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0. BACKGROUND MATERIAL
There is a good deal of background material in this chapter. It is hoped, given the course’s
pre-requisites and recommedations, that most students will have met some, perhaps most, of
this material but very few may have met it all. At no single point in this course will all this
material be simultaneously necessary, but it will be helpful to either do preparatory reading
on a topic ahead of the relevant lectures or revisit this chapter’s material if you …nd yourself
rustier than you expected.

As a guide:

² arc length, curvature and surface area will prove useful ahead of Chapter 3.

² the real projective plane’s topology will also appear in Chapters 1 and 2.

² the real and complex projective planes will appear in Chapter 6.

² holomorphic branches will prove useful in Chapter 6.

² multivariable di¤erentiability will prove somewhat helpful in Chapter 3.

² identi…cation spaces will be important ahead of Chapter 2.

0.1 Arc Length and Curvature
This is largely material from Prelims Introductory Calculus.

De…nition 0.1 A smooth parameterized curve in R3 is a map γ : I ! R3 from an open
interval I µ R such that

² γ is smooth, i.e. γ has derivatives of all orders;

² γ : I ! γ(I) is a homeomorphism;

² γ0(t) 6= 0 for all t 2 I.

The requirement that γ be a homeomorphism onto its image is somewhat unusual here.
Some authors will omit this requirement which allows the possibility of self-intersections, for
the curve crossing itself. De…ning a smooth parameterized curve as above means that the curve
has no singular points and also mirrors the later de…nition of a smooth parameterized surface
(see De…nition 1.7).

A smooth parameterized curve γ is a curve in R3 with a preferred parameterization. The
image of γ is also the image of other smooth parameterized curves. It’s important to check that
our de…nitions relating to curves and surfaces are independent of the choice of parameterization.
For example, a simple application of the chain rule shows that the tangent line to a curve and
arc length on a curve (as de…ned below) are independent of the choice of parameter. Arc length
is an ‘intrinsic’ parameter for a curve.
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De…nition 0.2 Let γ : I ! R3 be a smooth parameterized curve with t0 2 I. Then the arc
length s(t) from γ(t0) to a point γ(t) is de…ned by the integral

s(t) =

Z t

t0

jγ0(u)j du.

As γ0(t) 6= 0 for all t then there is a well de…ned tangent line at each point of γ(I).

De…nition 0.3 Let γ : I ! R3 be a smooth parameterized curve with t0 2 I.
(a) The tangent line to γ at γ(t0) is the line containing the point γ(t0) and parallel to γ0(t0).
(b) The unit tangent vector t(s) is the tangent vector

t(s) =
dγ

ds
,

when γ is parameterized by arc length s.
(c) The curvature κ(s) of γ at γ(s) is de…ned to be

κ(s) =

¯
¯
¯
¯
dt

ds

¯
¯
¯
¯ =

¯
¯
¯
¯
d2γ

ds2

¯
¯
¯
¯ .

Example 0.4 (Logarithmic spiral) Let γ(t) =
¡
aebt cos t, aebt sin t

¢
for t > 0 and real con-

stants a > 0 > b. Show that γ has …nite arc length.

Solution. The tangent vector γ 0(t) equals

(aebt(b cos t ¡ sin t), aebt(b sin t+ cos t)),

and has magnitude

aebt
p
((b cos t ¡ sin t)2 + (b sin t+ cos t)2) = aebt

p
b2 + 1.

So the arc length from γ(0) = (a, 0) to limt!1 γ(t) = (0, 0) equals

a
p
1 + b2

Z 1

0

ebu du = a
p
1 + b¡2.

Figure 0.1 – The logarithmic spiral Figure 0.2 – The cycloid

ARC LENGTH AND CURVATURE 3



Example 0.5 The tractrix is the curve given by

γ(t) =

µ

¡ cos t+ log tan

µ
t

2

¶

, sin t

¶

, 0 < t <
π

2
.

Show that the length of the tangent line from a point γ(t), to the point where the tangent meets
the x-axis, is always 1 (see Figure 3.5).

Solution. Di¤erentiating we …nd that γ0(t) equals

µ
¡ cos2 t

sin t
, cos t

¶

, 0 < t <
π

2
.

So the tangent from the curve at γ(t) meets the x-axis at

γ(t) + (cos t,¡ sin t),

a point distance 1 away.

Example 0.6 A circular disc of radius r in the xy-plane rolls without slipping along the x-axis.
The locus described by a point of the circumference of the disc is called a cycloid (see Figure
0.2). Determine the arc length of a section of the cycloid which corresponds to a complete
rotation of the disc.

Solution. Assume that the disc begins with its centre at (0, r). Consider the curve described
by the point (0, 0) as the disc rolls. After the disc has rolled distance rθ then the point (0, 0)
has moved on to

(x(θ), y(θ)) = (r(θ ¡ sin θ), r(1¡ cos θ)).

Thus (x0)2 + (y0)2 = r2
£
(1¡ cos θ)2 + sin2 θ

¤
= 2r2(1¡ cos θ) and so

s =
p
2 r

Z 2π

0

p
1¡ cos θ dθ = 2r

Z 2π

0

¯
¯
¯
¯sin

1

2
θ

¯
¯
¯
¯ dθ = 8r.

Example 0.7 Show that the curvature of a curve is identically zero if and only if the curve is
part of a line.

Solution. For a curve that is part of a line, t is constant and so κ = jdt/dsj = 0. Conversely
if κ is identically zero, then Äγ(s) = 0 and hence γ(s) = as + b for constant vectors a,b with
jaj = 1. This is the parameterization of a line.

Example 0.8 (a) Show that a circle of radius a has constant curvature κ = a¡1.
(b) Conversely let γ be a curve in the xy-plane which has constant positive curvature κ.

Show that γ is part of a circle. (There are non-planar curves with constant curvature, such as
helices.)
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Proof. (a) Without loss of generality we can take the circle’s centre to be the origin in the
xy-plane. A parameterization by arc length is

γ(s) =
³
a cos

³s

a

´
, a sin

³s

a

´´
.

Then

κ(s) = Äγ(s) =

¯
¯
¯
¯

µ

¡
1

a
cos

³s

a

´
,¡
1

a
sin

³s

a

´¶¯
¯
¯
¯ =

1

a
.

(b) Asumme now that the curvature κ is constant. We can write

dt

ds
= κn,

where n is a unit vector in the same plane. As t is a unit vector, then t and n are perpen-
dicular. As n is a unit vector then dn/ds is perpendicular to n and so parallel to t. Further,
di¤erentiating t ¢ n = 0 gives

0 =
dt

ds
¢ n+

dn

ds
¢ t = ·+

dn

ds
¢ t,

showing dn/ds = ¡κt.
Now consider the vector

c = γ +
1

κ
n.

Note
dc

ds
= t+

1

κ
(¡κt) = 0.

So c is constant and jγ ¡ cj = 1/κ, showing γ is a circular arc, with centre c and radius κ¡1.

Example 0.9 Let γ be a smooth curve in R3 parameterized by t, which need not be arc length.
Show that

κ =
jγ0 ^ γ00j

jγ0j3
.

Solution. The is left as Exercise 1(i) on Sheet 0.

0.2 Surface Area
This is largely material from Prelims Geometry.

Let r : U ! R3 be a smooth parameterized surface with

r (u, v) = (x (u, v) , y (u, v) , z (u, v))

and consider the small rectangle of the plane that is bounded by the co-ordinate lines u = u0
and u = u0 + δu and v = v0 and v = v0 + δv. Then r maps this to a small region of the
surface r (U) and we are interested in calculating the surface area of this small region, which is
approximately that of a parallelogram. Note

r (u+ δu, v)¡ r (u, v) =
∂r

∂u
(u, v) δu+O(δu2),

r (u, v + δv)¡ r (u, v) =
∂r

∂v
(u, v) δv +O(δv2).
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Recall that the area of a parallelogram with sides a and b is ja ^ bj where ^ denotes the vector
product. So the element of surface area equals

¯
¯
¯
¯
∂r

∂u
δu ^

∂r

∂v
δv

¯
¯
¯
¯ =

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ δu δv + higher order terms.

This motivates the following de…nitions.

De…nition 0.10 Let r : U ! R3 be a smooth parameterized surface. Then the surface area
(or simply area) of r (U) is de…ned to be

ZZ

U

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ du dv.

We will often write

dS =

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ dudv

to denote an in…nitesimal part of surface area.

Proposition 0.11 The surface area of r (U) is independent of the choice of parameterization.

Proof. Let § = r (U) = s (W ) be two di¤erent parameterizations of a surface X; take u, v as
the co-ordinates on U and p, q as the co-ordinates on W . Let f = (f1, f2) : U ! W be the
co-ordinate change map; that is for any (u, v) 2 U we have

r (u, v) = s (f (u, v)) = s (f1 (u, v) , f2 (u, v)) .

By the chain rule

∂r

∂u
=

∂s

∂p

∂f1
∂u

+
∂s

∂q

∂f2
∂u

,
∂r

∂v
=

∂s

∂p

∂f1
∂v

+
∂s

∂q

∂f2
∂v

,

giving

∂r

∂u
^
∂r

∂v
=

∂s

∂p

∂f1
∂u

^
∂s

∂q

∂f2
∂v

+
∂s

∂q

∂f2
∂u

^
∂s

∂p

∂f1
∂v

=

µ
∂f1
∂u

∂f2
∂v

¡
∂f1
∂v

∂f2
∂u

¶µ
∂s

∂p
^
∂s

∂q

¶

=
∂ (p, q)

∂ (u, v)

µ
∂s

∂p
^
∂s

∂q

¶

.

Finally
ZZ

U

¯
¯
¯
¯
∂r

∂u
^
∂r

∂v

¯
¯
¯
¯ du dv =

ZZ

U

¯
¯
¯
¯
∂ (p, q)

∂ (u, v)

µ
∂s

∂p
^
∂s

∂q

¶¯
¯
¯
¯ du dv

=

ZZ

U

¯
¯
¯
¯
∂s

∂p
^
∂s

∂q

¯
¯
¯
¯

¯
¯
¯
¯
∂ (p, q)

∂ (u, v)

¯
¯
¯
¯ du dv

=

ZZ

W

¯
¯
¯
¯
∂s

∂p
^
∂s

∂q

¯
¯
¯
¯ dp dq
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by the two-dimensional substitution rule (Apostol, Mathematical Analysis p.421).

Example 0.12 Find the surface area of the cone

x2 + y2 = z2 cot2 α 0 6 z 6 h.

Solution. We can parameterize the cone as

r(z, θ) = (z cotα cos θ, z cotα sin θ, z), 0 < θ < 2π, 0 < z < h.

We have

rz = (cotα cos θ, cotα sin θ, 1) , rθ = (¡z cotα sin θ, z cotα cos θ, 0),

giving

rz ^ rθ =

¯
¯
¯
¯
¯
¯

i j k
cotα cos θ cotα sin θ 1

¡z cotα sin θ z cotα cos θ 0

¯
¯
¯
¯
¯
¯
=

0

@
¡z cotα cos θ
¡z cotα sin θ

z cot2 α

1

A .

Thus the cone has surface area
Z 2π

θ=0

Z h

z=0

p
z2 cot2 α cos2 θ + z2 cot2 α sin2 θ + z2 cot4 α dz dθ

=

Z 2π

θ=0

Z h

z=0

z cotα
p
1 + cot2 α dz dθ

= 2π

Z h

z=0

z cotα cscα dz

= 2π £
cosα

sin2 α
£

·
z2

2

¸h

0

=
πh2 cosα

sin2 α
.

Note that as α ! 0 this area tends to in…nity as the cone transforms into the plane and the
area tends to zero as α ! π/2.

Proposition 0.13 (Surface area of a graph) Let z = f (x, y) denote the graph of a function
f de…ned on a subset S of the xy-plane. Show that the graph has surface area

ZZ

S

q

1 + (fx)
2 + (fy)

2 dx dy.

Proof. We can parameterize the surface as

r (x, y) = (x, y, f (x, y)) (x, y) 2 S.

Then

rx ^ ry =

¯
¯
¯
¯
¯
¯

i j k
1 0 fx
0 1 fy

¯
¯
¯
¯
¯
¯
= (¡fx,¡fy, 1) .

SURFACE AREA 7



Hence the graph has surface area

ZZ

S

jrx ^ ryj dx dy =

ZZ

S

q

1 + (fx)
2 + (fy)

2 dx dy.

Example 0.14 Find the area of the paraboloid z = x2 + y2 that lies below the plane z = 4.

Solution. By Proposition 0.13 the desired area equals

A =

ZZ

R

p
1 + (2x)2 + (2y)2 dA

where R is the disc x2+y2 6 4 in the xy-plane. We can parameterize R using polar co-ordinates

x = r cos θ, y = r sin θ, 0 < r < 2, 0 < θ < 2π,

and then we have that

A =

Z 2π

θ=0

Z 2

r=0

p
1 + (2r cos θ)2 + (2r sin θ)2 r dr dθ

=

Z 2π

θ=0

Z 2

r=0

r
p
1 + 4r2 dr dθ

= 2π

Z 2

r=0

r
p
1 + 4r2 dr

= 2π £
1

8
£
2

3
£

h¡
1 + 4r2

¢3/2
i2

r=0

=
π

6

£
173/2 ¡ 1

¤
.

Proposition 0.15 (Surfaces of revolution) A surface S is formed by rotating the graph of

y = f(x) a < x < b,

about the x-axis. Here f(x) > 0 for all x. The surface area of S equals

Area(S) = 2π

Z x=b

x=a

f(x)
ds

dx
dx.

Proof. Using the parameterization

r(x, θ) = (x, f(x) cos θ, f(x) sin θ) ¡ π < θ < π, a < x < b

we have

rx ^ rθ =

¯
¯
¯
¯
¯
¯

i j k
1 f 0(x) cos θ f 0(x) sin θ
0 ¡f(x) sin θ f(x) cos θ

¯
¯
¯
¯
¯
¯
=

0

@
f 0(x)f(x)

¡f(x) cos θ
¡f(x) sin θ

1

A .
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So

jrx ^ rθj
2 = f(x)2f 0(x)2 + f(x)2 = f(x)2(1 + f 0(x)2) = f(x)2

µ
ds

dx

¶2

.

The result follows.

Example 0.16 Rederive the area of the paraboloid z = x2+ y2 that lies below the plane z = 4,
by thinking of the paraboloid as a surface of revolution.

Solution. We can consider the paraboloid as a rotation of the curve x =
p
z about the z-axis

where 0 < z < 4. We then have

µ
ds

dz

¶2

= 1 +

µ
dx

dz

¶2

= 1 +

µ
1

2
p
z

¶2

= 1 +
1

4z
.

Hence

A = 2π

Z 4

z=0

x
ds

dz
dz

= 2π

Z 4

z=0

p
z

r

1 +
1

4z
dz

= 2π

Z 4

z=0

r

z +
1

4
dz

= 2π

"
2

3

µ

z +
1

4

¶3/2
#4

0

=
4π

3

"µ
17

4

¶3/2

¡

µ
1

4

¶3/2
#

=
π

6

£
173/2 ¡ 1

¤
.

Proposition 0.17 Isometries preserve area.

Proof. An isometry is a bijection between surfaces which preserves the lengths of curves. Say
that r : U ! R3 is a parameterization of a smooth surface X = r(U) and f : r(U) ! Y is an
isometry from X to another smooth surface Y . Then the map

s = f ± r : U ! Y

is a parameterization of Y also using co-ordinates from U.
Consider a curve

γ(t) = r(u(t), v(t)) a 6 t 6 b

in X. By the chain rule
γ0 = u0ru + v0rv
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and
jγ0j

2
= E(u0)2 + 2Fu0v0 +G(v0)2

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

The length of γ equals

L(γ) =

Z t=b

t=a

jγ0(t)j dt =

Z t=b

t=a

p
E(u0)2 + 2Fu0v0 +G(v0)2 dt.

In a similar fashion the length of the curve f(γ) equals

L(f(γ)) =

Z t=b

t=a

q
~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2 dt

where
~E = su ¢ su, ~F = su ¢ sv, ~G = sv ¢ sv.

As f is an isometry then

Z t=b

t=a

p
E(u0)2 + 2Fu0v0 +G(v0)2 dt =

Z t=b

t=a

q
~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2 dt.

This is true for all b, so by di¤erentiating it follows that

E(u0)2 + 2Fu0v0 +G(v0)2 = ~E(u0)2 + 2 ~Fu0v0 + ~G(v0)2

for all values of t and all functions u, v. By choosing u = t, v = 0, we …nd E = ~E and we also
obtain G = ~G by setting u = 0, v = t. It follows that F = ~F as well.

Now the area of a subset r(V ) of X is given by

ZZ

V

jru ^ rvj du dv.

However, by the quadruple scalar product

jru ^ rvj
2 = (ru ¢ ru) (rv ¢ rv)¡ (ru ¢ rv) (rv ¢ ru) = EG ¡ F 2.

As
jsu ^ svj =

p
~E ~G ¡ ~F 2 =

p
EG ¡ F 2 = jru ^ rvj ,

then the area of f(r(V )) equals

ZZ

V

jsu ^ svj du dv =

ZZ

V

jru ^ rvj du dv

and we see that isometries preserve areas.

Remark 0.18 As angles between curves can similarly be written in terms of E,F,G, then
isometries also preserve angles. See Sheet 2, Part A, Exercise 1.
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0.3 The Real Projective Plane
This is material from Part A Projective Geometry.

The following theorem, Bézout’s theorem, is not actually part of this course, but it is a
clean and general result which readily motivates the worth of projective geometry. For those
interested, the theorem is part of B3.3 Algebraic Curves.

Bézout’s theorem is a …rst signi…cant result in algebraic geometry, which is unsurprisingly
interested in geometric objects that can be described using the language of algebra, and proved
using the theorems of algebra.

So, for example, curves de…ned by polynomials such as x2 + xy + y2 = 1 are of interest to
an algebraic geometer whereas the curve with equation y = ex would not be. Bézout’s theorem
addresses a natural …rst question: how many times do two curves, de…ned by polynomials of
degrees m and n, intersect?

If we begin with m = n = 1 then we are talking about two lines. These typically meet
in a point but we recognize that this wouldn’t be the case if the lines are parallel. If m = 1
and n = 2, so that we’re considering a line and, say, a parabola, then there can be as many
as two intersections. We appreciate that there may be no intersections – with y = 0 and
y = x2 + 1 – but that can be circumvented by working with complex numbers, and we can see
that the answer might be just one – with y = 0 and y = x2 – but we could think of this as
a double contact or repeated root in some sense. But we are still left with cases like y = x
and (y ¡ x)2 = 1 which appear to have no intersection, or y = 0 and y2 = x which has one
‘single contact’ intersection. Think about the m = n = 2 case and you’ll …nd the number of
intersections can be 0, 1, 2, 3, 4.

Perhaps, then, the best we can do is to say that the two curves meet in at most mn points.
Even the use of complex numbers and appreciation of multiple contacts cannot completely
resolve the issue. It turns out, though, that all we are missing is the notion of points at in…nity.
Once we properly introduce the notion of parallel lines meeting at a point at in…nity then
Bézout’s theorem states that the two curves have mn intersections, counting multiple contacts,
using complex numbers, and including points at in…nity.

Figure 0.3 – parallel lines meeting at in…nity

So given two parallel lines, we will agree that they meet at some idealized point at in…nity
(Figure 0.3). As lines should only meet once, this point at in…nity lies in both directions. Given
a third parallel line, it will meet each of these two lines in a point at in…nity, and so in fact at
the same point at in…nity. So to each family of parallel lines there is a single point at in…nity.
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Put another way there is a point at in…nity for each gradient m, that is the lines y = mx + c
all meet in the same point at in…nity. And we need to remember to allow m =1 as a possible
gradient, relating to the family of parallel vertical lines. These points at in…nity make the line
at in…nity.

Note though that these ‘points at in…nity’ aren’t special in any way, or rather we’ve only
made them special by our choice of where to put our a¢ne xy-axes. The family of parallel lines
passing through a point at in…nity, properly judged from in…nity, would look the same as the
family of lines passing through the origin.

If we return to our earlier examples when Bézout’s theorem appeared not to hold:

² y = 0, y2 = x. The parabola and line meet a second time at the point at in…nity at the
‘ends’ of the x-axis.

² y = x, (y ¡ x)2 = 1. The two lines y = x § 1 both meet y = x at a point at in…nity in
the same way that y = 0 and y2 = x2 meet at the origin.

We need, then, a rigorous, formal way of introducing these points at in…nity if we are to
prove geometric results involving them. For …xed m the lines y = mx + c all meet at a point
at in…nity. This point at in…nity is where the points (x,mx) move to as x ! §1. So it’s
the ratio of x and y that is important here. Somehow we want to include all the points (x, y)
of the standard a¢ne plane R2 and a line at in…nity including the points (1,m1) where
m 2 R [ f1g.

We cannot make easy meaning of (1,m1) but if we recognize this 1 as the consequence of
some erroneous division by zero, then we can describe our ‘extended’ plane with the introduction
of homogeneous co-ordinates.

De…nition 0.19 Given real x0, x1, x2, not all zero, we write [x0 : x1 : x2] for the equivalence
class of (x0, x1, x2) 2 R3nf0g under the equivalence relation

(x0, x1, x2) » (λx0, λx1, λx2) where λ 6= 0.

How does this help us with the previous discussion? Well if x0 6= 0 then we may divide
by x0 (i.e. set λ = 1/x0) to see that such equivalence classes can be represented as [1 : x : y]
where x = x1/x0 and y = x2/x0. These are ‘most’ of the equivalence classes and [1 : x : y] can
be identi…ed with the point (x, y) 2 R2. And the remaining equivalence classes, when x0 = 0
are [0 : 1 : m] when x1 6= 0 which correspond to the points at in…nity (1,m1), and …nally
[0 : 0 : 1] which corresponds to ‘m = 1’ the point at in…nity of the vertical lines.

Whilst here, and remembering that x = x1/x0 and y = x2/x0, we can see that the a¢ne
lines y = mx+ c would become

x2 = mx1 + cx0

and that each passes through the point at in…nity [0 : 1 : m]. Further the parabola y2 = x
would become x22 = x0x1. The variables x1/x0 and x2/x0 are known as inhomogeneous co-
ordinates.

For the earlier ‘problematic’ examples, we see now that

² y = 0, y2 = x homogeneously become x2 = 0 and x22 = x0x1, so each passes through the
point at in…nity [0 : 1 : 0].

THE REAL PROJECTIVE PLANE 12



² y = x, (y ¡ x)2 = 1 homogeneously become x2 = x1 and (x2 ¡ x1)
2 = x20 so each passes

includes the points at in…nity at [0 : 1 : 1]. Indeed these two curves meet in a like manner
to how y = 0 meets with y2 = x2 at the origin.

0.4 Holomorphic branches
This is material from A2 Metric Spaces and Complex analysis. We recall:

Proposition 0.20 Let z 2 Cn(¡1, 0].
(a) Then z can be written as z = reiθ where r > 0, θ 2 (¡π, π) in a unique fashion.
(b) The function p

z =
p
reiθ/2

is a holomorphic function on the cut plane Cn(¡1, 0] with a sign discontinuity over the cut.

Remark 0.21 If we were to take points z+ and z¡, respectively just above and below the cut
(¡1, 0] then we would have

z+ = reiθ+ where θ+ ¼ π; z¡ = reiθ¡ where θ¡ ¼ ¡π.

So with
p
z as de…ned above we see

p
z+ ¼

p
reiπ/2 = i

p
r;

p
z¡ ¼

p
re¡iπ/2 = ¡i

p
r.

We see that there is a sign change as we cross the cut.
The only other holomorphic function on Cn(¡1, 0] which satis…es w2 = z is w = ¡

p
z and

these two functions,
p
z and ¡

p
z are the two holomorphic branches of

p
z on this cut plane.

We see that as we cross the cut we move from one branch’s values to the other’s values.

11 2 1z 1 2 i r

z 1 2 i r

3 2 1 1 2 3
Re

3

2

1

1

2

3

Im

Figure 0.4a:
p
z

11 2 1z 1 2 i r

z 1 2 i r

3 2 1 1 2 3
Re

3

2

1

1

2

3

Im

Figure 04.b: ¡
p
z

Example 0.22 (The Riemann surface of
p
z2 ¡ 1.)For z in the cut plane Cn(¡1, 1] we

will let

θ1 denote the value of arg (z + 1) in the range (¡π, π) ,

θ2 denote the value of arg (z ¡ 1) in the range (¡π, π) ,
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as in the diagram below.

1 2

z

1.0 0.5 0.5 1.0 1.5 2.0
Re

0.2

0.4

0.6

0.8

1.0

Im

Figure 0.5

So we have
(z + 1) (z ¡ 1) = jz + 1j eiθ1 jz ¡ 1j eiθ2

and
w =

p
jz + 1j jz ¡ 1jei(θ1+θ2)/2

is a holomorphic function on Cn(¡1, 1] which satis…es

w2 = z2 ¡ 1.

