

Collz|| = Co[|]l2 - = Collzll2f (77— ) = Collzll2f (@) = [l

il
[

which gives the reverse inequality claimed above.

Variant 2 (Proof by contradiction) Suppose that there exists no constant Cy so that the

inequality ||z]]2 < Cs||z|| holds true for every x € X. Then we can choose a sequence of
elements (™ € R™\ {0} so that ||z(™]|, > n||z™||. The renormalised sequence (™ = %
then consists of elements of the Euclidean unit sphere S which as observed above is compact
and thus has a subsequence that converges #(™) — x € S with respect to the Euclidean

norm || - [|2. As x € S, we know that z # 0 and thus ||z|| # 0 which contradicts the fact that

A 1
lz]| < llz = 2| + [|1209]] < Cullr — 2™l + — = 0.
n;

]

We note that the exact same proof (replacing all R with C) applies also if the field is
F = C and hence yields that all norms on C™ are equivalent. More generally we obtain

Theorem 3.0.2. Let X be any finite dimensional space. Then any two norm ||| and || -
on X are equivalent.

To simplify the notation we again carry out the proof just for real vector spaces and note
that the exact same proof (with all R replaced by C) applies for complex vector spaces.



37

Proof. Let m = dim(X). Choosing a basis fi,..., f,, of X we know from Prelims Linear
Algebra that the map

Q:R"> (le--aum)’_)ZMifieX
i=1

is a linear bijection. Given any two norms ||-||x and || - ||’y on X we obtain two norms || - [|gm
and || - ||gm on R™ by defining for every = € R™

[z]|zm = [|Q(x)[|x respectively [[z[|gm = [|Q(z)]x-

We note that these norms are chosen so that the maps @ : (R™, || - [|[gm) — (X, || - ||x) and
Q: R™ |- |lgm) = (X, - |'x) are isometric and hence, as they are bijections, so are their
inverses (i.e. @ and @' are isometric isomorphisms). Using that, by Proposition , all
norms on R™ are equivalent and hence that there exist constants C o so that

[z]lgm < Chl[z[lgm and [Jz][gm < Coflz||rm
we now conclude that for any y € X
llx = 1Q W)llzn < CLIQ (W)llr = Cillyllx
and similarly ||y|y < Cally||x, establishing the equivalence of norms. O
Based on this result it is now easy to prove

Theorem 3.0.3. Let (X, || - ||lx) be a finite dimensional normed space and let (Y,|| - ||y) be
any normed space (not necessarily finite dimensional). Then any linear map T : X —'Y s
an element of B(X,Y), i.e. a bounded linear operator.

Proof. Given any such T we set for every v € X
[zllz = llzllx + Ty

We can easily check that this defines a norm on the finite dimensional space X which, by the

previous theorem, must hence be equivalent to || - | x. In particular, there exists a constant
C € R so that

[Tz]ly < [zl < Clleflx

which ensures that 7" is bounded and hence an element of Z(X,Y). ]

An important conclusion of this result is
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Corollary 3.0.4. Let (X, - ||) be a finite dimensional normed space. Then (X, | - ||) is
homeomorphic to F™, m = dim(X) and F = R respectively F = C, and a linear homeo-
morphism from F™ to (X, || - ||) can be obtained by choosing any basis fi,..., fm of X and
defining

Q:F"3 (1. i) = > puifi € X. (3.2)

i=1

We recall that a map f : M — M between two metric spaces is called a homeomorphism
if f is invertible and both f and f~! are continuous. We also recall that the image f(C) of a
closed set C' under a homeomorphism f is again closed as it can be viewed as the preimage
of C' under the continuous function f~*.

As we already know from Linear Algebra that () is a bijection, this corollary immediately
follows from Theorem which implies that the linear maps @, Q! are continuous.

Combing the equivalence of norms with the completeness of R and C furthermore allows
us to prove

Theorem 3.0.5. Every finite dimensional normed space (X, ||-||) is complete, i.e. a Banach
space.

Proof. We first recall from Prelims Analysis and Part A metric space that F*, F = R or
F = C equipped with the Euclidean norm | - ||2 is complete and remark that this can be
easily proved by showing that a sequence in R" converges/is a Cauchy-sequence if and only
if all of its components converge/are Cauchy-sequences in R. (We stress that this statement
is wrong in infinite dimensional spaces such as the sequence spaces 7).

Let now @ be as in (3.2]). Given a Cauchy-sequence (z,) in X we conclude that since
Q7! is a bounded linear operator from (X, | - |x) to (F™ ] - ||2) we have

1Q7 (@) = Q7 @m)ll2 = Q7 (20 = wm)ll> < Q" [[lzn = @mllx  — O,

m—r0o0

i.e. that Q@ '(z,) is a Cauchy sequence in (R™, || - ||2) and therefore converges to some y.
Setting = = Q(y) we hence obtain that

|2 = zllx = 1Q(Q™ (z2) — v)llx < [IQINQ ™" (2n) = ylla = 0,
i.e. that the original Cauchy sequence (z,) in X converges. O
As an immediate conclusion of the above result we obtain

Corollary 3.0.6. Every finite dimensional subspace of a normed vector space (X, | - ||) is
complete and hence closed.

WARNING. Not every subspace of a normed vector space (X, || - ||) is closed.
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Example 3.0.7. Consider C([0,2]) as a subspace of (L*([0,2]), ] - |1). Then the sequence
(fa)nen C C([0,2]) defined by

t", 0<t<1
nt: ’ T
Ja(®) {L t>1

0 0<t<1
1 t>1

At a more abstract level we could also argue as follows: C([0,2]) is a proper subspace
of L'([0,1]) however, as we shall see later, C([0,2]) is dense in L*([0,1]), so the closure of

— L

C([0,2]) in L}([0,1]) is C([0,2]) = L*([0,1]) # C([0,2]).

is a Cauchy sequence in L'([0,2]) with limit f(t) = however f ¢ C(]0,2]).

We recall that the Theorem of Heine Borel ensures that every subset of R™ respectively of
C™ that is bounded and closed is automatically compact. While the reverse implication, i.e.
that a compact set is always bounded and closed, is valid in every normed space (and indeed
more generally in every metric space), for general normed spaces closedness and boundedness
does not imply compactness. Indeed, the analogue of the Heine-Borel Theorem holds true
in a normed space if and only if the space has finite dimension:

Theorem 3.0.8. Let (X, || -||) a normed space. Then the following are equivalent
(1) dim(X) < oo.

(2) Every subset Y C X that is bounded and closed is compact.
(3) The unit sphere S :={x € X : ||z|| = 1} is compact.

Remark 3.0.9. We recall that by definition a set K is compact if every open cover of K
has a finite subcover. We also recall that for metric spaces (and hence in particular for
normed space) compactness is equivalent to sequential compactness, i.e. to the property that
every sequence in K has a subsequence which converges in K. A further useful equivalent
characterisation of compactness in metric spaces is that K is compact if and only K is
complete and totally bounded (which means that for every e > 0 there exists a finite e-net,
i.e. a finite set of points x1,...,x, € K so that K C |J;~, B:(x;)).

For the difficult implication in the proof of [3.0.8] i.e. (3) = (1) we shall use the following
useful property of closed subspaces of normed vector spaces.

Proposition 3.0.10 (Riesz-Lemma). Let (X, |- ||) be a normed vector space and Y G X a
closed subspace. Then to any ¢ > 0 there exists an element x € S C X in the unit sphere so
that

dist(z,Y) :=inf{||lz —y||:y €Y} >1—¢.
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Proof of Proposition[3.0.10. We can assume without loss of generality that £ € (0,1).

AsY # X is closed we know that the set X \ Y is open and non-empty, so we can choose
some z* € X \ 'Y and use that d := dist(z*,Y) > 0, as X \ Y must contain some ball Bs(z)
which ensures that d > 6 > 0.

By the definition of the inﬁmum we can now select y* € Y so that d < ||lz* — y*|| < ;&

and claim that z := ” — *H has the desired properties. Clearly ||z|| = 1, i.e. z € S as
desired, and we furthermore have that
' ¥ y* ¥ ~
dist(z,Y) = inf Jlo —y|| = inf | pyrilr e —yll = inf | ——— — 7
T R I Ee I Fr IR
¥ — dist(z*,Y") '
= inf || - H = . >1—¢
gev =y 7 et =y

where we used twice that Y is a subspace, to replace the infimum over y € Y first by
an infimum over § = nyTH + y and then an infimum over gy which is related to § by

j= y L]

llz*—y*|l

Proof of Theorem |5.0.8.
(1) = (2)
Let Y be a closed and bounded set. Then the image of Y under the homeomorphism
Q' : X — F™ obtained in Corollary is also closed and, as Q! is a bounded linear
operator, also bounded and hence by the Theorem of Heine-Borel a compact subset of R™.
Hence Y = Q(Q(Y)) is the image of a compact set under the continuous function @ and
hence itself compact.

(2) = 3):
Is trivial as S is clearly closed and bounded.

(3) = (1):
We argue by contradiction and assume that S is compact but dim(X) = oco. We may thus
choose a sequence of linearly independent elements y, € X, k£ € N. Then the subspace
Yy = span{y1,...,yx} ; Yi11 is finite dimensional, so by Corollary , a closed proper
subspace of Y;.1. Applying Proposition with € = % (viewing Y}, as a subspace of Yy 4
instead of X) thus gives us a sequence of elements yx € Yy NS with dist(yx, Yi) > 2.
In particular for every k > | we have [lyy — u|| > dist(yx, Yiy1) > dist(yg, Yi) > 2 so no
subsequence of (y;) can be a Cauchy-sequence. Having thus constructed a sequence (yi) in
S C X that does not contain a convergent subsequence we conclude that S is not sequentially

compact and hence not compact leading to a contradiction. O

Remark 3.0.11. In the special case that X is an inner product space, rather than a general
normed space, then the proof that (3) = (1) can be simplified significantly and does not
require the use of Proposition|3. - Given any sequence y,. of linearly independent elements
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of X, we can apply the Gram-Schmidt method from Prelims Linear Algebra to obtain a
sequence xy, of orthonormal elements of X which hence have the property that ||z — z]|* =
|zel|? = 2(zg, 27) + ||2:1]]? = 2 which ensures that no subsequence of (s,) can be Cauchy and
hence that S is not sequentially compact.
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Chapter 4

Density of subspaces and the
Theorem of Stone-Weierstrass

4.1 Density of subspaces and extensions of bounded
linear operators by density

Definition 4.1.1. Let (X, || - ||) be a normed space. Then a subset D C X 1is dense if its
closure D 1is given by the whole space X, 1.e. D = X.

