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Option pricing: binomial
model
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Overview

Arbitrage pricing

Binomial trees

Risk-neutral valuation
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Financial Options

Definition

A European call (put) option gives the right to the holder of the option to
purchase (sell) the underlying, for example a stock S , at a pre-specified time,
called the expiration date T , for a pre-specified amount known as the strike price
K .

Definition

An American call/put option is like a European option with the difference that
it can be exercised (i.e., buy or sell the underlying) at any time up until, and
including, expiration T .

Á. Cartea (MI & OMI) B8.3 4 / 191



Pricing

Simple example of binomial tree setup to price a call option

Assume that there are two possible states.
A stock is trading at 100 and tomorrow it will either

go up to 101 or
go down to 99.

What is the value of a European call option with strike price K = 100?
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Pricing

Simple example of binomial tree setup to price a call option

Assume that there are two possible states.
A stock is trading at 100 and tomorrow it will either

go up to 101 or
go down to 99.

What is the value of a European call option with strike price K = 100?

What happens if the probability of landing in the down state is
q = {.25 , 0.5 , 0.95}?
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Simple world

Two states of nature that occur with probability p and q = 1− p, and two
traded assets

Asset 1 (A1) pays 1 in state 1 and 1 in state 2, i.e., pays (1, 1)

Asset 2 (A2) pays 0 in state 1 and 3 in state 2, i.e., pays (0, 3)

Price of A1 is p1 and of A2 is p2

Now, assume that there is a third asset in this simple economy paying (2,3).
What is its initial price p3?
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Pricing asset A3

Set up a portfolio Π(t = 0) consisting of a units of A1 and b units of A2.
Find a and b such that Π(t = 1) = A3(1).

Πu(1) = a× 1 + b × 0

and
Πd(1) = a× 1 + b × 3 .

We require that Πu(1) = 2 and Πd(1) = 3, i.e., we replicate A3’s payoff.

Therefore, a = 2 and b = 1/3 and at time t = 0,

p3 = 2 p1 +
1

3
p2 .
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Pricing a Call option in a Binomial model

Two states of the world, up and down, with probabilities p and q = 1− p,
respectively.

Starting value of stock is S .

In the ‘up’ state, with probability p, asset becomes u S where u is a constant.

In the ‘down’ state asset becomes d S where d is a constant.

There is a risk-free bond that pays a constant interest rate r .

In the up state the payoff of the call is

CE
u = max(u S − K , 0) .

In the down state the payoff of the call is

CE
d = max(d S − K , 0) .
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Pricing the call at t = 0

As above, set up a portfolio with B cash in a bond and ∆ amount of the
stock to replicate the payoff of option:

Π(0) = B +∆ S .

Choose ∆ such that
∆ u S + R B = CE

u ,

and
∆ d S + R B = CE

d ,

where the gross risk free rate is R = 1 + r .
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In matrix form, we solve the system of equations[
u S R
d S R

] [
∆
B

]
=

[
CE
u

CE
d

]
,

therefore [
∆
B

]
=

1

R (u S − d S)

[
R −R

−d S u S

] [
CE
u

CE
d

]
,

so

∆ =
CE
u − CE

d

u S − d S
and B =

−d CE
u + u CE

d

R (u − d)
.
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Hence, the value of the portfolio at time t = 0 is, by no arbitrage, the same
value as that of the call, i.e., Π(0) = CE (S , t = 0;K , 1).

CE (S , t = 0;K , 1) = ∆ S + B

=
CE
u − CE

d

u S − d S
S +

−d CE
u + u CE

d

R (u − d)

=
1

R

[
R − d

u − d
CE
u +

u − R

u − d
CE
d

]
.
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Risk-neutral valuation

The value of the call can be seen as the discounted weighted average of the payoff
at expiry, with weights

p⋆ =
R − d

u − d
and q⋆ =

u − R

u − d
,

and write the price of the call as the expectation (under the new measure) as

CE (S , t = 0;K , 1) =
1

R

[
p⋆CE

u + q⋆CE
d

]
.

Can we, in this risk-neutral world, calculate the discounted expected value of the
stock price R−1 E⋆[S1]?
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First, note that
CE (S , t = 0;K = 0, 1) = S .

Then

CE (S , t = 0;K = 0, 1) =
1

R

[
p⋆ CE

u + q⋆ CE
d

]
S =

1

R
[p⋆ u S + q⋆ d S ]

=
1

R
[p⋆ u S + (1− p⋆) d S ]

=
1

R
[p⋆ u S + (1− p⋆) d S ]

=
1

R
E⋆[S1] .
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Model independent properties

Call prices satisfy the following inequalities

1

CA(S , t;K ,T ) ≥ CE (S , t;K ,T ) ,

2

CA(S , t;K1,T ) ≤ CA(S , t;K2,T ) , if K1 ≥ K2 ,

3

CA(S , t;K ,T1) ≥ CA(S , t;K ,T2) , if T1 ≥ T2 ,

4

CA(S , t;K ,T ) ≤ S ,

5

CA(0, t;K ,T ) = CE (0, t;K ,T ) = 0 .
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Early Exercise

Proposition

Let S be an underlying security that pays no dividends. Then an American call
written on S is never exercised early.

First we establish the inequality

CA(S , t;K ,T ) ≥ S − K e−r (T−t) .

Consider the portfolio CA(S , t;K ,T )− S + K e−r (T−t). If the American call is
exercised early we obtain

S − K − S + K e−r (T−t) = K (e−r (T−t) − 1) < 0 .

If we wait until T we exercise if S ≥ K and obtain 0 profit; if S < K we do not
exercise the option and obtain K − S > 0.
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Therefore we are better off waiting until T , hence we have shown

CA(S , t;K ,T ) ≥ S − K e−r (T−t) .