What about the continuity, or otherwise, of w over the cut? Firstly let r be a real number in
the range ¡1 < r < 1 and let r+ and r¡ be complex numbers just above and just below r in the
complex plane. Then

for r+ we have θ1 ¼ 0 and θ2 ¼ π;

for r+ we have θ1 ¼ 0 and θ2 ¼ ¡π.

So

w+ ¼
p
1¡ r2ei(0+π)/2 = i

p
1¡ r2;

w¡ ¼
p
1¡ r2ei(0¡π)/2 = ¡i

p
1¡ r2.

So we see that we have a sign discontinuity across (¡1, 1).
However, if we take r be a real number in the range r < ¡1 and let r+ and r¡ be complex

numbers just above and just below r in the complex plane, then

for r+ we have θ1 ¼ π and θ2 ¼ π;

for r+ we have θ1 ¼ ¡π and θ2 ¼ ¡π.

So

w+ ¼
p
r2 ¡ 1ei(π+π)/2 = ¡

p
r2 ¡ 1;

w¡ ¼
p
r2 ¡ 1ei(¡π¡π)/2 = ¡

p
r2 ¡ 1.

We see that w is actually continuous across (¡1,¡1) and we can in fact extend w to a
holomorphic function on all of Cn [¡1, 1] .

Note the behaviour of w near the points ¡1 and 1. If z ¼ ¡1 then w ¼
p
2i

p
z + 1 wherep

z + 1 is a standard branch of
p
z + 1 on the cut plane Cn[¡1,1). If z ¼ 1 then w ¼

p
2
p
z ¡ 1

where
p
z ¡ 1 is a standard branch of

p
z ¡ 1 on the cut plane Cn(¡1, 1].
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Remark 0.23 To properly consider the multifunction
p
z2 ¡ 1 (or any similar multi-valued

function) it helps to consider its Riemann surface. In this case the (a¢ne) Riemann surface
is the set of points

§ =
©
(w, z) 2 C2 : w2 = z2 ¡ 1

ª
.

Firstly consider the situation in R2. The curve y2 = x2 ¡ 1 is a hyperbola. Above (1,1) and
(¡1,¡1) sit branches y = §

p
x2 ¡ 1 and these two branches meet at (§1, 0) . So most of the

curve is in one or other of the sets

C+ =
n³

x,
p
x2 ¡ 1

´
j jxj > 1

o
; C¡ =

n³
x,¡

p
x2 ¡ 1

´
j jxj > 1

o
.

In fact C+ [ C¡ excludes only the branch points (§1, 0) and we also see that as we cross the
branch points we move from C+ to C¡ or vice versa.

In the complex case, for z /2 [¡1, 1] there are two values §w. For z = §1 the only value of
w is 0. The points (z, w) and (z,¡w) have already been described as two di¤erent branches ofp
z2 ¡ 1 but we need to take some care to see how these branches …t together as subsets of §.

If we set as above

§+ =
©
(z, w) 2 C2 j z /2 [¡1, 1]

ª
and §¡ =

©
(z,¡w) 2 C2 j z /2 [¡1, 1]

ª
.

Then §+[§¡ is most of § missing only those points associated with z 2 [¡1, 1]. We can note,
as with previous branches, that as z crosses the cut [¡1, 1] then (z, w) moves continuously to
the other branch §¡ and likewise (z,¡w) moves continuously to the other branch §+.

11 A
B

Re

Im

Figure 0.6a

11 B
A

Re

Im

Figure 0.6b Figure 0.6c

So §+ and §¡ …t together on § by gluing either side of [¡1, 1] as labelled in Figures 0.6a/b.
We can then see that topologically § is a cylinder in C2 (Figure 0.6c).

Whilst there is only one 1 in the extended complex plane, note that, as z becomes large,
then (z,w) and (z,¡w) are diverging points in C2. So we should introduce two points at in…nity
to § at either end of the cylinder to re‡ect this behaviour. Topologically, with these points
included, § is a sphere (in what is called complex projective space).

More rigorously, considering instead § as a subset of the complex projective plane CP2, the
projectivized version of § is

§ =
©
[z0 : z1 : z2] 2 CP2 : z21 = z22 ¡ z20

ª
.

The line at in…nity has equation z0 = 0 and so the two points at in…nity are [0 : 1 : 1] and
[0 : 1 : ¡ 1] .
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Figure 0.7

0.5 Di¤erentiability in Rn

This is material from Part A Multidimenstional Analysis and Geometry.

De…nition 0.24 Let f : Rn ! Rm be a smooth map, (i.e. all partial derivatives of f of all
orders exist everywhere). Let p,v 2 Rn and let γ : (¡ε, ε)! Rn be a smooth curve in Rn such
that

γ(0) = p and γ0(0) = v.

Then f ±γ is a smooth curve in Rm. The di¤erential of f at p is the linear map dfp : Rn ! Rm

de…ned by
dfp(v) = dfp(γ

0(0)) = (f ± γ)0(0).

Proposition 0.25 dfp(v) is independent of the choice of curve γ.

Proof. For ease of notation we shall consider the case when m = n = 2. Write f =
¡
f1
f2

¢
and

γ =
¡
γ1
γ2

¢
. Then

(f ± γ)0(0) =

µ
(f1 ± γ)0(0)
(f2 ± γ)0(0)

¶

=

Ã
∂f1
∂x
γ01(0) +

∂f1
∂y
γ02(0)

∂f2
∂x
γ01(0) +

∂f2
∂y
γ02(0)

!

=

Ã
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

! µ
v1
v2

¶

.

As the partial derivatives in the above matrix depend only on the function f and the point p,
then dfp (which we see has the Jacobian as its matrix) is independent of the choice of γ.

For those meeting multivariable di¤erentials for the …rst time, this de…nition contrasts
markedly with the usual notion of a di¤erential df/dx. Clearly when m = n = 1 then the
two de…nitions agree, but the general di¤erential cannot simply be visualized as a gradient.
Rather dfp is a …rst, linear approximation of the function f at p. Here are two examples to
help motivate this appreciation.
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Example 0.26 By Taylor’s theorem for a smooth function f = (u, v) : R2 ! R2 we have

f

µ
x+ h
y + k

¶

=

µ
u(x+ h, y + k)
v(x+ y, y + k)

¶

=

µ
u(x, y) + hux(x, y) + kuy(x, y) + ¢ ¢ ¢
v(x, y) + hvx(x, y) + kvy(x, y) + ¢ ¢ ¢

¶

=

µ
u(x, y)
v(x, y)

¶

+

µ
ux uy
vx vy

¶µ
h
k

¶

+O
¡
j(h, k)j2

¢
.

This result generalizes naturally to the general m,n case.

Example 0.27 For a holomorphic function f : C ! C and p 2 C, then

dfp =

µ
ux uy
vx vy

¶

,

where u = Re f and v = Im f. By the Cauchy-Riemann equations

dfp =

µ
ux ¡vx
vx ux

¶

= λ

µ
cos θ ¡ sin θ
sin θ cos θ

¶

,

where λ =
p
u2x + v2x = jf 0(p)j and θ = arg f 0(p). This shows that when f 0(p) 6= 0, then f is

approximately enlarging by jf 0(p)j and rotating by arg f 0(p).
This can be more easily seen using Taylor’s theorem for a holomorphic function in one

complex variable. We then have

f(p+ h) = f(p) + f 0(p)h+O
¡
jhj2

¢
.

At the zeroth degree of approximation then p maps to f(p). When we consider nearby points p+h
to p, then the …rst degree approximation is the map to f(p) + f 0(p)h. The e¤ect of multiplying
by f 0(p) is a scaling by jf 0(p)j and rotation by arg f 0(p).

On occasion we will also …nd the following result useful.

Theorem 0.28 (Inverse function theorem) Let f : Rn ! Rn be a smooth map de…ned near
p. If dfp is invertible then f is a local di¤eomorphism. That is there is a smooth map g de…ned
near f(p) such that g(f(x)) = x and f(g(y)) = y for x near p and y near f(p).

Note that when f = u + iv is holomorphic the determinant jdfpj = u2x + v2x = jf 0(p)j2 and
so f will be a local di¤eomorphism if and only if it is conformal at p.

0.6 Identi…cation Spaces
This is material from Part A Topology.

De…nition 0.29 Let (X, T ) be a topological space and f : X ! Y be a map onto a set Y .
Then the quotient topology on Y is the collection

τ =
©
U µ Y j f¡1(U) 2 T

ª
,
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and (Y, τ ) is called a quotient space.
As pre-image respects unions and intersections then τ is closed under arbitrary unions and

…nite intersections. Further f¡1(?) = ? 2 T and f¡1 (Y ) = X 2 T . Thus τ is a topology on
Y .

By de…nition, f : (X, T ) ! (Y, τ ) is continuous. Indeed τ is the …nest topology on Y such
that f is continuous.

De…nition 0.30 Given an equivalence relation » on a topological space (X, T ) then there is a
natural surjective map

π : X ! X/» given by x 7! [x]

which sends an element x to its equivalence class [x]. In this case (X/», τ) is referred to as an
identi…cation space.

Example 0.31 The quotient space of any compact (resp. connected) space is compact (resp.
connected). This is because the continuous image of a compact (resp. connected) space is
compact (resp. connected).

Example 0.32 De…ne » on R by x » y if and only if x ¡ y 2 Z. Show that R/» , which is
also written R/Z, is homeomorphic to the circle S1.

Solution. The bijection R/Z ! S1 de…ned by [x] 7! e2πix is a homeomorphism. It is an easy
check that basic open subsets in the circle correspond to open subsets of R which are unions of
equivalence classes.

Example 0.33 De…ne » on R by x » y if and only if x ¡ y 2 Q. Show that R/ » , which is
also written R/Q, has the trivial topology.

Solution. Let U be a non-empty open set in R/Q. Then U + Q is open in R and is a union
of equivalence classes. But as a non-empty open subset of R contains a representative of each
equivalence class we have U +Q = R and hence U = R/Q.

Example 0.34 De…ne » on C by z1 » z2 if and only if there exists λ > 0 such that z1 = λz2.
Show that C/» is not Hausdor¤.

Solution. In a Hausdor¤ space singleton points are closed. But in C/» the only closed point
is [0]. Note the closure of [1] is [1] [ [0].
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1. INTRODUCTION
This is a course about surfaces and surfaces are, loosely speaking, spaces that locally look like
the plane R2. But that can mean various things. Importantly it means we have two local co-
ordinates; at the most basic structural level, we can consider R2 as a topological space; but R2

also has a di¤erentiable structure in that we can de…ne smooth functions of these co-ordinates;
further still, R2 has a metric structure in that we can discuss lengths and angles. Finally, if
we’re so minded, we can identify R2 with C and we are well aware how di¤erent the theory
complex analysis and complex di¤erentiability are from its real counterpart. Consequently we
shall meet several ‘‡avours’ of geometry as the course progresses.

Whilst surfaces are locally like R2, globally this is far from the case – we need only consider
simple examples like the (in…nite) cylinder, torus, Klein bottle. Unlike the plane none of these
are simply connected, and respectively they are not compact and two-sided, compact and two-
sided, and compact and one-sided. In studying the global nature of surfaces, we shall see there
are deep interactions between global geometric and analytic properties and a surface’s topology.

De…nition 1.1 A topological surface, or topological 2-manifold, is a Hausdor¤ topo-
logical space S such that for every p 2 S there is an open set U with p 2 U µ S and a
homeomorphism ϕ : U ! V where V is an open subset of R2. Such a surface is referred to as
an abstract topological surface, the term ‘abstract’ refers to the fact that the surface is not
situated (or ‘embedded’) in some Euclidean space.

The map ϕ is called a chart or patch and a collection fϕi : Ui ! Vig such that
[

i

Ui = S

is known as an atlas.
The surface S is called closed if it is compact.

Remark 1.2 In De…nition 1.1 we have de…ned an ‘abstract’ topological surface. The surface
has not been situated in any Euclidean space; the surface’s topology is part of the de…nition,
rather than being inherited as a subspace of some ambient space. This may contrast with
most previous examples you have of surfaces, especially compared with parameterized surfaces
discussed in Prelims Geometry.

As a consequence of Whitney’s embedding theorem, every (separable) topological surface
can be embedded in R3 or R4, so the bene…t of the above de…nition may be even less clear.
Here an embedding is a continuous, injective map which is a homeomorphism between the
surface and its image. However these embeddings can often be complicated functions, in which
case it’s easier to work with an abstract de…nition. For example the Klein bottle, which we will
introduce soon, cannot be embedded in R3; the hyperbolic plane, which is topologically just
R2, cannot be isometrically embedded in R3.

With an atlas we parameterize the entire surface S. At this point the atlas provides no
further structure to S, which already has a Hausdor¤ topology. However these parameters
provide a useful means with which to de…ne functions on S. But R2 has (or can have) further
structures – smooth, metric, orientable, complex – and we will in due course see how we can
use atlases to consistently transfer these structures to surfaces.
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Example 1.3 (Atlas for the sphere) Let S2 = f(x, y, z) 2 R3 j x2 + y2 + z2 = 1g . As R3 is
Hausdor¤ then so is S2, and as S2 is closed and bounded then it is compact.

The following six maps form an atlas for S2.

U1 =
©
(x, y, z) 2 S2 j z > 0

ª
, ϕ1 (x, y, z) = (x, y) ;

U2 =
©
(x, y, z) 2 S2 j z < 0

ª
, ϕ2 (x, y, z) = (x, y) ;

U3 =
©
(x, y, z) 2 S2 j x > 0

ª
, ϕ3 (x, y, z) = (y, z) ;

U4 =
©
(x, y, z) 2 S2 j x < 0

ª
, ϕ4 (x, y, z) = (y, z) ;

U5 =
©
(x, y, z) 2 S2 j y > 0

ª
, ϕ5 (x, y, z) = (x, z) ;

U6 =
©
(x, y, z) 2 S2 j y < 0

ª
, ϕ6 (x, y, z) = (x, z) .

In each case Vi = ϕi(Ui) is the open unit disc in R2. As x2 + y2 + z2 = 1 for any (x, y, z) 2 S2

then at least one of the co-ordinates is non-zero, meaning every point of S lies in at least one
patch.

We have thus shown S2 to be a topological surface. Note an atlas for S2 cannot consist of
a single chart ϕ : S2 ! V as S2 is compact and V is not, but it’s not hard to …nd an atlas
consisting of two charts.

Example 1.4 (Bug-eyed plane) The following example shows the necessity of the requirement
that S be Hausdor¤. Consider S = X/» where X = R2 £ f§1g and every point (x, y,¡1) is
identi…ed with (x, y, 1) except when x = y = 0. The space S is then not Hausdor¤ as the two
origins (0, 0,§1) cannot be separated but the two charts ϕ§1(x, y,§1) = (x, y) form an atlas
for S.

Proposition 1.5 Let S be a topological surface with atlas fϕi : Ui ! Vig . Let f : S ! T be
a map to a topological space T. Then f is continuous if and only if each f ± ϕ¡1i : Vi ! T is
continuous.

Proof. If f is continuous then f ± ϕ¡1i is the composition of two continuous maps and is
therefore continuous. Conversely suppose all these maps are continuous and take p 2 S. As we
have an atlas then p 2 Ui for some i and then f = f ± ϕ¡1i ± ϕi is continuous at p.

Example 1.6 The real projective plane P = S2/f§1g is the space formed by identifying
antipodal points of the sphere. Find an atlas for P.

Solution. Each equivalence class of points in P = S2/f§1g has a representative in one (or
more) of the domains U1, U3, U5 previously used in Example 1.3 to cover the sphere. Given a
point where z 6= 0, we can assume in fact that z > 0 without loss of generality. Thus we can
de…ne the maps

ψ1 (x, y, z) = (x, y) , ψ3 (x, y, z) = (y, z) , ψ5 (x, y, z) = (x, z) ,

respectively on U1/ f§1g , U3/ f§1g , U5/ f§1g , and they form an atlas for P.

In the Prelims Geometry course, the de…nition of a parameterized surface was as follows.
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De…nition 1.7 A smooth parameterized surface is a map,

r : U ! R3 (u, v) 7! (x(u, v), y(u, v), z(u, v))

from an open subset U µ R2 to R3 such that

² r is smooth i.e. x, y, z have continuous partial derivatives of all orders,

² r : U ! r(U) is a homeomorphism,

² (smoothness condition) at each point of r(U) the vectors

ru =
∂r

∂u
and rv =

∂r

∂v

are linearly independent.

Comparing this with our earlier de…nition of a topological surface, we note that

r¡1 : r(U) ! U

is a chart forming an atlas by itself. So smooth parameterized surfaces in R3 are examples of
topological surfaces. However the adjective smooth suggests that we have more structure now
than a topological surface generally has. The independence of the vectors ru and rv means
that the surface has a well-de…ned tangent plane and normal at each point. But it’s currently
unclear how we might generalize this notion to a topological surface S that is not situated in
Euclidean space. Around each point p 2 S we can assign co-ordinates via a chart ϕ : U ! V
and so it might seem reasonable to say that a function f : S ! R is smooth at p if

f ± ϕ¡1 : V ! R

is smooth. Recall that V is an open subset of R2 so this would just mean that f ± ϕ¡1 has
partial derivatives of all orders. The catch is that, when p is in the domain of more than one
chart, f might be deemed to be smooth at p using one chart and not smooth using another
chart. We need to ensure we have consistency across the surface.

Figure 1.1 – a transition map
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De…nition 1.8 Given an atlas fϕi : Ui ! Vig for a topological surface S, if Ui \ Uj 6= ? then

ϕi ± ϕ
¡1
j : ϕj (Ui \ Uj) ! ϕi (Ui \ Uj)

is known as a transition map.

For a topological surface the transition maps are always homeomorphisms. So if f ± ϕ¡1i is
continuous then f ±ϕ¡1j automatically is too. But we need to further require that the transition
maps be smooth, so as to have a consistent notion of smoothness across a surface. Hence we
de…ne:

De…nition 1.9 A di¤erentiable surface, or di¤erentiable 2-manifold, is a topological
surface S with an atlas fϕi : Ui ! Vig such that all the transition maps

ϕi ± ϕ
¡1
j : ϕj (Ui \ Uj) ! ϕi (Ui \ Uj)

are smooth. Such an atlas is called a di¤erentiable structure on S.

De…nition 1.10 (a) Let S be a di¤erentiable surface with atlas fϕi : Ui ! Vig . We de…ne
f : S ! R to be smooth at p 2 Ui if

f ± ϕ¡1i : Vi ! R

is smooth. A quick check shows there is no possibility of inconsistency.
(b) Let § be a second di¤erentiable surface with atlas fψi : Ai ! Big and let f : S ! § be

a map between the surfaces. Let p 2 S, so that p 2 Ui for some i, and then f(p) 2 Bj for some
j. We de…ne f to be smooth at p if

ψj ± f ± ϕ¡1i

is smooth at ϕi(p). As the transition maps are smooth there is again no chance of inconsistency.

Figure 1.2 – a map between surfaces
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Remark 1.11 (Consistency and other structures) Note that a transition map of a dif-
ferentiable surface is bijective, is smooth, and its inverse – another transition map – is also
smooth. That is to say that the transition maps are di¤eomorphisms.

We can now see how the previous de…nitions can be generalized to higher dimensions to
de…ne topological manifolds and smooth manifolds. Despite surfaces being the focus of much
study in the eighteenth and nineteenth centuries – by Euler, Lagrange, Monge, Gauss, Riemann,
Möbius, et al. – a formal de…nition of surfaces (and manifolds) did not arise until the 1930s,
variously due to Whitehead, Whitney and Veblen.

The transition maps are the key to assigning structures to a surface beyond the purely
topological. Requiring the transition maps to be smooth means we can consistently de…ne a
smooth structure on the whole surface. But R2 naturally has other structures:

² metric structure – we would then need the transition maps to be isometries;

² orientability – we would then need the transition maps to be orientation-preserving;

² complex structure – we can identify R2 with C and would then need the transition maps
to be biholomorphic (that is, conformally equivalent).

Note that a single patch of surface can be assigned any of these structures. However for
a general topological surface, it may not be possible to endow a surface globally with certain
structures precisely because of its topology. The real projective plane cannot be consistently
oriented; the sphere cannot be given a metric structure with everywhere ‘negative curvature’.
When we meet Riemann surfaces later we will see there are a great deal of di¤erences between
complex structures and real smooth ones. In higher dimensions, these problems are yet more
complicated and subtle.

We say a little now about how a metric structure can be assigned to a co-ordinate patch of
a surface. We will revisit these ideas in detail in Chapter 3. We have already noted that ru(p)
and rv(p) are independent tangent vectors of a point p in a co-ordinate patch r(U) µ R3. Given
a curve γ(t) = r(u(t), v(t)) where a 6 t 6 b then, by the chain rule,

_γ(t) = _uru + _vrv,

where the dot denotes di¤erentiation wrt t, and

j _γ(t)j2 = E _u2 + 2F _u _v +G _v2

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

Note E,F,G relate to the surface’s geometry at the point p, here expressed in terms of the
local co-ordinates u and v.

De…nition 1.12 The quadratic form Ip : Tp ! R,

αru + βrv 7! jαru + βrvj
2 = Eα2 + 2Fαβ +Gβ2

on the tangent space Tp = hru, rvi is known as the …rst fundamental form. Any property of
a surface that can be expressed in terms of the …rst fundamental form is said to be intrinsic.
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The …rst fundamental form expresses how the co-ordinate domain has been curved on to the
surface. All metric properties of the surface can be expressed in terms of the …rst fundamental
form. We will need to consider quite what we mean by tangent spaces when we have an
abstract surface, rather than one situated in R3, but we will deal with that in Chapter 3. In
the meantime note that lengths and areas can be expressed in terms of the …rst fundamental
form; importantly these de…nitions apply whatever Euclidean space the surface is situated in.

The length of the above curve γ equals

L(γ) =

Z b

a

j _γ(t)j dt =

Z b

a

p
E _u2 + 2F _u _v +G _v2 dt.

We have also previously de…ned the area of r(U) by

A =

ZZ

U

jru ^ rvj du dv.

One issue with this de…nition is that the vector product ^ is de…ned in R3 but not generally in
higher dimensions. However, the scalar quadruple product gives

jru ^ rvj
2 = (ru ^ rv) ¢ (ru ^ rv)

= (ru ¢ ru) (rv ¢ rv)¡ (ru ¢ rv) (rv ¢ ru)

= EG ¡ F 2.

Hence we can instead de…ne the area of r(U) as

A =

ZZ

U

p
EG ¡ F 2 du dv,

a de…nition which is well-de…ned whatever Rn the surface is situated in.
Let’s conclude this introduction by considering the transition maps for the atlases we pre-

viously de…ned for the sphere and real projective plane.

Example 1.13 (The sphere reprised.) Consider the two charts

U1 =
©
(x, y, z) 2 S2 j z > 0

ª
, ϕ1 (x, y, z) = (x, y) ;

U3 =
©
(x, y, z) 2 S2 j x > 0

ª
, ϕ3 (x, y, z) = (y, z) .

So U1 \ U3 = f(x, y, z) 2 S2 j x, z > 0g is an open quarter of the sphere, whilst

ϕ1 (U1 \ U3) =
©
(x, y) 2 R2 j x2 + y2 < 1, x > 0

ª

ϕ3 (U1 \ U3) =
©
(x, y) 2 R2 j x2 + y2 < 1, y > 0

ª

and
(u(x, y), v(x, y)) = ϕ1 ± ϕ¡13 (x, y) =

³p
1¡ x2 ¡ y2, x

´
.

Note that the Jacobian of this map equals
¯
¯
¯
¯
ux uy
vx vy

¯
¯
¯
¯ =

¯
¯
¯
¯
¯

¡xp
1¡x2¡y2

¡yp
1¡x2¡y2

1 0

¯
¯
¯
¯
¯
=

y
p
1¡ x2 ¡ y2

> 0.

That this is non-zero means that the transition map is smooth. That it is positive means that
the transition map is orientation-preserving. As this is true of the other transition maps too,
then we have given the sphere the structure of an oriented di¤erentiable surface.
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Example 1.14 (The real projective plane revisited.) Recall the charts

ψ1 (x, y, z) = (x, y) , where z > 0 by assumption WLOG;

ψ5 (x, y, z) = (x, z) , where y > 0 by assumption WLOG.

So U1 \ U5 consists of those [x : y : z] where y 6= 0 6= z and x2 + y2 + z2 = 1. Then

ψ1 (U1 \ U5) =
©
(x, y) 2 R2 j x2 + y2 < 1, y 6= 0

ª
,

ψ5 (U1 \ U5) =
©
(x, z) 2 R2 j x2 + z2 < 1, z 6= 0

ª
,

so in fact ψ1 (U1 \ U5) = ψ5 (U1 \ U5) . Then

(u(x, y), v(x, y)) = ψ1 ± ψ¡15 (x, y) =

8
<

:

³
x,

p
1¡ x2 ¡ y2

´
when y > 0;

³
¡x,¡

p
1¡ x2 ¡ y2

´
when y < 0.

,

as

(x, y)
ψ¡157!

h
x :

p
1¡ x2 ¡ y2 : y

i
ψ17!