Remark 4.1.2. A useful equivalent characterisation is that a subset D C X 1is dense in X
if and only if for every x € X there exists a sequence of elements y, € D so that y, — =,

n—oo

i.e. ||lx —ynl| — 0 or equivalently if and only if for every x € X and every € > 0 there
n—oo
exists y € D so that ||x — y|| < e.

An important feature of dense subsets D of normed spaces is that a bounded linear
operator on X is fully determined by its values on D. This is particularly useful if we are
working on a space that contains a subspace of “well-understood” objects, e.g. the space
of polynomials in the space of real valued continuous functions or the space of real valued
smooth functions on [0, 1] in (L*([0,1]), || - ||z2)-

Theorem 4.1.3. Let (X, || - ||x) be a normed space, let Y be a dense subspace of X (which
we equip with the norm of X ) and let (Z,|| - ||z) be a Banach space. Then any T € B(Y,Z)
has a unique extension T € B(X,Z), i.e. there exists a unique bounded linear operator
T:X — Z so that Ty = Ty for everyy € Y and we furthermore have that

We first prove the following simpler result which can be useful in applications.

43
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Lemma 4.1.4. Let (X,| - ||x) be a normed space, D C X a dense subset and let (Z, || - |z)
be a normed space. Then for operators T, S € B(X,Z) we have

T|D:S|D «— T =5.
In particular, the only element T' € B(X,Z) with T'|p =0 is T = 0.

Proof of Lemma[{.1.4. We can prove the non-trivial direction “=" as follows: For any z € X
we can choose a sequence d,, — x with d, € D to conclude that since both T and S are
continuous

Txr = lim Td,, = lim Sd, = Sz.

n—oo n—o0

O

Proof of Theorem[{.1.5, Let x € X be any element. Then as Y is dense there exists a se-
quence ¥, of elements of Y so that y, — z.

Claim: Ty, converges and the limit z = lim,, ,, Ty, depends only on z and not on the
chosen sequence y,,.

Once proven, this claim allows us define Tz := lim, oo T Yyn to obtain a well defined
map T : X — Z. This map will be linear as T is linear, as we can interchange limits and
addition/scalar multiplication and know that the obtained limit is independent of the chosen
approximating sequence. Furthermore

1Tl = Jim | Tyallz < |7 Jim lyallx = 1T 2] x

so that T € B(X, Z) with ||T|| > ||T||. The reverse inequality follows from the definition of
the operator norm, as

ITlexz = suwp  |Tzllz> sup  |Tylz =Tz
reX, ol x =1 vev yllx=1

Hence, once the claim is proven, we obtain the desired extension which, by Lemma [{.1.4] is
furthermore unique.

It thus remains to prove the claim. To this end we remark that if y, — x then (y,) is a
Cauchy sequence and hence also

1740 = Tyllz < [T g = gnll 0.

So (T'y,) is a Cauchy sequence in the Banach space Z and must thus converge to some limit
z. To prove that the limit does not depend on the choice of the sequence of elements of Y
that approximate x, let 7, be any alternative sequence in Y that converges to x. Then the
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argument above implies that 7'y, converges to some limit Z and one way to see that z = 2
is to consider a third sequence ¢, — x chosen as y,, = y, for n odd and ¢, = ¥, for n even.
Then also Ty, must converge to a limit Z which must agree with the limit of both of the
subsequences 1Y, and T4, 11, i.e. we must have that z = Z = Z which establishes the claim
and thus completes the proof of the theorem. O

4.2 The Theorem of Stone-Weierstrass and Density of
Polynomials in the space of continuous functions

The goal of this section is to identify suitable dense subspaces of the space C(K) = C(K,R)
of real-valued continuous functions on a compact subset K C R". As always we equip C'(K)
with the sup-norm and recall that since continuous functions on compact sets are bounded
this is well defined.

We begin by exploring what properties are necessary for a subspace L C C(K) to be
dense. To this end we first note that given any two points p, ¢ € K with p # ¢ we can choose
a continuous function g € C(K) so that g(p) # ¢(q), e.g. by letting g(z) = 1 — @ in
Bs(p) N K and g = 0 outside of this ball for some number 0 < 6 < ||p — ¢||. As an aside we
note that with a bit more care we could also construct such a function g which is smooth,
compare also section

We now observe that since C'(K') contains a function g with g(p) # g(q), p # q any given
points, also L must have this property: Indeed, if L C C(K) is dense, then there must be a
sequence f, € L so that || f, — gl/sup — 0 and hence in particular

[fa(p) = fa(@)] = 19(p) — 9(@)] = [fu(p) — 9(P)] — | fa(@) — 9(q)]
> 1g(p) = 9()| =2l fr — gllsuwp — 19(p) — 9(q)| > 0.

A necessary condition for a subspace L C C(K) to be dense is hence that it separates
points

) (4.1)

g
g

Definition 4.2.1. We say that a subset D C C(K) separates points if for all p,q € K with
p # q there exists a function g € D so that g(p) # g(q).

Remark 4.2.2. It can be useful to note that for a subspace L C C(K) that contains the
constant functions, then the following are equivalent:

e L separates points,
o for anyp # q € K, 3g € L with g(p) =0 and g(q) =1,

o foranyp #q€ K, a,beR, 3g € L with g(p) = a and g(q) = b.
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Proof. Exercise. m

For our first density result for C'(K') we furthermore want our subspace to be closed under
the operation of taking the (pointwise) maximum or minimum of two elements of L, i.e. to
be a so called linear sublattice:

Definition 4.2.3. A subspace L C C(K) is called a linear sublattice if
f,g € L = max(f,g) € L and min(f,g) € L

We note that if L is a linear sublattice then also the minimum and maximum of any finite
number of elements f1, ..., f,, is contained in L since we can iteratively write max(f,..., f) =
max(f1, max(fa,..., fmm)) = .... and furthermore remark that L is a sublattice if and only if

feL=|flelL

as one can easily check using e.g. that | f| = max(f, —f) and max(f, g) = 3(f+9)+3|f — gl
We stress again that here we consider real valued functions f (and note that this definition
would make no sense for complex valued functions f).
We now prove our first main result of this section, which gives a density result for general
sublattices:

Theorem 4.2.4 (Stone-Weierstrass-Theorem, lattice form). Let K C R" be a compact set
and let C(K) be the space of continuous real-valued functions on K which is equipped with
the sup-norm. Let L be a subspace of C(K) which is such that

(i) L is a linear sublattice,

(11) L contains the constant functions, and
(i1i) L separates points in K.
Then L is dense in C(K).

Remark 4.2.5. To see that just (i) and (iii) are not sufficient we can e.g. consider {f €
C([0,1]) : f(1) = 0} which is a linear sublattice that separates points but is of course not
dense in C([0,1]) as we cannot approximate any function f € C([0,1]) with f(1) # 0 by
elements of this space.

Proof. Fix f € C(K) and € > 0. We would like to construct g € L such that || f — g||sup < €.
Fix some point p for the moment. By Remark for any ¢ € K, there exists f,, € L

such that f,,(p) = f(p) and f,4(q) = f(q). Let U5, = (f — fp,q)_l((—é,&?)) C K so that

|f — foql <eon Uy o
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Observe that {U;  }sex is an open cover of K so we can find finitely many points g1, ..., ¢m
(allowed to depend on the fixed point p € K) so that K = (J*, Uy ..

We recall that on the sets U we have |f — f, .| < ¢ and hence in particular f, ,, < f+e.
Defining ¢, := min(fp 4, - - - fp.qn) We hence obtain a function g, € L which satisfies g, < f+¢
on all of K and is furthermore so that g,(p) = f(p) as all functions f,, have the property
that f,4(p) = f(p).

Our construction above gives a good upper bound for g, — f, but no lower bound. To
obtain both a good upper bound and a good lower bound, we apply more or less the same
procedure to g,, but now letting p vary. Let V= (f — g,)"'((—¢,¢)) so that

l9p — fl <eon V.
Again {V} },ck is an open cover of K, and so has a finite subcover K = Ule V- Set

g :=max{Gp,,---,9p}

which is in L as L is a sublattice. As g is the maximum of functions that satisfy g,, < f +¢
on all of K we have of course still g < f+¢ on K, but now know additionally that for every
x € K there is some i so that © € V,, and hence g(x) > g¢,,(z) > f(x) —e. Combined we
thus obtain that the element g € L that we constructed satisfies ||f — glsup < €. Ase >0
and f € C(K) were arbitrary this completes the proof that L is dense in C(K). O

As a major application of this result we now prove:

Theorem 4.2.6 (Theorem of Weierstrass (respectively Stone-Weierstrass) on approxima-
tion of continuous functions by polynomials). Let K C R™ be compact. Then the space of
polynomials is dense in C(K), i.e. for every f € C(K) there exists a sequence of polynomials
pn on K so that p, — f in the sense of (C(K), || - ||sup), i-€. uniformly.

This theorem was first proven by Weierstrass in the case of K a compact interval, while
the proof of the more general form of the theorem given above is due to Stone. Hence one
generally talks of the Theorem of Weierstrass if K is a compact interval and of the Theorem
of Stone-Weierstrass otherwise.

We note that the space of polynomials trivially contains the constant functions and also
separates points (for this already the linear functions would be sufficient). It has furthermore
the extra structure of being a subalgebra of the algebra of continuous functions

Definition 4.2.7. A subspace A C C(K) is a subalgebra if A contains the constant functions
and

frge A= fgeA
where (fg)(x) = f(x)g(x) is obtained by pointwise multiplication.
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The Theorem of Weierstrass on the density of polynomials in C'(K) is hence a special
case of the following more general result:

Theorem 4.2.8 (Stone-Weierstrass Theorem, subalgebra form). Let A C C(K) be a subal-
gebra of C(K) which separates points. Then A is dense in C(K).