To show that an American call written on a stock that pays no dividend is never
exercised we observe that a call yields S − K if exercised but

S − K ≤ S − K e−r (T−t) ≤ CA(S , t;K ,T ) .

QED

Proposition

Put-call-parity for European options:

CE (S , t;K ,T )− PE (S , t;K ,T ) = S − K e−r (T−t) .
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Brownian Motion, Stochastic
Integrals, Ito’s Lemma
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Overview

Brownian Motion, Wiener Process

Stochastic Integrals

Itô’s Lemma

Modelling returns
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Wiener process, Brownian motion

Definition

A stochastic process W is called a Wiener process or Brownian motion if the
following conditions hold.

1 W0 = 0.

2 The process W has independent increments, i.e., if r < s ≤ t < u then
Wu −Wt and Ws −Wr are independent stochastic variables.

3 For s < t the distribution of the stochastic variable Wt −Ws is N(0, t − s).

4 W has continuous trajectories (almost surely, i.e., with probability one).

Note: It is not immediately obvious that we can rigorously construct a process W
which satisfies these four properties, but it can be done.
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Elementary properties of Brownian motion

Proposition

Let Wt be a Brownian motion and let u > 0, then

Wu ∼ N(0, u) (1)

and therefore
E[Wu] = 0 and Var(Wu) = u .

Proof.

The result in (1) is a consequence of the third property for t = u and s = 0
together with the property that W0 = 0.
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Figure: Five paths of Brownian motion and its density at various points in time.
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Proposition

Let Wt be a Brownian motion. Given that Wt ∼ N(0, t) we have

P(Wt > x) = Φc

(
x√
t

)
and P(Wt ≤ x) = Φ

(
x√
t

)
. (2)

Proof.

We have that

P(Wt > x) = P
(
Wt − 0√

t
>

x − 0√
t

)
= P

(
Z >

x√
t

)
= Φc

(
x√
t

)
(3)

where Φc(x) =
∫∞
x

1√
2π

e− z2 dz , and we are using that Z = (Wt − 0)/
√
t is a

standard Normal random variable. The second equality follows from the identity
P(A) = 1− P(Ac).
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Proposition

Let Wt be a Brownian motion, then

E[Ws Wt ] = min(s, t) . (4)

Proof.

Let 0 ≤ s ≤ t. Then

E[WsWt ] = E[Ws(Ws +Wt −Ws)] = E[W 2
s ] = Var(Ws) = s

because
E[Ws (Wt −Ws)] = E[(Ws −W0) (Wt −Ws)] = E[Ws −W0]E[Wt −Ws ] = 0,
(last step is because of independent increments). This means that in general, for
s, t ≥ 0

R(s, t) := E[Ws Wt ] = min(s, t) . (5)

This is known as the covariance function of Brownian motion.
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Proposition

Let Wt be a Brownian motion, and let 0 < s < t, then

P (Wt ≤ x |Ws = y) = Φ

(
x − y√
t − s

)
.

Proof.

P (Wt ≤ x |Ws = y) = P (Wt −Ws +Ws ≤ x |Ws = y)

= P (Wt −Ws + y ≤ x |Ws = y)

= P (Wt −Ws ≤ x − y |Ws = y)

= P (Wt −Ws ≤ x − y) ,

because Wt −Ws is independent from Ws . Lastly,

P (Wt ≤ x |Ws = y) = P
(
Wt −Ws√

t − s
≤ x − y√

t − s

)
= Φ

(
x − y√
t − s

)
.
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Corollary

Let Wt be a Brownian motion, and let 0 < s < t, then

E [Wt |Ws = y ] = y . (6)

Corollary

Let Wt be a Brownian motion, and let 0 < s < t, then

fWt |Ws=y (x) =
1√

2π(t − s)
e−

(x−y)2

2 (t−s) . (7)

Corollary

Let (Wt)t≥0 be a standard Brownian motion then (−Wt)t≥0 is also a standard
Brownian motion.
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Quadratic Variation
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Partitions and QV

A partition of the time interval [0, t] is a set of the form
Π = t0 = 0 < t1 < ... < tn = t. The size of the partition is

∥Π∥ = max
0≤i≤n−1

(ti+1 − ti ) ,

i.e., equal to the largest interval of the partition. The quadratic variation (QV)
of a random process X over a fixed time interval [0, t] is

[X ,X ]t = lim
∥Π∥→0

n−1∑
i=0

(Xti+1 − Xti )
2

if this limit exists and does not depend on the choice of the sequence of partitions
Π.1

1I follow closely the material in “Stochastic Calculus for Finance. II Continuous-time
models”, by S. Shreve
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QV of deterministic function

Let f (t) be a continuous function defined on 0 ≤ t ≤ T . The QV of f up to T is

[f , f ]nT = lim
∥Π∥→0

n−1∑
i=0

[f (ti+1)− f (ti )]
2 , (8)

where the partition Π is {t0, t1, · · · , tn}, 0 = t0 < t1 < · · · < tn = T , and
n = n(Π) denotes the number of partition points in Π.

Next, we show that the QV of the function f is zero.
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QV of deterministic function

n−1∑
i=0

[f (ti+1)− f (ti )]
2 =

n−1∑
i=0

f ′(t∗i )
2 (ti+1 − ti )

2 ≤ ∥Π∥
n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥
n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥ lim
∥Π∥→0

n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥
∫ T

0

|f ′(t)|2 dt = 0 .

In last step
∫ T

0
|f ′(t)|2 dt is finite because f is continuous.
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Sampled QV of Brownian motion

Let W denote a standard Brownian motion. We define

[W ,W ]nt =
n−1∑
i=0

(Wti+1 −Wti )
2 (9)

to be the sampled quadratic variation for a single partition Π.

