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1 Binomial trees

Assume that someone gives you a tricked coin. How would you work out the prob-

ability of the coin landing in tails, P[Tails] = ? Perhaps the simplest way is to

run an experiment, i.e., Monte Carlo, where one tosses the coin n times and then

records the number of successes S (i.e., Tails) and that will give you a good proxy for

P[Tails] = S/n.

Such an approach is a bit more difficult in finance. We cannot perform experiments

(or at least perform them in a cost-effective way). What we can do, instead, is to

propose a model for the underlying movements of the stock price; simulate price paths

and then calculate the price, say, of a European option. But what is a good model?

A tractable one? One that conforms with empirical evidence? Or a combination of

both?

Below we discuss in detail the binomial model of option pricing. Although sim-

ple, the binomial model is not just of pedagogical use because one can show that,

if generalised to multiple periods, the prices it yields converge to those given by the
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Black–Scholes model, where the stochastic dynamics of the stock is driven by Brow-

nian motion. (Brownian motion shall be discussed in detail later on.)

Before proceeding, we note the distinction between different approaches used to

price instruments. Pricing by arbitrage is based on the idea that if two instruments

have exactly the same payoff in all states of nature then their price must be the same.

Equilibrium pricing assumes agents’ degrees of risk aversion and prices are obtained

by equating demand and supply in the financial markets.

1.1 Arbitrage pricing: the binomial model

Assume there are two states of nature that occur with probability p and q = 1 − p

and two assets each with price unity. Asset 1 (A1) pays 1 in state 1 and 1 in state

2. Similarly, asset 2 (A2) pays 0 in state 1 and 3 in state 2. We use the following

notation: A1 pays (1, 1) and A2 pays (0, 3). Now assume that there is a third asset

in this simple economy paying (2,3). Can we calculate its price? That is, what is the

price A3(0)?

To obtain the value of A3(t) at time t = 0 we set up a portfolio Π(t = 0) consisting

of a units of A1 and b units of A2 and deduce a and b such that Π(t = 1) = A3(1).

Hence, we must have that

Π1(1) = 1 a+ 0 b (1)

and

Π2(1) = 1 a+ 3 b . (2)

We require that Π1(1) = 2 and Π2(1) = 3, ie we replicate A3’s payoff. Therefore we

must have that a = 2 and b = 1/3. Then, at time t = 0, A3(0) = 2 + 1/3.

• If the initial price of A3 was different, could we make a risk-less profit?

• If we had, instead of two, three possible states of the nature and A1 and A2

pay 1 in that state, what is the no-arbitrage value of A3 at time t = 0?
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1.2 Pricing a Call option in a simple Binomial model

Now, we would like to apply the same arbitrage arguments to price of a European

call. Recall that the payoff of a European call is given by

CE(S, t = T ;K,T ) = max(ST −K, 0) .

Let us assume that there are two states of the world with probabilities p and

q = 1 − p. Let the initial security price be S and suppose that if the ‘up’ state

is revealed, with probability p, then the asset’s value is uS where u is a constant.

Similarly, if the ‘down’ state is revealed the asset’s value becomes d S where d is

a constant. Moreover, in this economy there is a bond with value B that pays a

constant interest rate r per unit of time. In the up state the payoff of the call is

CE
u = max(uS −K, 0)

and in the down state the payoff is

CE
d = max(d S −K, 0) .

How can we find the arbitrage-free price of the call at time t = 0? Proceeding

as before, we set a portfolio Π(0) with an amount of cash B (i.e., we invest B in

risk-less bonds) and short ∆ amount of the underlying S. The value of the portfolio

at inception is

Π(0) = B +∆S .

We must choose ∆ so that the final payoff, in the two possible states of nature,

matches the payoff of the European call we want to price by no-arbitrage. In other

words,

∆uS +RB = CE
u

and

∆ d S +RB = CE
d ,

where the gross risk-free rate is denoted by R = 1 + r.

In matrix form, we solve the following system of equations
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[
uS R

dS R

][
∆

B

]
=

[
CE

u

CE
d

]
,

so [
∆

B

]
=

[
uS R

dS R

]−1 [
CE

u

CE
d

]
.