We derive this theorem from the lattice form of the Stone-Weierstrass theorem by using

Proposition 4.2.9. If A C C(K) is a subalgebra of C(K) that is closed then A is a linear
sublattice.

Based on this proposition which is proven below and the lattice form of the Stone-
Weierstrass theorem we can now immediately prove the subalgebra form of the theorem:

Proof of Theorem[{.2.8. Given a subalgebra A as in the theorem we can easily check that A
is also a subalgebra and hence, by Proposition , A is a linear sublattice. As A contains
the constant functions and separates points the same holds true also for A so we may apply
the sublattice version of the Theorem of Stone Weierstrass to conclude that A is dense in

C(K), so A= C(K). Hence that A is dense in C(K). O

Proof of Proposition[{.2.9. We only need to prove that if f € A then also |f] € A. As A is
an algebra and |f| = 1/f2, we only need to prove that if g € A and g > 0, then V9 € A

Let us suppose in the first instant that g > § > 0 for some small 6 € (0,1). By scaling,
we may also suppose that g < 2 —4§. Then the function h = 1 — g satisfies |h| < 1—4. Note
that x := 1 — /g satisfies

1
(1—m)2:g:1—h<:>x:§(h—l—x2).

Thus, we only need to show that this fixed point equation is solvable for z € A.
Indeed, let T'(a) = 1(h +a?) and B ={a € A: |a| <1— 6} (which is a complete metric
space). By triangle inequality, 7" maps B into itself. Moreover, it is also a contraction:

T(a) = T(b)| = %|a+blla— b < (1 =d)la—bl = [[T(a) = TO®)[ < (1 =d)lla—bl.

By the contraction mapping theorem, 7" has a fixed point in B, which is our desired x €
B C A.

In the general case when we only know that g > 0, the above shows that (g+1/k)"/2 € A
for all k > 0. Therefore, /g, being the uniform limit of ((g 4+ 1/k)"/?) (justify this!), also
belongs to A (as A is closed). O
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Remark 4.2.10 (Non-examinable). There are various direct ways of proving Weierstrass’s
theorem on the density of polynomials e.g. in C([0,1]). One can prove e.g. that given any
f € C(]0,1]) the so called Bernstein polynomials

n

mity =Y (1) 045

k=0

converge to f uniformly, or follow the original proof of Weierstrass using the Weierstrass
transform.

Example 4.2.11 (An application of Weierstrass’s theorem). We claim that the only con-
tinuous real valued function f € C[0,1] for which

(%) /01 f(t)t"dt =0 for everyn € N

is the zero function. To see this, we let X = C[0,1] (as always equipped with the sup
norm) and we note that any function f € C[0,1] induces a bounded linear functional F €
X* = B(X,R) defined by F(x) = folf(t)x(t)dt, where we note that F is bounded since
|Fa| < || fllsupll®llsups s0 | Fllx < || fllsup- If f satisfies (x) then, by linearity, F(p) =0 for
every polynomial. Since the polynomials are dense in X we can thus apply Theorem
to obtain that F = 0, in particular F(f) = [ f*(t)dt = 0. But as f* > 0 this implies that
f2=0 a.e. and so as f is continuous indeed f = 0.

4.3 Approximation of functions in L7
In many applications where one works with L? spaces, the following result is very useful

Theorem 4.3.1. For any 1 < p < 0o and any compact set K C R™ the space C*(K) of
smooth functions is dense in LP(K).

WARNING. This result is wrong for p = 0o as you can easily see when trying to approxi-
mate step functions by continuous functions.

The proof of this result is non-examinable (though the result and its applications are
examinable), and we only sketch the proof to introduce the important concept of mollifying
an integrable function to obtain a smooth function which is a good approximation to the
given (in general not even continuous) function. This concept is widely used in theory of
and applications to PDEs and more on this topic can be found in particular in the courses
B4.3 Distribution Theory and C4.1 Functional analytic methods for PDEs.
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Sketch of proof of Theorem (non-examinable).
We let ¢ : R” — R be defined by

b(z) = ¢ {w—ﬁ% o] < 1

0 else

where ¢ > 0 is chosen so that [, ¢(x)dz = 1 and set ¢.(z) := —@(£). These smooth
functions ¢. (which are often called ‘mollification kernels’ or a family of ’standard mollifiers’)
have fRn ¢. = 1 and are zero outside of B.(0). One can get a sequence f. of smooth functions
that approximates a given f € LP(K) as follows: We extend f by zero outside of K to get

a function that is defined on all of R™ and then set
fe:i=¢ex f, i.e. define f.(x):= / oz —y)f(y)dy.
R

Then one can easily check that f. € C*°(R") with derivatives D*f. = (D%¢.) * f (follows
from the differentiation theorem from Part A Integration) and one can indeed prove that
fe = fin L? (though this proof requires more care and uses properties of L” functions that
we do not require elsewhere in the course). ]



Chapter 5
Separability

Many but not all spaces we have encountered so far have the following useful property

Definition 5.0.1. A normed space (X, ||-||) is called separable if there exists a countable set
D C X which is dense. A space which is not separable is called inseparable.

To prove that a space is separable/inseparable it can be useful to note

Lemma 5.0.2. (i) Let X be a vector space and let || - || and || - || be two norms on X
that are equivalent. Then (X, || - ||) and (X, || - ||') are either both separable or both
inseparable.

(ii) Let (X, | -||x) and (Y, |ly) be two normed spaces which are isometrically isomorphic,
i.e. so that there exists a linear bijection i : X — Y so that ||i(z)|y = ||=|x for all
x € X. Then (X,| - ||x) and (Y,|| - ||y) are either both separable or both inseparable.

Proof. As equivalent norms lead to the same notion of convergent sequences we obtain that
aset D C X is dense in (X, | - ||) if and only if it is dense in (X, || - ||). Hence (i) follows.
Similarly, to obtain (ii) we note that if D C X is dense and if i : X — Y is an isometric
isomorphism then D := i(D) C Y is dense as for any y € Y we can choose d,, € D so that
d,, — x :=i"'(y) and thus get a sequence d, = i(d,) € D that converges to y since

ly = dully = lli(@) = idn)lly = llilz — du)lly = |z = dullx — 0.

0
We also recall from prelims that
e QCRand Q+iQ C C are dense, so both F =R and F = C are separable
e Finite products A; x ... x A, and countable unions (J ieN Aj of countable sets are

countable.

o1
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This allows us to show in particular
Proposition 5.0.3. Every finite dimensional normed space (X, | - ||x) is separable.

For simplicity of notation we will carry out this proof just for real normed spaces and
remark that the exact same proof, with R replaced by C and Q replaced by Q + iQ applies
in the complex case.

Proof. We first show that R™ equipped with the 1 norm is separable. Indeed, given any

x = (1,...,2,) € R" and any € > 0 we can use that Q is dense in R to choose ¢; € Q so
that [z; —¢;| < £ and hence ||z — (q1,...,¢.)|| < &. As Q" is countable we thus get that
(R™, || - ||1) is separable. As every other norm || - || on R™ is equivalent to || - ||; we thus get

that also (R™, | - ||) is separable thanks to Lemma [5.0.2]
Given any other real finite dimensional vector space (X, ||-[|x) we let @ : R® — X be the
isomorphism introduced in (3.2) and note that () is an isometric isomorphism if we equip R"

with the norm ||z|| := ||Qx||x. The separability of (X, ||-||) thus follows from the separability
of (R, | -|) and Lemma [5.0.2} O

While many of the spaces we have seen so far are separable, not all of them are and the
most prominent examples of non-separable spaces are

Proposition 5.0.4 ((> and L* are inseparable). The sequence space ({>°(F),|| - ||o) and
the function spaces L>(§2), Q@ C R™ any non-empty open set, are inseparable.

We provide the proof of this result for the sequence space £>° and note that a very similar
proof, using characteristic functions of sets, shows that also L> is inseparable.

Proof. We recall that the set A := {a = (a1, as,...) : a; € {0,1}} is uncountable and note
that for this subset of ¢> the distance of any two elements a # a is ||a — | = 1.

Let now D be any dense subset of £*°. Then given any a € A there must be an element

d, € D so that [|d, —al| < 3 and we define a function f : A — D by assigning to each

A
a such an element d,. We note that d, = d; implies that ||a — al|| = |la — d, + dz — al| <
|la—d,||+]|@—dz|]| < 1 and hence that a = @ so this map is injective. Since A is uncountable,
we thus obtain that any dense subset of /> is uncountable. Hence ¢*° is inseparable. O]

To prove separability of spaces we can use the following two results

Lemma 5.0.5. Let (X, - |lx) be a normed space, Y C X a subspace (which we equip
as always with the same norm || - ||x). Suppose that D C (Y, - ||x) is dense and that
Y C (X,| - ||x) is dense. Then also D C X is dense.

WARNING. Here we crucially use that the sets D CY andY C X are dense with respect
to the same norm.
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This lemma follows from a simple £/2 argument: Given x € X and € > 0 we use that Y
is dense in X to choose y € Y so that ||z —y||x < § and then use that D C Y is dense to
choose d € D with ||d — y||x < 5.

Proposition 5.0.6. Let (X, ||-[|) be a normed space and suppose that there exists a countable
set S so that span(S) is dense in X. Then X is separable.

Here we recall that the span of a subset A C X is the set of all finite linear combinations,
ie.

N
span(S) = {Z Ajsj i\ €F, s;€ S NeN}
j=1

and note that since span(S) C span(S) the above proposition implies in particular that if
there is a countable set S whose span is dense in X then X is separable

As before, we carry out the proof for real normed spaces and remark that the exact same
proof, with R and Q replaced by C and Q + iQ, apply in the complex case.

Proof. We prove that if span(S) is dense, then also the set

N
Y::{;aisi:aiEQ,siES,NeN}

of rational linear combinations of elements of the set S is dense in X.