Proposition

The following holds true

E[[W ,W ]nt ] = t ,

Var([W ,W ]nt ) = E[([W ,W ]nt − t)2] → 0 ,

as n → ∞.
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proof We first note that

E [[W ,W ]nt ] = E

[
n−1∑
i=0

(Wti+1 −Wti )
2

]

=
n−1∑
i=0

E[(Wti+1 −Wti )
2]

=
n−1∑
i=0

(ti+1 − ti )

= t ,

because Wti+1 −Wti ∼ N(0, ti+1 − ti ). Thus the expected sampled quadratic
variation is independent of the partition, and trivially limn→∞ E[[W ,W ]nt ] = t,
because the expectation here does not depend on n. Next,
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Var([W ,W ]nt ) = E
[
([W ,W ]nt − t)2

]
= E

(n−1∑
i=0

(Wti+1 −Wti )
2 − t

)2


= E

(n−1∑
i=0

[
(Wti+1 −Wti )

2 − (ti+1 − ti )
])2


(all cross products when squaring the above have expectation zero)

=

n−1∑
i=0

E
[(
(Wti+1 −Wti )

2 − (ti+1 − ti )
)2]

=

n−1∑
i=0

E
[
(Wti+1 −Wti )

4 − 2 (ti+1 − ti ) (Wti+1 −Wti )
2 + (ti+1 − ti )

2
]

=

n−1∑
i=0

3 (ti+1 − ti )
2 − 2 (ti+1 − ti )

2 + (ti+1 − ti )
2

(use Wti+1
− Wti

∼
√

ti+1 − ti Z and E[Z4] = 3 where Z ∼ N(0, 1))

= 2

n−1∑
i=0

(ti+1 − ti )
2 ≤ 2 ∥Π∥

n−1∑
i=0

(ti+1 − ti )

= 2 ∥Π∥ t which tends to zero if ∥Π∥ → 0.
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QV of Brownian motion

We proved the following theorem.

Theorem

Let W denote a Brownian motion. Then [W ,W ]T = T for all T ≥ 0 almost
surely.

We proved convergence in mean square, also called L2 convergence.

In general the quadratic variation [X ,X ]t of a process X is a random process,
but for Brownian motion W , [W ,W ]t = t almost surely (a.s.).

Almost surely means that there are some paths of the Brownian motion for
which [W ,W ]t = t is not true.

The probability of the set of paths for which [W ,W ]t = t is not true is zero.
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To bear in mind

Above we used

E[(Wti+1 −Wti )
2] = ti+1 − ti and Var[(Wti+1 −Wti )

2] = 2 (ti+1 − ti )
2 .

Intuitively, one would like to claim that

(Wti+1 −Wti )
2 ∼ ti+1 − ti ,

which makes sense because for a small time increment both sides are very small.

However, best to think about this as the square of a Normal r.v.

Yi+1 =
Wti+1 −Wti√

ti+1 − ti
; (10)

the distribution of both sides is the same regardless of the time interval.
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Now, take time interval ti+1 − ti = T/n and write

T
Y 2
i+1

n
= (Wti+1 −Wti )

2 . (11)

By the LLN

1

n

n−1∑
i=0

Y 2
i+1 → E[Y 2

i+1] = 1 as n → ∞ .

Thus,
n−1∑
i=0

(Wti+1 −Wti )
2 → T . (12)

Each term of the sum above can be different from its mean

ti+1 − ti = T/n ,

but when we sum many of them the differences average out to zero.
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However, informally, one uses as rule-of-thumb

dWt dWt = dt,

dWt dt = 0,

dt dt = 0.
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Stochastic Differential
Equations
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Stochastic Integrals

Objective: define a stochastic integral for a large class of integrands with respect
to Brownian motion. The main challenge is to overcome the fact that the

Brownian motion is not of bounded variation which means that

lim
∥Πn∥→0

n−1∑
i=0

|Wtni+1
−Wtni

| = ∞ , (13)

where Πn denotes a sequence of partitions with ∥Πn∥ → 0 as before. We want to

study the object ∫ t

0

αsdWs , (14)

which is known as a stochastic integral; here, αt can depend on Wt .
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Riemann Integrals

The standard approach to define an integral for a deterministic function
f : [a, b] → R is the Riemann integral∫ b

a

f (s) ds := lim
∥Πn∥→0

n−1∑
i=0

f (ξi ) (ti+1 − ti ) , (15)

and Πn = {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and ξi ∈ [ti , ti+1].

This definition makes sense if the right-hand side converges for every sequence of
partitions and choices of ξ.

In this case, the function f is called Riemann integrable and the left-hand side is
the Riemann integral.
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Riemann–Stieltjes

Consider the Riemann–Stieltjes integral∫ b

a

f (s)g(ds) := lim
∥Πn∥→0

n−1∑
i=0

f (ξi ) (g(ti+1)− g(ti )) , (16)

where as before, the definition makes sense if the right-hand side converges for
every sequence of partitions and choices of ξ.

Here, the function f is called Riemann–Stieltjes integrable with respect to g and
the unique limit is called the Riemann–Stieltjes integral of f with respect to g .

One can show that at least every continuous function f : [a, b] → R is
Riemann–Stieltjes integrable with respect to every function g of finite variation.
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A simple stochastic process

Definition

A stochastic process (αt)t∈[0,T ] is called a simple stochastic process if it is of the
form

αt =
N∑
i=1

αi 1t∈(ti−1,ti ] , (17)

where αi is random but only depends on the history of the Brownian motion W
up to time ti , and 0 = t0 < t1 < · · · < tN = T .
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A simple stochastic process

0 1 2 3 4 5
3

2

1

0

1

0 1 2 3 4 5

Figure: Example of a simple stochastic process αt . Here, t0 = 0, tN = 5, equal spacing
∆t = 0.2, and αt = Wti−1 for t ∈ (ti−1, ti ]. The left panel has three sample paths of a
standard Brownian motion, and the right panel shows the simple stochastic process.
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A simple stochastic process

Definition

Let (αt)t∈[0,T ] be a simple stochastic process, we define the stochastic integral of
αt with respect to Wt by

I (α) :=

∫ T

0

αs dWs =
N∑
i=1

αti−1 (Wti −Wti−1) .