Therefore, [
∆

B

]
=

1

R(uS − d S)

[
R −R

−d S uS

][
CE

u

CE
d

]
,

in other words

∆ =
CE

u − CE
d

uS − d S
, (3)

and the amount of cash we need when we set up the initial portfolio is

B =
−dCE

u + uCE
d

R (u− d)
.

Before proceeding we note an interesting point that will be of extreme importance

throughout the course. The amount we are required to hold of the underlying, given

by equation (23), can be seen as the change in the value of the option induced by a

change in the underlying security S.

Hence, the portfolio at time t = 0 must have, by no-arbitrage, the same value that

of the call option, i.e., Π(0) = CE(S, t = 0;K, 1).

CE(S, t = 0;K, 1) = ∆S +B

=
CE

u − CE
d

uS − d S
S +

−dCE
u + uCE

d

R (u− d)

=
1

R

[
R− d

u− d
CE

u +
u−R

u− d
CE

d

]
. (4)

We must have R > d and u > R so the price of the option is financially plausible.

In fact, if these restrictions did not hold we would have that either the risky asset

yields a better return than the bond in all states of nature or vice-versa.
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1.3 Risk-neutral valuation

The ‘statistical’ probabilities p and q for the underlying S to move up or down do

not appear in (4). This is a very interesting fact because we are saying that if the

probability of going up is p = 0.999 the price of the European call is the same as

if the probability of the stock landing in the up state was p = 0.01. Initially one

would expect that the call premium increases as the probability of expiration in-the-

money increases. However, we showed with a very simple, yet powerful example, that

statistical probabilities are irrelevant (well, this is true so long as 0 < p < 1) when

pricing options in the binomial model.

The value of the call in (4) can be seen as the discounted weighted average of the

payoff at expiry. Moreover, given the financial restrictions of the parameters u, d,R

we see that the weights

p⋆ =
R− d

u− d
(5)

and

q⋆ =
u−R

u− d
(6)

can be understood as risk-neutral probabilities. In other words, if we assume that

agents are risk-neutral, pricing of instruments in this economy is performed as an

expectation of the payoff using (5) and (6) as the (risk-neutral) probabilities.

Can we, in this risk-neutral world, calculate the discounted expected value of the

stock price E[e−rS(T )]?

One way of doing this is by pricing a European call with K = 0. We had already

established that the price of a call was given by

CE(S, t = 0;K, 1) =
1

R

[
R− d

u− d
CE

u +
u−R

u− d
CE

d

]
=

1

R

[
p⋆CE

u + q⋆CE
d

]
.
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But because K = 0, we must have that

CE(S, t = 0;K = 0, 1) =
1

R

[
p⋆CE

u + q⋆CE
d

]
=

1

R
[p⋆ uS + q⋆ d S]

=
1

R
[p⋆ uS + (1− p⋆) d S]

=
1

R
[p⋆uS + (1− p⋆) d S]

=
1

R
E⋆[ST ] ,

where ST is the price of the asset at time T . Note that CE(S, t = 0;K = 0, 1) = S,

hence S = 1
R
E⋆[ST ], where the probabilities in the expectation are the risk-neutral

probabilities derived above.

2 Early exercise

So far we have devoted this lecture to the pricing of European instruments. At this

point we can ask ourselves whether we can price American options using the binomial

framework

Take as an example an American put on a security that pays no dividend. The

option payoff is given by

PA
u = max(K − uS, 0) ,

PA
d = max(K − d S, 0) .

Without an early exercise opportunity in period 1, the value of the call would be

PA(S, 0;K, 1) =
1

R

(
p⋆ PA

u + q⋆ PA
d

)
.

However, it might be the case that PA(S, 0;K, 1) < K − S. To see this, note

that if uS < K, i.e.,, that the security is so deep in the money that it will always be

exercised, then

PA(S, 0;K, 1) =
1

R

(
p⋆ PA

u + q⋆ PA
d

)
=

K

R
− S .
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In multi-period models, say a binomial with n steps, the value of the American

option at every node is the greater of its European equivalent or its intrinsic value

(i.e., early exercise value).

3 Options

A European (call/put) option gives the right to the holder of the option to pur-

chase/sell the underlying (for example a stock S) at a pre-specified time, called the

expiration date T , for a pre-specified amount known as the strike price K.