8
<

:

³
x,

p
1¡ x2 ¡ y2

´
when y > 0;

³
¡x,¡

p
1¡ x2 ¡ y2

´
when y < 0.

The Jacobian of this map when y > 0 equals

¯
¯
¯
¯
ux uy
vx vy

¯
¯
¯
¯ =

¯
¯
¯
¯
¯
¯

1 ¡xp
1¡x2¡y2

0 ¡yp
1¡x2¡y2

¯
¯
¯
¯
¯
¯
=

¡y
p
1¡ x2 ¡ y2

< 0.

That this is non-zero means that the transition map is smooth. That it is negative means that
the transition map is orientation-reversing. As the transition maps are all smooth then we have
endowed P with a di¤erentiable structure. As this particular transition map is orientation-
reversing then we have not endowed P with an oriented structure. It is then a somewhat harder
matter to show that no oriented atlas exists.
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2. TOPOLOGICAL SURFACES
Recall from the introductory lecture the de…nition of a topological surface.

² A topological surface, or topological 2-manifold, is a Hausdor¤ topological space S
such that for every p 2 S there is an open set U µ S and a homeomorphism ϕ : U ! V
where V is an open subset of R2.

A surface S is called closed if it is compact. In this chapter we discuss the classi…cation
of closed topological surfaces up to homeomorphism. So two topological surfaces are to be
considered the same if they are homeomorphic; the ‘classi…cation’ then means providing a com-
prehensive list of the di¤erent homeomorphism classes with no omissions and no duplications.

This material was discussed at some length in the A5 topology course. The closed surfaces
there were created as identi…cation spaces (or quotient spaces) from closed polygons. Two
examples are given below.

Figure 2.1 – torus Figure 2.2 – Klein bottle

In Figure 2.1 a torus is formed by pairwise identifying the edges of the square [0, 1]2 as
described by the arrows. So (0, y) and (1, y) are identi…ed for 0 6 y 6 1 (the single arrows) and
(x, 0) and (x, 1) are identi…ed for 0 6 x 6 1 (the double arrows). The square is compact and
so the resulting identi…cation space also is. Around each interior point of the square we can
associate an open disc U ; points on the square’s boundary can be associated with an open disc
split as two semi-discs as sketched in Figure 2.1.

Similarly, in Figure 2.2 a Klein bottle is formed by pairwise identifying the edges of the
square [0, 1]2 as described by the arrows. So (0, y) and (1, y) are identi…ed for 0 6 y 6 1 (the
single arrows) and (x, 0) and (1¡ x, 1) are identi…ed for 0 6 x 6 1 (the double arrows). The
square is compact and so the resulting identi…cation space also is. Around each interior point of
the square we can associate an open disc U ; points on the square’s boundary can be associated
with a disc split as two semi-discs as sketched in Figure 2.2. Note in the case of a boundary
point on the bottom/top edges the semi-discs are not directly opposite one another because
of the reverse identi…cation. Note further, because of this reversed identi…cation, the central
shaded rectangle is in fact a Möbius strip, rather than a cylinder.

Further examples include the
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² torus with g > 0 holes or, equally, sphere with g handles (Figure 2.3);

² sphere with k > 1 cross-caps (Figure 2.4).

Figure 2,3 – torus with g holes Figure 2.4 – sphere with k cross-caps

The torus with zero holes is the sphere. The torus with g > 1 can be formed by pairwise
identifying the edges of a 4g-gon as shown in Figure 2.3. Note that, in each case, the shaded
region connecting identi…ed edges is a cylinder. Consequently the torus with g holes is an
orientable surface. This canonical identi…cation can be denoted

a1a2a
¡1
1 a¡12 a3a4a

¡1
3 a¡14 ¢ ¢ ¢ a2g¡1a2ga

¡1
2g¡1a

¡1
2g .

Each string aiai+1a
¡1
i a¡1i+1 represents a further hole or handle being attached to the surface. See

Proposition 2.9.
The sphere with k > 1 cross-caps can be formed by pairwise identifying the edges of a

2k-gon as shown in Figure 2.4. Note that, in each case, the shaded bar connecting identi…ed
edges is a Möbius strip. Consequently the sphere with k > 1 cross-caps is an non-orientable
surface. This canonical identi…cation is denoted

a1a1a2a2 ¢ ¢ ¢ akak.

A cross-cap is formed in the sphere by making a cut and identi…ed the cut’s two sides in reverse
orientation. This is the equivalent of sewing a Möbius strip into the sphere, which is what each
string aiai represents. See Proposition 2.9.

Example 2.1 The Klein bottle K is homeomorphic to the sphere with 2 cross-caps.

Solution. These two versions of the Klein bottle can be transformed into one another as shown
below.

Figure 2.5 – equivalent Klein bottles
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This transforms K from the surface in Figure 2.2 to the surface a1a1a2a2, the sphere with two
cross-caps.

In the A5 topology course it was rigorously shown that:

² Every closed topological surface is homeomorphic to one of (a) a torus with g > 0 holes
or (b) a sphere with k > 1 cross-caps.

This is half the classi…cation theorem. The above is a comprehensive list of all closed
topological surfaces up to homeomorphisms. There are no omissions but there may yet be du-
plications. We need one or more topological invariants which can be used to distinguish between
the homeomorphism classes listed above. The two invariants we shall use are orientability and
the Euler characteristic.

We already introduced the notion of orientability in the introductory lecture; a di¤eren-
tiable surface was orientable if it had an atlas with orientation-preserving transition maps. We
shall use, in this chapter, an equivalent criterion for orientability. This second de…nition of
orientability is due to Klein (1876).

Proposition 2.2 A di¤erentiable surface is non-orientable if and only if it contains a Möbius
strip.

Proof. Say that a surface includes a Möbius strip. Then we can take an orientation-reversing
curve along the Möbius strip and consider the co-ordinate patches it passes through (which
can be taken to be …nite by compactness). Each transition map between patches cannot be
orientation-preserving or else the curve would not be orientation-reversing.

Conversely, suppose that the surface contains no Möbius strip and so no orientation-
reversing curve. Without loss of generality we may assume the surface is connected. Make
a choice of orientation local to a …xed point. Any other point can be connected by a path to
the …xed point and the chosen orientation can be extended consistently to the second point.
Thus the surface is orientable.

So the Klein bottle, and more generally, the spheres with k cross-caps are therefore non-
orientable. As the tori with n holes can be embedded in R3 then they are orientable; we
can consistently associate an outward-pointing normal on the entirety of such a surface. Thus
orientability separates out the closed surfaces into two families, but we need a further invariant
to separate the orientable surfaces from one another and likewise separate out the non-orientable
surfaces. This invariant is the Euler characteristic.

You may well be aware that for the Platonic solids V ¡E+F = 2 where V,E,F respectively
denote the number of vertices, edges and faces on the solid.

surface V E F
tetrahedron 4 6 4
cube 8 12 6
octahedron 6 12 8
dodecahedron 20 30 12
icosahedron 12 30 20
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tetrahedron cube octahedron dodecahedron icosahedron
Figure 2.6 – the Platonic solids

Indeed this relation is true for any polyhedron of the same shape (such as any pyramid or a
cuboid). That is V ¡E+F will equal 2 for any polyhedron that is homeomorphic to a sphere.
So this number 2 is known as the Euler characteristic of the sphere.

Remark 2.3 Euler arrived at his V ¡ E + F = 2 formula for convex polyhedra in 1750 (in
a letter to Goldbach) and this is arguably one of the …rst topological results. It is, in fact,
equivalent to a result of Descartes’ from 1639 but Euler’s formulation of the result was more
obviously topological in nature. The formula had been noted as early as 1537 by Francesco
Maurolico. In 1811 Cauchy gave a semi-rigorous proof of the formula, though it would not be
considered watertight by modern standards.

We need to be a little careful in how we assign vertices, edges and faces to the surface. For
example, were we to assign no vertices and no edges to a sphere and treat the entire surface as
a face then we would arrive at an Euler characteristic of 0¡ 0 + 1 = 1 6= 2, so presumably this
should not be permitted. Likewise a single edge as an equator, no vertices and two hemispherical
faces gives 0¡ 1 + 2 = 1 6= 2 and should again not be admissable. The important point is that
our vertices, edges and faces make a subdivision of the surface.

De…nition 2.4 Let X be a closed topological surface.
(a) An edge on X is the image of a continuous map f : [0, 1] ! X which is 1-1 except

possibly that f(0) = f(1).
(b) A subdivision of X is a …nite set of edges, together with a …nite set of points of X,

called vertices (singular: vertex), such that
(i) each edge begins and ends in a vertex and passes through no other vertices;
(ii) two edges intersect, at most, at their ends;
(iii) if ¡ is the union of the edges, then each connected component of Xn¡ is homeomorphic

to R2.
(c) The closure of a connected component of Xn¡ is known as a face.

For the earlier inadmissible examples: we cannot use the entire surface of the sphere as a
face as it is not homeomorphic to R2 invalidating (iii) – if we included a single solitary vertex
on the sphere we would then have a valid subdivision; for the second example the edge does
not begin and end in a vertex invalidating (i) – if we included a vertex on the edge then we
would have a valid subdivision.

For those that did A5 we note the following:
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Example 2.5 If a topological surface is the realisation jKj of a simplicial complex K then the
simplicial complex is a valid subdivision of jKj with the 0-simplices as vertices, the 1-simplices
as edges and the 2-simplices as faces.

The important result – which we shall not prove in this course – is the following (see also
Remark 2.15):

Theorem 2.6 Let X be a topological surface. Then the number

χ(X) = V ¡ E + F

is the same for any subdivision, where V,E, F are respectively the number of vertices, edges and
faces in the subdivision. The number χ(X) is known as the Euler characteristic of X, and
also sometimes as its Euler number or its Euler-Poincaré characteristic.

Consequently the Euler characteristic is a topological invariant of the surface – that is, it is
preserved by homeomorphisms.

Figure 2.7 – torus Figure 2.8 – Klein bottle

Figure 2.9 – projective plane Figure 2.10 – torus with subdivision

Example 2.7 Find the Euler characteristics of (a) the torus, (b) the Klein bottle, (c) the
projective plane.

Solution. Each of these surfaces begin with a square face, bounded by four edges and four
vertices. The important point is how many vertices and edges remain after the identi…cations
are made. In each case there is just one face, the square itself.

(a) For the torus T (Figure 2.7) the four edges are pairwise identi…ed to leave two edges –
the single arrows and the double arrows. Following the identi…cations around the four vertices
are all identi…ed to become a single vertex P . How these edges and vertices would look on a
torus is drawn in Figure 2.10. This means that the Euler characteristic of the torus is

χ(T) = 1¡ 2 + 1 = 0.
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(b) For the Klein bottle K (Figure 2.8) the four edges are pairwise identi…ed to leave two
edges – the single arrows and the double arrows. Following the identi…cations around the four
vertices are all identi…ed to become a single vertex P . This means that the Euler characteristic
of the Klein bottle is

χ(K) = 1¡ 2 + 1 = 0.

Note T and K have the same Euler characteristic of 0 despite not being homeomorphic – T is
orientable, but K is not.

(c) For the projective plane P (Figure 2.8) the four edges are pairwise identi…ed to leave two
edges – the single arrows and the double arrows. Following the identi…cations around the four
vertices become identi…ed a two vertices, P and Q. This means that the Euler characteristic of
the projective plane is

χ(P) = 2¡ 2 + 1 = 1.

It’s apparent from the identi…cation that P is the sphere with 1 cross-cap. Just treat the single
and double arrows as one edge and we see that P is the surface a1a1.

Example 2.8 Find the Euler characteristic of the surface created from the three polygons below.
Is the surface orientable?

Figure 2.11 – a more complicated example

Solution. The surface, as drawn, comes with a natural subdivision. There are 3 faces – the
pentagon, triangle and square – and 6 edges, namely a, b, c, d, e, f. It’s not immediately clear
how the original 12 vertices identify though.

Figure 2.12 – counting the vertices

If we label the vertex at the top of the pentagon as P then, by following around the identi…ca-
tions, we can see what other vertices it is identi…ed with. P is at the front end of a and so we
follow around the identi…cations
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front of a ! front of c ! back of b ! front of a

and we are back where we started. So the three vertices labelled P in Figure 2.12 are identi…ed
together. Labelling another vertex Q we can follow around the identi…cations and see in this
case that the remaining 9 vertices are identi…ed with Q. Thus 2 vertices remain once identi…ed
and we …nd

χ = 2¡ 6 + 3 = ¡1.

We cannot immediately see whether there is a Möbius strip within the surface as each edge
is identi…ed with an edge on a di¤erent face. However if we bring the pentagon and triangle
together as in Figure 2.13

Figure 2.13 – non-orientability

we now see that the senses of the two b-edges are the same or equivalently the shaded region is
a Möbius strip. Thus the surface is non-orientable.

Proposition 2.9 (a) Adding a handle to a surface reduces the Euler characteristic by 2.
(b) Adding a cross-kap to a surface reduces the Euler characteristic by 1.

Proof. (a) As shown in Figure 2.14 a handle can be added to a surface and subdivided with
two further edges. The vertex shown is already part of the original surface’s subdivision. As E
increases by 2 then V ¡ E + F reduces by 2.

(b) As shown in Figure 2.15 a cross-cap can be added to a surface and subdivided using
two new edges and a new vertex. The unlabelled vertex shown is already part of the original
surface’s subdivision. As E increases by 2 and V by 1 then V ¡E +F reduces by 1 overall.

Corollary 2.10 (a) The Euler characteristic of the torus with g > 0 holes equals 2¡ 2g.
(b) The Euler characteristic of the sphere with k > 1 cross-caps equals 2¡ k.

Figure 2.14 – adding a handle Figure 2.15 – adding a cross-cap
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We are now in a position to state the classi…cation theorem as we see that, between them,
orientability and the Euler characteristic are enough to distinguish the homeomorphism classes.

Theorem 2.11 (Classi…cation Theorem for Closed Surfaces) Let X be a closed topolog-
ical surface. Then X is homeomorphic to precisely one of the following.

(a) If X is orientable, then X is homeomorphic to a torus with g > 0 holes. g is called the
genus of X.

(b) If X is non-orientable, then X is homeomorphic to a sphere with k > 1 cross-caps.

Proof. From the A5 result we know that X is homeomorphic to one of these surfaces. None
of the surfaces in list (a) is homeomorphic to a surface in list (b) by orientability. Further, by
Corollary 2.10, the Euler characteristics of the surfaces in list (a) are distinct, thus separating
them topologically. The same can also be said of the surfaces in list (b).

Remark 2.12 It is worth noting that the early topologists who ‘proved’ the classi…cation
theorem did not have available in their time the rigorous de…nitions necessary to prove their
results to modern standards. In 1861 Möbius gave an early sketch proof of the classi…cation
for orientable surfaces, and Von Dyck gave a sketch proof for all closed surfaces in 1888. But
without any formal de…nition of what a surface is, these proofs can at best be considered
incomplete, even if the crucial ideas of the proof were largely present. Somewhat di¤erently
expressed rigorous versions of the classi…cation theorem would be proved by Dehn and Heegaard
in 1907 and by Brahana in 1921.

Remark 2.13 The above classi…cation theorem relates to closed topological surfaces up to
homeomorphism; we could easily consider instead closed di¤erentiable surfaces up to di¤eo-
morphism and the classi…cation theorem would essentially read the same. The situation is
similar in 3 dimensions but there are topological 4-manifolds which admit no di¤erentiable
structure (as shown by Simon Donaldson in 1982) and others which admit many; indeed there
are ‘exotic’ versions of R4 which are homeomorphic to the standard R4 but not di¤eomorphic
to it (as shown by Michael Freedman, also in 1982).

When it comes to ‘complex structures’ on surfaces the situation is very di¤erent and con-
siderably more subtle. Riemann surfaces are necessarily orientable so no complex structure can
be given to a sphere with one or more cross-caps. The sphere can only be endowed with one
complex structure, up to biholomorphism, but uncountably many exist on a torus.

Remark 2.14 We now see that the surface created in Example 2.8 is a sphere with 3 cross-
caps. Indeed having worked out that the Euler characteristic equals ¡1 we did not need to
determine the orientability as this is the only surface, up to homeomorphism, with this Euler
characteristic.

Remark 2.15 Euler noted his formula for polyhedra that are topologically a sphere around
1750. The French-Swiss mathematician, Simon Lhuilier, noted in 1812 that V ¡E+F = 2(1¡g)
when a polyhedron has g holes – this number g is called the polyhedron’s genus.

A modern demonstration of the topological invariance of the Euler characteristic usually
appears in an algebraic topology course – see the Part C course of that name. In fact, the Euler
characteristic is a homotopy invariant – homotopy equivalence is a more general notion than
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that of being homeomorphic. The Euler characteristic of a surface is the alternating sum of its
Betti numbers.

χ = b0 ¡ b1 + b2.

For an n-dimensional manifold, integral Betti numbers b0, b1, . . . , bn can be de…ned as the ranks
of the manifold’s homology groups which are topological invariants by de…nition. For the torus
with g holes we have

b0 = 1, b1 = 2g, b2 = 1,

giving χ = 2 ¡ 2g. That b0 = 1 signi…es the surface to be connected and that b2 = 1 signi…es
that it has an ‘inside’ or is orientable. b1 equalling 2g represents the loops that go through or
go around each of the g holes. For the sphere with k cross-caps,

b0 = 1, b1 = k ¡ 1, b2 = 0,

giving χ = 2¡ k. That b0 = 1 signi…es connectedness and b2 = 0 signi…es non-orientability. b1
equalling k ¡ 1 represents that k ¡ 1 loops are (in some technical sense) independent. Much
of this early work was due to Poincaré around the end of the nineteenth century and the
start of the twentieth and consequently the Euler characteristic is commonly referred to as the
Euler-Poincaré characteristic.

More complicated surfaces can be created from simpler ones using the connected sum.

De…nition 2.16 Given two closed topological surfaces X1 and X2, their connected sum X1#X2

is created by removing two small discs, one from each surface, and identifying the circumferences
of the two discs.

Note that X1#X2 is orientable if and only if X1 and X2 are both orientable. The Euler
characteristic of the connected sum can be quickly determined – as below – and we can then
see that the torus T and projective plane P can be used as the building blocks for general closed
topological surfaces.

Theorem 2.17 Let X1 and X2 be closed topological surfaces. Then

χ(X1#X2) = χ(X1) + χ(X2)¡ 2.

Corollary 2.18 (a) For g > 0, χ(T#g) = 2¡ 2g.
(b) For k > 1, χ(P#k) = 2¡ k.

Proof. Say that Xi has subdivisions with Vi, Ei, Fi vertices, edges and faces and suppose that
one of the faces in each subdivision is a triangle. When those two triangles are removed, and
their boundaries identi…ed, then 6 vertices become 3, 6 edges become 3, and 2 faces are lost.
Thus

V# = V1 + V2 ¡ 3, E# = E1 + E2 ¡ 3, F# = F1 + F2 ¡ 2

so that

χ(X1#X2) = (V1 + V2 ¡ 3)¡ (E1 + E2 ¡ 3) + (F1 + F2 ¡ 2)

= (V1 ¡E1 + F1) + (V2 ¡ E2 + F2)¡ 2

= χ(X1) + χ(X2)¡ 2.
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The corollaries then follow by induction noting

χ(T#g) = χ(T#g¡1#T) = χ(T#g¡1) + 0¡ 2 = χ(T#g¡1)¡ 2;

χ(P#k) = χ(P#k¡1#P) = χ(P#k¡1) + 1¡ 2 = χ(P#k¡1)¡ 1,

with the initial steps veri…ed by

χ(T#0) = χ
¡
S2

¢
= 2 = 2¡ 2£ 0;

χ(P#1) = χ(P) = 1 = 2¡ 1.

The corollaries are essentially alternative proofs of Proposition 2.9.

We shall see later,in Chapter 4, with the Gauss-Bonnet theorem, the Poincaré-Hopf theorem
and in elements of Morse theory, that the Euler characteristic is a topological obstruction to
the global analysis and geometry of a surface.
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3. SMOOTH AND GEOMETRIC SURFACES
In the introductory lecture we recalled the de…nition of a parameterized surface and introduced
the notion of a di¤erentiable structure on a surface. Here we will mainly be discussing the local
geometric structure of surfaces, so it will be su¢cient to focus on parameterized surfaces, though
we will wish to make sure our de…nitions are not dependent on the choice of parameterization.

De…nition 3.1 Let r(U) be a smooth parameterized surface in R3 and let p = r(u0, v0). The
tangent plane to r(U) at p is the plane through p that is parallel to

ru(u0, v0) and rv(u0, v0).

The tangent space Tp(r(U)) is the vector space spanned by these two vectors and any element
of Tp(r(U)) is called a tangent vector. It is easy to check that the tangent space at p consists
of all the tangent vectors to all curves in r(U) which pass through p.

Note that a parameterized surface is a surface in R3 with a preferred choice of co-ordinates
from a particular chart r¡1. But r(U) can also be associated with other charts, technically
giving a di¤erent parameterized surface but we would hope that any questions asked of X
(simply as a subspace of R3) such as, ‘what is the area of X?’ and ‘what is the length of a
curve in X?’, will yield the same answers, irrespective of what chart we use. This will be an
important consideration in all future de…nitions, namely that any new de…nitions are chart
independent.

Proposition 3.2 The tangent space is independent of the choice of parameterization.

Proof. Let r(U) = s(X) be two parameterizations

(u, v) 7! r(u, v), (x, y) 7! s(x, y).

If we have r(u, v) = s(x, y) then by the chain rule

ru = xusx + yusy, rv = xvsx + yvsy.

Applying the vector product, we …nd

ru ^ rv = (xuyv ¡ xvyu) sx ^ sy =
∂(x, y)

∂(u, v)
sx ^ sy

are parallel. The vectors ru ^ rv and sx ^ sy are non-zero and parallel, de…ning the normal
direction to the tangent space which we see is also independent of the choice of parameterization.

De…nition 3.3 Let r(U) be a smooth parameterized surface in R3. A normal vector to r(U)
at the point p is any (non-zero) vector orthogonal to Tp(r(U)).

The normal vectors are non-zero scalar multiples of ru ^ rv where ^ denotes the vector
product in R3. The two unit vectors

§
ru ^ rv
jru ^ rvj

are the choices of unit normal to r(U) at p.
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De…nition 3.4 The map n from r(U) to S2, the unit sphere, which continuously sends r(u, v)
to a unit normal n(u, v) is called the Gauss map.

The de…nition of the di¤erential of a map f : R2 ! R2 then extends to maps between
parameterized surfaces in an obvious way.

De…nition 3.5 Let X and Y be smooth parameterized surfaces in R3 and let p 2 X. For a
smooth map f : X ! Y (see De…nition 1.10), the di¤erential of f at p is the linear map

dfp : TpX ! Tf(p)Y

de…ned as follows. Let v 2 TpX and let γ : (¡, )! X be a smooth curve such that

γ(0) = p and γ0(0) = v.

Then f ± γ is a smooth curve in Y and as before we de…ne

dfp(v) = dfp(γ
0(0)) = (f ± γ)0(0).

A quick check shows that this de…nition is independent of the choice of curve γ.

Before we discuss any of the theory of surfaces, we should introduce some standard examples.
We have already introduced di¤erentiable atlases for the sphere and real projective plane, but
we introduce two other parameterizations for (most of) the sphere here.

Example 3.6 (Parameterizing the sphere) Consider the map r1 : (¡π, π) £ (0, π) ! R3

(see Figure 3.1) given by

r1 : (u, v) 7! (cosu sin v, sinu sin v, cos v).

It is easy to check that the image of this map is contained in S2, the unit sphere centred at the
origin. In fact r1 is a parameterization of the whole sphere save for half a great circle. The
parameter u is the angle between the projection of r1(u, v) onto the xy-plane and the x-axis and
v is the angle between r1(u, v) and the z-axis.

Figure 3.1 – spherical polars Figure 3.2 – stereographic projection

Consider also the map r2 : R2 ! R3 de…ned by

r2 : (u, v) 7!

µ
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 ¡ 1

u2 + v2 + 1

¶

.
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So r¡12 is a chart of the unit sphere. The map r¡12 is in fact stereographic projection (see Figure
3.2) from the ‘north pole’ N = (0, 0, 1); that is, a point (u, v) 2 R2 is mapped to the intersection
of the sphere with the line joining (u, v, 0) and N . In this case the image of the sphere is the
whole sphere minus N . This map is particularly relevant for setting up the extended complex
plane with the Riemann sphere, a …rst example of a compact Riemann surface,

Example 3.7 (Graphs) Amongst the simplest examples of parameterized surfaces are graphs.
Let f(x, y) be a smooth function de…ned on an open set U µ R2. Then the graph of f is the
surface z = f(x, y) and may be parameterized by

r(u, v) = (u, v, f(u, v)), (u, v) 2 U.

These graphs seem almost too simple a family of surfaces to be of interest. One point of
importance though is that any smooth surface in R3 is, locally at least, a graph. That is:

² About any point of a smooth surface in R3 there is an open neighbourhood U such that U
is a graph of the form z = f(x, y) or y = f(x, z) or x = f(y, z) for some smooth function
f . (Do Carmo, p.63).