Indeed given any x € X and any € > 0 we can first use that span(S) is dense in X to
determine 5; € S and a; € R, j = 1,..., N, so that ||z — Zjvzl a;5;|| < /3. In a second
step we can now use that every element in the closure S of a set can be approximated by
elements of the set S to determine s; € S so that for every j we have |a;||s; — 55| < 5%
Finally, we use that Q is dense in R to determine rational numbers b; so that for every j also

laj —b;] - ||s;]| < 5% All in all we hence obtain an element y = Z;VZI bjs; of Y for which

N N N
A
lz =yl < lle =D aisill + 1D (a5 — bisp)ll < /34> llass; — ajs; + ajs; — bys;|
j=1 j=1 j=1
A N N
<e/34+ ) lajllls; — sill + D laj — bylllsyll < e
j=1 j=1

(5.1)
To conclude the proof of the proposition it is thus enough to show that Y is countable.
Writing S = {s1, 2, ...} we obtain a surjective map f : A — S from the set

A= U {(al,...):ake@andak:OforeverykZN—i-l}
NeN
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of finite rational sequences to Y by defining s(a) := >_; a;s; for a € A (we note that this
sum is well defined as only finitely many terms are non-zero). As A is the countable union
of sets that are bijective to QV, we know that A is countable and hence that also Y is
countable. ]

We are now in the position to prove that the following important Banach spaces are
separable.

Proposition 5.0.7 (Separablility of /7 and L? for 1 < p < oo and of C(K)).
o C(K) is separable for any compact set K C R™.
e The sequence space (P(F), F =R or F = C, is separable for 1 < p < oc.

e The function spaces LP(K) is separable for any compact subset K C R" and any
1 <p<oo.

We remark that more generally LP((2) is separable for arbitrary (measurable) domains
QCR"and 1 <p < o0.

Proof of Proposition |5.0..
Proof of (i):
The set of monomials {z® = 7' ... 2%, o € Njj} is countable and by Weierstrass’s Theorem
we know that its span, i.e. the space of polynomials, is dense in C'(K'). By Proposition m
we thus get that C'(K) is separable.

Proof of (ii): We let Y := span(S) where the countable set S = {e®), k € N} consists of

all sequences e for which the e§k) = 5;“.
Given any element = (y,...) € (F we can now use that since ) 72 [2;|” converges, we
obtain that the cut-off sequences 2*) := (x1,...,14,0,0,...) approximate z in the sense of

¢, namely ||z — 2®||,p = (2j>k+1 ]:L’j\p)l/p — 0 as k — oo. We thus conclude that Y is
dense in /7 and thus obtain from Proposition that P is separable.

Proof of (iii), Variant 1 (using Theorem [4.3.1)):
From Theorem [4.3.1f we know that C°°(K) is dense in LP(K) and hence in particular that
C(K) is dense in LP(K). We now claim that C'(K) is separable also when equipped with the

L? norm instead of the usual sup-norm. Indeed as || f||» < ( [, || f]I% )l/p < LE)YP| £l sup

sup
we know that if a sequence f,, converges to some element f € C(K) in the usual sense of the

sup-norm, then also

Ifr = Flle < LK) ) fo = fllsup — 0.

Hence any set D C C(K) that is dense with respect to the sup-norm, will also be dense with
respect to the LP norm. In particular the set of polynomials is dense also in (C'(K), || - ||z)-
Combined with the density of C(K) C LP(K) and Lemma we thus conclude that the
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space of polynomials is dense in LP(K). The claim that L? is separable hence again follows
from Proposition [5.0.6|and the fact that the space of polynomials is spanned by the countable
set {2 o € Nj} of monomials.
Proof of (iii), Variant 2 (using density of step functions) for K = [a, b]:

We use without proof the fact that the space of step functions, that is finite linear combina-
tions of characteristic functions of intervals, is dense in LP. We then note that given any inter-
val [e,d]| C [a, b] with real endpoints, we can choose ¢,, d,, € Q so that ¢,, — ¢ and d, — d and
that this guarantees that X, 4, = X[e.d i LP as || X(e.q — Xjesai)|| < (¢ — | +]d — di)/P — 0.
Hence also the span of all characteristic functions x. g of intervals with rational endpoints
is dense in L” and as the set of such functions {x(.q,c < d,¢,d € Q} is countable we obtain

from Proposition that LP([a,b]) is separable. O

Once we have established that a space e.g. C'(K) is separable, we get for free that also
any subspace (equipped with the same norm) is separable:

Proposition 5.0.8. Let (X, | - ||x) be a separable normed space and let Y be a subspace of
X. Then also (Y,|| - ||x) is separable.

Here it is very important that the subspace is equipped with the norm of X, not any
other norm. E.g. we can see L*°(]0, 1]) as a subspace of L'(]0,1]) and the above proposition
implies that if we were to equip L>([0,1]) with the L' norm (which is not often done in
practice as we would end up with a space that is not complete) then this would give us
a separable normed space, while L*>([0, 1]) equipped with the ’correct norm’, i.e. the L
norm, is not separable (however it is complete which in practice is more important).

Proof of Proposition[5.0.8. As X is separable there exists a countable dense subset Dy :=
{zx,k € N} € X. To prove that Y is separable, we now need to determine a subset of ¥
that is dense in Y. To this end, we use that (by the definition of the infimum) we can choose
for any k,n € N an element y,, € Y so that

. I . 1
@) = yrnll < dist(ze,Y) + — = inf [lzp —y| + —
n yey n

note that D := {yxn, k,n € N} is countable. We claim that D C Y is dense. Indeed, given
any y € Y and any € > 0 we can first use that Dx is dense in X to find some z; with
|y — x|l < 5, which we note implies in particular that dist(zy,Y) < 5. Choosing n large
enough so that 1 < £ we hence know that |2y — yp | < dist(zx,Y) + £ < % and hence get

that
e 2

v = Yenll <y — xkl| + |26 — vinll < 3 + =

]

Finally we want to give a brief outlook on the use of separability and density of subspaces:
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e Existence of a basis? One might ask whether for separable space (X, || - ||) there is a

‘useful notion’ of basis of a space, and whether in a separable space one can expect
such a basis to have good properties (e.g. be countable). There are several notions
of basis for normed spaces that will be discussed in part C Functional Analysis, and
while every space admits a so called Hamel basis S (a set S so that every element of
X can be written as finite linear combination of elements in S and that is so that that
every finite subset of S is linearly independent), such Hamel bases are not much use
in practice as one can show that a Hamel basis of a Banach space is either finite (if X
is finite dimensional) or else uncountable (c.f. Part C Functional Analysis ). A more
useful notion of basis is that of a Schauder basis (a set {si, sa, ...} so that every z € X
has a unique norm-convergent representation r = Z;’il Ajsj) and such a Schauder
basis exists only for separable spaces (though as you will see in Part C Functional
Analysis not for every separable space).

In the special case of Hilbert-spaces one has the following stronger and very useful
result: Every separable Hilbert space has a countable orthonormal basis {e,, } (Theorem

T220).

Simplifications of proofs: The main application of separability in the present course
will be that it will allow us to give a proof of some of our main results in case of
separable spaces, most notably the Theorem of Hahn-Banach that we discuss in the
next section, that avoid the use of Zorn’s lemma.

In applications, it is often possible to reduce the proof of a property or inequality to first
proving the claim for a dense subset of “nice” elements of the space, such as smooth
functions in case of LP and then a second step that uses the density of such functions
to prove that this property extends to the whole space. Similarly, as a bounded linear
operator T' € AB(Y,Z), Z a Banach space, that is defined on a dense subspace Y C X
has a unique extension to an element T € Z(X,Z), in many instances one defines
operators first on a dense subset of “nice” elements (e.g. continuous functions) and
then extends this operator to the whole space.

Many instances of such arguments can be seen in the Part C course on Functional
analytic methods for PDEs.

Approximating problems on infinite dimensional spaces by finite dimensional problems:

For separable spaces there exists a sequence of finite dimensional subspaces Y; C Y5 C
... of X so that (JY; is dense in X. This property is used in many instances (be it to
try to prove the existence of a solution of a problem, like a PDE, or more practically in
numerics to obtain an approximate solution) when considering problems on separable
Banach spaces (e.g. subspace of LP, 1 < p < 00). The idea of this method (also called
Galerkin’s method) is to first determine solutions x, € Y,, of approximate problems
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defined on the finite dimensional spaces Y,,, where results from Linear Algebra such
as the rank-nullity theorem apply (and e.g. ensure that an operator 7' : Y; — Y]
is invertible if and only if it is injective) and then hope to obtain that z, converges
to a solution x of the original problem (in some sense, usually one only obtains so
called “weak convergence”, see Part C courses on Functional Analysis and Fixed Point
Methods for Nonlinear PDESs), respectively in applications in numerical analysis that
x, provides a good approximation of the solution.
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Chapter 6

The Theorem of Hahn-Banach and
applications

The most important special case of linear operators between Banach spaces is the space of
bounded linear functionals, i.e. bounded linear maps into R (respectively C).

Definition 6.0.1. Let (X, || - ||) be a normed space. Then the dual space of X is defined as

X" = B(X,F) equipped with the operator norm
[fllx» == mf{M : |f(z)| < M|z for every x € X},

where as always F =R if (X, || -1|) is a real normed space, respectively F = C for complex
spaces.

We remark that since R (and C) are complete we know from Theorem that the dual
space of any normed space is complete.
We also recall that for any f € X*

[F@@)] < [Lf ] || for all z € X.

We note that if f € X* and Y is a subspace of X (as always equiped with the same norm
to turn it into a normed space), then we can restrict any f € X* to obtain an element f|y
of Y*, where we of course set f|y(y) := f(y). We note that the definition of the operator
norm immediately implies that || f|y ||y« < ||f]|x+-

Conversely we may ask whether we can extend a functional g € Y* to a bounded linear
operator G € X*, where we call such a G an extension of g provided G|y = g.

We have already seen that if Y is dense in X such an extension not only exists, but
is furthermore unique and indeed the extension operator £ : Y* — X* is an isometric
isomorphism, compare Theorem [£.1.3] While this result holds true for linear operators into

29
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a general Banach space, the results that we will prove in this chapter are valid only for
elements of the dual space, i.e. functions that map into the corresponding field F = R
respectively F = C.

The main result in this chapter is the Theorem of Hahn-Banach, that assures in particular
that we can indeed extend any element f € Y*, Y an arbitrary subspace of X, to an operator
F € X* without increasing its operator norm, compare Theorem below.