An American option is like a European option with the difference that it can

be exercised (ie buy or sell) at any time up until expiration T .

A European call offers its holder a right that they may or may not exercise. If

at time T the underlying stock price ST is greater that the strike price K, then a

rational person will exercise the option and make ST −K. In this case, the net profit

is ST −K minus the premium paid for the option. On the other hand, if at time T the

underlying security is below or equal to the strike price K, the holder of the option

will not exercise it; therefore, the payoff is 0. In this case, the owner lost the initial

premium paid for the option. The usual, and more compact, notation for this type

of payoff is max(ST −K, 0). Similarly, the payoff for a put option is max(K −ST , 0).

One of the fundamental questions we will try to answer in this course is what is

the ‘fair’ value of an option. The term vanilla options often refers to options with very

simple payoffs like calls and puts. However, as markets have become more liquid over

the years a great deal of different types of options have been developed. Options that

have more complicated payoff structures than vanilla options are normally referred

to as exotic options.
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3.1 Pricing a Call option in a simple economy

Assume that there are two possible states. A stock S is trading at 100 and tomorrow

it will either go up to 101 or down to 99. What is the value of a European call option

with strike price K = 100?

What happens if the probability of landing in the bad state is q = .95?

4 Model independent properties of options

The valuation of options will depend on the stochastic properties we assume for the

underlying. However, there are a number of properties that prices of vanilla options

must satisfy regardless of the dynamics of the underlying security. For example, it

is not difficult to convince ourselves that an American option is always at least as

valuable as a European call written on the same underlying; with same expiry date

and same strike price.

Let CE(S, t;K,T ) and CA(S, t;K,T ) respectively denote the prices of European

and American calls and PE(S, t;K,T ) and PA(S, t;K,T ) denote the European and

American puts.

Proposition 1 Call prices satisfy the following inequalities

CA(S, t;K,T ) ≥ CE(S, t;K,T ); (7)

CA(S, t;K1, T ) ≤ CA(S, t;K2, T ), if K1 ≥ K2; (8)

CA(S, t;K,T1) ≥ CA(S, t;K,T2), if T1 ≥ T2; (9)

CA(S, t;K,T ) ≤ S; (10)

CA(0, t;K,T ) = CE(0, t;K,T ) = 0. (11)

Proof
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The first three statements are obvious. For inequality (10) note that CA(S, t;K,T ) →
S as T → ∞. Then the following inequalities can be established: CA(S, t;K,T ) ≤
CA(S, t; 0, T ) ≤ CA(S, t; 0,∞) = S.

4.1 Early Exercise

An important result on American options is that a call written on an underlying that

pays no dividends is never exercised early.

Proposition 2 Let S be an underlying security that pays no dividends. Then an

American call written on S is never exercised before expiry.

Proof

First, we establish the following inequality

CA(S, t;K,T ) ≥ S −K e−r (T−t),

where r is the constant risk-free rate. By considering a portfolio with CA(S, t;K,T )−
S +K e−r (T−t), (i.e., long a call, short a share and with a bank deposit that at time

T pays K) we observe the following. If the American call is exercised early the value

of the portfolio is

S −K − S +K e−r (T−t) = K (e−r (T−t) − 1) < 0 .

If we wait until time T we exercise if S ≥ K and the value of the portfolio is 0; if

S < K we do not exercise the option and the value of the portfolio is K − S > 0.

Therefore we are better off waiting until T ; hence, we have shown

CA(S, t;K,T ) ≥ S −K e−r (T−t) .

To show that an American call written on a stock that pays no dividend is never

exercised early we observe that a call yields S − K if exercised but S − K ≤ S −
K e−r (T−t) and CA(S, t;K,T ) ≥ S −K e−r (T−t) ≥ S −K.
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The analogous result for the American put is not true. Assume that the stock

price falls so far that

(K − St) e
r (T−t) > K − ST , (12)

but we can sharpen this result by assuming that at expiry ST = 0 hence if at time

t < T the stock price St is low enough so that

(K − St) e
r (T−t) > K , (13)

it is worthwhile exercising early.

4.2 Put-Call parity

There is a classical result relating the value of European options.