To generalize the stochastic integral to more general (non-simple) process αt , we
approximate the process to arbitrary accuracy with a simple process and use
arguments involving L2-convergence. One can show that the integral I (α) satisfies
the so-called Ito’s isometry for simple stochastic processes, that is

E
[
(I (α))2

]
=

∫ T

0

E
[
(αs)

2
]
ds . (18)
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SDEs

Consider a stochastic differential equation (SDE) which we write informally as

dXt = b(Xt) dt + σ(Xt) dWt , X0 = x0 . (19)

Can we assign a rigorous meaning to this equation? Note that if b(x) = 0 and
σ(x) = 1, then dXt = dWt , so Xt = x0 +Wt .

Definition

A solution to the SDE (19) with X0 = x0 is a process Xt with a continuous sample
path which satisfies the integral equation

Xt = x0 +

∫ t

0

b(Xs) ds +

∫ t

0

σ(Xs) dWs , (20)

here b(·) is known as the drift, and σ(·) is known as the volatility.
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SDEs

Definition

A function f : R → R is Lipschitz continuous if ∃K ∈ R+ such that for x , y ∈ R

|f (x)− f (y)| ≤ K |x − y | . (21)

Proposition

If b and σ are Lipschitz continuous, then a solution to (19) exists.
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Ito’s Lemma
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Change of variable

If f (S , t) is a deterministic function of S and time t we approximate the change in
f due to a change in both S and t as

df (S , t) =
∂f

∂t
dt +

∂f

∂S
dS . (22)

Another way is to start here (assume f only depends on S):

∆f ≡ f (S +∆S)− f (S)

= f ′(S)∆S +
1

2!
f ′′(S) (∆S)2 +

1

3!
f ′′′(S) (∆S)3 + · · · .

However, what happens if S is not deterministic? For example, assume that

dS = dW .
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Informally,

∆f (S) = f ′(S)∆S +
1

2!
f ′′(S) (∆S)2

+
1

3!
f ′′′(S) (∆S)3 + · · ·

= f ′(S)∆W +
1

2!
f ′′(S) (∆W )2

+
1

3!
f ′′′(S)(∆W )3 + · · ·

= f ′(S)ϕ∆t1/2 +
1

2!
f ′′(S)ϕ2 ∆t2/2

+
1

3!
f ′′′(S)ϕ3 ∆t3/2 + · · · ,

where ∆W = ϕ∆t1/2, ϕ ∼ N(0, 1).
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Itô’s Lemma

Assume that the process S satisfies the following stochastic differential equation

dSt = µ(S , t) dt + σ(S , t) dWt ,

where µ(S , t) and σ(S , t) are adapted processes. Let f be once differentiable in t
and twice differentiable in S .2 be a twice continuous differentiable function then

df (S , t) =

(
∂f

∂t
+ µ(S , t)

∂f

∂S
+

1

2
σ2(S , t)

∂2f

∂S2

)
dt

+σ(S , t)
∂f

∂S
dWt .

2Mathematically we write this as f ∈ C1,2([0,T ]× R).
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Modelling Returns

dSt
St

= µ dt + σ dWt . (23)

Here, the drift µ and volatility σ ≥ 0 are constants.

Note that (23) is as in (19) with Xt = St , b(St) = µSt and σ(St) = σ St

Naive solution of the SDE would be:∫ t

0

dSt
St

=

∫ t

0

µ ds + σ

∫ t

0

dWs

lnS(t)/S(0) = µ t + σWt .

Hence (it seems that)
St = S0 e

µ t+σWt . (24)
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Let f = lnS , what is df ? First rewrite (23) as

dSt = St µ dt + St σ dWt . (25)

We can use Itô’s lemma with µ(S , t) = µS and σ(S , t) = σ S hence, use (23)
with

f = lnS ,
∂f

∂S
= 1/S ,

∂2f

∂S2
= −1/S2,

∂f

∂t
= 0

to obtain

d(lnS) =

(
S µ

1

S
− 1

2
S2
t σ

2 1

S2

)
dt + S σ

1

S
dWt

=

(
µ− 1

2
σ2

)
dt + σ dWt .
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Hence, by integrating both sides we obtain

St = S0 e
(µ− 1

2 σ2) t+σWt . (26)

Note that the naive solution was ‘nearly’ correct but it was missing the term

1

2
σ2 t .

Where does this ‘extra term’ come from?
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Black–Scholes
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Black–Scholes PDE

Problem:

Assume dSt = µSt dt + σ St dWt .

Objective: Price a European-style option, V (S , t;K ,T ), written on S with
payoff V (S ,T ;K ,T ) = V (S ,T ).

Steps:

Form a hedge portfolio long a call and ‘delta’ amount of the underlying.

See what is the change in the value of the portfolio over a ‘small’ time step.
That is, write the stochastic dynamics of the value of the portfolio.

Try to choose the amount of the underlying in the portfolio so that risk or
randomness is reduced.
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Proceed as in the binomial case and form a hedge portfolio

Π(S , t) = V (S , t;K ,T )−∆ St ,

where ∆ is the number of shares we choose to hold in the portfolio.

The change in the value of the portfolio dΠ = dVt −∆ dSt .