6.1 Statement of the Theorem of Hahn-Banach

The first version of the Theorem of Hahn-Banach shows that we can not only extend bounded
linear functionals from a subspace to the whole space, but we can do this in a way that does
not increase their operator norm, namely

Theorem 6.1.1 (Theorem of Hahn-Banach on the existence of a bounded extension). Let
X be a (real or complex) normed space, Y C X a subspace and let f € Y* be any given
element of the dual space of Y. Then there exists an extension F' € X* of f, i.e. an element
F of X* so that F|y = f, so that

£

X* = Hf|

To keep things simple, in the rest of this section, we only discuss the case when X is real.
We note that for any extension F' € X* we trivially have the inequality

x-= sup |[F(z)|> sup |F(y)|= sup |[f(y)|=|f]
EX,||al|=1 yev,lyl=1 yev,lyl=1

Y*-

£

Y*

so to prove the above result it is enough to prove that there exists a linear extension of f so
that |F'(x)| < p(x) for all x € X where we set p(x) := || f|| ||x||. We note that as F' is linear,
this condition is equivalent to having

Fz) <px) = [[f] l=]] for all z € X

as this then also implies that —F(z) = F(—x) < || f]|||z||. We also recall that we are dealing
with real vector spaces, and hence functionals with values in R, so the above inequality is
well defined.

Indeed the general version of the Hahn-Banach Theorem assures that such an extension
exists for a much larger class of functions p than just the p(z) = || f]|||=] that we obtain in
the context of Theorem [6.1.1], namely for all p : X — R that are so called sublinear:

Definition 6.1.2. Let X be a real vector space. Then p: X — R is called sublinear if for
every x,y € X and every A > 0 we have that

p(r +y) < p(x) +ply) and p(Ax) = Ap(z).
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We note that we do not require that p is non-negative. We also note that every norm,
and indeed every seminorm, on X is a sublinear functional. There are also many other
constructions that yield sublinear functions that are important in applications (as discussed
e.g. in Part C Further Functional Analysis), such as the so called Minkowski functional
associated to each convex set C' that contains the origin, compare section [6.4]

To get a simple example of a sublinear functional that is not induced by a semi-norm, we
can consider any linear function p : X — R, or to a get a more geometric example consider
p: R™ — R that is defined by p(z) = max(z,,0), i.e. that is given by the distance of a point
x to the halfspace {x : x, <0}.

The general version of the Theorem of Hahn-Banach (for real vector spaces) is

Theorem 6.1.3 (Theorem of Hahn-Banach (general sublinear version)). Let X be a real
vector space, Y C X a subspace and p : X — R sublinear. Suppose that f Y — R is a
linear functional with the property that

f(y) <ply) for ally €Y.

Then there exists a linear extension F: X — R so that
F(z) < p(x) for all z € X.

WARNING. The Theorem of Hahn-Banach is specific to functionals, that is maps from a
vector space to the corresponding field F, and does not hold true for linear operators between
two normed spaces.

One can e.g. show that there is no continuous linear extension of the identity map
Id:co — co to amap f: 0> — cy where cg C L™ denotes the closed subspace of all sequences
that tend to zero.

6.2 A very special case of the Theorem of Hahn-Banach

In this course we shall only give the proof of a very special case of the Theorem of Hahn-
Banach.

Lemma 6.2.1 (1-step extension lemma). Let X be a real vector space, p : X — R sublinear
and let Y, Y be subspaces of X which are so that there exists some xg € X so that

Y = span(Y U {zo}).

Then for any linear f :'Y — R for which f(y) < p(y) for all y € Y there exists a linear
extension f Y — R so that

f@) < p() foralljeY.
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Proof of Lemmal0.2.1. If zy € Y then the claim is trivial as Y =Y. So suppose instead
that zp ¢ Y. Then we can write every ¢ € Y uniquely as

y =1y + Axy for some A € R
so given any number r € R we obtain a well defined linear map fr .Y — R if we set
frly + Axo) := f(y) + A\r for every y € Y and A € R

and note that f,,]y = f no matter how r is chosen. We now need to show that we can choose
7 so that this function f has the required property that f,(§) < p(g) for all § € Y, which is

equivalent to
Ar < p(y + Axg) — f(y) for ally € Y, A € R. (6.1)

We first note that for A = 0 this is trivially true no matter how r is chosen as by
assumption f <pon Y.
For A\ > 0 the above inequality (6.1)) holds true if and only if

r < 3[p(y+ Azo) — f(y)] = p(3y + 20) — f(5Y)
for all y € Y or equivalently, setting v = %y and using that Y is a vector space, if and only
if
r < inf (p(v+ 20) — (0)). (6.2)
For A < 0 we write A\ = —|\| to rewrite (6.1) as —|A|r < p(y — |A|xo) — f(y). We hence
obtain that (6.1)) is satisfied for all A < 0 and y € Y if and only if
~AI T (ply = Mzo) = F()) = FIA ) = (A ™y — o),

i.e. if and only if r is chosen so that

r > sup (f(w) — p(w — z0)). (6.3)

weyY

For f, to be the required extension we thus need to choose r so that both (6.2) and (6.3))
hold, which is possible provided

inf (p(v+ xo) — f(v)) > sup (f(w) — p(w — x0)).

veY weY
However this easily follows since for any v, w € Y we have that
(p(v+ z0) — f(v)) = (f(w) — p(w — 0)) = p(v + z0) + plw — z9) — f(v+ w)
zpv+w) = flv+w) =0

where we use the sublinearity of p in the second and the assumption that f < p on Y in the
last step. O
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The proof of the general version of Hahn-Banach uses this lemma together with an
argument based on Zorn’s lemma to obtain the desired extension as a maximal element of
a partially ordered set of pairs (Y f ) of subspaces Y of X that contain Y and extensions f
of f with f < p. This will be carried out in detail in C4.1 Further Functional Analysis.

6.3 Some applications of the Theorem of Hahn-Banach
As a first application of the Theorem of Hahn-Banach we obtain the following useful result

Proposition 6.3.1. Let (X, |- ||) be a normed space. Then for any x € X \ {0} there exists
an element f € X* with || f|| =1 so that f(z) = ||z].

Proof. Let Y = span(z) and define g(Ax) = A||z|| for A € F. Then g € Y* with ||g|| = 1 and
hence g has an extension f € X* with ||f|| =1 and f(z) = g(z) = ||z||. O

This result has several useful consequences, including the following ’dual characterisa-
tions’ of the norms on X and its dual space X*

Corollary 6.3.2. Let (X, | -]]), X # {0}, be a normed space. Then
(i) For every x € X we have ||z||x = sup e x| =1 |.f(2)]-

(ii) For every f € X* we have || f|

X* = SUPgeX [lz) x=1 | f()].

Proof. We already observed that the second statement is an easy consequence of the defi-
nition of the operator norm on X. For the proof of (i) we observe that Proposition [6.3.1]
implies that ||z x < supsex« ¢|y.=1 |f(7)] While the reverse inequality is trivially true since
[f (@) < [If 2]l = [l for every f e X* with [|f]| = 1. O

We note that while the supremum in (i) is in general not achieved, Proposition [6.3.]]
implies that the supremum in (7) is always achieved.

A further important consequence of Proposition is that it allows us to separate
points

Corollary 6.3.3. Let (X, || - ||) be a normed space. Then for any two elements v # y of X
there exists an element f € X* so that

f(x) # fy).

This corollary follows as Proposition allows us to choose f € X* so that f(z —y) =
|z —yl| # 0.
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6.4 Geometric interpretation and further applications

We first note that the kernel of an element f € X*\ {0} has codimension 1 , namely

Lemma 6.4.1. Let X be a normed space and let f : X — F, F = R respectively F = C be
linear so that f # 0. Then for any xo € X for which f(x¢) # 0 we have that

span(ker(f) +{zo}) = X

Proof. Let o € X be so that f(z¢) # 0. Given any z € X we set A := /(@) and note that

f(zo)
f(z — Axg) = 0. Hence x — Azg € ker(f) and thus = € span(ker(f) + {zo}). As z € X was
arbitrary, this establishes the claim. O]

Geometrically we can think of Corollary as follows: As Lemma [6.4.1] implies that
the kernel of f has codimension 1 we can think of the sets {x : f(x) = A} as hyperplanes in
X (that is shifts of a subspace with codimension 1) that divides our space X into two parts,
namely {z : f(z) < A} and {x : f(z) > A}. The above corollary hence ensures that we can
separate any two points by a hyperplane, with = and y on either side of it.

A slightly more general form of this result that we can prove is that we can separate
points from closed subspaces.

Proposition 6.4.2. Let (X, ||-||) be a normed space, Y a proper closed subspace of X. Then
for any xo € X \'Y there exists an element f € X* with || f|| =1 so that

fly = 0 while f(x¢) = dist(zo,Y).
We note that since Y is closed we necessarily have dist(zg, Y) > 0.

Proof of Proposition [6.4.3 We define a suitable linear map g on the subspace U = span(Y U
{z0}) and then use Hahn-Banach to extend g to f.

To this end we note that every u € U can be written uniquely as u = y + Az( for some
A € R and y € Y so that defining

g(y + A\xg) := Ad, where d := dist(x,Y) > 0

gives a well defined linear map on Y which has the property that g(z¢) = d and g|y = 0.
To see that ||g||y« < 1 we note that for any u =y + Axg € U

ly + Azol| = [Al [lzo — (=A""y)|| = [A| Inf [lzo — gl = [Ald = lg(y + Azo)].

To prove that ||g|| = 1 it hence remains to prove that ||g|| > 1, or equivalently that for

any £ > 0 there exists 2 € X \ {0} so that ¥ > 1 — ¢, where it is of course enough to

llzl

consider € € (0,1). To obtain such an x we note that by the definition of d = dist(xg,Y),
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we can find for any ¢ > d, an element y € Y so that |2g —y|| < ¢. We chose ¢ = -=d, which
is strictly larger than d since d > 0, and hence obtain an element xy — y € X for which

|5|’|%°:yﬁ|)l = on‘iy” > ¢ =1 — ¢ as required. Having thus shown that ||g|| = 1 we now obtain
the required f € X* with f|y =0, f(zo) = d and ||f|| = ||g|| = 1 by applying the Theorem
of Hahn-Banach. O

There are far stronger versions of such ’geometric forms of Hahn-Banach” which will be
discussed in the part C course on Functional Analysis. As already simple examples in R?
show, we cannot expect to separate sets by straight lines without imposing some constraints
on their geometry. Unsurprisingly, a key role is played by the convexity of sets and one of the
results of Part C Functional Analysis will be to prove that if A is closed and B is compact
and if both sets are convex, then these sets can be strictly separated by a hyperplane in the
sense that there exists an element f € X* and a number A € R so that

itelgf(a) <A< inf f(b).