Proposition 3 Put-Call parity for European options

CE(S, t;K,T )− PE(S, t;K,T ) = S −K e−r (T−t) . (14)

5 Black–Scholes

5.1 Modelling returns

The first attempt to model stock prices with independent Gaussian increments was

over a century ago (Bachelier). One of the shortcomings of Bachelier’s model was to

model stock levels, instead of returns. Modeling prices with Brownian motion has the

implicit assumption that price can become negative, which cannot be the case because

the shareholders are protected (i.e., limited liability). A company goes bankrupt and

the shares become worthless but not of negative value.

It was not until much later when Samuelson proposed to model stock returns,

instead of levels, in the following way

dSt

St

= µ dt+ σ dWt , (15)
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where µ is known as the drift and σ ≥ 0 as the volatility.

Exercise 1 Let the stock returns follow (15). What process is followed by St?

To answer the question we will make use of Ito’s lemma. But first let’s take a

naive approach to the question and integrate both sides of (15) to obtain∫ t

0

dSu

Su

=

∫ t

0

µ du+ σ

∫ t

0

dWu

lnSt/S0 = µ t+ σWt .

Hence (it seems that)

St = S0 e
µ t+σWt . (16)

Now let us check if our result is correct. Instead of integrating as if we were in

a deterministic setting we use Ito’s lemma. Let f = lnS, what is df? First rewrite

(15) as

dSt = St µ dt+ St σ dWt . (17)

Next, use Ito’s lemma with µ(S, t) = µSt and σ(S, t) = σ St, i.e., use (??) with

f = lnS,
∂f

∂S
= 1/S,

∂2f

∂S2
= −1/S2,

∂f

∂t
= 0

to obtain

d(lnSt) =

(
St µ

1

S
− 1

2
S2
t σ

2 1

S2
t

)
dt+ St σ

1

St

dWt (18)

=

(
µ− 1

2
σ2

)
dt+ σ dWt . (19)

Hence, by integrating both sides, we obtain

St = S0e
(µ− 1

2 t
σ2) t+σWt . (20)

Note that the naive solution was ‘nearly’ correct but it was lacking the 1
2
σ2t term.
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5.2 The Black–Scholes partial differential equation

Now we have all the necessary ingredients to derive the Black–Scholes partial differ-

ential equation (PDE). We will assume that the stock follows a geometric Brownian

motion, or equivalently, that the returns follow an arithmetic Brownian motion

dSt = St µ dt+ St σ dWt , (21)

where dW is the increment of a standard Brownian motion, µ ≥ 0 and σ ≥ 0.

Assume that we want to price a European-style option, V (S, t;K,T ), written on

the stock S with terminal payoff V (S, T ;K,T ) = V (S, T ).

To obtain its arbitrage free value we proceed as in the previous lectures and set a

portfolio Π(S, t) long the option and short ∆ amount of S

Π(S, t) = V (S, t;K,T )−∆St.

The idea is to obtain ∆ so that the portfolio is hedged at every point in time. Recall

that when we priced options within a binomial framework we calculated the amount

of shares that would guarantee that the portfolio would replicate the payoff of the

option in every state of nature. The main difference here is that there are an infinite

number of states of nature because the stochastic dynamics is given by W (t). Hence,

for a small time step we would like to hold (or be short, depending on the sign of ∆)

∆ number of shares S so that within that time interval the portfolio is (perfectly)

hedged. Moreover, because the dynamics of the stock price are continuous we will

be interested in infinitesimally small time increments dt, therefore we must find the

change in Π as time evolves. This is given by

dΠt = dVt −∆ dSt .

The change in S we already know because it is given by equation (21). The dV term

must be calculated using Ito’s Lemma because the value of the option depends on the

uncertain stock price. Therefore, using Ito’s lemma we obtain

dΠt =

(
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt+ σ St

∂V

∂S
dWt −∆(S µ dt+ S σ dWt) .
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Rearranging terms we have

dΠt =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
−∆µS

)
dt+

(
∂V

∂S
−∆

)
Sσ dWt . (22)

It is interesting to note that ‘all’ the randomness in the evolution of the portfolio is

captured in the last term
(
∂V
∂S

−∆
)
S σ dW . We can choose, at every instant in time,

∆ =
∂V

∂S
, (23)

so the change in the the value of the portfolio is deterministic. Therefore substituting

(23) into (22) yields

dΠt =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
− ∂V

∂S
µS

)
dt

=

(
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt . (24)

A very important step in the derivation of the Black–Scholes PDE stems from the

fact that we choose ∆ so that there is no randomness in the evolution of Π; hence we

must have that the portfolio grows like a riskless bond, i.e.,

dΠt = rΠt dt .