Use Ito’s lemma

dΠ =

(
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2 S2

t

∂2V

∂S2
−∆µSt

)
dt

+

(
∂V

∂S
−∆

)
St σ dWt . (27)
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Choose, at every instant in time, the following amount of stock:

∆ =
∂V

∂S
(28)

so that the change in the portfolio is deterministic. Therefore, substituting (28)
into (27) yields

dΠ =

(
∂V

∂t
+

1

2
σ2 S2

t

∂2V

∂S2

)
dt .

What can we do next?
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By no-arbitrage, the portfolio grows like a risk-free bond

dΠ = r Π dt .

Putting these results together we have

r Π dt =

(
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt

r

(
Vt −

∂V

∂S
St

)
dt =

(
∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2

)
dt

r Vt =
∂V

∂t
+ r S

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
,

which is the Black–Scholes PDE — you need boundary conditions to solve for a
particular European-style option.
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Solving the Black–Scholes PDE

Ee explore in more detail the Black–Scholes PDE

r V = Vt + r S VS +
1

2
σ2 S2 VSS . (29)

How general is equation (29)?

Can we price any type of European option? How?

Can we price any American option?

How come the drift µ of the returns process is nowhere to be seen?

What happens if the stock pays a dividend?

Is it really possible to assume continuous hedging?
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Pricing a European call

The Black–Scholes PDE for a European call is

CE
t +

1

2
σ2 S2 CE

SS + r S CE
S − r CE = 0 , (30)

subject to CE (ST ,T ) = max(ST − K , 0) and

C (0, t) = 0, C (S , t) ∼ S as S → ∞ .

Here, with a slight abuse of notation, CE
t = ∂CE/∂t, CE

S = ∂CE/∂S and so on.

How can we solve this PDE?
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Heat equation and Black–Scholes PDE

We want to relate this problem to the heat equation, which we know how to
solve.

For the heat equation we have an initial condition and here we have a ‘final’
condition.

We have terms like CE
S and CE .

The domain of the heat equation is (−∞,∞) and here is [0,∞).

Via suitable variable changes we might get to a PDE that we know how to
solve.
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Change time direction
t = T − τ/ 1

2σ
2.

Get rid of the S coefficients by letting

S = K ex , i.e., x = lnS/K .

Finally, let C = K v(x , τ) to obtain

∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− k v , (31)

where k = r/ 1
2 σ

2 and I.C. v(x , 0) = max(ex − 1, 0).
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But we are not there yet...

We let
v(x , τ) = eα x+β τu(x , τ) ,

for some constants α and β, then

β u +
∂u

∂τ
= α2 u + 2α

∂u

∂x
+
∂2u

∂x2
+ (k − 1)

(
αu +

∂u

∂x

)
− k u .

Next, choose
β = α2 + (k − 1)α− k ,

to eliminate the u term. Moreover, the choice

2α+ (k − 1) = 0

eliminates the ∂u/∂x term.
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Therefore, choose

α = −1

2
(k − 1) and β = −1

4
(k + 1)2

and write
v(x , τ) = e

1
2 (k−1) x− 1

4 (k+1)2 τu(x , τ) ,

where
∂u

∂τ
=
∂2u

∂x2
for−∞ < x <∞ , τ > 0 ,

with
u(x , 0) = max(e

1
2 (k+1) x − e

1
2 (k−1) x , 0) . (32)
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Black–Scholes Formula

The solution is

u(x , τ) =

∫ ∞

−∞
u(s, 0) e−

(x−s)2

4 τ ds

= e
1
2 (k+1) x+ 1

4 (k+1)2 τ Φ(d1)− e
1
2 (k−1) x+ 1

4 (k−1)2 τ Φ(d2) ,

where

d2 =
ln(St/K ) + (r − 1

2 σ
2)(T − t)

σ
√
T − t

,

d1 =
ln(St/K ) + (r + 1

2 σ
2) (T − t)

σ
√
T − t

.
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The last step is to go back to the original variables, i.e.,

x = ln(S/K ), τ =
1

2
σ2 (T − t), C = K v(x , τ) ,

to write the Black–Scholes formula to price the European call

CE (S , t;K ,T ) = St Φ(d1)− e−r (T−t) K Φ(d2) . (33)
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Continuous dividends

dSt
St

= (µ− D0) dt + σ dWt . (34)

To obtain he Black–Scholes PDE, we proceed as before but note that the change
in the value of the portfolio is given by

dΠ = dVt −∆ dSt−D0 ∆St dt .

Hence the Black–Scholes PDE becomes

r V =
∂V

∂t
+ (r − D0)S

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
. (35)
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Black–Scholes Formula with dividends

CE = e−D0 (T−t) St Φ(d10)− e−r (T−t) K Φ(d20) ,

where

d10 =
ln(St/K ) + (r − D0 +

1
2 σ

2) (T − t)

σ
√
T − t

and

d20 = d10 − σ
√
T − t .
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Risk-neutral valuation

More generally, we could derive the following expression to price any
European-style option with payoff Π(S ,T )

V (S , t) =
e−r (T−t)√
σ2 2π (T − t)

×
∫ ∞

0

V (u,T )

×e−(ln(u/S)−(r− 1
2 σ2) (T−t))2/(2σ2 (T−t)) du

u
.
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Log-normal distribution

Proposition

Let (St)t≥0 be a geometric Brownian motion. Then, the density function of St
denoted by pSt (S) is given by

pSt (S) =
1

S σ
√
2πt

exp

−

(
ln S

S0
−
(
µ− σ2

)
t
)2

2σ2 t


for S > 0.
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Proof

P(St ≤ S) = P(lnSt ≤ lnS) = F (lnS) ,

where F is the distribution function of ln St . Differentiate both sides wrt S to
write the density pSt (S) of St :

pSt (S) =
d

dS
P(St ≤ S) =

1

S
F ′(lnS) =

1

S
pXt (x) ,

where x = lnS and pXt (x) is the density of Xt = lnSt , which is given by

pXt (x) =
1√

2π σ2 t
exp

(
−
(x − x0 − (µ− 1

2σ
2) t)2

2σ2 t

)
, (36)

because Xt ∼ N(X0 + (µ− 1
2σ

2) t, σ2 t), so

pSt (S) =
1

S σ
√
2πt

exp

−

(
ln S

S0
−
(
µ− 1

2σ
2
)
t
)2

2σ2 t

 for S > 0 .
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Feynman–Kac

Theorem

Let V (S , t) be a solution to the PDE

r V (S , t)− ∂tV (S , t)− r S ∂SV (S , t)− 1

2
σ2 S2 ∂SSV (S , t) = 0 , (37)

with terminal condition V (S , t) = f (S). Then, V (S , t) admits the following
probabilistic representation