The proof of this result uses the sublinear version of the Theorem of Hahn-Banach and the
fact that for an open convex set C' containing the origin, one can define a sublinear function
by p(z) := inf{\ > 0: 2z € AC} (called the Minkowski functional).

Such general results play an important role also in applications to PDEs and in other
advanced topics in functional analysis but go beyond the remit of this course.

To formulate another useful consequence of Proposition [6.4.2] we introduce the following
notation

Definition 6.4.3. Given any subset A C X, we define the annihilator of A to be
A ={feX": fla=0}
Furthermore, for subsets T' C X™* we define

T, = {wEX : f(x) =0 for alleT} = ﬂ ker(f).

fer
We may now prove
Proposition 6.4.4. Let (X, || -||) be a normed space. Then the following hold true:

(i) Let S C X. Then span(S) is dense if and only if the annihilator of S is trivial, i.e.
S°={0} Cc X*

(i) If T C X* is so that span(T) is dense in X* then T, = {0} C X.
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Proof. (i) Suppose first that span(.S) is dense. Then for any f € S°, we have by linearity
that also f|y = 0 where we set Y = span(S). As Y is dense in X we thus get that
f =0 by Lemma [4.1.4]

Conversely, suppose that span(S) is not dense. Then Y = span(S) is a closed proper
subspace of X so we can choose o € X \ 'Y and apply Proposition to obtain an
f € X* with fly =0 and f(zo) = ||zo]| # 0 so have found an element f # 0 of S°.

(ii) Suppose that there exists x € T, with z # 0. Then by Corollary there exists

f € X* so that f(z) # f(0) = 0. If span(7) is dense in X* we can however find

a sequence (f,) of elements of span(7T") that converges f, — f in the sense of X*.

Note that since z € T, we have that f,(x) = 0 which leads to a contradiction as
0# f(z) = limy, 00 fr(2).

O

We note that as the kernel of any element f € X* is closed, we know that T, is an
intersection of closed subspaces and hence itself a closed subspace of X. Also one can easily
check from the definition that the annihilator of any set A C X is closed subspace of X*.
Furthermore we have

Lemma 6.4.5. Let A be any subspace of a normed space X. Then

A= (A,

Proof. “C” As (A°), is closed, it suffices to prove that A C (A°),. Let a € A. Then by defi-
nition of the annihilator of A we know that f(a) = 0 for any f € A° and hence that a € (A°),.

“D” Suppose that there exists an element z € (A°), so that x ¢ A. As A is a closed
subspace of X we know from Propositionthat there exists some f € X* so that f(z) # 0
but with f|5 = 0, i.e. with f € (A)° and hence f € A°. But this contradicts the assumption
that € (A°),.

O



Chapter 7

Dual spaces, second dual spaces and
completion

In this chapter we further discuss the special properties of functionals, describe the dual
spaces of some important spaces encountered earlier, take a first look at the second dual
X** of a normed space, that is the dual space of the dual space X* of X and explain how a
space always embedds into its second dual and how this can be used to view a non-complete
normed space as a subspace of a complete space.

7.1 A basic property of linear functionals

To begin with, we note that for linear functionals, we have the following characterisation of
continuity

Lemma 7.1.1. Let X be a normed space and let f : X — F, F = R respectively F = C be
linear. Then the following are equivalent

ker(f) is closed <— f € X".

Proof. “<” As f is continuous and {0} is closed we get that the preimage ker(f) = f~1({0})
is also closed.

“=" The claim is trivial if f = 0 so suppose that f # 0 and let xy be so that f(xq) # 0,
where (after replacing zy by a multiple of xy) we can assume without loss of generality that

We first note that since ker(f) is closed, we know that dist(xg,ker(f)) > 0, compare
problem sheet 0. We now claim that for every x € X

|f(z)| < 07Y|x|| where 6 := dist(zq, ker(f)) > 0

67
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which will of course imply that f € X*.

This claim is trivial for o € ker(f) so suppose instead that f(x) # 0. We note that since
f(zo) = 1 and since f is linear we have that x — f(z)xy € ker(f). Hence also —ﬁ(m —
f(x)xg) € ker(f) and must thus have distance of at least § from x, which implies that

1
0 < w0 + W(x = f@)zo)ll = 75

and thus that indeed |f(z)| < §7Y|z|. O

7.2 Riesz representation theorem and dual spaces of
Hilbert spaces

If X is a Hilbert space, and = € X is fixed, then (y,z) = £(y) is a linear functional of y, i.e.
¢ maps X linearly into R or C. Furthermore, ¢ is bounded, thanks to the Cauchy-Schwarz
inequality, and so ¢ € X*. It turns out that all bounded linear functionals on a Hilbert space
arise this way:

Theorem 7.2.1 (Riesz representation theorem). Let X be a real (or complex) Hilbert space
and £ : X — R (or C) be a bounded linear functional. Then ¢ is of the form

Uy) = (y,x) forallye X
for some x € X. Furthermore, the point x is uniquely determined and ||z|| = ||¢]|«.

Remark 7.2.2. When X is real, the above statement means that there exists an isometric
isomorphism ™ : X — X* such that (wz)(y) = (y,x) for all z,y € X and ||rz|. = ||z
So the spaces X and X* are topologically equivalent, i.e. they are the same up to isometric
1somorphism. It is notated as X* = X or even just X* = X.

When X is complex, the map © defined above remains a surjective isometry, but it is
skewlinear instead of linear: w(A\x) = Arx for A € C,z € X.

Proof. If £ =0, then x = 0. Assume henceforth that ¢ # 0. Let Y be the kernel of ¢. Then
Y is a closed subspace of X. By Theorem X=YaY

Since Y1+ =Y is a strict subspace of X (as £ # 0), Y contains a non-zero element, say
y*. Note that £(y) # 0. Then for any z € X, we have

lz) |
z2———=y €Y =Ker/
((y*)
Taking inner product with y* yields
J_> . E(z)
((y+)

(z,y |y*||* =0 for all z € X.
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In other words, x can be chosen as

é(yL) 1
T = Y
[y |2

The uniqueness is obvious.

For the last assertion, we note by the Cauchy-Schwarz inequality that ¢(y) = (y,z) <
lyll||z|| and so ||€]]« < [|z]|. On the other hand, we have ||z||* = (x,z) = {(z) < ||¢||.]|z| and
so ||z|| < ||4]|«. This completes the proof. O

We note the following result which is true for more general vector spaces.

Remark 7.2.3. (i) The kernel of a non-trivial linear functional on a normed space is a
closed linear subspace of codimension one. See Lemmal0.4. 1.

(i1) If two linear functionals on a vector space have the same kernel space, then they are
multiples of each other.

7.3 Dual spaces of particular spaces

We recall from Linear Algebra that if X is a finite dimensional space then we can associate to
each basis eq, ..., e, of X a dual basis fi,..., f, of X* by defining f;(e;) = d;;. In particular
X and its dual X* are isomorphic.

WARNING. As so often in this course, the finite dimensional case leads to the wrong intu-
itron for general normed spaces. In general, the dual space can have very different properties
than a space itself, e.q. we can have that X is separable while X* is inseparable, we will
have that the dual space of any normed space is complete, even if the space X itself is not
complete....

To describe the dual space of a given space X, we would like to find another normed
space which is isometrically isomorphic to X, written for short as X = Y, i.e. for which
there exists a bijective linear map L : Y — X so that

| Ly||x = ||ly||y for all y.

Often it is not too difficult to find a space Y and a map L so that L : Y — X* is isometric,
i.e. so that ||Ly||x = ||ly||y for all y, and hence also injective, but it can be difficult to find a
space Y that is large enough so that it represents all elements of X*, i.e. so that the map L
is surjective, respectively to prove that a candidate Y for the dual space has this property.

In general, determining the dual space of a given normed space (X, || - ||) can be difficult
and already the dual spaces of some very familiar spaces such as C([a, b]) or L>(]a, b]) can be
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complicated and their description is beyond the scope of this course, though we remark that
in both cases the dual spaces can be identified with a suitable space of (signed) measures.
Examples of elements of (C|0, 1])* are e.g. the map T": f — f[O,l] fgdx for any g € L'([0,1])

but also maps like T": f — f (%) which one can interpret as the integral of f with respect to
a d-measure that is concentrated at x = %

On the other hand, for the sequence spaces 7 and the function spaces LP we have the
following characterisations if 1 < p < oo, which we stress do not apply if p = co. For
simplicity we consider real valued functions, though the results and their proofs also apply

in the complex case (with some extra complex conjugates).

Dual space of L?

In the following discussion, the relevant Lebesgue spaces are real. The complex case can be
obtained with some simple adjustment and is left as an exercise.

Theorem 7.3.1 (Dual space of LP). Let Q C R™ be measurable, 1 < p < oo and 1 < q < oo
be so that I% + % = 1. Then (LP(QQ))* = L9(QY) where the associated isometric isomorphism

L: LYQ) — (LP(Q2))* assigns to each f € LI(Q) the linear map L(f) € (LP(2))* defined by

(L()(g) = / fodr € R for g € LP(9).

In other words, the statement (LP(Q2))* = L%(€2) is a short-hand for the statement that
the map L above is a well-defined isometric isomorphism from L4(€2) into (LF(2))*.

When p = ¢ = 2, the theorem is a consequence of the Riesz representation theorem. The
proof will be split into two parts. In Part 1, we show that L is well-defined and isometric.
The argument though technical is fairly elementary in nature. In Part 2, we prove that L is
surjective. This part is substantially more involved and needs some preparation.