Putting these results together we have

rΠ dt =

(
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt

r

(
V − ∂V

∂S
S

)
dt =

(
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt

r V =
∂V

∂t
+ r S

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
, (25)

which is the Black–Scholes PDE.

5.3 The Black–Scholes PDE

In the previous lecture we showed that by forming a suitable portfolio, long a Eu-

ropean option and short an amount of stock P (S, t) = V (S, t) −∆S, we derived an
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equation the Black–Scholes pricing equation

r V = Vt + r S VS +
1

2
σ2 S2 VSS , (26)

where subscripts denote partial differentiation, ie Vt = ∂V (S, t)/∂t and so on.

Before proceeding we might want to ask ourselves a few questions.

• How general is equation (53)?

• Can we price any type of European option? How?

• Can we price any American option?

• How come the drift µ of the returns process is nowhere to be seen?

• If µ seems to have been replaced by the risk-free rate r should not we see a

different σ?

• What happens if the stock pays a dividend?

• What happens if I can only rebalance my portfolio at discrete points in time?

• Is it really possible to assume continuous hedging?

• etc.

When we derived equation (53) we made no specific assumptions about the type

of European option we were pricing. Hence, we should be able to price any European-

style option written on a stock that follows a geometric Brownian motion

dSt

St

= µ dt+ σ dWt (27)

with final payoff V (S, T ). It is very important to note that what makes a great

difference is the payoff (i.e., boundary condition) when solving (53). For example if

we solve (53) subject to V (S, t) = max(K − S, 0) we obtain the price of a European

put. Similarly, if we let V (S, t) = max(S −K, 0) we obtain the price of a European

call. We can also think of more general payoffs such as power calls where V (S, t) =

(max(S −K, 0))n for n = 1, 2, 3, . . . and power puts (defined in a similar way).
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However, at this point, perhaps the most important question to ask is: how do

we solve (53)?

Equation (53) can be reduced, after straightforward change of variables, to the

classical Heat Equation, see the textbook by Wilmott, Howison and Dewynne. The

Heat Equation, also known as the Diffusion Equation, describes the flow of heat in a

continuous medium; in our case what ‘diffuses’ is the value of the option.

Let us start with a call option that satisfies

CE
t +

1

2
σ2 S2CE

SS + r S CE
S − rCE = 0 , (28)

subject to V (ST , T ) = max(ST −K, 0) and

C(0, t) = 0, C(S, t) ∼ S as S → ∞.

The last two conditions are given by the financial nature of the problem.

Our next task is to reduce equation (28), by a suitable change of variables, to the

heat equation and then solve it. The intuition is more or less this. First, we note

that in the heat equation problem we have an initial condition, i.e., initial amount of

heat, that diffuses as time goes by. In our case we have a final condition, the payoff,

and what we are really interested in is obtaining the ‘initial’ condition that would fit

our problem. However, the approach we take is to change time so our final condition

becomes the initial condition, hence we let

t = T − τ/
1

2
σ2 .

It will also be convenient to get rid of the S coefficients and we can do it by letting

S = Kex,

or in other words we let x = lnS/K. Note that we divide S by the strike price and

we do this because we also get rid of the units in which is measured, ie pounds; it

does not make sense to take the natural logarithm of dollars. Finally, we also let

C = Kv(x, τ) and, after some algebra,

∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− k v , (29)
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where k = r/1
2
σ2. We also need to change variables in the boundary conditions to

get

v(x, 0) = max(ex − 1, 0).

Note that our condition at time t = T has become an initial condition in our ‘new’

problem.

We must take another step for our equation (29) to look like the heat equation.