V (S , t) = e−r (T−t) EQ [f (ST )∣∣St = S
]
, (38)

for all (S , t) ∈ [0,T ]× R and where

dSt = r St dt + σ St dW
Q
t , S0 > 0 . (39)
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Feynman–Kac call option

Thus, the price of a European call option CE (S , t) which pays max(ST − K , 0) at
time T in the Black–Scholes model has the probabilistic representation

CE (S , t) = e−r (T−t) EQ [max(ST − K , 0) |St = S ] ,

where Q is a new probability measure under which S satisfies

dSt = St
(
r dt + σ dWQ

t

)
, (40)

and WQ is a standard Brownian motion under Q.
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In general, the Feynman–Kac Theorem implies the following:

the option price (i.e., the cost of replicating the option) is the
discounted expected value of f (ST ) in the risk-neutral world Q where
the drift is r not µ.

We refer to this world as the risk neutral measure.
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Self-financing derivation of Black–Scholes PDE

As in the one-step binomial example, let us derive the Black–Scholes PDE
with a self-financing strategy

Form a portfolio with an amount of cash and an amount of underlying

As time evolves, rebalance how much is held in each asset (stock and bond)

Rebalancing without investing nor withdrawing wealth from the portfolio, i.e.,
a self-financing portfolio.
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Self-financing strategy

Definition

A trading strategy (ϕt , ψt)t∈[0,T ] is a pair of adapted stochastic processes such
that ϕt is the number of shares the investor holds at time t and ψt is the number
of risk-free bonds held at time t. Thus, the value of the position of the agent at
time t is

Vt = ϕt St + ψt Bt . (41)

The strategy is called self-financed if

dVt = ϕt dSt + ψt dBt . (42)

Note: here, Vt is the value (stochastic) of a portfolio, or the value of an asset
that we wish to replicate with positions in the stock S and a risk-free bond B,
where dBt = r Bt dt.
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Let (ϕt , ψt)t∈[0,T ] be a self-financed trading strategy. Then, the value of the
portfolio V is that in (41). We want to find a self-financed strategy (ϕt , ψt) such
that VT = f (ST ).

dVt = ϕt dSt + ψt dBt

= ϕt dSt + ψt r Bt dt

= ϕt dSt + r (Vt − ϕt St) dt

= ϕt (µSt dt + σ St dWt) + r (Vt − ϕt St) dt ,

thus,
dVt = (ϕt µSt + (Vt − ϕt St) r) dt + ϕt σ St dWt . (43)
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Write Vt = v(t,St) for v ∈1,2 ([0,T ]× R). Then, by Itô’s lemma we have that

dVt = ∂tv(t,St)dt + ∂sv(t,St) (µSt dt + σ St dWt) +
1

2
∂ssv(t,St)σ

2 S2
t dt

(44)

=

(
∂tv(t,St) + ∂sv(t,St)µSt +

1

2
∂ssv(t,St)σ

2 S2
t

)
dt + ∂sv(t,St)σ St dWt .

(45)

Choose the amount in the stock ϕt = ∂sv(t,St) so that (43) becomes

dVt = (∂sv(t,St)µSt + (v(t,St)− ∂sv(t,St)St) r) dt + ∂sv(t,St)σ St dWt .
(46)
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Compare (45) and (46) to see that v satisfies

∂sv(t,S)µS + (v(t,S)− ∂sv(t,S)S) r = ∂tv(t,S) + ∂sv(t,S)µS +
1

2
∂ssv(t,S)σ

2 S2 ,

and we see that the terms ∂sv(t,S)µS cancels out and the above PDE reduces to

v(t,S) r − ∂sv(t,S)S r − ∂tv(t,S)−
1

2
∂ssv(t,S)σ

2 S2 = 0 .

Á. Cartea (MI & OMI) B8.3 79 / 191



Proposition

There is a unique solution v(t,S) to the PDE

r v(t,S)− ∂tv(t,S)− r S ∂sv(t,S)−
1

2
σ2 S2 ∂ssv(t,S) = 0 , (47)

with terminal boundary condition v(T ,S) = f (S).

Next,

Theorem

Let v(t,S) be the solution to (47) with terminal condition f (S). The strategy

ϕt = ∂Sv(t,St) , ψt = (v(t,St)− St ∂Sv(t,St)) e
−r t ,

is self-financing and
VT = ϕT ST + ψT er T = f (ST ) .
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Proof

Let v(t,S) be the solution to (47) with terminal condition f (S) and define

ϕt = ∂Sv(t,St) , ψt = (v(t,St)− St ∂Sv(t,St)) e
−r t ,

with Vt = ϕt St + ψt Bt . Then,

Vt = ϕt St + ψt Bt

= ∂Sv(t,St)St + (v(t,St)− St ∂Sv(t,St)) e
−r t er t

= v(t,St) ,

and by Itô’s lemma

dVt = ∂sv(t,St) dSt +

(
∂tv(t,St) +

1

2
∂ssv(t,St)σ

2 S2
t

)
dt , (48)

and given that v satisfies the PDE in (47) then,

∂tv(t,St) +
1

2
∂ssv(t,St)σ

2 S2
t = v(t,St) r − ∂sv(t,St)St r ,
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and thus, (48) becomes

dVt = ∂sv(t,St) dSt + (v(t,St) r − ∂sv(t,St)St r) dt

= ∂sv(t,St) dSt + (v(t,St)− St ∂sv(t,St)) e
−r t er t r dt

= ϕt dSt + ψt Bt r dt

= ϕt dSt + ψt dBt ,

which proves that (ϕt , ψt) is a self-financed trading strategy. Then, we have that