Part 1 of the proof of Theorem [7.5.1. We show that L is well-defined and isometric.
We note that since p, q are so that 110 + 1 =1 we know from Hoélder’s inequality that the

q
product fg of two functions f € L%(Q2) and g € LP(£2) is integrable and
| sadsl <1l (1)

We now remark that since the integral is linear, we have that for all f, f € Li(Q), A e R
and any g € L4(Q) that L(f + Af)(9) = Lf(g) + ALf(g), i.e. that the map L : f — Lf is
linear. Similarly, given any f € L(Q2) we have that for any g, g € LP(2) and any A € R that
Lf(g+2Xg) = Lf(g)+ ALf(g) so Lf is a linear map from L? to R and indeed an element of
(LP(Q2))* as it is bounded with

ILf(9)] |/ f9l £ 1l 4lg]l 2

| Lfllzrys = sup = sup < sup = = || f| e
gerigzo |19ller  geragzo l9llr ~ geragzo  llgllre
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where we used ([7.1)) in the penultimate step.
We finally show that also

1L f vy 2 [ Flla (7.2)

for every f € L9 and thus that L is indeed isometric.

This proof is a bit technical as we need to be careful with the exponents, so it can be
useful to first consider special cases such as p=q¢ =2 or p = 1,q = 0o, where the exponents
are much nicer to see the structure of the argument, before digesting the general case. We
first treat the case that p > 1 and hence ¢ < oo.

The estimate is trivial if f — 0 so suppose that f # 0. We choose g := |f|*"*f so
that fg = |f]* and hence L(f = [ [f%dz = || f||%,. We now note that since 117 + % =1
we have (¢ — 1)p = ¢ and so

loler = ( [lapaz)™ = ( [asevpar) ™ = ([ira)™ = sz

which means that

Lie) _ Ifl
HgHLP ||f||%;1 HfHLq

and hence that || Lf||(zr) > || f|lze as claimed in (7.2).
If p = 1 and hence ¢ = oo then we prove that for any € > 0 there exists a function g. € L!

so that H(gl > || fllze — €. To this end we consider the set A, := {x : |f(x)| > || fl|lz~ — €},

which is measurable (and well defined upto a null set). If this set has finite measure then
we define g.(z) := sign(f(z)) - xa. which is in L'(Q) with L'-norm equal to the measure of
A., which by the definition of the L* norm is positive. As fg > (||f|lze~ — €)xa. we can
thus immediately check that Lf(g) > (||f|lr~ — €)l|ge||z: which gives the claimed bound.
Finally, if A. has infinite measure, then we can replace A. by any subset A. C A. whose
measure is finite and positive and apply the above argument for the corresponding function
g- € L. O

Remark 7.3.2. By inspection, we see that the proof above can be slightly refined to show a
little bit more: It shows that if f is measurable, then

s =sup {| [ foda| g€ (@) gl =1 and fg € L'}

without presuming that f € LI(Q)! This is known as the converse of Hélder’s inequality.

We turn to the surjectivity of L. To avoid technicality, but still keeping the main point
intact, we assume for simplicity that  is bounded. The general case is dealt with by
approximating {2 by bounded measurable sets and is left as an exercise. We start with the
Radon-Nikodym theorem.
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Theorem 7.3.3 (Radon-Nikodym). Let 2 C R™ be a bounded (Lebesgue) measurable set and
let 1 be a finite signed measureﬂ defined on the o-algebra consisting of measurable subsets
of Q. Suppose that 1 is absolutely continuous with respect to the Lebesque measure, that is,
every set that has zero Lebesque measure has zero p-measure. Then du = fdx where f is
some integrable function with respect to the Lebesque measure:

u(E) = / fdx for every measurable E C ).
E

Moreover, if i is non-negative, so is f.

Proof. We follow the proof of von Neumann. We will only consider the case p is non-
negativeﬂ

Let X be the real Hilbert space L?(§, u+dx) with the norm [|g||* = [, [g]*du+ [, |9|* dz.
Define

K(g):/ﬂgdx for f € X.

By the Cauchy-Schwarz inequality, ¢ € X*. Thus, by the Riesz representation theorem, we
can find some h € X such that

€(g)=/ghdu+/ghd:v for all g € X.
Q Q

This can be rewritten as
/g(l—h)d:v:/ghdu for all g € X. (7.3)
Q Q

We are now tempted to define f = % and try g = %XE in ([7.3) to conclude. Each of those
has complication and we will treat them in order.
a) Proof of non-negativity and almost everywhere finiteness of f := =%, To this end,
g Yy Yy h
we need to show that

0 < h <1 except on a set of measure zero.

!This means that y is a function from the o-algebra consisting of measurable subsets of € into R which
is o-additive: p(U32,E;) = 3772, u(E;) for measurable and mutually disjoint E}’s.

2The general case of a general finite signed measure is treated using the Hahn-Jordan decomposition
theorem, which we do not require for this course. For those who are interested, this theorem asserts that
there exists a partition of Q = QT UQ~ with Q* measurable such that u(E) > 0 for E C QF and u(E) <0
for E C 7, and consequently ;1 can be written as the difference of two non-negative measures p = p* — p~
with p*(E) = |u(E N QF)|. Note that if |[E| = 0, then |[E N Q*| = 0, hence p*(E) = 0, that is u* are
absolutely continuous with respect to the Lebesgue measure. Therefore, it suffices to consider the case of
non-negative measures.
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Let F' = {h < 0}. Choosing g = xr in (7.3), we get

O§|F\§/(1—h)dx:/hd,u§0.
F F

This implies |F| = 0.
Let G = {h > 1}. We choose g = x¢ in ([7.3) and get

0> [(1=mdr= [ nau> (@) >0

where the first inequality is strict if |G| > 0. This implies that |G| = 0. We have thus
proved that 0 < h < 1 except on a set of zero Lebesgue measure. Consequently, f = % is
non-negative and almost everywhere finite.

(b) Proof of integrability of f and the identity u(E) = [, fdz. For N > 0, choosing
g =min{3, N}xg in (7.3) gives

/Emin{f,N(l—h)}dx:/Emin{l,Nh}d,u.

As N — 00, the integrands on the left and the right hand sides increase a.e. in F to f and
1 respectively. By Lebesgue’s monotone convergence theorem, we have

/Efdx:/Eldu:u(E).

Note that in the case £ = €, this gives that [, fdx = p(2) < co which implies that f is
integrable (since f > 0). The proof is complete. O

Part 2 of the proof of Theorem when ) is bounded. We show that L is surjective when
(2 is bounded.

Let ¢ € (LP(2))* and we would like to find f € L%(2) such that ¢(f) = [, fgdz for all
g € LP(Q).

Observe that the set function ¢ (E) = {(xg) is o-additive (that is, a signed measure) and
absolutely continuous with respect to the Lebesgue measure. (Note that 1 is well-defined
as xg € LP(Q), thanks to the boundedness of 2.) By the Radon-Nikodym theorem, there
exists a function f € L'(2) such that

Y(E) = / f dz for all measurable £/ C €.
E

This implies that
lxg) = / f dx for all measurable E C (2,
E
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and so by linearlity
l(s) = / fsdz for all simple functions s.
Q

Consider h € LP(Q)NL>®(€2). Recall from Part A integration that there exists a sequence
(h;) of simple functions such that |h;| < |h| and h; — h a.e. It then follows by Lebesgue’s
dominated convergence theorem that

((h) = lim £(hy) = lim | fhyde "=" / lim fh;de = / fhdz.
Q Q

j—o0 J—= Jq J—0

(Note that we do not need the (essential) boundedness of h for the existence of the ap-
proximating sequence (h;) but we need it in the application of the dominated convergence
theorem.)

Consider next g € LP(€2). We approximate ¢g by truncation:

aula) = {9@6) if |g(2)| < k.

0 otherwise,

so that gx — ¢ in LP(Q2), in view of Lebesgue’s dominated convergence theorem. Then
l(g) = lim ¢(gg) = lim /fgk dx,
k—o00 k—oo Jq

but at this point we have difficulty to interchange the limit and the integration. We circum-
vent the issue as follows: Consider the function gy = |gx|sign(f). We have

ez lollzs = Wllaoy Lo = 1601 = | [ fauda] = [ 1Al de

Sending k — oo and using Lebesgue’s monotone convergence theorem, we have ||€||zr)+[|g|| » >
Jo [f1lgl dz, that is fg is integrable. We can now continue the previous chain of identity with
Lebesgue’s dominated convergence theorem to obtain

k—o0

l(g) = lim/fgkdx DQT/ lim fgkdx—/fgdx.
Q qQ k—oo Q

By the converse of Holder’s inequality, this also implies that f € LI(Q):

o= s | [ ggae| = s (el = el

geLr(Q),llgllLr=1 geLr (), llgllLr=1

This concludes the proof. O
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Dual space of /*
The analogue result for the sequence spaces is

Theorem 7.3.4 (Dual space of /P(R)). Let 1 <p < oo and 1 < g < oo be so that %Jré =1.
Then (¢7)* = (1 where the associated isometric isomorphism L : (49(R) — (¢P(R))* assigns to
each x € (7 the linear map L(x) € (£P)* given by

(L(@)(y) =Y wjy; €R  fory € F(R).

J=1

Similar to the case of Lebesgue space, the statement (¢7)* = ¢4 is a short-hand for the
statement that the map L above is a well-defined isometric isomorphism from ¢ into (¢7)*.

The proof that L is a well defined isometric linear map from ¢9 to (¢7)* is exactly the
same as for the function spaces LP (replacing functions by sequences and integral by sums),
so we do not repeat it.

Instead we explain how one can prove surjectivity of the map L in case of p = 1 to show

that indeed (£1)* = ¢*:
Proof of surjectivity of L : £> — (£')*. Given f € (£')* we define a sequence = = (z;) en by
setting z; = f(e) where as usual e is the sequence with el = §;,. Then

25| < I £llen-lle s = 1 £l

so x € (. We now claim that Lx = f. To see this we note that since both Lz and f
are linear and as by construction (Lz)(e%) = z; = f(e?), we know that f|y = Lz|y for
Y :=span({eV), j € N}). As Y C ¢! is dense, compare with the proof of Proposition 19.0.7}
we thus obtain from Corollary that indeed f = Lz. O

The proof of surjectivity of L for general sequence spaces /7, 1 < p < oo is very similar
(though one needs to be more careful with the exponents).