We let

v(x, τ) = eαx+β τu(x, τ) ,

for some constants α and β to be found, then differentiation gives

β u+
∂u

∂τ
= α2 u+ 2α

∂u

∂x
+

∂2u

∂x2
+ (k − 1)

(
αu+

∂u

∂x

)
− k u .

Next, choose

β = α2 + (k − 1)α− k,

to eliminate the u term. Moreover, the choice

2α + (k − 1) = 0

eliminates the ∂u/∂x term. Therefore by choosing

α = −1

2
(k − 1), β = −1

4
(k + 1)2

we obtain

v(x, τ) = e
1
2
(K−1)x− 1

4
(k+1)2 τu(x, τ) ,

where
∂u

∂τ
=

∂2u

∂x2
for−∞ < x < ∞, τ > 0,

with

u(x, 0) = max(e
1
2
(k+1)x − e

1
2
(k−1)x, 0) . (30)

The solution to the problem is given by the solution to the heat equation, hence

u(x, τ) =

∫ ∞

−∞
u(x, 0) e−

(x−s)2

4τ ds . (31)
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In other words, we are weighting the initial condition by the function e−
(x)2

4τ . Note

that this function is basically the probability density function of a normal distribution

N(0, 2τ).

Now we can evaluate (31), and after some algebra, we obtain

u(x, τ) = e
1
2
(k+1)x+ 1

4
(k+1)2τ Φ(d1)− e

1
2
(k−1)x+ 1

4
(k−1)2 τ Φ(d1) ,

where Φ(y) is the normal cumulative density function and where

d2 =
ln(St/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

,

and

d1 = d2 + σ
√
T − t

=
ln(St/K) + (r + 1

2
σ2) (T − t)

σ
√
T − t

. (32)

The last step we must take is to go back to the original variables, i.e.,

x = ln(S/K), τ =
1

2
σ2 (T − t), C = K v(x, τ),

to get

C(S, t;K,T ) = St Φ(d1)− e−r (T−t) K Φ(d2) . (33)

5.4 Valuation with Intermediate Income Flows

So far we have considered de pricing of vanilla options when the underlying security

pays no dividends. In this section we relax this assumption and include continuous

and discrete dividends.

By continuous dividends we mean that the asset pays a flow per unit of time equal

to D0St for D0 constant. By discrete dividends we mean (known) lump sums amount

of money that are payed to the holder of the stock at (known) prescribed times in

the future.
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5.5 Constant proportional dividends

Suppose that in a time dt the underlying asset pays out a dividend D0Sdt where D0

is a constant. This payment is independent of time except through the dependence

on S. The dividend yield is defined as the proportion of the asset price paid out per

unit of time this way. Thus the dividend D0Sdt represents a constant and continuous

dividend yield D0.

By arbitrage we have that the asset price must ‘leak’ value at every time step

hence the random walk must reflect this in the following way

dSt

St

= (µ−D0) dt+ σ dWt . (34)

Now, to price a European option on a security that follows (34) we proceed as in

the non-dividend case and form a portfolio P (S, t) = V − ∆S. The Black–Scholes

pricing equation becomes

r V =
∂V

∂t
+ (r −D0)S

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
(35)

subject to the relevant boundary conditions. Note that one must be careful in the

first step when calculating the change in the value of the portfolio dPt = dVt−∆ dSt−
D0∆St dt.

If we were to price a European call we can proceed as above transform our PDE

(35) to the heat equation and solve as above. Then the price of the call would be

given by

CE = e−D0(T−t)StΦ(d10)− e−r (T−t)KΦ(d20),

where

d10 =
ln(St/K) + (r −D0 +

1
2
σ2)(T − t)

σ
√
T − t

and

d20 = d10 − σ
√
T − t.
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5.6 Futures and Forwards

We can apply the proportional income flow model to pricing options of futures and

forwards. A forward contract is an agreement to buy a security at a given price (fixed

now) at some specified future date. There is no initial payment in a forward in that

one agrees to exchange the asset and make payments only at a future time.