Indeed, for a general smooth surface (x (u, v) , y (u, v) , z(u, v)) , provided the normal is not hor-
izontal or equivalently

∂(x, y)

∂(u, v)
= xuyv ¡ xvyu 6= 0,

then the surface can be locally parameterized as z = f(x, y) for some f.

Example 3.8 (The cone) The punctured cone x2 + y2 = z2, (z > 0) in R3 may be smoothly
parameterized by

r(u, v) = (u, v,
p
u2 + v2), u, v 2 R, u2 + v2 6= 0.

Note that the two-sheeted cone x2 + y2 = z2 is not the image of any parameterization as no
neighbourhood of the cone about (0, 0, 0) is homeomorphic to an open subset of R2. (To see this
consider the topological e¤ect of removing the origin.)

Consider now the one-sheeted cone C given by x2 + y2 = z2, (z > 0). This certainly is the
image of a parameterization s : R2 ! C, but for no such map is C smooth at the point (0, 0, 0).
To prove this we assume that the cone may be locally parameterized about (0, 0, 0) as the graph
of a smooth function. The only possibility (from z = f(x, y) or y = f(x, z) or x = f(y, z)) is a
graph of the form z = f(x, y) and by the de…nition of C we see that

f(x, y) =
p
x2 + y2.

As f is not di¤erentiable at (0, 0) then (0, 0, 0) is not a smooth point of C for any parameteri-
zation. Such points on a surface are called singular points.

Example 3.9 (Surfaces of revolution) Surfaces may also be formed by taking a curve in
R3 and using this curve to generate a surface. One such family are the surfaces of revolution.
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A surface of revolution is formed by rotating a smooth curve in, say, the xz-plane about the
z-axis. For example, the cylinder in the above exercise is a surface of revolution.

Assume the curve has equation x = f(z) > 0. Then the surface of revolution generated has
equation x2 + y2 = f(z)2. The surface cannot entirely be parameterized with one co-ordinate
system but the map

r(θ, z) = (f(z) cos θ, f(z) sin θ, z), θ 2 (0, 2π), z 2 R

parameterizes all of the surface except for the original generating curve. The curves of the form
θ = const. are called meridians; this includes the original generating curve (where θ = 0).
Those curves with equations z = const. are called parallels.

Figure 3.3 – surface of revolution Figure 3.4 – hyperboloid of one sheet

Example 3.10 (Ruled surfaces) Let γ : I ! R3 be a smooth curve and w : I ! R3nf0g be
a second non-vanishing vector function on I. Then the parameterized surface given by

r(u, v) = γ(u) + vw(u) u 2 I, v 2 R

is an example of a ruled surface. The curve γ is known as the directrix and the lines in the
surface given by u = constant are known as rulings.

Note that the parameterization r above need not be a homeomorphism onto its image and
so such a ruled surface may have self-intersections, although these may be avoided by limiting
the domain of the co-ordinate v. For example, the image of the map

r(u, v) = (v cosu, v sinu, v), u 2 (0, 2π), v 2 R,

is all of the two sheeted cone except for two rays (two halves of the line x = z). The map
r is not a parameterization as (0, 0, 0) is a self-intersection. However the restriction of r to
(0, 2π) £ (0,1) is a valid parameterization for the one sheeted cone with the omission of a
single ruling.

Exercise 3.11 Show that the hyperbolic paraboloid z = xy and the hyperboloid of one sheet
x2 + y2 = z2 + 1 in R3 are ruled surfaces.
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3.1 The First Fundamental Form
Let U µ R2 be an open subset of the plane and r : U ! R3 be a parameterization of a smooth
surface X. Let

γ : I ! X be given γ(t) = r(u(t), v(t))

be a smooth curve lying in X.

De…nition 3.12 We de…ne the length of γ to be

L(γ) =

Z

I

¯
¯
¯
¯
dγ

dt

¯
¯
¯
¯ dt. (3.1)

Using the chain rule it is easy to see that the length of γ does not depend on the choice of
parameter t. Now

dγ

dt
=
du

dt

∂r

∂u
+
dv

dt

∂r

∂v
or written more concisely

_γ = _uru + _vrv.

So the length of γ equals Z

I

p
E _u2 + 2F _u _v +G _v2 dt (3.2)

where
E = ru ¢ ru, F = ru ¢ rv, G = rv ¢ rv.

De…nition 3.13 The quadratic form Ip : TpX ! R on the tangent space TpX, de…ned by

Ip (αru + βrv) = Eα2 + 2Fαβ +Gβ2

is called the …rst fundamental form of X.

Remark 3.14 What does this actually mean? The …rst fundamental form is the restriction to
TpX of the quadratic form

x 7! jxj2.

Now fru, rvg is a basis for the tangent space and with respect to this basis the …rst fundamental
form has coe¢cients E, 2F and G. Geometrically it can be thought of as the square of the
element of arc length, often conveyed as

ds2 = Edu2 + 2Fdudv +Gdv2.

For X = r(U), a smooth parameterized surface, let

u : r(u, v) 7! u and v : r(u, v) 7! v

denote the co-ordinate maps. For p = r(u0, v0), consider the di¤erentials dup, dvp : TpX ! R.
We de…ne two curves along the co-ordinate curves through p. Set

γ(t) = r(u0 + t, v0), t 2 (¡, ),

¡(t) = r(u0, v0 + t), t 2 (¡, ).
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Note that γ0(0) = ru(p) and ¡0(0) = rv(p). So

dup(ru) = dup(γ
0(0)) = (u ± γ)0(0) = (t 7! u0 + t)0(0) = 1,

dup(rv) = dup(¡
0(0)) = (u ± ¡)0(0) = (t 7! u0)

0(0) = 0.

Similarly dvp(ru) = 0 and dvp(rv) = 1. So dup and dvp are elements of the dual tangent space
TpX; in fact they are the dual basis of fru(p), rv(p)g. So Edu2p + 2Fdupdvp + Gdv2p is the
quadratic form on TpX given by

Ip : αru + βrv 7! Eα2 + 2Fαβ +Gβ2.

However one thinks about the …rst fundamental form, remember that the form is associated
with the surface. When we change co-ordinates the quadratic form does not change, but its
expression will generally look di¤erent in terms of the new co-ordinates.

Example 3.15 Find the …rst fundamental form of the plane using (a) Cartesian co-ordinates
and (b) polar co-ordinates.

Solution. Using Cartesian co-ordinates we …nd

r(u, v) = (u, v), u, v 2 R

and with polar co-ordinates

R(r, θ) = (r cos θ, r sin θ), r > 0, θ 2 (0, 2π).

So
ru = (1, 0) rv = (0, 1),

Rr = (cos θ, sin θ), Rθ = (¡r sin θ, r cos θ).

With respect to the two co-ordinate systems the …rst fundamental form is:

du2 + dv2 and dr2 + r2dθ2.

Remark 3.16 It is always possible to introduce local co-ordinates such that the …rst funda-
mental form has certain preferential forms.

² [Do Carmo, p.183] There exists a local parameterization around any point of a surface
such that F = 0. Such a parameterization is called orthogonal.

² [Do Carmo, p.227] There exists a local parameterization around any point of a surface
such that F = 0 and E = G. Such a parameterization is called isothermal. This
is equivalent to the parameterization being conformal from the plane; the existence of
isothermal co-ordinates implies all smooth surfaces are locally conformal.

² [Do Carmo, p.287] Using geodesic polar co-ordinates (see Theorem 3.61 et seq.), it is
possible to parameterize a surface locally such that E = 1 and F = 0.
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The following argument was previously given in Prelims Geometry as a de…nition for area.
Let V µ U be an open subset of U ; we wish to calculate the area of r(V ). Consider a small
parallelogram with vertices

r(u, v), r(u+ δu, v), r(u, v + δv), r(u+ δu, v + δv).

Now
r(u+ δu, v)¡ r(u, v) = ru(u, v)δu+O(δu2)

and there is a similar expression for varying v. So the area of the parallelogram, ignoring higher
order terms in δu and δv, equals

jru ^ rvj δu δv.

It thus seems reasonable to de…ne:

De…nition 3.17 The area of r(V ) equals
ZZ

V

jru ^ rvjdu dv. (3.3)

Now

jru ^ rvj
2 = (ru ^ rv) ¢ (ru ^ rv)

= (ru ¢ ru)(rv ¢ rv)¡ (ru ¢ rv)(rv ¢ ru)

= EG ¡ F 2.

Thus the expression (3.3) for the area of r(V ) can be rewritten as
ZZ

V

p
EG ¡ F 2 du dv. (3.4)

See Proposition 0.11 for a proof that this de…nition is independent of the choice of co-ordinates.

Example 3.18 Show that a sphere of radius a has area 4πa2.

Solution. We may parameterize the sphere using spherical polar co-ordinates

r(u, v) = (a cosu sin v, a sinu sin v, a cos v), u 2 (¡π, π), v 2 (0, π),

omitting only half a great circle, which has zero area. Then

ru = (¡a sinu sin v, a cosu sin v, 0),

rv = (a cos u cos v, a sinu cos v,¡a sin v).

Thus (with respect to the co-ordinates u and v) the …rst fundamental form is given by

E = a2 sin2 v, F = 0, G = a2

and the area is given by
Z π

0

Z π

¡π

a2j sin vj du dv = 2πa2
Z π

0

sin v dv = 4πa2

as required.
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Example 3.19 The tractoid (see Figure 3.5) is the surface of revolution formed by rotating
the curve

x(t) = ¡(cos t+ log tan
t

2
), y(t) = sin t, t 2 (0, π/2)

(known as the tractrix) about the x-axis.
(a) Show that, when the tractrix is parameterized by arc-length s, the …rst fundamental form of
the tractoid is

ds2 + e¡2sdθ2. (3.5)

(b) Show that the area of the tractoid equals 2π.

Solution. (a) We may parameterize the tractoid by writing

r(t, θ) = (x(t), y(t) cos θ, y(t) sin θ), t 2 (0,1), θ 2 (0, 2π),

omitting only the original tractrix. Di¤erentiating with respect to t and θ we …nd that

rt = (¡ cos t cot t, cos t cos θ, cos t sin θ),

rθ = (0,¡ sin t sin θ, sin t cos θ).

Thus the …rst fundamental form is given by

cot2 t dt2 + sin2 t dθ2. (3.6)

Now

µ
ds

dt

¶2

=

µ
dx

dt

¶2

+

µ
dy

dt

¶2

=

µ
cos2 t

sin t

¶2

+ cos2 t = cot2 t
¡
cos2 t+ sin2 t

¢
= cot2 t.

As s is decreasing with respect to t (note s = 1 when t = 0 and s = 0 when t = π/2), then
ds/dt = ¡ cot t and hence s = ¡ log sin t. Substituting these expressions into (3.6) we obtain
E = 1, F = 0, G = e¡2s as in (3.5).

(b) The area of the tractoid is then given by the integral

Z 1

0

Z 2π

0

e¡s dθ ds = 2π.

Exercise 3.20 Show that the area of the torus in R3, parameterized by

r(u, v) = ((a+ b cos v) cosu, (a+ b cos v) sinu, b sin v)

for u, v 2 (0, 2π) and a > b > 0, equals 4π2ab.

Properties of surfaces which depend solely on the …rst fundamental such as length and area
(and geodesics and Gaussian curvature – see later) are called intrinsic. Maps between surfaces
which preserve the intrinsic geometry are called isometries.
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De…nition 3.21 An isometry between two surfaces X and Y is a di¤eomorphism f : X ! Y
which maps curves in X to curves in Y of the same length. X and Y are then said to be
isometric.

As the …rst fundamental form represents an element of arc length then the following theorem
is hopefully intuitive.

Theorem 3.22 Two smooth, parameterized surfaces X and Y are isometric if and only if there
exists an open subset U ½ R2 and parameterizations

r : U ! X, s : U ! Y,

such that the …rst fundamental forms of X and Y are the same.

Proof. Su¢ciency is straightforward. Suppose two such parameterizations r and s exist with
the same fundamental forms – I claim f = sr¡1 : X ! Y is the required isometry. Let C be
a smooth curve in U . The lengths of r(C) and s(C) = f(r(C)) are equal as they are given by
the same integral (3.2).

Conversely, suppose now that f : X ! Y is an isometry of two smooth, parameterized
surfaces and suppose that r : U ! X is a parameterization of X. Let s = fr : U ! Y . We
shall write E, 2F,G and ~E, 2 ~F, ~G for the coe¢cients of the …rst fundamental forms of X and
Y with respect to r and s. As f is an isometry we have that

Z b

a

p
E _u2 + 2F _u _v +G _v2 dt =

Z b

a

p
~E _u2 + 2 ~F _u _v + ~G _v2 dt (3.7)

for all smooth curves (u(t), v(t)), a 6 t 6 b, in U .
As the above is an identity for all b then di¤erentiating shows

p
E _u2 + 2F _u _v +G _v2 =

p
~E _u2 + 2 ~F _u _v + ~G _v2

And choosing part of a co-ordinate curve, namely: u(t) = u0 + t and v(t) = v0 in U, so that
_u = 1, _v = 0, it follows that E = ~E. By a similar argument using u = const. curves we may
conclude that G = ~G. Finally then F = ~F .

Example 3.23 The catenoid (with a meridian removed) and helicoid are respectively para-
meterized by

r(u, v) = (u, coshu cos v, coshu sin v), u 2 R, v 2 (0, 2π) ,

s(~u, ~v) = (~u, ~v cos ~u, ~v sin ~u), ~u 2 R, ~v 2 R.

Show that the catenoid is isometric to part of the helicoid, in such a way that meridians of the
catenoid map to rulings of the helicoid.

Solution. The …rst fundamental form of the catenoid equals

cosh2u du2 + cosh2u dv2
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and the …rst fundamental form of the helicoid equals

(1 + ~v2) d~u2 + d~v2. (3.8)

Now consider the map

r(u, v) 7! s(v, sinhu), for u 2 R, v 2 (0, 2π) (3.9)

between the catenoid and the helicoid. Under the substitution ~u = v and ~v = sinhu then the
form (3.8) becomes

(1 + sinh2u) dv2 + d(sinhu)2 = cosh2u du2 + cosh2udv2

which is the …rst fundamental form of the catenoid. Thus the map (3.9) is indeed an isometry.
The meridians of the catenoid are given by the equations v = constant. Under the above

isometry the meridians map to the curves on the helicoid given by ~u = constant – i.e. the
rulings.

Exercise 3.24 (First part is Sheet 2, Part A, Exercise 1) Two curves on the same smooth
parameterized surface are given parameterically by t 7! (u(t), v(t)) and t 7! (~u(t), ~v(t)). Suppose
that the curves intersect at t = 0. (i.e. u(0) = ~u(0) and v(0) = ~v(0).) Prove that the angle of
intersection θ is given by

cos θ =
E _u _~u+ F ( _u _~v + _~u _v) +G _v _~v

p
E _u2 + 2F _u _v +G _v2

p
E _~u2 + 2F _~u _~v +G _~v2

Deduce that a parameterization is conformal if and only if the …rst fundamental form satis…es
E = G and F = 0 everywhere.

Exercise 3.25 A di¤eomorphism between surfaces X and Y is said to be conformal if the
angle between any two intersecting curves on X equals the angle between their images on Y and
is said to be area-preserving if each subset of X is mapped to a subset of Y of equal area.
Show that a di¤eomorphism is an isometry if and only if it is area-preserving and conformal.

Thus far we have not made any calculations of lengths and areas which couldn’t have
been done as easily with the old expressions (3.1), (3.3) as with the new expressions (3.2),
(3.4) which are in terms of coe¢cients of the …rst fundamental form. The calculations in the
following examples however can only be done using the new de…nitions of length and area.

Example 3.26 The ‡at torus T is the surface in R4 given by

T = f(x, y, z, t) 2 R4 j x2 + y2 = z2 + t2 = 1g.

Show that T is locally isometric to R2 and calculate the area of T.

Solution. We may parameterize (a dense open subset of) T by

r(u, v) = (cosu, sinu, cos v, sin v), u, v 2 (0, 2π).
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Then the …rst fundamental form of T is du2 + dv2 and so T is locally isometric to the plane.
T is certainly not globally isometric to R2 since T is compact and R2 is non-compact. (In fact,
the ‡at torus is isometric to no surface in R3, a consequence of Sheet 2, Part B, Exercise 4.)
The area of T is easily seen using (3.4) to equal 4π2 but as the vector product is not de…ned in
R4 then our original de…nition (3.3) is not applicable.

So far we have only considered examples where the metric structure of the surface is precisely
that induced on the surface by the Euclidean space (usually R3) in which the surface lies. There
is no reason why we should limit ourselves to these cases – in fact there are good reasons not
to.

From Example 3.19 the tractoid (with the original tractrix removed) has …rst fundamental
form

ds2 + e¡2s dθ2, s > 0, θ 2 (0, 2π),

when the tractrix is parameterized by arc-length s. The map f from which sends the point
on the tractoid with co-ordinates (s, θ) to (θ, es) is a di¤eomorphism from the tractoid, minus
the original tractorid, to (0, 2π)£ (1,1) (as a subset of the Euclidean plane) but f is not an
isometry. We could however ask:

Example 3.27 In terms of the co-ordinates x and y, …nd the …rst fundamental form on
(0, 2π)£ (1,1) for which f is an isometry.

Solution. The co-ordinates x and y are related to s and θ by

x = θ, and y = es.

For f to be an isometry we need to endow (0, 2π)£ (1,1) with the …rst fundamental form

ds2 + e¡2s dθ2 = d(log y)2 +
1

y2
dx2 =

dx2 + dy2

y2
.

Figure 3.5 – tractrix Figure 3.6 – tractoid Figure 3.7 – tractoid as a subset of H

What we have shown above is that the tractoid (without a meridian) is isometric to part of
H, the hyperbolic plane (Figure 3.7).
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Example 3.28 (Poincaré’s half plane model of the hyperbolic plane) H is the surface
created by endowing the upper half plane f(x, y) j y > 0g with the …rst fundamental form

dx2 + dy2

y2
. (3.10)

H is of interest because it was the …rst model for a non-Euclidean geometry.

Whilst the in…nite rectangle (0, 2π)£(1,1) with the …rst fundamental form (3.10) is isomet-
ric to a surface in R3, the hyperbolic plane is not. This is a consequence of Hilbert’s Theorem
(Do Carmo, p. 446). We could isometrically embed H in a higher dimensional Euclidean space,
although the isometry may be a little complicated, but there is no need. From our formulas
(3.2),(3.4) we may …nd the length and area of curves and regions in H without having to be
working in a particular Euclidean space. Indeed we could create a geometric surface by endow-
ing any open subset of R2 with any …rst fundamental form Edx2 + 2Fdxdy + Gdy2 provided
that E,F,G are smooth functions and

E > 0, G > 0, EG ¡ F 2 > 0.

Conversely any parameterized surface which is di¤eomorphic to an open subset of R2 would be
isometric to such a surface.

Example 3.29 Find the length of the curve γ(t) = (0, t) for 1 6 t 6 2 in H.

Solution. We have E = G = y¡2 and F = 0. Substituting these into (3.2) we …nd

L(γ) =

Z 2

1

r
1

t2
dt = [log t]21 = log 2.

Exercise 3.30 Show that the surfaces created by endowing (0, α) £ (0,1) with the …rst fun-
damental form (3.10) are isometric for any α > 0.

De…nition 3.31 A smooth geometric surface or smooth Riemannian 2-manifold is a
Hausdor¤ topological space X together with

(a) homeomorphisms φα : Uα ! Vα between open sets Uα µ X and open sets Vα µ R2,
(b) …rst fundamental forms Eαdx

2+ 2Fαdxdy+Gαdy
2 on Uα where Eα, Fα, Gα are smooth

functions satisfying
Eα > 0, Gα > 0, EαGα ¡ (Fα)

2 > 0,

such that
(a)

S
α Uα = X,

(b) when Uα \ Uβ 6= ; then

(φα) ± φ
¡1
β : (φβ)(Uα \ Uβ) ! (φα)(Uα \ Uβ)

is an isometry.
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Example 3.32 (The elliptic plane) Topologically the elliptic plane is the real projective
plane. Geometrically it is the surface endowed with the …rst fundamental form from the unit
sphere.

Let D denote the open unit disc f(u, v) j u2 + v2 < 1g. Then r1 : D ! S2, de…ned by

r1(u, v) = (u, v,
p
1¡ u2 ¡ v2),

is a parameterization of a unit hemisphere, so that s1 = π ± r1 : D ! S2/ f§1g = P is a
parameterization of (a dense open subset of) the real projective plane P. The …rst fundamental
form on r1(D) is

(1¡ v2)du2 + 2uvdudv + (1¡ u2)dv2

1¡ u2 ¡ v2
,

and we can endow s1(D) with this …rst fundamental form to form a geometric surface.
A second parameterization s2 = π± r2 : D ! P arises from the parameterization r2 : D ! S2

given by
r2(U, V ) = (U,

p
1¡ U2 ¡ V 2, V ),

which is endowed with the same …rst fundamental form once u is replaced with U and v with
V. Now the transition map s¡12 ± s1 is given by

U (u, v) = u and V (u, v) =
p
1¡ u2 ¡ v2.

Substituting these values into the …rst fundamental form on s2(D) we note dU = du and

dV =
¡udu ¡ vdv
p
1¡ u2 ¡ v2

and then

(1¡ V 2)dU2 + 2UV dUdV + (1¡ U2)dV 2

1¡ U2 ¡ V 2

=
(u2 + v2)du2 ¡ 2u

p
1¡ u2 ¡ v2du

³
udu+vdvp
1¡u2¡v2

´
+ (1¡ u2)

³
udu+vdvp
1¡u2¡v2

´2

v2

=
(u2 + v2)du2 ¡ 2udu (udu+ vdv) + (1¡u2)

(1¡u2¡v2)
(u2du2 + 2uvdudv + v2dv2)

v2

=
[(v2 ¡ u2) (1¡ u2 ¡ v2) + (1¡ u2)u2] du2 + 2 [¡uv (1¡ u2 ¡ v2) + uv (1¡ u2)] dudv + (1¡ u2) v2dv2

v2 (1¡ u2 ¡ v2)

=
[v2 ¡ v4] du2 + 2 [uv3] dudv + [(1¡ u2) v2] dv2

v2 (1¡ u2 ¡ v2)

=
(1¡ v2)du2 + 2uvdudv + (1¡ u2)dv2

1¡ u2 ¡ v2
.

Hence the transition map is an isometry as required, because one …rst fundamental form trans-
forms in the other.
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We can similarly extend the notion of orientability to abstract surfaces by requiring that
transition maps are orientation-preserving as well as di¤eomorphisms. It is even possible to
de…ne the tangent space for a smooth abstract surface, even though the surface is not embedded
in any ambient Euclidean space. On an abstract surface we still have local co-ordinates, so it
still possible to di¤erentiate smooth functions with respect to those co-ordinates.

De…nition 3.33 Let X be a smooth abstract surface and p 2 X. Let Vp denote the vector space
(algebra, in fact) of all functions ϕ : X ! R which are smooth at p. Then the tangent space
at p, written TpX, is the set of all linear maps D : Vp ! R which satisfy the product rule

D(ϕψ) = ϕ(p)Dψ + ψ(p)Dϕ for all ϕ, ψ 2 Vp.

Such a D is called a derivation. Note TpX is a vector space with addition and scalar multi-
plication de…ned by

(D1 +D2)ϕ = D1ϕ+D2ϕ, (λD)ϕ = λ(Dϕ).

Given a smooth map f : X ! Y between two smooth abstract surfaces X, Y with p 2 X the
di¤erential dfp : TpX ! Tf(p)Y is de…ned by

(dfp (D)) (α) = D(α ± f)

where D 2 TpX and α is a real map α : Y ! R which is smooth at f(p).

Exercise 3.34 TpX is two dimensional and a basis is
(

∂

∂u

¯
¯
¯
¯
p

,
∂

∂v

¯
¯
¯
¯
p

)

where u and v are co-ordinates local to p.

3.2 Curvature and the Weingarten map
Let X be a smooth parameterized surface in R3 described by r : U ! X and let

n =
ru ^ rv
jru ^ rvj

denote a choice of unit normal. When γ(s) is a curve in X, parameterized by arc length, then
the curvature κ(s) of γ at the point γ(s) is simply the magnitude of Äγ(s).

When looking at such a curve, the vector Äγ(s) has two natural components, a tangential
component and a normal component. As _γ(s) is a unit vector for all s, its derivative Äγ(s) is
perpendicular to _γ(s). So we may decompose Äγ(s) in the form:

Äγ = knn+ kg(n ^ _γ). (3.11)

De…nition 3.35 We de…ne:
(a) kn(s) is the normal curvature of γ at γ(s).
(b) kg(s) is the geodesic curvature of γ at γ(s).

It follows that κ2 =
¯
¯_t

¯
¯2 = jÄγj2 = k2n + k2g.