VT = v(T ,ST ) = f (ST ) ,

because v(T ,S) = f (S).
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Forward Contracts
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Forward contract

A forward contract is an agreement between two parties. One party commits
to delivering an asset, say S , at time T . The other party commits to
delivering K cash, at time T . At the inception of the contract there is no
exchange of money.

The payoff at time T of such derivative is ST − K .

Compute arbitrage-free price with Feynman–Kac:

P(S , t) = e−r(T−t) EQ [ST − K |St = S ]

= e−r(T−t)
(
S er (T−t) − K

)
= S − K e−r(T−t) .

The above formula at time zero is

S − K e−r T ,

so the forward price (which is defined as the strike K that makes the value of
the contract equal to zero) is

K = S er T .
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Discrete Dividends
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Assume that the asset pays a lump-sum dividend at time td .

The dividend is known in advance, Dd (0 ≤ Dd < 1).

At the time of payment the holder of the stock receives Dd S(t
−
d ), where

S(t−d ) is the asset’s price immediately before the dividend is paid.

By no-arbitrage

S(t+d ) = S(t−d )− Dd S(t
−
d ) = S(t−d ) (1− Dd) . (49)
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What happens to the value of an option when the underlying jumps due to a
discrete dividend payment. By no-arbitrage

V (S(t−d ), t−d ) = V (S(t+d ), t
+
d ) . (50)

We break the problem in three steps:

First we value the European call option in the interval [t+d ,T ];

Second, we implement the jump condition (50) at t = t−d ;

Finally, we solve the Black–Scholes equation backwards from t = t−d
including the two previous values.
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The value of the option right after the dividend is given by

CD(S , t;K ,T ) = C (S , t;K ,T ) for t+d ≤ t ≤ T .

Next, use the jump condition (50) to write

C (S(t−d ), t−d ) = C (S(t+d ), t
+
d )

= C (S(t−d ) (1− Dd), t
+
d ) . (51)
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Now let us see what is the value of (51) at maturity T

C (S (1− Dd),T ;K ,T ) = max(S( 1− Dd)− K , 0)

= (1− Dd)

×max

(
S − K

1− Dd
, 0

)
. (52)

This is the price of 1− Dd calls struck at K/(1− Dd).
Therefore for t < td

Cd(S , t;K ,T ) = (1− Dd)C (S , t;K/(1− Dd),T ) ,

and for t ≥ td
Cd(S , t;K ,T ) = C (S , t;K ,T ) .
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Binary and other Options
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Binary option

The payoff of a binary call is

Bc(S ,T ;K ,T ) =

{
1 , S ≥ K ,
0 , S ≤ K .

Recall

V (S , t) =
e−r (T−t)√
σ22π(T − t)

∫ ∞

0

Π(u,T )e−(ln(u/S)−(r− 1
2σ

2)(T−t))2/(2σ2(T−t)) du

u
.

(53)
with payoff Π(u,T ) = Bc(S ,T ;K ,T ). Thus,

Bc(S , t;K ,T ) = e−r (T−t) Φ(d2) , (54)

where

d2 =
ln(St/K ) + (r − 1

2 σ
2) (T − t)

σ
√
T − t

.
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What is the delta of a binary call?

∆ =
e−r (T−t) Φ(d2)

σ S
√
T − t

.

To price a Binary put we proceed as above with payoff

Bp(S ,T ;K ,T ) =

{
0 , S > K ,
1 , S ≤ K .

Using (53) we obtain

Bp(S , t;K ,T ) = e−r (T−t) Φ(−d2) . (55)
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Note that we could also price a binary put by observing that if we hold a binary
call and put the payoff at maturity is 1, in other words

Bc(S ,T ;K ,T ) + Bp(S ,T ;K ,T ) = H(S − K ) +H(K − S) = 1 ,

where H(S − K ) is the Heaviside function. Hence, at any time t ≤ T

Bc(S ,T ;K ,T ) + Bp(S ,T ;K ,T ) = e−r (T−t). (56)

Thus, the fair price of a binary put is

Bp(S , t;K ,T ) = e−r (T−t) − Bc(S , t;K ,T )

= e−r (T−t) (1− Φ(d2))

= e−r (T−t) Φ(−d2) .
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General payoffs

Synthesizing a general payoff Λ(S) from vanilla call options means that we can
approximate the payoff by a sum of n delta functions times the payoff of different
call options.

VT(S 3,K 3)
VT(S 2,K 2)

VT(S 1,K 1)

S3
S2S1

V(S
,K,T

)

Spot

Figure: Synthesising a European payoff.
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Thus, if the price of the option is given by

V (S , t) =

∫ ∞

0

f (K )C (S , t;K ) dK (57)

then the value of the option at expiry is

Λ(S) =

∫ ∞

0

f (K ) max(S − K ) dK (58)

=

∫ S

0

f (K ) (S − K ) dK .

Á. Cartea (MI & OMI) B8.3 95 / 191



How do we obtain the function f (K )?