WARNING.
(62)* 2 (' and (L®(Q))* 2 LY(9).

While the analogue of the maps L defined in Theorems|7.5.1 and |7.5.4] also give isometric
linear maps from L' to (L>)* (respectively (' to (£>°)*) these maps are not surjective. For the
sequence spaces one can show that (' is isomorphic to the dual of a subspace of £, namely
(co)* = (1, where cy denotes the subspace of all sequences that converge to zero, compare
problem sheet 4.

To see that L : (* — (£°)* cannot be surjective, we consider the subspace ¢ C > of all
sequences that converge and let f : ¢ — R be the map that assigns to each x € c its limit
f(z) = limy, oo x,. Then f is clearly linear and bounded on (¢, || - ||«), so by Hahn-Banach,
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has an extension f € (£>)* (Note that this is an instance where we apply Hahn-Banach to
an inseparable space). But we cannot write f in the form f(z) = Ej; z;y; for some y € (*
so B(L') is a proper subspace of (£>°)*.

7.4 Dual operators

We recall the following construction from Part A Linear Algebra:

Let X and Y be any vector spaces over the same field F and let X’ := {L : X — F linear}
and Y’ := {L : Y — T linear} be the corresponding sets of linear functionals (so far we do
not introduce any norm on X and Y, so it would also make no sense to talk about continuity).

Then we can associate to any linear map

T:X—->Y

the map
7.7 — X'
where for any f € Y we define T'(f) € X’ by

(T"() (=) = f(T(x)),

and one easily checks that T'(f) is indeed linear, and thus an element of X', and that the
map f — T(f) is also linear. In the context of matrices, 7" is simply the transpose of T'.

We may now ask whether this construction works also in the setting of Functional Anal-
ysis, where we work with normed spaces instead of just vector spaces and bounded linear
operators instead of just linear operators. The following proposition answers this question
positively:

Proposition 7.4.1 (dual operator). Let (X, | - ||x) and (Y,|| - ||y) be normed spaces over
the same field F =R or F =C and let T € B(X,Y). Then the dual operator

T:7V"— X*
feT(f) e T(f)(2) = f(Tz)
is well defined and a bounded linear operator T" € B(Y*, X*) with

(7.4)

1T sz ) = 1T | sax, ) -

Proof. As already mentioned, the fact that for each f € X* the map T'(f) is linear and
that T itself is a linear operator is easily checked (and the proof is exactly the same as in
the finite dimensional case that was covered in part A Linear Algebra). We first show that
T'(f) € X* with

17" (Pl < [Tl x L flly= for every fe Y™ (7.5)
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which ensures that 7" is a well defined operator in Z(Y™*, X*) with || T"|| s+ x+) < |T||x,v)-
To see this we note that for every x € X with ||z||x =1

T'(H) @) = [FT @) < W = ITzlly <A Flv- 1Tl lzllx = 1]

so that ([7.5) follows from the definition of the operator norm. To see that also ||77|| > ||T°||
we will prove that

v+ || T 2x,v)

||T[)3||y S ||T,||gg(y*7X*)||:L‘”X forallz € X (76)

which implies that ||T|| = inf{M : ||Tx| < M|z||} < ||T’||

This estimate trivially holds true for all z € ker(T), so suppose that Tz # 0. Then
Proposition (which was a consequence of the Theorem of Hahn-Banach) gives us an
element f € Y* with || f|ly- = 1 so that

f(Tz) = ||Tx||.
Hence

1 Tzl| = f(Tx) = (T'(F) @) < IOl < WML = 1Tl

as claimed.
O

You have seen in Part A Linear Algebra that for finite dimensional spaces there are
several relations involving kernels of maps/dual maps and annihilators of the images of dual
maps/maps. Many of these relations have an analogue for general normed spaces, but one
needs to be careful in particular with statements that involve spaces, such as the images T'X
or T'Y™*, that are in general not closed, and such statements often require us to take the
closure of the corresponding sets. Some of these relations will be proven on problem sheet 4.

7.5 Adjoint operators

Let X and Y be Hilbert spaces and consider A € Z(X,Y). Then for fixed y € Y, (Az,y)y
defines a bounded linear functional on X. Thus, by the Riesz representation theorem, there
is some A*y € X such that (Az,y)y = (x, A*y)x. The map y — A*y from Y to X is called
the adjoint operator of A. This extends the notion of conjugate transposed matrices.

Proposition 7.5.1. The adjoint operator satisfies the following properties.
(i) (Az,y)y = (z, A"y)x.

(ii) There is a unique operator A* satisfying (1).

(i) A* € B(Y,X).
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() If we identify X with X* and Y with Y™ via the surjective isometric (skew)linear maps
wx and Y as in Remark then A* = ' A'my.

(v) [Allzeeyy = 147 20rx)-
(vi) A™ = A.
(vii) If A, B € B(X,Y) and a,b € C, then (aA+bB)* =a A* + b B".
(viii) If T € B(X,Y) and S € B(Y,Z), then (ST)* = T*S*.
If X =Y, we also have that
(viii) Tt = I.
(ix) A € B(X) is invertible if and only if A* is invertible.
Proof. Exercise. m

Example 7.5.2. Let X = R", Y = R™ and Ax = Mx where M is some m X n matrix.
Then A* is given by A*y = M*y where M* is the conjugate transpose of M.

Example 7.5.3. Let X =Y = L?(0,1) and A be the integral operator

(Af)(x) = /0 ke, y) () dy

where k : (0,1)2 — R is a given bounded measurable function. Then A is a linear operator
of L*(0,1) into itself. The adjoint operator A*, which is also a linear operator of L*(0,1)
into itself, is given by

(A"g)(z) = /0 k(y,z)g(y) dy.

This is because, by Fubini’s theorem,

(Af,g) = / / K(,9) £(y) dy 9(z) de

= [ 1) [ Femgw) dedy = (.4°9)

Example 7.5.4. Let X =Y = (? and R be the right-shift R((x1,2s,...)) = (0,21, 72,...).
Then R* is the left-shift L((x1,xa,...)) = (2,23, ...).

Example 7.5.5. Let X =Y = L*[R) and h : R — C be a bounded measurable function.
Define the multiplication operator My by Myf(xz) = h(x)f(z). Then M, € AB(X) and
M = M;.
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We have the following result on the kernel and image of adjoint operators.
Proposition 7.5.6. Let X and Y be Hilbert spaces and A € B(X,Y). Then
(i) Ker A= (ImA*)*.
(ii) (Ker A)* = Im A*.
Proof. Exercise. m

7.6 Second dual spaces and completion

As the dual space (X*, || - ||x+) of a normed space (X, || -||) is again a normed space, we can
consider its dual space X** which is called the second dual space or bidual space of X. The
most important property of this space is that it will always contain an isometric image of
the space X itself, obtained via the canonical map

it X o X7 i@)(f) = fx) (7.7)

that maps each element x to the functional i(z) : X* — R that evaluates elements f € X*
at the point z.

Proposition 7.6.1. Let (X, | -||) be a normed space and let i : X — X** be the canonical
map defined by (7.7)). Then i is linear and isomelric, i.e.

[li()]
WARNING. We remark that v is in general NOT surjective, e.g.

x= = ||z]|x.

(L1 = (L) 3 L1,

However, it turns out that for many important spaces the space X is isometrically iso-
morphic to its bidual X**. Spaces for which i(X) = X** are called reflezive, and their
properties will be further analysed in part C Functional analysis. Reflexivity (and also sep-
arability) is in particular relevant in applications, as it allows one to extract a subsequence
of any given bounded sequence that ’converges in the weak sense’ to some limit, a property
that is hugely relevant as one often tries to prove the existence of a solution of a problem
(be it an abstract equation on some Banach space, the existence of a minimiser in calculus
of variations or a solution of a PDE) by considering a sequence of approximate solutions
(or solutions of approximations of the problem) and hoping to find a subsequence of these
approximate solutions that converges in some sense to a solution of the original problem.

From the characterisation of the dual spaces of /7 and L” obtained above we know in
particular
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e (P isreflexive for 1 < p < oo as for ¢ € (1, 00) with z_la—i_% = 1 we have ((P)** = (¢7)* = (P

e L7 isreflexive for 1 < p < oo as for ¢ € (1, 00) with %—i—% = 1 we have (LP)** = (L9)* =
P

o L' L>® (' and ¢ are not reflexive.
By the Riesz representation theorem, we also know that Hilbert spaces are reflexive.

Proof of Proposition|7.6.1]. i is clearly a linear map from X* — R and as for any f € X*
with || f|

=1
i(@) ()| = [f@)] < [If =l = ||z

we have that

li(x)|[x= = sup  |f(z)] <[z
fGX*,Hf”X*:l

To see that also ||i(z)|| > ||z|| we now choose f € X* with || f||x~ = 1 as in Proposition [6.3.1]
so that f(x) = ||z||. O

We note that this argument is essentially just a repetition of the proof of Corollary
(i) which directly gives that ||i(z)|| = ||z]|.

As the dual space of any normed space is complete, we know in particular that X** is
complete and hence that every closed subspace of X** is itself a Banach space. This allows
us to view any non-complete normed space as a dense subspace of a Banach space.

Corollary 7.6.2. Let (X, || -||) be any normed space. Then (X, || - ||) is isometrically iso-

morphic to i(X) which can be seen as dense subspace of the Banach space (Y, || - || x+) where
Y =i(X) C X*.
A Banach space (Y, || - ||y) into which X embeds isometrically as a dense subset is called

completion of X. Such a completion is determined up to isometric isomorphisms, i.e. given
any two spaces Y, Y so that there exist isometric maps J : X — Y respectively J: XY
for which J(X) (respectlvely J(X)) is dense in Y (respectively Y), we have that there is a
(unique) isometric isomorphism [ : Y — Y so that

J=1TolJ

Indeed, this map I is determined as the unique extension of J o H, H : J(X) — X the
inverse of the bijective map J : X — J(X), from the dense subspace J(X) C Y to the whole
space Y, compare Theorem |4.1.3]
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