(c) A curve in X whose geodesic curvature is everywhere zero is called a geodesic.
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We shall consider, for the moment, the normal curvature of curves and we shall use this
to de…ne a second quadratic form on the tangent space of a point of X. We shall see later
(Theorem 3.60 and Sheet 2, Part B, Exercise 3) that the geodesics of a surface and the geodesic
curvature of a curve are intrinsic; that is they depend only on the …rst fundamental form of the
surface and the direction of the curve. This is very much not the case with normal curvature,
which gives information on how a geometric surface has been embedded in R3.

The normal curvature kn of γ equals Äγ ¢ n. By the chain rule we have

_γ = _uru + _vrv,

and applying the chain rule again we …nd

Äγ = Äuru + Ävrv + _u2ruu + 2 _u _vruv + _v2rvv.

Hence the normal curvature kn = Äγ ¢ n equals

kn = L _u2 + 2M _u _v +N _v2,

where

L = ruu ¢ n = ¡ru ¢ nu,

M = ruv ¢ n = ¡ru ¢ nv = ¡rv ¢ nu, (3.12)

N = rvv ¢ n = ¡rv ¢ nv.

Note that the alternative expressions for L,M,N come from the di¤erentiating the equations

ru ¢ n = 0 = rv ¢ n.

De…nition 3.36 The quadratic form IIp : TpX ! R given by

αru + βrv 7! Lα2 + 2Mαβ +Nβ2

is called the second fundamental form of X. (Note that some authors, including Do Carmo,
use e, f, g instead of L,M,N for the coe¢cients of the second fundamental form.)

The …rst fundamental form describes the intrinsic properties of the surface, whereas the
second fundamental form relates to the surface’s embedding in R3. Although the proof of the
following theorem is far beyond the scope of this course, I include an abridged statement of:

Theorem 3.37 (O¤-syllabus) (The Fundamental Theorem of the Local Theory of Sur-
faces.) Let E,F,G,L,M,N be di¤erentiable functions on an open set U ½ R2 which satisfy

(a) E > 0, G > 0, EG ¡ F 2 > 0,
(b) certain compatibility equations (Remark 3.58, Do Carmo p.235).

Then for each p 2 U there is an open set V ½ U containing p and a smooth parameterization
r(V ) of a surface in R3 with E, 2F,G and L, 2M,N as the coe¢cients of the …rst and sec-
ond fundamental forms. Further a second surface ~r(V ) in R3 with the same …rst and second
fundamental forms di¤ers from r(V ) only by a rigid motion of R3.

One equation of compatability is the Gauss formula, which we will meet shortly, and which
expresses the Gaussian curvature – ostensibly de…ned in terms of both fundamental forms
(Corollary 3.43) – solely in terms of the …rst fundamental form.
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Example 3.38 Show that the xy-plane and cylinder x2+ y2 = a2 are locally isometric but not
globally isometric.

Solution. A parameterization of the xy-plane is r(u, v) = (u, v, 0) which leads to

E = 1, F = 0, G = 1, L = 0, M = 0, N = 0.

The cylinder, except for one meridian, can be parameterized by

s(u, v) = (a cos (u/a) , a sin (u/a) , v) , 0 < u < 2πa, v 2 R.

This leads to
E = 1, F = 0, G = 1, L = ¡a¡1, M = 0, N = 0.

Thus the cylinder and plane are locally isometric as they have the same …rst fundamental
forms. They are not globally isometric as they are not homeomorphic – the cylinder is not
simply connected whereas the plane is.

In order to de…ne the curvature of the surface at a point we need to introduce the Weingarten
map or shape operator. The Weingarten map is the di¤erential of the Gauss (normal) map n
and consequently is written as dnp in some texts. Curvature, for a curve, is a measure of how
quickly the tangent is varying (see (3.18)). Similarly for a surface we need to investigate how
quickly the tangent plane, or equivalently the normal to the surface is varying. Note that as
n ¢ n = 1 then

n ¢ nu = 0 = n ¢ nv.

Thus nu and nv are tangents vectors to the surface.

De…nition 3.39 The Weingarten map (or shape operator) at the point p is the linear map
Wp : TpX ! TpX de…ned by

Wpru = nu, Wprv = nv. (3.13)

More generally note that Wp(γ
0(s)) = (n±γ)0(s) and so Wp = dnp is the di¤erential of the Gauss

map.

Proposition 3.40 The Weingarten map Wp : TpX ! TpX is a self-adjoint linear map indepen-
dent of the choice of parameters u and v. In particular, as Wp is self-adjoint, it is orthogonally
diagonalisable.

Proof. Let s(~u, ~v) be a second parameterization for X with s(~u, ~v) = r(u, v). Then by the
chain rule we have

s~u =
∂u

∂~u
ru +

∂v

∂~u
rv, s~v =

∂u

∂~v
ru +

∂v

∂~v
rv.

Hence by the above de…nition of the Weingarten map and the chain rule we have

Wps~u =
∂u

∂~u
nu +

∂v

∂~u
nv = n~u, Wps~v =

∂u

∂~v
nu +

∂v

∂~v
nv = n~v.

It is also easy to check that Wp is a self-adjoint linear map – that is

(Wpx) ¢ y = x ¢ (Wpy) (3.14)
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for any two tangent vectors x,y 2 TpX. We note from equation (3.12) that

Wpru ¢ rv = nu ¢ rv = nv ¢ ru =Wprv ¢ ru.

Equation (3.14) then follows for all tangent vectors x,y by linearity.

As Wp is self-adjoint it is diagonalizable and has real eigenvalues. Let γ be a curve in X
with γ(0) = p. Then

Wp(γ
0(0)) ¢ γ0(0) = n0(γ(0)) ¢ γ0(0)

= ¡n ¢ γ00(0) = ¡kn.

Thus the eigenvalues of Wp are ¡k1 and ¡k2 where k1 and k2 are the extreme values of the
normal curvature, called the principal curvatures of X at p and the eigenvectors of Wp are
the principal directions. The lines of curvature are curves whose tangents are the principal
directions.

We make the following de…nitions:

De…nition 3.41 The Gaussian curvature K(p) at the point p is the product of the principal
curvatures or equivalently the determinant detWp of the Weingarten map.

De…nition 3.42 (O¤-syllabus) The average of the principal curvatures is known as the mean
curvature at p. It is given by the formula

H =
LG ¡ 2MF +NE

2(EG ¡ F 2)
.

The mean curvature is important in the study of minimal surfaces. A minimal surface is a
surface with an area that is locally minimal, such as with soap …lms. A soap …lm – in order to
reduce the surface tension – has minimal area compared with all perturbations of the surface.
This is equivalent to the mean curvature of the surface being zero (Segal, Theorem 9.1).

The tangent vectors ru and rv form a basis for the tangent plane TpX and Wp : TpX ! TpX
is a linear map. We now work out the matrix for Wp with respect to this basis. Denote the
matrix for Wp with respect to the basis fru, rvg as

µ
A B
C D

¶

.

Then

Wpru = nu = Aru + Crv, (3.15)

Wprv = nv = Bru +Drv. (3.16)

Dotting equation (3.15) with ru and with rv we …nd

¡L = AE + CF, ¡M = AF + CG.
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Doing the same for equation (3.16) we obtain

¡M = BE +DF, ¡N = BF +DG.

Putting these equations into matrix form gives

¡

µ
L M
M N

¶

=

µ
E F
F G

¶µ
A B
C D

¶

and hence with respect to the basis fru, rvg

Wp =
1

EG ¡ F 2

µ
¡G F
F ¡E

¶µ
L M
M N

¶

. (3.17)

Corollary 3.43 The Gaussian curvature K(p) at p, which equals detWp, is given by the for-
mula

K(p) =
LN ¡ M2

EG ¡ F 2
.

Despite the above expression forK, which is in terms of the coe¢cients of the …rst and second
fundamental forms, the Gaussian curvature may be written solely in terms of the coe¢cients of
the …rst fundamental form and is invariant under isometries. This is a theorem due to Gauss
and known as the Theorema Egregium or ‘remarkable theorem’ (Theorem 3.48).

Gauss originally did not de…ne K by the above formula but rather as the following more
intuitive limit. Let U be a small open subset of X about the point p. Then if we let the area
of U tend to zero (see Sheet 3, Part B, Exercise 3)

jKj = lim
Area(U)!0

Area(n(U))

Area(U)
. (3.18)

The more ‘curved’ the surface at a point, the greater the variety in the normal vectors about
the point.

We end this section with two worked examples – we continue with the earlier examples –
the sphere and the tractoid – where we calculated the …rst fundamental form.

Example 3.44 Find the Gaussian curvature of a sphere of radius a.

Solution. In Example 3.18 we parameterized the sphere with

r(u, v) = (a cosu sin v, a sinu sin v, a cos v), u 2 (¡π, π), v 2 (0, π),

omitting only half a great circle and found

E = a2 sin2 v, F = 0, G = a2.

The outward-pointing unit normal equals

n(u, v) = (cosu sin v, sinu sin v, cos v) =
1

a
r(u, v).
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So we can avoid further calculation(of ruu etc.) by noting

L = ruu ¢ n = ¡ru ¢ nu = ¡
1

a
ru ¢ ru = ¡

E

a
= ¡a sin2 v;

M = ruv ¢ n = ¡ru ¢ nv = ¡
1

a
ru ¢ rv = ¡

F

a
= 0;

N = rvv ¢ n = ¡rv ¢ nv = ¡
1

a
rv ¢ rv = ¡

G

a
= ¡a.

Hence

K =
LN ¡M2

EG ¡ F 2
=

a2 sin2 v

a4 sin2 v
=
1

a2
.

Example 3.45 A torus of revolution is formed by rotating the circle with equation

(x¡ b)2 + y2 = a2, (b > a) ,

about the y-axis. Parameterize the torus and …nd its Gaussian curvature.

Solution. We can parametrize (an open dense subset of) the torus as

r (u, v) = ((b+ a sinu) cos v, (b+ a sinu) sin v, a cosu) 0 < u, v < 2π.

We have

ru = (a cosu cos v, a cosu sin v,¡a sinu) ,

rv = (¡ (b+ a sin u) sin v, (b+ a sinu) cos v, 0)

giving

E = a2 cos2 u
¡
cos2 v + sin2 v

¢
+ a2 sin2 u = a2,

F = a (b+ a sinu) (¡ cosu sin v cos v + cos v cosu sin v) = 0,

G = (b+ a sinu)
¡
sin2 v + cos2 v

¢
= b+ a sinu.

Further

ru ^ rv =

¯
¯
¯
¯
¯
¯

i j k
a cosu cos v a cosu sin v ¡a sinu

¡ (b+ a sin u) sin v (b+ a sinu) cos v 0

¯
¯
¯
¯
¯
¯

= a (b+ a sinu)

¯
¯
¯
¯
¯
¯

i j k
cosu cos v cosu sin v ¡ sinu

¡ sin v cos v 0

¯
¯
¯
¯
¯
¯

= a (b+ a sinu) (sinu cos v, sinu sin v, cos u) ,

giving
n = (sinu cos v, sinu sin v, cosu) .
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We then have

ruu = (¡a sinu cos v,¡a sinu sin v,¡a cosu) ,

ruv = (¡a cosu sin v, a cosu cos v, 0) ,

rvv = (¡ (b+ a sinu) cos v,¡ (b+ a sinu) sin v, 0) ,

and so

L = ¡a sin2 u
¡
cos2 v + sin2 v

¢
¡ a cos2 u = ¡a,

M = ¡a cosu sin v sinu cos v + a cosu sin v sinu cos v = 0,

N = ¡ (b+ a sinu) sin u
¡
cos2 v + sin2 v

¢
= ¡ (b+ a sinu) sinu.

Hence

K =
LN ¡ M2

EG ¡ F 2
=

a (b+ a sinu) sinu

a2 (b+ a sinu)
=
1

a
sinu.

Note that K > 0 on the outside of the torus where 0 < u < π and K < 0 where π < u < 2π.

Remark 3.46 (Parity of Gaussian curvature) The sign of Gaussian curvature can be read-
ily appreciated. If we choose an outward pointing normal in the example of the torus, on the
outside of the outside of the torus the lines of curvature are both bending away from the nor-
mal, the principal curvatures are negative and their product K is positive. If we had instead
had an inward pointing normal then the principal curvatures would now both be positive and
K > 0 would still be true. On the inside of the torus, one line of curvature is around the hole of
the torus and one through the hole of the torus. The principal curvatures have di¤erent signs
whatever the choice of normal and then K < 0.

Exercise 3.47 Find the lines of curvature and the principal curvatures on a surface of revolu-
tion in terms of the distance ρ of the generating curve from the axis. Show that the Gaussian
curvature K equals κ cosφ/ρ where κ is the curvature of the generating curve and φ is the angle
between the axis and the tangent line to the curve.

3.3 Theorema Egregium
Theorem 3.48 (Theorema Egregium, Gauss, 1827) Gaussian curvature is intrinsic, and so
preserved by isometries.

Remark 3.49 Recall that we de…ne Gaussian curvature as

K =
LN ¡ M2

EG ¡ F 2
.

The …rst fundamental form is intrinsic but the second fundamental form is not (as we saw
earlier with Example 3.38). Hence there is no reason to expect that K is intrinsic. The Latin
title ‘Theorema Egregium’ translates as ‘remarkable theorem’.
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Proof. Let (u, v) 7! r(u, v) be a parameterization for a patch of surface X in R3. Let n be a
unit normal vector …eld on X and let the …rst and second fundamental forms respectively be

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2.

Recall the Weingarten map W = dn (equation (3.17)) is represented by the matrix

Ã
w11 w12

w21 w22

!

= ¡

Ã
E F

F G

!¡1Ã
L M

M N

!

with respect to the basis fru, rvg for the tangent space.
We now introduce the Christo¤el symbols ¡kij, de…ned by writing

ruu = ¡1
11ru + ¡

2
11rv + Ln,

ruv = ¡1
12ru + ¡

2
12rv +Mn,

rvv = ¡1
22ru + ¡

2
22rv +Nn.

Our aim will be …rst to show that the Christo¤el symbols are intrinsic – that is they depend
only on E,F and G and their derivatives – and then show that the Gaussian curvature can be
written in terms of the Christo¤el symbols.

Lemma 3.50 The Christo¤el symbols depend only on E,F and G and their derivatives.

Proof. Dotting the equations above with ru and rv we …nd

(
¡1

11E + ¡
2
11F = ruu ¢ ru = 1

2(ru ¢ ru)u
¡1

11F + ¡
2
11G = ruu ¢ rv = (ru ¢ rv)u ¡ 1

2(ru ¢ ru)v(
¡1

12E + ¡
2
12F = ruv ¢ ru = 1

2(ru ¢ ru)v
¡1

12F + ¡
2
12G = ruv ¢ rv = 1

2
(rv ¢ rv)u(

¡1
22E + ¡

2
22F = rvv ¢ ru = (ru ¢ rv)v ¡ 1

2(rv ¢ rv)u
¡1

22F + ¡
2
22G = rvv ¢ rv = 1

2(rv ¢ rv)v

= 1
2Eu,

= Fu ¡ 1
2Ev,

= 1
2Ev,

= 1
2
Gu,

= Fv ¡ 1
2Gu,

= 1
2Gv.

Each of the braced equations are invertible as the determinant EG¡F 2 is non-zero. Thus each
Christo¤el symbol may be written in terms of E,F,G and their derivatives.

Corollary 3.51 Suppose that the parameterization r is orthogonal, that is F = 0. Then:

¡1
11 = Eu/2E, ¡1

12 = Ev/2E, ¡
1
22 = ¡Gu/2E,

¡2
11 = ¡Ev/2G, ¡

2
12 = Gu/2G, ¡

2
22 = Gv/2G.

Lemma 3.52 (The Gauss formula)

(¡2
12)u ¡ (¡2

11)v + ¡
1
12¡

2
11 + ¡

2
12¡

2
12 ¡ ¡2

11¡
2
22 ¡ ¡1

11¡
2
12 = ¡EK,

where K denotes the Gaussian curvature.
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Proof. Note by the product rule that

(ruu)v = ¡
1
11ruv + (¡

1
11)vru + ¡

2
11rvv + (¡

2
11)vrv + Lnv + Lvn,

and that

(ruv)u = ¡
1
12ruu + (¡

1
12)uru + ¡

2
12ruv + (¡

2
12)urv +Mnu +Mun.

We may write (ruu)v and (ruv)u in terms of the basis fru, rv,ng. By comparing the coe¢cients

of rv in these expressions we obtain

¡1
11¡

2
12 + ¡

2
11¡

2
22 + (¡

2
11)v + Lw22 = ¡

1
12¡

2
11 + ¡

2
12¡

2
12 + (¡

2
12)u +Mw21,

where W = (wij) is the matrix of the Weingarten map wrt fru, rvg. Hence

(¡2
12)u ¡ (¡2

11)v + ¡
1
12¡

2
11 + ¡

2
12¡

2
12 ¡ ¡2

11¡
2
22 ¡ ¡1

11¡
2
12

= Lw22 ¡ Mw21

=
L(FM ¡EN)¡ M(LF ¡ EM)

EG ¡ F 2

= ¡EK.

These two lemmas prove our claims. The Christo¤el symbols are intrinsic, so by the Gauss
formula K is also intrinsic.

Corollary 3.53 When F = 0 the Gaussian curvature K equals

K =
¡1

2
p
EG

½µ
Evp
EG

¶

v

+

µ
Gup
EG

¶

u

¾

.

Solution. From the Gauss formula, and formulae for the Christo¤el symbols when F = 0
(Corollary 3.51), we have that ¡EK equals

µ
Gu

2G

¶

u

+

µ
Ev

2G

¶

v

¡
E2
v

4EG
+

G2
u

4G2
+

EvGv

4G2
¡

EuGu

4EG

=
GGuu ¡ G2

u

2G2
+

GEvv ¡ EvGv

2G2
¡

E2
v

4EG
+

G2
u

4G2
+

EvGv

4G2
¡

EuGu

4EG

=
Guu

2G
+

Evv

2G
¡

E2
v

4EG
¡

G2
u

4G2
¡

EvGv

4G2
¡

EuGu

4EG
.

Hence ¡2
p
EGK equals

µ
Evvp
EG

¡
Ev

2EG
p
EG

(EvG+GvE)

¶

+

µ
Guup
EG

¡
Gu

2EG
p
EG

(GuE + EuG)

¶

.

to give the required result.
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Corollary 3.54 When E = 1 and F = 0 then

K =
¡1

2
p
G

µ
Gup
G

¶

u

=
G2
u ¡ 2GuuG

4G2
.

Corollary 3.55 When E = G = λ(u, v) and F = 0 then

K = ¡
1

2λ
r2 (log λ) .

Proof. This is left to Sheet 2, Part C, Exercise 1.

Example 3.56 The (Poincaré half-plane model for the) hyperbolic plane is the half-plane
H = f(u, v) 2 R2 j v > 0g with the …rst fundamental form E = G = v¡2 and F = 0. Find the
Gaussian curvature of H.

Solution.

K =
¡v2

2

d2

dv2
(¡2 log v) =

µ
¡v2

2

¶µ
2

v2

¶

= ¡1.

Example 3.57 Show that there exists no surface r(u, v) with …rst and second fundamental
forms respectively

du2 + dv2 and du2 ¡ dv2.

Solution. On the one hand, as E = G = L = 1, F = M = 0,N = ¡1, then the Gaussian
curvature is ¡1 everywhere . On the other the surface is isometric to a subset of the plane and
hence has Gaussian curvature 0.

Remark 3.58 (Equations of compatability) The Gauss formula is a necessary condition
connecting the coe¢cients of the …rst and second fundamental forms – it is one of the equa-
tions of compatability that form part of the fundamental theorem (Theorem 3.37). The other
equations are called the Mainardi-Codazzi equations and they require

Lv ¡Mu = L¡112 +M(¡212 ¡ ¡111)¡N¡211,

Mv ¡ Nu = L¡122 +M(¡222 ¡ ¡112)¡N¡211.

3.4 Geodesics
We gave in the previous section the de…nition of a geodesic curve. Namely a geodesic is a curve
with zero geodesic curvature or equivalently:

De…nition 3.59 A curve γ : I ! X, parameterized by arc length on a surface X, is a geodesic
if for all s 2 I the vector Äγ(s) is normal to the surface at the point γ(s).

Geodesics are also the curves of shortest length on a surface – at least ‘locally’. This means
that given a geodesic between two points on a surface, varying the geodesic slightly will produce
curves of greater length. For example, given two points on a sphere the great circle containing
these two points is a geodesic. If the points are not antipodal, then there will be a shorter and
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longer arc connecting them. However both arcs are geodesics and locally are the shortest paths
between the points.

We will see that geodesics are determined by the …rst fundamental form. Consequently an
isometry between two surfaces will map geodesics in the …rst surface to geodesics in the second.

Theorem 3.60 Let X be a smooth parameterized surface and γ be a smooth curve on X
parameterized by arc length s. Then γ is a geodesic if and only if the parameters (u(s), v(s)) of
γ(s) satisfy

d

ds
(E _u+ F _v) =

1

2
(Eu _u

2 + 2Fu _u _v +Gu _v
2)

d

ds
(F _u+G _v) =

1

2
(Ev _u

2 + 2Fv _u _v +Gv _v
2) (3.19)

for all s, where Edu2 + 2Fdudv +Gdv2 is the …rst fundamental form of X.

Proof. As ru and rv are independent tangent vectors then Äγ(s) is normal to the surface if and
only if Äγ(s) ¢ ru = 0 and Äγ(s) ¢ rv = 0. Now

_γ(s) = _uru + _vrv.

Thus

0 = Äγ ¢ ru =
d

ds
( _γ ¢ ru)¡ _γ ¢ _ru

=
d

ds
(E _u+ F _v)¡ ( _uru + _vrv) ¢ (ruu _u+ ruv _v)

=
d

ds
(E _u+ F _v)¡ ((ruu ¢ ru) _u

2 + (ruu ¢ rv + ruv ¢ ru) _u _v + (ruv ¢ rv) _v
2)

=
d

ds
(E _u+ F _v)¡

1

2
(Eu _u

2 + 2Fu _u _v +Gu _v
2),

as required. The second geodesic equation follows similarly.

Given two points on a surface there need not be a geodesic connecting the two points. For
example in R2 the geodesics are line segments. So in the punctured plane R2nf0g there is no
geodesic connecting (1, 0) and (¡1, 0). Also if a geodesic exists between two points it need not
be unique (see the examples of the sphere and cylinder below). However geodesics always exist
locally (Do Carmo p.255):

Theorem 3.61 Given a point p 2 X and a unit vector v 2 TpX, then there exists ε > 0 and a
unique geodesic γ : (¡ε, ε)! X parameterized by arc length such that γ(0) = p and γ0(0) = v.

The proof of this theorem is beyond this syllabus and in any case largely relates to the
analysis of di¤erential equations. The existence and uniqueness of geodesics, at least locally,
leads to the notion of geodesic polar co-ordinates (mentioned in Remark 3.16). When polar
co-ordinates are used to parameterize the plane, from the origin, we obtain a …rst fundamental
form with E = 1 and F = 0. More generally, we can locally parameterize a surface around a
point p, by assigning co-ordinates r and θ to the point of the surface that is distance r from p
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when measured along the geodesic making an angle θ at p with some …xed tangential direction.
When we do this we …nd that E = 1 and F = 0 (Do Carmo p.287).

For many surfaces geodesics are not just locally de…ned but many be extended inde…nitely
– such surfaces are called complete surfaces. Note that this may mean that the geodesic wraps
back on to itself as with a great circle on a sphere. This notion of completeness coincides
with the notion of complete metric spaces. Given a connected surface X it can be shown that,
given two points a, b of the surface, there is a piecewise-smooth curve between the points. The
intrinsic distance d(a, b) between the points can then be de…ned as the in…mum

d(a, b) = inf
γ

L(γ)

where L (γ) is the length of a curve γ and the in…mum is taken over all piecewise smooth curves
γ in X which connect a and b. The function d is a metric on X and the Hopf-Rinow theorem
states that:

Theorem 3.62 (Hopf-Rinow) (O¤-syllabus) For a connected, smooth geometric surface X
the following are equivalent:

(a) (X, d) is a complete metric space.
(b) A geodesic can be inde…nitely extended.

The following examples are left to Sheet 3, Part B, Exercise 1.

Example 3.63 (a) The geodesics on a sphere are arcs of great circles.
(b) The geodesics on a cylinder are the meridians, the latitudes and helices. So between

two points of the cylinder, that do not lie on the same meridian or parallel, there are in…nitely
many geodesics between the points.

Example 3.64 (a) Prove that a meridian on a surface of revolution is a geodesic.
(b) When is a parallel of latitude a geodesic on such a surface?

Solution. Suppose that the surface of revolution is generated by rotating the curve y = f(x)
about the x-axis and parameterize it as

r(x, θ) = (x, f(x) cos θ, f(x) sin θ), x 2 R, θ 2 (¡π, π).