If St and Ft are the price of the security (without dividend) and the forward

respectively for a contract maturing in T − t. There are several ways of deriving the

forward price. Consider first the party who is short the contract, and so must deliver

the asset at time T . Although he does not know what the value of S will be at T this

does not matter. He can borrow St when the contract begins, purchase the stock and

at expiry he can use the amount F to pay off the loan. Assuming that the risk-free

rate r is constant, the loan will cost St e
r (T−t). The forward price must therefore be

given by

F = St e
r (T−t) . (36)

5.7 General risk-neutral valuation

More generally, we could derive the following expression to price any European-style

option with payoff V (S, T )

V (S, t) =
e−r (T−t)√

2σ2 π (T − t)

∫ ∞

0

V (u, T ) e−(ln(u/S)−(r− 1
2
σ2) (T−t))

2
/(2σ2 (T−t)) du

u
. (37)

Therefore all we need is the parameters of the SDE that drives the underlying,

the payoff of the derivative and we calculate its value by evaluating (37).

A Various results we use

Toolbox
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The expected value of a lognormal random variable will appear very often through-

out the course. It is easy to show that for a random variableX ∼ N(0, 1) the expected

value

E[eθX ] = e
1
2
θ2 . (38)

Assume the risk-neutral dynamics of the stoch price are given by

dSt = µSt dt+ σ St dW
∗
t .

Let us try to solve the expectation

CE = E⋆
t [e

−r (T−t) max(ST −K, 0)]

= e−r (T−t)

∫ ∞

−∞
max(ST −K, 0) f(ϕ) dϕ , (39)

where the density function

f(ϕ) =
1√
2π

e−
1
2
ϕ2

(40)

is the probability density function of the standard random variable ϕ ∼ N(0, 1).

Moreover, we denote the cumulative density function by

Φ(d) =

∫ d

−∞
f(ϕ)dϕ.

Use Ito’s lemma to write

ST = Ste
(r− 1

2
σ2)(T−t)+σϕ

√
T−t ;

here, we wrote the Brownian motion
∫ T

t
dWu as the random variable ϕ

√
T − t with

ϕ ∼ N(0, 1).
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Next,

CE = e−r (T−t)

∫ ∞

−∞
max(ST −K, 0)f(ϕ)dϕ,

= e−r (T−t)

∫ ∞

−d2

(ST −K)f(ϕ)dϕ

= e−r (T−t)Ste
(r− 1

2
σ2)(T−t) 1√

2π

∫ ∞

−d2

eσϕ
√
T−te−

1
2
ϕ2

dϕ

−e−r (T−t)K
1√
2π

∫ ∞

−d2

e−
1
2
ϕ2

dϕ,

= St
1√
2π

∫ ∞

−d2

e−
1
2
σ2(T−t)eσϕ

√
T−te−

1
2
ϕ2

dϕ

−e−r (T−t)K
1√
2π

∫ d2

−∞
e−

1
2
ϕ2

dϕ,

= St
1√
2π

∫ ∞

−d2

e−
1
2
(ϕ−σ

√
T−t)2dϕ− e−r (T−t)K

1√
2π

∫ d2

−∞
e−

1
2
ϕ2

dϕ,

= St
1√
2π

∫ ∞

−d2−σ
√
T−t

e−
1
2
y2dy − e−r (T−t)K

1√
2π

∫ d2

−∞
e−

1
2
ϕ2

dϕ,

= St
1√
2π

∫ d2+σ
√
T−t

−∞
e−

1
2
y2dy − e−r (T−t)K

1√
2π

∫ d2

−∞
e−

1
2
ϕ2

dϕ,

= StΦ(d1)− e−r (T−t)KΦ(d2), (41)

where

d2 =
ln(St/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

,

d1 = d2 + σ
√
T − t

=
ln(St/K) + (r + 1

2
σ2)(T − t)

σ
√
T − t

. (42)

A The Heat Equation

Solving the Black–Scholes PDE reduces to solving the classical heat equation problem.

Below we give a concise (based on Strauss) intuitive proof of the solution to the heat

equation. See also the textbook (Wilmott, Howison, Dewynne) for a discussion.

21



We want to solve the following PDE

ut = κuxx, x ∈ R, 0 < t < ∞ (43)

u(x, 0) = ϕ(x) . (44)

We will solve it for a particular ϕ(x) and then build the general solution from this

particular one.

We will show (see Strauss) that the solution to (43) is given by

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕ(y) dy , t > 0

where

S(x, t) =
1

2
√
π κt

e−
x2

4κ t .