By Sheet 2, Part A, Exercise 2, the …rst fundamental form equals

(1 + f 0(x)2)dx2 + f(x)2dθ2

and the geodesic equations are

d

ds
((1 + f 0(x)2) _x) = f 0(x)(f 00(x) _x2 + f(x) _θ

2
),

d

ds
(f(x)2 _θ) = 0,

where the dot denotes di¤erentiation with respect to arc length.
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(a) Along a meridian _θ = 0 and _x = (1+ f 0(x)2)¡1/2. The second equation is then trivially
true and substituting _θ and _x into the …rst equation and applyting the chain rule we …nd

LHS =
d

ds
((1 + f 0(x)2) _x) = _x

d

dx

p
1 + f 0(x)2 =

f 0(x)f 00(x)

1 + f 0(x)2
= f 0(x)f 00(x) _x2=RHS

as required.
(b) A parallel is given by the equation _x = 0. Thus the two geodesic equations now read

as f(x)f 0(x) _θ
2
= 0 and f(x)2Äθ = 0. As the geodesic is a circle parameterized by arc length

then _θ is a non-zero constant and Äθ = 0. As f(x) > 0, then the equations hold if and only if
f 0(x) = 0.

We now prove an earlier comment on geodesics namely that they are locally curves of least
length. That is, however a geodesic between two points is perturbed, we produce curves of
greater length

Theorem 3.65 Let γ : [a, b] ! X be a smooth geodesic in X. Let γδ, where δ 2 (¡ε, ε), be a
family of smooth curves

γδ : [a, b] ! X

with γ0 = γ and γδ(a) = γ(a), γδ(b) = γ(b) for all δ 2 (¡ε, ε) and let L(δ) = L(γδ). Then
L0(0) = 0.

Proof. (Proof non-examinable) Let R(δ, t) = E _u2+2F _u _v+G _v2 where γδ(t) = r(u(δ, t), v(δ, t))
and the dot denotes di¤erentiation with respect to t. Then

L(δ) =

Z b

a

p
R dt

giving

L0(0) =
d

dδ

¯
¯
¯
¯
δ=0

Z b

a

p
R dt =

Z b

a

∂
p
R

∂δ

¯
¯
¯
¯
¯
δ=0

dt =
1

2

Z b

a

1
p
R

∂R

∂δ

¯
¯
¯
¯
δ=0

dt, (3.20)

by di¤erentiation under the integral sign. Now

∂R

∂δ
= fEu _u

2 + 2Fu _u _v +Gu _v
2g
∂u

∂δ

+ fEv _u
2 + 2Fv _u _v +Gv _v

2g
∂v

∂δ

+ 2(E _u+ F _v)
∂ _u

∂δ
+ 2(F _u+G _v)

∂ _v

∂δ
.

We may assume without loss of generality that γ = γ0 is parameterized by arc length so that
R(0, t) = 1 and so that the geodesic equations (3.19) hold true at δ = 0. So substituting those
equations, we obtain:

∂R

∂δ

¯
¯
¯
¯
δ=0

= 2

·
d

dt
(E _u+ F _v)

∂u

∂δ
+ (E _u+ F _v)

∂ _u

∂δ

+
d

dt
(F _u+G _v)

∂v

∂δ
+ (F _u+G _v)

∂ _v

∂δ

¸

δ=0

= 2
d

dt

½

(E _u+ F _v)
∂u

∂δ

¯
¯
¯
¯
δ=0

+ (F _u+ g _v)
∂v

∂δ

¯
¯
¯
¯
δ=0

¾

. (3.21)
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Now substituting (3.21) into (3.20) and recalling R(0, t) = 1 we obtain

L0(0) =

Z b

a

d

dt

½

(E _u+ F _v)
∂u

∂δ

¯
¯
¯
¯
δ=0

+ (F _u+ g _v)
∂v

∂δ

¯
¯
¯
¯
δ=0

¾

dt

=

·

(E _u+ F _v)
∂u

∂δ

¯
¯
¯
¯
δ=0

+ (F _u+ g _v)
∂v

∂δ

¯
¯
¯
¯
δ=0

¸t=b

t=a

.

However u(δ, a), u(δ, b), v(δ, a) and v(δ, b) are all constant giving ∂u/∂δ = ∂v/∂δ = 0 when
t = a and t = b and hence L0(0) = 0.

Example 3.66 What are the geodesics in the hyperbolic plane H? (See Examples 3.28 and
3.56.)

Solution. Method 1: If we substitute E = G = y¡2 and F = 0 into the geodesic equations
(3.19) then we …nd

d

ds

µ
_x

y2

¶

= 0,
d

ds

µ
_y

y2

¶

=
¡( _x2 + _y2)

y3
.

The …rst equation yields _x = cy2 for some constant c. So the half-lines x = constant are then
geodesics corresponding to c = 0. Assume that c 6= 0. The second equation may be rewritten
as

Äyy ¡ _y2

y2
=

¡ _x2

y2
,

or equivalently
d

ds

µ
_y

y

¶

= ¡c _x.

Integrating we …nd that _y = (b¡ cx)y for some constant b. Now

dy

dx
=
_y

_x
=

b ¡ cx

cy
,

and solving this di¤erential equation gives

1

2
c(x2 + y2)¡ bx = a,

for some constant a, which is the equation of a semicircle in H which cuts the x-axis orthogonally.
Method 2: Alternatively we could consider what the isometries of H might be and use the

fact that geodesics are mapped to other geodesics by isometries. For ease of notation we now
introduce a complex variable z = x+ iy so that the …rst fundamental form on H is now given
by

¡4jdzj2

(z ¡ ¹z)2
.

Then I claim the map

w : z 7!
az + b

cz + d
,
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where a, b, c, d are real numbers satisfying ad ¡ bc = 1, is an isometry of H. From standard
theorems concerning Möbius transformations we can see that w maps the upper half plane
onto the upper half plane; as a, b, c, d are real, the real axis is mapped to the real axis and the
imaginary part of the image of i equals

Im

µ
ai+ b

ci+ d

¶

=
Im ((ai+ b) (d ¡ ci))

c2 + d2
=

ad¡ bc

c2 + d2
=

1

c2 + d2
> 0.

To check w is an isometry we need to prove that H has the same …rst fundamental form when
parameterized by w and z. Firstly note

dw =
dz

(cz + d)2
.

So

¡4jdwj2

(w ¡ ¹w)2
=

¡4jdzj2

jcz+dj4

¡
az+b
cz+d

¡ a¹z+b
c¹z+d

¢2 =
¡4jdzj2

((az + b)(c¹z + d)¡ (cz + d)(a¹z + b))2
.

The denominator in the …nal expression above factorises as (ad¡ bc)2(z ¡ ¹z)2 showing that

¡4jdwj2

(w ¡ ¹w)2
=

¡4jdzj2

(z ¡ ¹z)2

and consequently w is an isometry.
Note now that x = 0, y = es is a solution to the geodesic equations for H (Sheet 3, Part

A, Exercise 2) and so the positive imaginary axis is a geodesic. As we show below, there is a
Möbius map of the same form as w which maps any other half line or semicircle orthogonal to
the positive imaginary axis, showing that these too are examples of geodesics. From Theorem
3.61 we know that these are all the geodesics of H.

Given another half-line Re z = k, the Möbius map

z 7! z ¡ k (where a = 1, b = ¡k, c = 0, d = 1, so that ad ¡ bc = 1)

takes the half-line to the positive imaginary axis. For the semicircle perpendicular to the real
axis, meeting at p and q (where p < q), the Möbius map

z 7!
1

p
q ¡ p

µ
p ¡ z

z ¡ q

¶

takes the semicircle to the positive imaginary axis. Again we check

ad¡ bc =

µ
¡1

p
q ¡ p

¶µ
¡q

p
q ¡ p

¶

¡

µ
p

p
q ¡ p

¶µ
1

p
q ¡ p

¶

=
q ¡ p

q ¡ p
= 1.

Remark 3.67 (Historical context) The hyperbolic plane H is of interest because it is an
example of a non-Euclidean geometry. Euclidean geometry satis…es certain axioms including
the parallel postulate which states that:
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² given a line l and a point p not on l then there is a unique line through p (known as a
parallel) which does not meet l.

If we read ‘geodesic’ for ‘line’ in the above, then we see that given a line l in H and a point
p not on the line then there are in…nitely many lines through p not meeting l. (In Figure 4.1
M1,M2,M3 are three parallels of L through P.)

Figure 4.1 – hyperbolic parallels

For literal centuries, mathematicians had been trying to deduce the axiom of parallels
from Euclid’s other axioms. Instead all they managed to …nd were alternative, equivalent
formulations. The above formulation is in fact due to Ludlam (1785) though it is usually
attritbuted to Playfair; other formulations include:

² parallel lines are everywhere equidistant.

² the sum of the angles of a triangle equals two right angles.

² given a triangle, we can construct a similar triangle of any area.

² Pythagoras’ theorem.

² three non-collinear points always lie on a circle.

In the nineteenth century certain mathematicians – notably Bolyai, Lobachevsky and Gauss
– began to suspect that the parallel postulate was independent of the other axioms and proved
alternative theory where more than one parallel existed. Such theory might still have contained
inconsistencies, but this was shown not to be the case when Beltrami, Klein and Poincaré found
models for the hyperbolic plane which showed the new geometry to be every bit as consistent
as Euclidean geometry.

The elliptic plane (Example 3.32) is another example of non-Euclidean geometry, in which
case there are no parallels to a line. The elliptic plane had previously been discounted as a
non-Euclidean geometry as it did not seem to meet another axiom of Euclid that lines can be
extended inde…nitely. But if we permit lines to be extended repeatedly on to themselves then
the elliptic plane is a valid non-Euclidean geometry.
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4. GEOMETRY & ANALYSIS MEET TOPOL-
OGY
In this chapter we will meet some startling results which connect the topology of a surface with
global aspects of geometry and analysis. For example, the global Gauss-Bonnet theorem says
that for a closed geometric surface X,

ZZ

X

K dA = 2πχ(X).

What is striking about this result is that the term on the RHS is manifestly topological in
nature whilst the total curvature on the LHS is ostensibly geometric. It is possible to distort a
surface locally to change its Gaussian curvature without changing its topology, but the above
theorem shows there will be knock-on e¤ects elsewhere on the surface as the total curvature
must remain constant. There are other corollaries to this result such as (a) the sphere is the
only orientable closed surface which can have positive curvature everywhere and (b) the torus
is the only orientable closed surface which can be everywhere ‡at (Example 3.26).

4.1 The Gauss-Bonnet theorems
We begin …rst with a proof of the local Gauss-Bonnet theorem. The statement of this theorem
is on the syllabus but its proof is not ; I include the proof here for completeness’ sake. Gauss
proved the theorem for geodesic triangles in 1827 and Pierre Bonnet proved the theorem as
stated below in 1848.

Theorem 4.1 (Local Gauss-Bonnet Theorem – …rst version) (Proof o¤ syllabus) Let γ
be a smooth, simple, closed curve on a patch of surface X, parameterized by arc length and
enclosing a region R. Then

Z

γ

kg ds+

ZZ

R

K dA = 2π.

Proof. STEP 1: We set up a co-ordinate patch where we can …nd an expression for kg. We
will assume that X = r(U) where r is an isothermal parameterization, so that F = 0 and
E = G = λ. (The existence of such …elds was mentioned in Remark 3.16.) We then set

e1 =
rup
λ
, e2 =

rvp
λ
,

to be smooth, orthonormal, tangent vector …elds e1, e2 : V ! R3. Let θ(s) denote the angle
between the unit vector _γ(s) and e1 at the point γ(s), so that

_γ = e1 cos θ + e2 sin θ,

giving
Äγ = _θ (¡e1 sin θ + e2 cos θ) + ( _e1 cos θ + _e2 sin θ) .
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With n = e1 ^ e2 then
n ^ _γ = ¡e1 sin θ + e2 cos θ,

as n ^ e1 = e2 and n ^ e2 = ¡e1, so that

Äγ = _θ (n ^ _γ) + ( _e1 cos θ + _e2 sin θ) .

Thus

kg = Äγ ¢ (n ^ _γ)

= _θ + (_e1 cos θ + _e2 sin θ) ¢ (¡e1 sin θ + e2 cos θ)

= _θ ¡ e1 ¢ _e2

because _e1 ¢ e1 = 0 = _e2 ¢ e2 and _e1 ¢ e2 = ¡e1 ¢ _e2 from di¤erentiating e1 ¢ e2 = 0 and
e1 ¢ e1 = 1 = e2 ¢ e2 = 0; …nally, we have

Z

γ

e1 ¢ _e2 ds =

Z

γ

³
_θ ¡ kg

´
ds = ¢θ ¡

Z

γ

kg ds = 2π ¡

Z

γ

kg ds.

STEP 2: We use Green’s theorem to connect the above line integral to a double integral. Recall
Green’s theorem states: for a smooth, simple, closed curve β in an open set U µ R2, bounding
a region S, with P,Q being two smooth functions de…ned on U

Z

β

(P du+Q dv) =

ZZ

S

µ
∂Q

∂u
¡

∂P

∂v

¶

du dv.

Let β = r¡1 (γ). We have

_e2 =
∂e2
∂u

_u+
∂e2
∂v

_v,

by the chain rule, so that P = e1 ¢ ∂e2/∂u and Q = e1 ¢ ∂e2/∂v. Then

∂Q

∂u
¡

∂P

∂v
=

µ
∂e1
∂u

¢
∂e2
∂v

+ e1 ¢
∂2e2
∂u∂v

¶

¡

µ
∂e1
∂v

¢
∂e2
∂u

+ e1 ¢
∂2e2
∂v∂u

¶

=
∂e1
∂u

¢
∂e2
∂v

¡
∂e1
∂v

¢
∂e2
∂u

.

Di¤erentiating e1 = ru/
p
λ and e2 = rv/

p
λ we …nd

∂e1
∂u

=
ruup
λ

¡
λuru

2λ3/2
,

∂e2
∂v

=
rvvp
λ

¡
λvrv

2λ3/2
.

Noting that ru, rv and n are mutually orthogonal, we …nd

∂e1
∂u

¢
∂e2
∂v

=
ruu ¢ rvv

λ
¡

λuru ¢ rvv

2λ2
¡

λvruu ¢ rv

2λ2

=
¡111¡

1
22λ+ ¡

2
11¡

2
22λ+ LN

λ
¡

λu¡
1
22

2λ
¡

λv¡
2
11

2λ
.
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From Corollary 3.51, when F = 0 and E = G = λ, we have

¡1
11 = λu

2λ , ¡1
12 = λv

2λ , ¡1
22 = ¡λu

2λ ,

¡2
11 = ¡λv

2λ, ¡2
12 = λu

2λ , ¡2
22 = λv

2λ .

and so the above simpli…es to

∂e1
∂u

¢
∂e2
∂v

=
¡λ2uλ ¡ λ2vλ

4λ2
+

LN

λ
+

λ2u
4λ
+

λ2v
4λ
=

LN

λ
.

Similarly

∂e1
∂v

¢
∂e2
∂u

=
¡112¡

1
12λ+ ¡

2
12¡

2
12λ+M2

λ
¡

λv¡
1
12

2λ
¡

λu¡
2
12

2λ

=
λ2v + λ2u
4λ2

+
M2

λ
¡

λ2v
4λ2

¡
λ2u
4λ2

=
M2

λ
.

Hence, as λ =
p
EG and F = 0,

I =

ZZ

S

LN ¡ M2

p
EG

du dv =

ZZ

S

K
p
EG ¡ F 2 du dv =

ZZ

S

K dA.

Theorem 4.2 (Local Gauss-Bonnet Theorem – second version.) (Proof o¤ syllabus)
Let γ be a piecewise-smooth simple, closed curve on a patch of surface X, enclosing a region R.
Then Z

γ

kg ds+

ZZ

R

K dA+
nX

i=1

αi = 2π

where α1, . . . , αn are the external angles at the points where γ is not smooth.

Proof. The proof is almost identical to the proof of the …rst version save that at those points
where γ is not smooth there is a jump discontinuity in θ(s) of αi where αi is the external angle.
The only amendment needed to the proof is that

Z

γ

_θ ds = ¢θ = 2π ¡
nX

i=1

αi.

Example 4.3 Note that when we use internal angles βi = π ¡ αi, and when the curvilinear
polygon R is bounded by geodesics, then we obtain

ZZ

R

K dA =
nX

i=1

βi ¡ (n ¡ 2)π.
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Thus the internal angle sum exceeds (n¡ 2)π by the total curvature. Focusing on triangles: in
the plane, where K = 0, we have

β1 + β2 + β3 = π,

whilst in the hyperbolic plane (where K = ¡1) we have Lambert’s Theorem

A = π ¡ β1 ¡ β2 ¡ β3,

and on the sphere or elliptic plane (where K = 1) then we have Girard’s Theorem

A = β1 + β2 + β3 ¡ π.

Below we prove the global version of the Gauss-Bonnet theorem. The theorem should really
be credited to Von Dyck who proved it in 1888.

Theorem 4.4 (Global Gauss-Bonnet Theorem) Let X be a smooth, closed, orientable
surface. Then ZZ

R

K dA = 2πχ(X).

Proof. Say that X is subdivided by smooth curves into curvilinear polygons. We apply the
local GBT to each of these polygons and sum each of the resulting equations.

The contributions
R
γ
kg ds cancel out as each edge bounds two polygons but with di¤erent

orientations. For one orientation kg is negative what it equals on the reverse orientation. The
sum of the total curvature from each polygon equals the total curvature on the surface. And,
using internal angles, we also need to sum the expressions

X

faces

ÃÃ
nfaceX

i=1

βi

!

¡ nfaceπ + 2π

!

.

The sum of the internal angles equals 2πV where V is the number of vertices; this is because
at each vertex the internal angles add up to 2π. Now we have F faces so that

X

faces

2π = 2πF,

and each edge bounds two faces so that

X

faces

nfaceπ =
X

edges

2π = 2πE,

…nally yielding

X

faces

ÃÃ
nfaceX

i=1

βi

!

¡ nfaceπ + 2π

!

= 2πV ¡ 2πE + 2πF = 2πχ(X).
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Remark 4.5 (a) We have assumed, without proof, that every compact, smooth surface has a
subdivision. This is true – in fact this is more generally true for any separable smooth surface.

(b) The above proof is for closed orientable surfaces. It relies on orientability when we refer
to the opposite orientations of two curves. However the theorem also holds for non-orientable
closed surfaces.

(c) In the next chapter we will discuss closed surfaces of constant curvature. The global
Gauss-Bonnet theorem makes plain that only certain surfaces might be endowed with …rst
fundamental forms with constant Gaussian curvature. A closed geometric surface with constant
positive/zero/negative Gaussian curvature is necessarily a sphere/torus/torus with more than
one hole. That is because their Euler characteristics are 2/0/ ¡ 2 or less. The theorem only
gives necessity. As a sphere has constant positive curvature and as the ‡at torus has constant
zero curvature, such surfaces are clearly possible. When we study quotients of the hyperbolic
plane we will construct surfaces of constant curvature ¡1 of each positive genus.

Example 4.6 Show that the catenoid x2 + y2 = cosh2 z has a single, simple, closed geodesic.

Solution. The ‘waist’ z = 0 is a simple, closed geodesic by Example 3.64(b) – it is a latitude
where the radius function is at a minimum.

The catenoid (omitting a meridian) can be parameterized by

r(u, v) = (cosh v cosu, cosh v sinu, v) , 0 < u < 2π, v 2 R.

The Gaussian curvature at the point r(u, v) equals K(u, v) = ¡ cosh¡4 v < 0. Note that there
cannot be a simple, closed geodesic that does not wrap once around the catenoid. By the local
Gauss-Bonnet theorem we would then have

0 >

ZZ

R

K dA = 2π,

which is a contradiction. Suppose now that there were two simple, closed geodesics wrapping
once around the catenoid. If these geodesics do not intersect and enclose a region R between
them then we would have

0 >

ZZ

R

K dA = 2πχ(R) = 0,

as the Euler characteristic of R (which is a cylinder) equals 0. Again we have a contradiction.
Finally suppose that the two geodesics do intersect and let R be the region bounded by

them. Should they intersect once we would have

ZZ

R

K dA+ (π ¡ β1) + (π ¡ β2) = 2π,

where β1 and β2 are the two internal angles at the point of intersection. The LHS is less than
2π and so again we have a contradiction. Should the geodesics intersect more than once then
we can focus on the geodesics between two points of intersection to get the same contradiction.
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4.2 The Poincaré-Hopf theorem
Suppose that we are given a tangent vector v(x) at each point x of a smooth, closed surface X
in R3. We can think of v(x) as the velocity at x of some ‡uid ‡ow v on the surface. A point
where v(x) = 0 is called a stationary (or singular) point of the ‡ow. It is a well known fact
– the hairy ball theorem – that a ‡ow on a sphere must have at least one stationary point. This
is a consequence of the sphere’s topology and we will more generally prove the Poincaré-Hopf
theorem for surfaces which states that

χ(X) =
X

stationary
points x

index(v(x))

where the index (or multiplicity) is an integer associated with each stationary point, and as-
suming there to be …nitely many stationary points.

If x 2 X is an isolated stationary point of v then we can …nd a small neighbourhood U of
x such that v is non-zero on Unfxg. Now let e be another smooth, nowhere zero, vector …eld
de…ned on U ; we will use e as a reference direction with which to compare the behaviour of
v(x). Let γ(t) be a simple, closed, anticlockwise smooth curve in U which encircles x. Then
v and e are both non-zero on γ and we de…ned the index as the winding number of v with
respect to e as γ is traversed once. That is, the index of v at x is de…ned to be

index =
¢ψ

2π
=
1

2π

Z

γ

dψ

dt
dt

where ψ is the angle between v and e. Whilst ψ is only de…ned up to multiples of 2π this does
not a¤ect the total change ¢ψ in ψ.

Remark 4.7 It is not immediately clear that the index of a stationary point is well-de…ned.
At …rst glance, the index may depend on the choice of vector …eld e or on the curve γ, but
neither is the case. Both these facts are discussed p.280 of Do Carmo, but involve ideas beyond
the course’s syllabus.

Example 4.8 Find the index of each of the following stationary points at the origin:
(a) source: v(x, y) = (x, y).
(b) sink: v(x, y) = (¡x,¡y).
(c) vortex: v(x, y) = (¡y, x).
(d) bifurcation: v(x, y) = (x,¡y).
(e) dipole: v(x, y) = (x2 ¡ y2, 2xy).

Figure. 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5
source sink vortex bifurcation dipole
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Solution. In each case, we will take γ to be the curve γ(t) = (cos t, sin t) and e = (1, 0) .
(a) v(cos t, sin t) = (cos t, sin t) and so ψ = t. Thus the index is 1.
(b) v(cos t, sin t) = (¡ cos t,¡ sin t) = (cos(t+ π), sin (t+ π)) and so ψ = t + π. Again the

index is 1.
(c) v(cos t, sin t) = (¡ sin t, cos t) = (cos(t+ π/2), sin (t+ π/2)) and so ψ = t + π/2. Once

more the index is 1.
(d) v(cos t, sin t) = (cos t,¡ sin t) = (cos(¡t), sin (¡t)) and so ψ = ¡t. Thus the index is

¡1.
(e) v(cos t, sin t) = (cos2 t¡sin2 t, 2 sin t cos t) = (cos(2t), sin (2t)) and so we may take ψ = 2t.

Thus the index is 2.

Theorem 4.9 (Poincaré 1881, Hopf 1926) Let v be a smooth vector …eld on a smooth closed
orientable surface X with …nitely many stationary points. Then

χ(X) =
X

stationary
points x

index(v(x)).

Remark 4.10 Henri Poincaré proved the above theorem for surfaces in 1881. Heinz Hopf
generalized the result to higher-dimenstional manifolds in 1926. Any continuous map of the
unit circle can be assigned its degree – an integer describing how many times the circle wraps
onto itself in an anticlockwise fashion and the index of a stationary point can be seen in
this light. The degree of a map from a higher-dimensional sphere to itself can similarly be
de…ned (Brouwer 1911) and the index of stationary points in higher dimensions can be simiarly
understood.

Proof. Let x1, . . . , xn be the stationary points of the vector …eld v. Choose a smooth, simple,
closed curve γi around each xi enclosing a region Ri. Let

Y = X

-
n[

i=1

Ri.

At each point y 2 Y, we may choose an orthonormal basis fe1(y), e2(y)g for the tangent space
at y and such that e1(y) is in the direction of the non-zero v(y). Applying the argument of the
local Gauss-Bonnet theorem to the region Y, we obtain

ZZ

Y

K dA = ¡
nX

i=1

Z

γi

e1 ¢ _e2 ds.

The negative sign is because the γi are oriented clockwise as part of the boundary of Y .
Choosing a similar orthonormal basis ff1, f2g for the points in Ri we …nd that

ZZ

Ri

K dA =

Z

γi

f1 ¢ _f2 ds.

Adding each of these equations (i = 1, . . . , n) to the previous equation and applying the global
Gauss-Bonnet theorem we obtain

2πχ(X) =

ZZ

X

K dA =
nX

i=1

Z

γi

³
f1 ¢ _f2 ¡ e1 ¢ _e2

´
ds.
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From the proof of the local Gauss-Bonnet theorem we know that

e1 ¢ _e2 = _θ ¡ kg, f1 ¢ _f2 = _ϕ ¡ kg

where θ and ϕ are the angles between _γ and e1 and f1 respectively. Setting ψ = ϕ ¡ θ to be
the angle between f1 and e1 we obtain

χ(X) =
nX

i=1

1

2π

Z

γi

_ψ ds =
nX

i=1

index(v(xi))

as required.

Remark 4.11 The above proof relies on orientability because the earlier proof of the Gauss-
Bonnet theorem also did. However the Poincaré-Hopf theorem also holds true for non-orientable
compact surfaces.

Corollary 4.12 (Hairy ball theorem) A smooth vector …eld on a sphere must have at least
one stationary point.

Proof. The follows from the fact that the Euler characteristic of a sphere is two.

4.3 Analysis on a closed surface
We now apply the Poincaré-Hopf theorem to demonstrate a …rst result in Morse theory. Morse
theory, named after Marston Morse, includes a wide selection of results relating a surface’s
topology to the behaviour of smooth real functions on the surface.

Proposition 4.13 (Gradient vector …eld) Let X be a smooth surface in R3, p 2 X and
f : X ! R be smooth. Then there is a unique tangent vector, denoted (gradX f)(p) or (rXf)(p),
such that

(gradX f)(p) ¢ v = dfp (v) (4.22)

for any tangent vector v 2 TpX.

Proof. Parameterize X locally as r (u, v) . It follows that

(gradX f)(p) ¢ ru = dfp (ru) = fu(p), (gradX f)(p) ¢ rv = dfp (rv) = fv(p).

As ru and rv form a basis for TpX then this speci…es (gradX f)(p) uniquely. As the scalar
product and dfp are both linear, then (4.22) holds on the entire tangent space.

Exercise 4.14 In terms of the local co-ordinates u, v, show that

gradX f =

µ
fuG ¡ fvF

EG ¡ F 2

¶

ru +

µ
fvE ¡ fuF

EG ¡ F 2

¶

rv.

It then follows that gradX f = 0 if and only if fu = fv = 0. This is left to Sheet 3, Part A,
Exercise 1.

Note that when X = R2, parameterized with Cartesian co-ordinates x, y, then

gradX f = fxi+ fyj

concurs with the usual de…nition of rf.
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De…nition 4.15 Given a smooth surface X in R3 and a smooth function f : X ! R, we say
that p 2 X is a critical point of f if (gradX f) (p) = 0. Equivalently, if r(u, v) is a local
parameterization around p, then p is a critical point if and only if

∂f

∂u
(p) = 0 =

∂f

∂v
(p) .

Example 4.16 Let f(x, y) = cosπx+ cosπy on R2. Then

∂f

∂x
= ¡π sinπx,

∂f

∂y
= ¡π sin πy

are zero when x and y are integers.

De…nition 4.17 A critical point p is said to be non-degenerate if the Hessian matrix
Ã

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

!

is nonsingular. If, further, the Hessian matrix is:

² positive-de…nite then p is a local minimum;

² negative-de…nite then p is a local maximum;

² inde…nite then p is a saddle point.

A smooth real-valued function, with only non-degerate critical points, is called a Morse func-
tion.

It will become apparent in the proof of the next proposition that these de…nitions do indeed
correspond to standard notions of a minima, maxima and saddle points.

Example 4.18 With the above f(x, y), the Hessian equals

¡π2
µ
cosπx 0
0 cosπy

¶

At (0, 0) , (1, 0), and (1, 1) this respectively equals

¡π2
µ
1 0
0 1

¶

, ¡π2
µ

¡1 0
0 1

¶

, π2
µ
1 0
0 1

¶

.

These are respectively negative de…nite, inde…nite and positive de…nite and so the points are
respectively a maximum, a saddle point and a minimum.

Proposition 4.19 Let f be a Morse function on a smooth patch X which has a critical point
at p. Then gradx f has:

(a) index 1 at p if f has a minimum or a maximum at p.
(b) index ¡1 at p if f has a saddle point at p.
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Proof. Take a conformal, local parameterization near p = r(0, 0) and without loss of generality
assume that f(p) = 0. In terms of these local co-ordinates Taylor’s theorem states that

f(r(u, v)) =
1

2

¡
fuu(p)u

2 + 2fuv(p)uv + fvv(p)v
2
¢
+ higher order terms.

Further, by the spectral theorem, we can may rotate the uv-plane so that

f(r(u, v)) = λu2 + µv2 + higher order terms,

By assuming u and v to be suitably small we note that f has the same type of critical point as

g(r(u, v)) = λu2 + µv2.

This is (a) a minimum if λ, µ > 0, (b) a maximum if λ, µ < 0, (c) a saddle point if λµ < 0.
Now

(gradX g)(p) ¢ ru =
d

dt
g(r(t, 0)) = 2λt = 2λu;

(gradX g)(p) ¢ rv =
d

dt
g(r(0, t)) = 2µt = 2µv.

Taking ru as the reference …eld, and recalling that the parameterization is conformal, this means
that the angle ψ between ru and gradX g satis…es

(cosψ, sinψ) =
(λu, µv)

p
λ2u2 + µ2v2

.

A suitably small closed curve λ2u2+µ2v2 = r2 around the point p = r(0, 0) can be parameterized
by

u =
r

jλj
cos t, v =

r

jµj
sin t,

giving

cosψ =
λ

jλj
cos t, sinψ =

µ

jµj
sin t.

² Minimum: λ, µ > 0 so that ψ = t and the index is 1

² Maximum: λ, µ < 0 so that ψ = π + t and the index is 1.

² Saddle: λ < 0 < µ so that ψ = π ¡ t and the index is ¡1.

² Saddle: λ > 0 > µ so that ψ = 2π ¡ t and the index is ¡1.

Theorem 4.20 Given a Morse function f on a smooth, orientable surface X then

χ(X) = # (maxima)¡#(saddles) + # (minima) .
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Remark 4.21 The above statement demands orientability because the earlier proof of the
Gauss-Bonnet theorem also did. However this theorem is also true for non-orientable compact
surfaces.

Proof. Apply the Poincaré-Hopf theorem to the vector …eld gradX(f), taking note of the
previous proposition.

Example 4.22 The function f(x, y) = cosπx + cosπy has period 2 in both the x and y vari-
ables. f(x, y) descends to a well-de…ned smooth function ~f(x, y) on R2/(2Z)2 which is di¤eo-
morphic to the torus T. ~f(x, y) has a maximum at (0, 0) , saddle points at (1, 0) and (0, 1) and
a minimum at (1, 1) . Hence

χ(T) = 1¡ 2 + 1 = 0.

Figure 5.6 – height function on a torus

Example 4.23 Consider the height function z on the torus T as depicted in Figure 5.6. There
is a maximum at the top of the torus (point A), a minimum at the bottom of the torus (point
D) and two saddle points at points B and C. Hence

χ(T) = 1¡ 2 + 1 = 0.

Remark 4.24 Theorem 4.20 is part of a broader subject called Morse theory, a subject within
di¤erential topology which relates di¤erentiable functions on a surface to the surface’s topology.
It is named after Marston Morse (1892-1977) who …rst wrote on the subject in 1925.

Revisiting the example of the height function on a torus, consider the sets

Xh = f(x, y, z) 2 T j z 6 hg .

Note that the topology of these sets only changes as h achieves the value of one of the critical
points’ heights. In fact Morse showed that two such sets Xh and Xk would have the same
‘homotopy type’ if no critical height lay between h and k. This notion of homotopy equivalence
is a type of topological equivalence, though weaker than that of being homeomorphic. Further
Morse showed how the topology of Xh changes as h passes through a critical height. When h
passes through a maximum (at A) or a minimum (at D) a 2-cell (a disc) is attached to the set,
but when h passes through a saddle point (at B and C) a 0-cell (a point) is attached to the set.
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5. HYPERBOLIC SURFACES

5.1 Models for the Hyperbolic Plane
De…nition 5.1 (a) The hyperbolic plane H is the geometric surface formed from the upper
half-plane

H = fz 2 C j Im z > 0g ,

endowed with the …rst fundamental form

dx2 + dy2

y2
.

This is the Poincaré’s half-plane model.
(b) We showed earlier (Example 3.56) that the Gaussian curvature of H equals ¡1. We also

showed in Example 3.66 that the geodesics of H are the half-lines perpendicular to the real axis
and the semicircles that meet the real axis at right angles. Note that there is a unique geodesic
between any two points of H.

(c) As E = G in the above …rst fundamental form then angles are measured in H in the
same way that they are in C.

(d) In Method 2 of Example 3.66, we showed that, given real numbers a, b, c, d such that
ad¡ bc = 1,

w(z) =
az + b

cz + d

is a bijective isometry of H.

The Möbius map

w =
z ¡ i

z + i
, z =

i(1 + w)

1¡ w
.

takes H conformally to the disc

D = fz 2 C j jzj < 1g .

If we assign a …rst fundamental form to D in such a way that the Möbius map is an isometry
then D is a second model for the hyperbolic plane known as Poincaré’s disc model. Again
we note the above …rst fundamental form can be rewritten in terms of z as

¡4 jdzj2

(z ¡ ¹z)2
.

Applying the change of variable we note that

jdzj2 =

¯
¯
¯
¯
(1¡ w) + (1 + w)

(1¡ w)2

¯
¯
¯
¯

2

jdwj2 =
4 jdwj2

j1¡ wj4
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and

(z ¡ ¹z)2 =

µ
i(1 + w)

1¡ w
+

i(1 + ¹w)

1¡ ¹w

¶2

= ¡

µ
(1 + w) (1¡ ¹w) + (1¡ w) (1 + ¹w)

(1¡ w) (1¡ ¹w)

¶2

= . ¡ 4

µ
1¡ w ¹w

(1¡ w) (1¡ ¹w)

¶2

= ¡4

¯
¯1¡ jwj2

¯
¯2

j1¡ wj4

Hence
¡4 jdzj2

(z ¡ ¹z)2
=

¡16 jdwj2

j1¡ wj4
£

j1¡ wj4

¡4
¯
¯1¡ jwj2

¯
¯2
=

4 jdwj2

¯
¯1¡ jwj2

¯
¯2
.

Proposition 5.2 (a) Poincaré’s disc model for the hyperbolic plane is the disc

D = fz 2 C j jzj < 1g

endowed with the …rst fundamental form

4 jdzj2

¯
¯1¡ jzj2

¯
¯2
.

(b) The Gaussian curvature equals ¡1 and the geodesics are the diameters and the circular arcs
that meet the unit circles in right angles. Angles are measured in D the same way they are in
H.

(c) The orientation-preserving isometries of D take the form

f(z) =
eiθ (z ¡ a)

1¡ ¹az

where jaj < 1 and θ 2 R.

Proof. (a) was proved in the discussion previous to this proposition and (b) follows as the
map w is an isometry and conformal map from H to D which preserves curvature, geodesics
and angles.

To prove (c) we …rst need to show that the circle jzj = 1 maps to itself; if jzj = 1 then

jf(z)j =

¯
¯
¯
¯
eiθ (z ¡ a)

1¡ ¹az

¯
¯
¯
¯ =

¯
¯
¯
¯
¹z(z ¡ a)

1¡ ¹az

¯
¯
¯
¯ =

¯
¯
¯
¯
1¡ a¹z

1¡ ¹az

¯
¯
¯
¯ = 1.

And as f(a) = 0 then f maps D bijectively onto D. Also f is orientation-preserving as it is
holomorphic. Further

jdf j =

¯
¯
¯
¯
(1¡ ¹az) + ¹a (z ¡ a)

(1¡ ¹az)2

¯
¯
¯
¯ jdzj =

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯
jdzj
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and then

4 jdf j2

¯
¯1¡ jf(z)j2

¯
¯2

= 4 jdzj2

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯

2 ¯
¯
¯
¯
¯
1¡

¯
¯
¯
¯
z ¡ a

1¡ ¹az

¯
¯
¯
¯

2
¯
¯
¯
¯
¯

¡2

= 4 jdzj2

¯
¯
¯
¯
¯

1¡ jaj2

(1¡ ¹az)2

¯
¯
¯
¯
¯

2 ¯
¯
¯
¯
¯

(1¡ ¹az)2

j1¡ ¹azj2 ¡ jz ¡ aj2

¯
¯
¯
¯
¯

2

=
4 jdzj2

¡
1¡ jaj2

¢2

(1 + a¹az¹z ¡ z¹z ¡ a¹a)2

=
4 jdzj2

¡
1¡ jaj2

¢2

¡
1¡ jaj2

¢2 ¡
1¡ jzj2

¢2

=
4 jdzj2

¯
¯1¡ jzj2

¯
¯2
,

showing f is an isometry of D. Further these are all the isometries of D. Given an isometry
g of D then, by setting a = g(0) and choosing θ appropriately, we note f¡1 ± g is an isometry
which sends 0 to 0 and the interval (0, 1) to itself. For orientation, distance and angles to be
preserved, it follows that f¡1 ± g is the identity and hence g = f.

Example 5.3 (a) Let 0 < r < 1. Find the distance in D between 0 and r as measured along
the real axis.

(b) Find the distance in D between a, b 2 D.
(c) Deduce a formula for the distance in H between p, q 2 H.

Solution. (a) The distance between 0 and r equals

Z r

0

2dx

1¡ x2
=

Z r

0

µ
1

1¡ x
+

1

1 + x

¶

dx

=

·

log

µ
1 + x

1¡ x

¶¸r

0

= log

µ
1 + r

1¡ r

¶

= 2 tanh¡1 r.

(b) Given points a, b 2 D then the Möbius map

eiθ (z ¡ a)

1¡ ¹az

is an isometry of D which takes a to 0 and for an appropriate choice of θ takes b to the positive
real axis. Hence the distance between a and b equals

dD(a, b) = 2 tanh
¡1

¯
¯
¯
¯
b ¡ a

1¡ ¹ab

¯
¯
¯
¯ ,
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as measured along the geodesic between them.

(c) Recall that the map (z ¡ i) /(z + i) is an isometry between H and D. So given p, q 2 H the
distance between them equals

dH(p.q) = dD

µ
p ¡ i

p+ i
,
q ¡ i

q + i

¶

= 2 tanh¡1

¯
¯
¯
¯
¯
¯

³
q¡i
q+i

´
¡

³
p¡i
p+i

´

1¡
³
¹p+i
¹p¡i

´³
q¡i
q+i

´

¯
¯
¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
(¹p ¡ i) ((q ¡ i) (p+ i)¡ (p ¡ i) (q + i))

(p+ i) ((q + i) (¹p ¡ i)¡ (¹p+ i) (q ¡ i))

¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
¡2ip+ 2iq

2i¹p ¡ 2iq

¯
¯
¯
¯

= 2 tanh¡1
¯
¯
¯
¯
q ¡ p

q ¡ ¹p

¯
¯
¯
¯ .

Remark 5.4 Poincare’s models for the hyperbolic plane date to 1882. There were other models
for the hyperbolic plane, most notably one due to Eugenio Beltrami (1868) and Felix Klein
(1871). This model again uses the open unit disc, the geodesics are the line segments in the
disc, but the model is not conformal with both distance and angle being measured in a non-
Euclidean fashion.

5.2 Hyperbolic geometry and trigonometry
We have yet to show that the hyperbolic distance function dD is a metric. Certainly dD (z,w) > 0
and dD (z, w) = 0 if and only if z = w. Also symmetry follows as for z, w 2 D then

jw ¡ zj = jz ¡ wj and j1¡ ¹zwj = j1¡ ¹wzj ,

as they are conjugates of one another. As there is an isometry of D taking any of a triangle’s
vertices to 0, the triangle inequality follows from:

Proposition 5.5 (Hyperbolic triangle inequality)For z,w 2 D,

dD(z, w) 6 dD(0, z) + dD(0, w),

with equality if and only if z/w is real and negative (so that z and w are on opposite sides of
the origin).

This is turn will follow from:

Proposition 5.6 (Hyperbolic cosine rule) Consider a hyperbolic triangle with vertices 0, z, w.
Write

a = dD(0, z), b = dD(0, w), c = dD(z, w)
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and angle C at 0. Then

cosh c = cosh a cosh b¡ sinh a sinh b cosC.

Note that if the approximations coshx ¼ 1 + x2/2 and sinh x ¼ x apply then the hyperbolic
cosine rule approximates to

c2 = a2 + b2 ¡ 2ab cosC

which is the usual Euclidean cosine rule.

Proof. (Of the triangle inequality) This follows from the cosine rule as cosC > ¡1 so that

cosh c 6 cosh a cosh b+ sinh a sinh b

= cosh (a+ b) .

As cosh is strictly increasing for non-negative arguments then

c 6 a+ b.

Further we only have equality when cosC = ¡1 and C = π in which case w/z is real and
negative.

Proof. (Of the cosine rule) Without loss of generality we may assume that z is positive. Then

z = tanh
dD(0, z)

2
, w = eiC tanh

dD(0, w)

2
.

By the hyperbolic tangent half-angle formulae (the hyperbolic ‘t-formulae’) then

cosh dD(0, z) =
1 + z2

1¡ z2
, cosh dD(0, w) =

1 + jwj2

1¡ jwj2
,

and by de…nition of hyperbolic distance in D

tanh

µ
dD(z, w)

2

¶

=

¯
¯
¯
¯
w ¡ z

1¡ zw

¯
¯
¯
¯ .

So, following some rearranging,

cosh dD(z, w) =
j1¡ zwj2 + jw ¡ zj2

j1¡ zwj2 ¡ jw ¡ zj2

=
(1 + z2)

¡
1 + jwj2

¢
¡ 2 (zw + z ¹w)

(1¡ z2)
¡
1¡ jwj2

¢

=

µ
1 + z2

1¡ z2

¶Ã
1 + jwj2

1¡ jwj2

!

¡

µ
2z

1¡ z2

¶µ
2 jwj

1¡ jwj2

¶µ
w + ¹w

2 jwj

¶

= cosh a cosh b¡ sinh a sinh b cosC,

recalling

sinh a =
2z

1¡ z2
, sinh b =

2 jwj

1¡ jwj2
, cos argw =

Rew

jwj
.
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Remark 5.7 (Dual hyperbolic cosine rule) As with spherical geometry, there is a second
‘dual’ cosine rule which has no equivalent in Euclidean geometry. In the hyperbolic case this
reads as

cosC = ¡ cosA cosB + sinA sinB cosh c.

Proposition 5.8 (Hyperbolic sine rule) For a hyperbolic triangle in D with angles A,B,C
and sides a, b, c then

sinA

sinh a
=
sinB

sinh b
=
sinC

sinh c
.

Solution. This is Sheet 3, Part C, Exercise 1.

Example 5.9 In D a circle of radius R has area 4π sinh2 (R/2) and circumfernece 2π sinhR.
Note that, for small values of R, these formulae approximate to πR2 and 2πR.

Solution. The circle of radius R, centred on the origin in D, corresponds to the Euclidean
circle jzj = tanh(R/2). So its interior has area equalling

ZZ

jzj6 tanh(R/2)

p
EG ¡ F 2 dx dy

=

Z tanh(R/2)

0

Z 2π

0

4

(1¡ r2)2
r dr dθ

= 2π

·
2

1¡ r2

¸tanh(R/2)

0

= 4π

µ

cosh2
µ
R

2

¶

¡ 1

¶

= 4π sinh2
µ
R

2

¶

.

The circle can be parameterized as x = tanh(R/2) cos t and y = tanh(R/2) sin t, so it has
circumference

Z 2π

t=0

p
E _x2 +G _y2 dt

= tanh(R/2)

Z 2π

t=0

2

1¡ tanh2(R/2)
dt

=
4π tanh(R/2)

sech2(R/2)

= 4π sinh

µ
R

2

¶

cosh

µ
R

2

¶

= 2π sinhR.

HYPERBOLIC GEOMETRY AND TRIGONOMETRY 81



Remark 5.10 It follows that a circle in D is a Euclidean circle – this is because isometries of
D are Möbius maps which send circles to circles. However the centre of a hyperbolic circle will
not in general coincide with the Euclidean centre.

Further it is also now clear, that through three non-collinear points there need not be a
circle in D. For example the points 0, 1¡ ε and i(1¡ ε) are not collinear – as the second and
third points lie on two di¤erent diameters – but for suitably small positive ε, a hyperbolic (and
so Euclidean) circle passing through these three points will not entirely lie in D.

Theorem 5.11 (Lambert’s Formula) Given a triangle T in D, bounded by geodesics, its
area equals

π ¡ α ¡ β ¡ γ

where α, β, γ are the three internal angles. Consequently α+ β + γ < π.

Proof. The local Gauss-Bonnet theorem states

Z

γ

kg ds +

ZZ

R

K dA+
nX

i=1

αi = 2π,

where α1, . . . , αn are the polygon’s external angles. As kg = 0 on a geodesic, and recalling that
K = ¡1, we …nd

0¡ A+ (π ¡ α) + (π ¡ β) + (π ¡ γ) = 2π

which rearranges to the required result. Note that the maximal area π can be achieved by
having all three vertices on the boundary of D. Such a triangle is called triasymptotic.

Proposition 5.12 (The angle of parallelism) Let l be a line in D and P be a point at
distance d > 0 from l. This distance d is measured along a perpendicular from P to a point O
on l. Then a line through P will meet l if the angle the line makes with OP is less than

¦(d) = sin¡1 sech d.

¦(d) is known as the angle of parallelism.

Figure 6.1 – the angle of parallelism

Proof. Without loss of generality we can take l to be the real axis and P to be on the positive
imaginary axis, so represented by the complex number i tanh(d/2). The point O is then the
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origin. Say that a second line passes through P, making an angle θ, and intersects l at the
point Q. By the hyperbolic sine rule

sin θ =
sinh dD (O,Q)

sinh dD (P,Q)
.

And by the hyperbolic cosine rule we have

cosh dD (P,Q) = cosh dD (O,Q) cosh d.

Eliminating dD (O,Q) we …nd

sin θ =
1

sinh dD (P,Q)

s

cosh2 dD (P,Q)

cosh2 d
¡ 1

=
q
coth2 dD (P,Q) sech

2d ¡ cosech2dD (P,Q).

Now as dD (P,Q) ! 1 then coth2 dD (P,Q) ! 1 and cosechdD (P,Q) ! 0. So the limiting case
for when we can solve for θ is when

sin θ = sechd.

This θ is the required formula for the angle of parallelism.

5.3 Compact Hyperbolic Surfaces
As commented earlier, a closed geometric surface with constant curvature K = ¡1 is necessarily
a torus with genus g > 1. This is a consequence of the global Gauss-Bonnet theorem. It is
not hard to appreciate how such a surface might be made from a polygon. The canonical
identi…cation space for such a torus is a 4g-gon with edges identi…ed as

a1a2a
¡1
1 a¡12 ¢ ¢ ¢ a2g¡1a2ga

¡1
2g¡1a

¡1
2g .

When forming a topological surface the edges are identi…ed by homeomorphisms and nothing
further needs to be required. However, to create a hyperbolic surface we need to begin with a
polygon that is already a geometric surface with boundary – so we take a regular polygon from
the hyperbolic plane – and then the identi…cations need to be made using isometries. Further,
the internal angles of the polygon, that are identi…ed as the same vertex, need to add up to a
whole angle.

Example 5.13 Consider a regular octagon in D, such as the one sketched as in Figure 6.2.

Figure 6.2 – an identi…ed octagon from D
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For any d in the range 0 < d 6 1 such an octagon can be constructed which has the vertices
at hyperbolic distance d from the origin. Recall for a regular hyperbolic octagon

¡area of octagon =

ZZ

R

K dA = 8β ¡ 6π,

where β is the common internal angle. As d ! 0 then β ! 3π/4 and when d ! 1 then
β ! 0. For any such octagon, a topological surface can be formed by identifying the eight edges
as depicted and the eight vertices are then all identi…ed to the same vertex. However to form
a geometric surface we need to identify the edges with isometries and need β = π/4 so that the
internal angles sum to a whole angle. But this is possible for a unique choice of d as β is a
decreasing function of d.

For this particular choice of d, the global Gauss-Bonnet theorem tells us that

¡4π = 2πχ(X) =

ZZ

X

K dA = ¡area of X.

So the surface’s area equals 4π. More generally, for g > 1, a regular 2g-gon can be identi…ed to
form a hyperbolic surface of genus g.

Example 5.14 Find the distance of the vertices from the origin of the octagon in Figure 6.2
and the complex numbers representing those vertices.

Solution. We have noted that the internal angles of the octagon are π/4, so the octagon can
be naturally divided into 8 isosceles triangles with angles A = π/4, B = C = π/8. The equal
length sides are then b and c. The dual hyperbolic cosine rule states

cosC = ¡ cosA cosB + sinA sinB cosh c

and so

cosh c =
cos π

8
+ cos π

4
cos π

8

sin π
4
sin π

8

= cot
³π

8

´µ
1 + cos (π/4)

sin (π/4)

¶

.