Before proceeding note that the function S(x, t) is the probability density function of

a normal random variable N ∼ (0, 2κt).

Invariance Principles of the Heat Equation

1. The translate u(x−y, t) of any solution u(x, t) is another solution, for any fixed

y.

ut(x− y, t) = ut(x− y, t)

say z = x− y then

ux = uz
dz

dx
, hence ux = uz and uxx = uzz .

2. Any derivative (ux or uxx, etc) of a solution is again a solution. Let V = ux,

then Vx = uxx, Vxx = uxxx and Vt = uxt. We must then have

Vx =
∂

∂x
uxx =

∂

∂x
ut = Vt .

3. A linear combination of (43) is again a solution

(a u1 + b u2)xx = (a u1 + b u2)t .
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4. An integral of solutions is again a solution. Thus if S(x, t) is a solution of (43)

then (by 1.) S(x− y, t) is also a solution and so is

V (x, t) =

∫ ∞

−∞
S(x− y, t) g(y) dy

for any function g(y) as long as the integral converges.

5. If u(x, t) is a solution of (43) so is the scaled function u(
√
a x, a t) for any a > 0.

Now we proceed to finding a solution to (43). Look for a particular solution

Q(x, t), with Q(x, 0) = 1 for x > 0 and Q(x, 0) = 0 for x < 0 . (45)

STEP 1

Guess Q(x, t) = g(p) where p = x√
4κ t

. We guess this form because property 5 says

that equation (43) does not see the scaling x →
√
a x, t → a t. Clearly (45) possesses

this property.

p =
x√
4κ t

x→
√
a x,t→at−→ x√

4κ t
.

STEP 2

Qt =
dg

dp

∂p

∂t
= − 1

2 t

x√
4κ t

g′(p) , (46)

Qx =
1√
4κ t

g′(p), and Qxx =
1

4κ t
g′′(p). (47)

Hence we obtain the ODE

g′′ + 2 p g g′ = 0 . (48)

Solve using the integrating factor
∫
2 p dp = ep

2
, g′(p) = C1 e

−p2 and

Q(x, t) = g(p) = C1

∫
e−p2 dp+ C2 .
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STEP 3

Q(x, t) = C1

∫ x√
4κ t

0

e−p2dp+ C2, for t > 0.

If x > 0

lim
t→0

Q = C1

∫ ∞

0

e−p2 dp+ C2 =
C1

√
π

2
+ C2 ,

if x < 0

lim
t→0

Q = C1

∫ −∞

0

e−p2 dp+ C2 =
−C1

√
π

2
+ C2

with

C1 =
1√
π
, C2 =

1

2
.

Hence

Q(x, t) =
1

2
+

1

π

∫ x√
4κ t

0

e−p2 dp , t > 0.

STEP 4

Define ∂Q/∂x, given ϕ define

u(x, t) =

∫ −∞

∞
S(x− y, t)ϕ(y)dy, t > 0.

Now we can claim that u(x, t) is a solution to (43). To verify that u(x, 0) = ϕ(x)

u(x, t) =

∫ ∞

−∞

∂Q

∂x
(x− y, t)ϕ(y)dy

=

∫ ∞

−∞

∂

∂y
[Q(x− y, t)]ϕ(y)dy (49)

=

∫ ∞

−∞
Q(x− y, t)ϕ′(y)dy −Q(x− y, t)ϕ(y)|∞−∞. (50)

Assume that the limits vanish. In particular let us assume that ϕ(y) = 0 for |y|
large. Hence

u(x, 0) =

∫ ∞

−∞
Q(x− y, 0)ϕ′(y)dy.

Now Q(x− y, 0) = 1 when x− y > 0. Hence

u(x, 0) =

∫ x

−∞
ϕ′(y)dy (51)

= ϕ(x). (52)
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Hence

S =
∂Q

∂x
=

1

2
√
πκt

e−
x2

4κ t .

If we want to solve the Black–Scholes PDE

Vt +
1

2
σ2 S2 VSS + rSVS − rV = 0, (53)

subject to the relevant boundary conditions, we must change variables to transform

equation (53) into the heat equation (43) that we know how to solve.
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