Noting cot (π/8) = 1 +
p
2 and sin (π/4) = cos (π/4) = 1/

p
2, we then have

cosh c =
³
1 +

p
2
´2

.

The right-most vertex is then at z = tanh (c/2) . By the hyperbolic tangent half-angle formulae
we have

1 + z2

1¡ z2
=

³
1 +

p
2
´2

.

Solving for z, we …nd z = 2¡1/4. Thus the vertices of the octagon are 2¡1/4ωk where ω = eiπ/4

and 0 6 k 6 7.

Example 5.15 (A non-orientable hyperbolic surface) We can create a hyperbolic surface
X, that is homeomorphic to a torus of genus 3, by identifying the edges of a regular dodecagon
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in D, centred on the origin, in the canonical way. X can then be embedded in R3 – as a
smooth surface – and in such a way that is symmetric about the origin. The antipodal map
σ(x, y, z) = (¡x,¡y,¡z) is a self-inverse di¤eomorphism of X with X/hσi being non-orientable
– for example, a symmetric band within the torus would become a Möbius band. But X/hσi can
be endowed with the hyperbolic structure that X has. Speci…cally X/hσi is the sphere with four
cross-caps.

Example 5.16 (Pseudosphere) The tractoid is a hyperbolic surface, but not a complete one
as its geodesics cannot be extended inde…nitely. Omitting one meridian, it is isometric to the
semi-in…nite strip (0, 2π) £ (1,1) and we see that the geodesic x = π cannot be extended
beyond y = 1. The completion of the tractoid is the pseudosphere H/¡ where ¡ is the group of
isometries generated by z 7! z + 2π. (See Figure 6.3.)

Figure 6.3 – the pseudosphere

The pseudosphere is complete but not compact.

The subject of hyperbolic surfaces is treated in detail in Stillwell. I include here just some
of the key theorems.

Theorem 5.17 (Killing-Hopf theorem) (Stillwell, p.111) Each complete, connected hyper-
bolic surface is of the form H/¡ where ¡ is a discontinuous group of isometries of H which acts
freely on H.

To say that ¡ is discontinuous means that no orbit (of ¡’s action) has a limit point.
To say that ¡ acts freely means that if x 2 H and g.x = x for g 2 ¡, then g is the identity.

De…nition 5.18 Given a free, discontinuous action of ¡ on H then a fundamental region
R µ H for the action is a region of H which contains a representative of each orbit such that
the interior of R contains at most one element of an orbit. Thus H/¡ is represented by R with
some identi…cations on its boundary.

Theorem 5.19 (Stillwell, p.123) A hyperbolic surface is formed from a hyperbolic polygon
provided

(i) the edges are pairwise identi…ed with isometries and
(ii) the sum of the internal angles, around vertices that are identi…ed together, equals a

whole angle.
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Theorem 5.20 (Stillwell, p.130) For any compact hyperbolic surface H/¡ there is a polygonal
fundamental region for ¡.

Theorem 5.21 (Poincaré, 1882 – Stillwell p.180) A compact polygon P, satisfying the edge
and angle conditions (i) and (ii) above, is a fundamental region for the group ¡ generated by
the edge-pairing transformations of P.

Example 5.22 Find the edge-pairing isometry which identi…es the edge a1 with a¡11 as in
Figure 6.2,

Solution. Recall that the orientation-preserving isometries of D take the form

f(z) = eiθ
z ¡ a

1¡ ¹az
,

where a 2 D and 0 6 θ < 2π. The vertices of the octagon are αωk where α = 2¡1/4 and
ω = eiπ/4. The map

f1(z) =
z ¡ αi

1 + αiz

takes the rear of edge a1 to the origin and the front of the edge to

αω ¡ αi

1 + αiαω
= α

Ã
1+ip
2

¡ i

(1 + i) /2

!

=
α

p
2

³
1 + (1¡

p
2)i

´
(1¡ i)

=
α

p
2

³³
2¡

p
2
´

¡
p
2i

´

= α
³³p

2¡ 1
´

¡ i
´
,

which has argument

tan¡1
µ

¡1
p
2¡ 1

¶

= ¡ tan¡1
³p
2 + 1

´
= ¡

3π

8
.

Thus the function g1(z) = e3πi/8f1(z) takes a1 to the positive real axis from 0. We can argue the
same (details omitted) to …nd a function g2(z) which takes the rear of a¡11 to the origin with
image along the positive real axis. The edge-pairing isometry we are seeking is then g¡12 ± g1.
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6. RIEMANN SURFACES

6.1 Examples
De…nition 6.1 A Riemann surface is a connected topological surface S with a holomorphic
atlas. A holomorphic atlas is a collection of charts fϕi : Ui ! Vig where Vi µ C and the
transition maps are biholomorphic – that is holomorphic bijections with holomorphic inverses.

² Note that not all authors assume Riemann surfaces to be connected.

The de…nition of holomorphic maps between Riemann surfaces can then be made in a like
manner to how we de…ned smooth maps between smooth surfaces. Recall that holomorphic
maps are nuch more rigid than smooth functions – as, for example, becomes apparent with the
identity theorem. The issue of classifying Riemann surfaces up to biholomorphism (the correct
notion of isomorphism here) is much more subtle than in the smooth case, with a great variety
in the possible complex structures that a certain topological type can be endowed with. On
these points we note:

Proposition 6.2 Riemann surfaces are orientable.

Proof. The transition maps are holomorphic, with non-zero derivatives, and so are orientation-
preserving.

And the following is also true – left to Sheet 4, Part B, Exercise 3.

² A holomorphic function on a compact Riemann surface is constant.

Example 6.3 (The complex plane) C is a Riemann surface. The identity map ι : C ! C
forms a holomorphic atlas by itself.

Example 6.4 (Riemann mapping theorem) Every simply connected, non-empty, proper,
open subset U µ C is biholomorphic to an open half-plane.

Example 6.5 (Annuli) An annulus

A = fz 2 C j r1 < jzj < r2g

is not homeomorphic to an open half-plane – as it is not simply connected – and so is not
biholomorphic to it. All such annuli are di¤eomorphic to one another, but there is a famous
theorem of complex analysis which shows two such annuli are biholomorphic if they have the
same ratio of radii r2/r1.

Example 6.6 (The Riemann sphere) The Riemann sphere can also be thought of as the
complex projective line or the extended complex plane C1= C [ f1g . We can provide a holo-
morphic atlas with two charts

U1 = C1n f1g , V1 = C, ϕ1(z) = z;

U2 = C1n f0g , V2 = C, ϕ2(z) = z¡1.
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Then ϕ1(U1 \ U2) = ϕ2(U1 \ U2) = Cn f0g and

ϕ2 ± ϕ¡11 =
1

z

which is a biholomorphism between ϕ1(U1 \ U2) and ϕ2(U1 \ U2).

Example 6.7 (Meromorphic maps) In light of the previous example, a meromorphic map
on a Riemann surface can be considered as a holomorphic map to the Riemann sphere. Say that
f : C ! C1 is a meromorphic function – so holomorphic except for …nitely many poles. When
f(z) is …nite then ϕ1 ±f(z) = f(z) is holomorphic and when f(z) = 1 then ϕ2 ± f(z) = 1/f(z)
which is holomorphic with a zero at z of the same order as the order of the pole of f(z).

Example 6.8 (Uniformization theorem) Every simply-connected Riemann surface is bi-
holomorphic to one of (a) the Riemann sphere, (b) the complex plane, (c) the open, upper
half-plane.

Example 6.9 (Complex structures on the torus) Consider the lattice

¤ = Z © ωZ

where ω 2 CnR. Then C/¤ is homeomorphic to a torus (Figure 7.1) and naturally inherits the
structure of a Riemann surface from C.

Figure 7.1 – parallelogram in lattice

But in general these complex tori are not biholomorphic to one another. It turns out (Kirwan
p.141) that two complex tori C/¤ and C/~¤ are biholomorphic if and only if ¤ = a~¤ or equally
if J(¤) = J(~¤) where

J(¤) =
g32

g32 ¡ 27g23
, g2 = 60

X

w2¤nf0g

1

w4
, g3 = 140

X

w2¤nf0g

1

w6
.

In particular, there are uncountably many biholomorphism classes of complex structures on a
torus.

Example 6.10 (The Riemann surface of
p
z) The a¢ne surface is

§ =
©
(z,w) 2 C2 j w2 = z

ª
.

EXAMPLES 88



Topologically this is not complicated. The map w 7! (w2, w) is a homeomorphism from C to
§ and so § is topologically a plane. When we include a point at in…nity it is topologically a
sphere.

However, if we wish to understand § as the Riemann surface of the multifunction of
p
z,

then we need to de…ne
p
z on a cut plane. This was already discussed in section 0.4 with regard

to the topology of §. Here we focus on § as a Riemann surface. For (z, w) 2 § where z 6= 0
then we can use either z or w as a local holomorphic co-ordinate, but around (0, 0) we need to
use w as the local co-ordinate. This is because 0 is a branch point of

p
z, something we will

discuss in more detail later. There is a similar issue if we want to include the point at in…nity
which is again a branch point of

p
z.

Example 6.11 (A non-singular cubic) The cubic

y2 = x(x ¡ 1)(x ¡ λ), λ 6= 0, 1,

is a non-singular (a¢ne) cubic § in C2. It has a projectivized version ¹§ with equation

y2z = x(x ¡ z)(x ¡ λz)

which has a single point at in…nity [z : x : y] = [0 : 0 : 1] . The above equations are known as the
Legendre form of the cubic.

For x 6= 0, 1, λ,1 there are two values of y. We make cuts between 0 and 1 and between λ
and 1. We can then de…ne two holomorphic branches on this cut plane (Figure 7.2)

§
p
x(x¡ 1)(x ¡ λ)

and most points of § take the form
³
x,

p
x(x¡ 1)(x¡ λ)

´
or (x,¡

p
x(x ¡ 1)(x ¡ λ)). Let

§+ =
n³

x,
p
x(x ¡ 1)(x¡ λ)

´
j x 2 cut plane

o
µ C2;

§¡ =
n³

x,¡
p
x(x ¡ 1)(x ¡ λ)

´
j x 2 cut plane

o
µ C2.

The points that are missing from ¹§ are the point at in…nity and those points associated with a
value of x on the cuts.

Figure 7.2 – branches on cut plane Figure 7.3 – gluing §+ and §¡
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Near the point x = 0 then y2 ¼ λx. So as we move around the point x = 0 there is a sign
change in the branches, just as there is with the standard holomorphic branches of the square
root. This explains why the tabs A and B are so aligned as in Figure 7.3. The same argument
can be made for the second cut. Including the point at in…nity, we see that ¹§ is homeomorphic
to a torus. Such an algebraic curve is called an elliptic curve.

It can be shown that the values

λ, λ¡1, 1¡ λ,
1

1¡ λ
,

λ

λ ¡ 1
,

λ ¡ 1

λ
,

lead to biholomorphic complex tori.

Example 6.12 (Hyperelliptic curves) We can extend the analysis of the previous Riemann
surface to curves with equations

y2 = (x¡ α1) (x ¡ α2) ¢ ¢ ¢ (x ¡ αn)

where n > 2 and the αi are distinct complex numbers. In section 0.4 we saw that when n = 2
the Riemann surface is a sphere and in the previous example obtain a torus when n = 3. When
we increase n by 2 then we need to introduce a further cut in the plane and add a further handle
to the surface. So the surface has genus (n ¡ 1)/2 when n is odd and genus (n ¡ 2)/2 when n
is even.

However, the projectivized curve is singular at its point at in…nity – see the following remark.
So we cannot just assign a complex structure on the surface, inherited from complex projective
plane. Away from the branch points αi we can use either x or y as the local holomorphic co-
ordinate. At the branch points we need to use y as in the previous example with the square root.
For now, assume n = 2k is even and we introduce at 1 the following co-ordinates

X =
1

x
, Y =

y

xk
.

The de…ning equation now reads as

µ
1

X
¡ α1

¶µ
1

X
¡ α2

¶

¢ ¢ ¢

µ
1

X
¡ α2k

¶

=

µ
Y

Xk

¶2

,

which rearranges to
(1¡ α1X) (1¡ α2X) ¢ ¢ ¢ (1¡ α2kX) = Y 2.

Near in…nity, when X ¼ 0, we have Y 2 ¼ 1 and so we can compactify § with two points at
in…nity associated with (X, Y ) = (0, 1) and (X, Y ) = (0,¡1) . Near these two points X is a
local holomorphic co-ordinate. A similar approach can be taken when n is odd, with just one
point being needed at in…nity.

This shows that complex structures can be assigned to a torus of any genus g > 2; the above
Riemann surfaces are called hyperelliptic curves. All complex structures (up to biholomorphism)
on the torus of a given genus can be studied via a classifying space known as a ‘moduli space’.
All complex structures for genus 2 arise as hyperelliptic curves but for g > 2 the hyperelliptic
curves are not generic within the moduli space.
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Remark 6.13 (O¤-syllabus) The above non-singular cubic is the zero set in the complex pro-
jective plane of the function

F (x, y, z) = y2z ¡ x(x ¡ z)(x¡ λz).

A singular point of the cubic is any point satisfying F = 0, rF = 0 and a quick check shows
none exist on the cubic. The cubic’s complex structure is inherited from the ambient projective
space.

On Sheet 0, Exercise 5, we met the cubic

y2 ¡ x(x ¡ 1)2 = 0

and a check shows this curve to be singular at (x, y) = (1, 0) . This singularity is called a node.
The complex projective curve is topologically a pinched torus.

When n > 3, the hyperelliptic curve

G(x, y, z) = y2zn¡2 ¡ (x¡ α1z) (x ¡ α2z) ¢ ¢ ¢ (x ¡ αnz) = 0

can be checked to have a singularity at its point at in…nity, where x = 0, y = 1, z,= 0. This is
why we complete the complex structure of the hyperelliptic curves in a di¤erent manner.

6.2 The Riemann-Hurwitz formula
Proposition 6.14 (Local form of a holomorphic map) Let f : R ! S be a holomorphic
map between Riemann surfaces, with f(r) = s. Then we can choose local complex co-ordinates
around r 2 R, s 2 S, in terms of which f is given by f(z) = zn.

Figure 7.4 – local form of a holomorphic map

Proof. We can assume that, by translating if necessary, the local co-ordinates are chosen with
r, s corresponding to 0 2 C, so that f(0) = 0 in local co-ordinates. The Taylor series for f(z)
therefore begins

f(z) = anz
n + an+1z

n+1 + an+2z
n+2 + ¢ ¢ ¢
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where n > 1 and an 6= 0 is the …rst non-zero coe¢cient. A holomorphic nth root of f is then
de…ned near 0 with

f(z)1/n = a1/nn z + ¢ ¢ ¢ .

The derivative of this nth root at 0 is a
1/n
n 6= 0 and so, by the inverse function theorem, there

is a local holomorphic inverse G de…ned near 0. Then G(0) = 0 and

f(G(z))1/n = z.

We can now change co-ordinates in the domain using the local biholomorphismG. To be explicit,
if F is the original parameterization, de…ned locally near r 2 R, then the new parameterization
is F ± G, de…ned near 0. The new local expression for f becomes

z 7! f(G(z)) = zn.

Corollary 6.15 (Open Mapping Theorem) A non-constant holomorphic map between Rie-
mann surfaces is an open map. That is the image of an open set is open.

Proof. This is left to Sheet 4, Part B, Exercise 3.

De…nition 6.16 Let f : R ! S be a holomorphic map between Riemann surfaces and let r 2 R.
Then there are local co-ordinates around r and f(r) such that f has the form z 7! zn in local
co-ordinates. The number n is called the valency of f at r and is written vf (r). Geometrically
this is the number of solutions to the equation f(z) = w for small w 6= 0. Thus the valency does
not depend on the choice of co-ordinates.

If n > 1 then we say that f(r) is a branch point and r is a rami…cation point. Note
that r is a rami…cation point if and only if f 0(r) = 0 in local co-ordinates.

Figure 7.5 – local picture at a rami…cation point

Lemma 6.17 A holomorphic function on a compact Riemann surface has …nitely many rami-
…cation points.
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Proof. Locally f(z) = zn and so f 0(z) = nzn¡1 6= 0 for z 6= 0. Hence the rami…cation points
of f form a discrete set and hence a …nite set, as R is (sequentially) compact.

Example 6.18 Consider the map f(z) = z2 from the Riemann sphere to itself. The rami…ca-
tion points of f are 0 and 1 with the valency equalling 2 at each point.

Proposition 6.19 (Degree of a map) Given a non-constant holomorphic map f : R ! S
between compact Riemann surfaces, the degree of f is de…ned to be

deg(f) =
X

r2f¡1(s)

vf(r),

for any s 2 S. This de…nition is independent of the choice of s.

Proof. Since R is compact, and f is not constant, then f¡1(s) is …nite. Choose local co-
ordinates around each point p of f¡1(s) such that around each point f is given by z 7! zvf (p).
Without loss of generality we may assume that the domains Dp of these local co-ordinates are
disjoint, that their images are the same open neighbourhood V of s and that

f ¡1(V ) =
[

p2f¡1(r)

Dp.

It follows that X

p2f¡1(s)

vf(p)

is the number of distinct solutions to the equation f(z) = w for w 2 V nfsg. Thus this sum is
locally constant and since S is connected then this sum is constant on S.

Corollary 6.20 For all points s 2 S, except branch points, there are precisely deg(f) points in
R which map to s.

Example 6.21 For the earlier example, f(z) = z2 on the Riemann sphere, deg(f) = 2. For
s 6= 0,1 then f¡1(s) consists of the two squares roots of s, each of which has valency 1. For
s = 0,1 then f¡1(s) is a singleton with valency 2.

Theorem 6.22 (Riemann-Hurwitz Formula) For any non-constant holomorphic function
f : R ! S between compact Riemann surfaces

χ(R) = deg(f)χ(S)¡
X

rami…cation
points p

(vf (p)¡ 1) .

The sum on the RHS is referred to as the branching index of f.

Remark 6.23 Riemann had introduced (what we now call) Riemann surfaces in papers of
1851 and 1857. He stated and applied the above formula, but without proof. A proof appears
in an 1891 paper of Adolf Hurwitz.
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Example 6.24 For our earlier map f(z) = z2 on the Riemann sphere, the above equation
holds as χ(R) = χ(S) = 2 = deg(f) and vf(0) = vf (1) = 2. So we arrive at

2 = 2£ 2¡ (2¡ 1)¡ (2¡ 1) ,

which is true.

Proof. (Of Riemann-Hurwitz formula) Pick a triangulation for S so that the branch points
belong to the vertices of the triangulation. We want the pre-image to yield a triangulation of
R. So we subdivide the triangles into smaller triangles if necessary, so that each triangle T µ S
lies inside an open set V µ S small enough so that f¡1(V ) ! V can be written in the usual
local form on each connected component U µ R of f¡1(V ). If the local form of f : U ! V is
z 7! z, then the pre-image of T is a triangle. But if the local form is z 7! zn where n > 1, then
f¡1(T ) consists of n triangles.

Figure 7.6a Figure 7.6b

If the vertex is not a branch point, then these n triangles have n times as many vertices,
edges and faces as T does (Figure 7.6a). Thus they contribute n times to χ(R). However if
the vertex v is a branch point and the image of a single rami…cation point, then the n triangles
meet at one or more rami…cation points in R. If p is a rami…cation point such that f(p) = v,
then we have lose vf (p)¡1 vertices (Figure 7.6b) at each rami…cation point. So the subdivision
of S satis…es

V (R) = deg(f)V (S)¡
X

rami…cation
points p

(vf(p)¡ 1)

and E(R) = deg(f)E(S) and F (R) = deg(f)F (S). Note that if a branch point is the image of
several rami…cation points then the above sum still captures the number of lost vertices. The
result follows.

Example 6.25 Suppose that g(R) < g(S). Then any holomorphic map f : R ! S is constant.

Solution. Assume for a contradiction that f is not constant. We have

χ(R) = deg(f)χ(S)¡ B

where B > 0 is the branching index. We then have

2¡ 2g(R) = deg(f) (2¡ 2g(S))¡ B
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Rearranging gives
2g(S)¡ 2g(R) = (deg(f)¡ 1) (2¡ 2g(S))¡B.

The LHS is positive but, as g(S) > 1, the RHS is at most zero.

6.3 Meromorphic and Elliptic Functions
Recall that we can identify a meromorphic function f onR with a holomorphic map f : R ! C1

provided that f is not identically 1. We can note here that f has an equal number of poles
and zeros on R, counting multiplicities, as that number is just deg(f).

The following result may come as a surprise, but is a …rst intimation of connections with
algebraic geometry.

Theorem 6.26 (a) The meromorphic functions C1 ! C1 are rational functions.
(b) The biholomorphisms of C1 are the Möbius maps.

Remark 6.27 Note that as a consequence of (a) the meromorphic functions on C1 form a
…eld, the function …eld M(C1) of C1.

Proof. (a) As a consequence of the identity theorem, zeros of holomorphic functions are
isolated. As C1 is compact, this means that f : C1 ! C1 has …nitely many zeros z1, . . . , zn
and …nitely many poles p1, . . . , pm in C – we will attend to a possible zero or pole at 1 in a
moment. Let a1, . . . , an and b1, . . . , bm be the orders of the zeros and the poles and set

g(z) =
nY

j=1

(z ¡ zj)
aj

mY

k=1

(z ¡ pk)
¡bk .

Then f/g is meromorphic and it no longer has any zeros or poles in C.
By the earlier comment, f/g has an equal number of zeros and poles and cannot have both

at 1. This means that f/g : C1 ! C is holomorphic and so, by Sheet 4, Part B, Exercise 3(ii),
is constant. Hence f = constant £ g(z) is rational.

(b) By part (a) a biholomorphism is a rational function. As a biholomorphism is bijective,
then there can be at most one zero and one pole. If that zero and pole have any multiplicity,
then the rational function will not be injective locally and so the numerator and denominator
must have degree one and be independent of one another. That is, the biholomorphism must
be a Möbius map.

Recall now that we have met complex tori both as the Riemann surface of the multifunction

p
(z ¡ e1) (z ¡ e2) (z ¡ e3) e1, e2, e3 are distinct,

(as in Example 6.11) and also as the quotient

C

Zω1 © Zω2

ω2
ω1

/2 R,

(as in Example 6.9). We have not, thus far, made any connection between these two de…nitions.
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De…nition 6.28 An elliptic function is a meromorphic function f on C which is doubly
periodic – that is f is periodic in two independent directions ω1 and ω2.

De…nition 6.29 The Weierstrass ℘-function (or Weierstrass elliptic function) associ-
ated with the lattice ¤ = Zω1 © Zω2 equals

℘(z) =
1

z2
+

X

0 6=ω2¤

µ
1

(z ¡ ω)2
¡
1

ω2

¶

.

Remark 6.30 It is impossible to …nd a meromorphic function on C/¤ with only one simple
pole as this would mean C/¤, a torus, is homeomorphic to C1, a sphere. If instead we take
a meromorphic function with a double pole, then we can WLOG assume it to be at 0 with
Laurent coe¢cient c¡2 = 1. In order to make the function doubly periodic then we might
expect to include the sum

X

0 6=ω2¤

1

(z ¡ ω)2

but this is unfortunately divergent. However the inclusion of the second term (which is itself
divergent) makes ℘(z) convergent.

I list below some important facts about ℘(z) but they are, in the main, turgid and not
illuminating to prove. The important role of ℘(z) is in providing a link between our two
descriptions of complex tori.

² On a domain bounded away from the poles, ℘(z) converges to an elliptic function.

² In the fundamental parallelogram fαω1 + βω2 j 0 6 α, β 6 1g , ℘ has a pole of order 2 at
z = 0.

² ℘ : C/¤ ! C1 has degree 2.

² ℘0 = 0 at ω1/2, ω2/2 and (ω1 + ω2) /2.

² In the fundamental parallelogram ℘ has rami…cation points at 0, ω1/2, ω2/2 and (ω1 + ω2) /2.

² The valencies at the rami…cation points are each 2.

² The branch points of ℘ are denoted

e1 = ℘
³ω1
2

´
, e2 = ℘

³ω2
2

´
, e3 = ℘

µ
ω1 + ω2
2

¶

, 1 = ℘ (0) .

² ℘ satis…es the di¤erential equation

℘0(z)2 = 4 (℘(z)¡ e1) (℘(z)¡ e2) (℘(z)¡ e3).

² (Addition Theorem) For z, w such that z,w, z § w /2 ¤ then

℘ (z + w) =
1

4

µ
℘0(z)¡ ℘0(w)

℘(z)¡ ℘(w)

¶2

¡ ℘(z)¡ ℘(w).
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Finally we have the following theorem:

Theorem 6.31 (a) The following is a biholomorphism

C/¤ !
©
(z, w) 2 C2 j w2 = 4 (z ¡ e1) (z ¡ e2) (z ¡ e3)

ª
[ fpoint at in…nityg ;

z 7! (℘(z), ℘0(z)) .

(b) It can be shown that the function …eld of meromorphic functions on the complex torus C/¤
is C (℘,℘0) .
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