Λ′(S) = f (S)(S − S) +

∫ S

0

f (K )
d(S − K )

dS
dK

=

∫ S

0

f (K ) dK , (59)

and differentiating again we arrive to

Λ′′(S) = f (S) . (60)
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Example I

Let us find the synthesizing portfolio when Λ(S) = max(S − K , 0). First, note
that we can write

Λ(S) = max(S − K , 0)

= (S − K )H(S − K ) , (61)

where H is the Heaviside function. Recall that the Heaviside function is

∫ x

−∞
δ(s) ds = H(x) . (62)
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Hence
H′(x) = δ(x). (63)

From (61) and (63) we arrive to

Λ′(S) = H(S − K );

Λ′′(S) = δ(S − K ). (64)

Thus, we may write the option’s price as

V (S , t) =

∫ ∞

0

δ(K ′ − K )C (S , t;K ′) dK ′

= C (S , t;K ) . (65)
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Example II

Assume that Λ(S) = S .

What is the synthesising portfolio here?

We proceed as above and we can readily verify that Λ′′(S) = δ(S), hence the
the synthesising portfolio is just S , or a call with exercise price zero.
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Example III

Assume we want to replicate a payoff with binary calls, i.e., pay 1 or nothing. Find
f (K )

V (S , t) =

∫ ∞

0

f (K )B(S , t;K ,T ) dK .

At expiry

Λ(S) =

∫ ∞

0

f (K )H(S − K ) dK

=

∫ S

0

f (K ) dK .
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Then

Λ′(S) = f (S) .

So to replicate a call we must use f (K ) = H(S − K ), hence

C (S , t;K ,T ) =

∫ ∞

0

H(K ′ − K )B(K ′) dK ′

=

∫ ∞

0

H(K ′ − K )B(K ′)dK ′ .
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Power options

Assume stock price dynamics are given by

dSt = µSt dt + σ St dWt .

The payoff of the power options is max(Sn − K n, 0) for a call and
max(K n − Sn, 0) for a put where n ≥ 1.

One approach to price the option is:

As before, set up a hedge portfolio and derive the Black–Scholes PDE

r V =
∂V

∂t
+ r S

∂V

∂S
+

1

2
σ2 S2 ∂

2V

∂S2
,

and solve the PDE subject to the relevant terminal condition.
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Power options

Another approach is to use Feyman–Kac so that the price of the call
(similarly for put) is:

CE (S , t) = e−r (T−t) EQ[max(Sn − K n, 0)]

with stock dynamics
dSt
St

= r dt + σ dWQ
t .
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Power options

Another approach

Under the pricing measure, the stock price follows

dSt
St

= r dt + σ dWQ
t .

Let ξ = Sn and use Ito’s lemma to write

dξ

ξ
= rn dt + σn dW

Q
t ,

where

rn = n r +
1

2
σ2 n (n − 1) and σn = n σ .
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We rewrite the drift so that it has the form of the risk-free rate r plus a ‘dividend
payment’:

rn = n r + 1
2 σ

2 n (n − 1)

= r − r + n r + 1
2 σ

2 n (n − 1)

= r −
(
−(n − 1) (r + 1

2 n σ
2)
)
.

Hence, the Black–Scholes PDE becomes

Vt +
1

2
n2 σ2 ξ2 Vξξ +

(
r −

(
−(n − 1) (r +

1

2
n σ2

))
ξ Vξ = −r V .
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Yet another approach to is: To change variables: ξ = Sn, so

dξ

dS
= n Sn−1 ,

d2ξ

dS2
= n (n − 1)Sn−2

and

Vξ =
1

n Sn−1
VSS , Vξξ =

1− n

n2 S2 n−1
VS +

1

n2 S2 (n−1)
VSS .

Next, substitute in the Black–Scholes PDE to obtain

Vt +
1

2
n2 σ2 ξ2 Vξξ +

(
r −

(
−(n − 1) (r +

1

2
n σ2

))
ξ Vξ = −r V .
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In both cases above, instead of solving the Black–Scholes PDE we can take a
shortcut. Let the ‘dividend’ be

Dn = −(n − 1) (r + 1
2nσ

2) .

Thus, we use the Black–Scholes formula with r and Dn to write the value of the
power option:

C (Sn, t;K n,T ) = Sn e−Dn (T−t) Φ(d1n)− e−r (T−t) K n Φ(d2n) , (66)

with

d1n =
ln(Sn

t /K
n) + (r − Dn +

1
2 n

2 σ2) (T − t)

n σ
√
T − t

and

d2n =
ln(Sn

t /K
n) + (r − Dn − 1

2n
2σ2) (T − t)

n σ
√
T − t

.
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Barrier Options
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Down-and-out

Let the stock price satisfy

dSt = (µ− D)St dt + σ St dWt .

Assume there is a barrier B that if the stock price reaches it the option
becomes worthless.

Consider a down-and-out call where the strike is above the barrier; K > B.

Apply the usual Black–Scholes hedging argument to show that Cd/o satisfies

∂Cd/o

∂t
+

1

2
σ2 S2 ∂

2Cd/o

∂S2
+ (r − D)S

∂Cd/o

∂S
− r Cd/o = 0 , (67)

while the option is alive, i.e., B < S <∞.
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The boundary conditions are similar to those used for vanilla options.

Cd/o = max(S − K , 0).

As S → ∞ the probability of hitting the barrier becomes negligible hence

Cd/o(S , t) ∼ S e−D t .

In the knock-out case we have that

Cd/o(S = B, t) = 0 , for t ≤ T .
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Solution; change of variables

S = B ex , t = T − τ/
1

2
σ2, Cd/o = B eα x+β τ u(x , τ),

with α = 1
2
(1− k ′), β = − 1

4
(k ′ − 1)2 − k, k = r/ 1

2
σ2, and k ′ = (r −D)/ 1

2
σ2. In these

new variables the barrier transforms to the point x = 0, and the barrier option problem
becomes

∂u

∂τ
=

∂2u

∂x2
(68)

for 0 < x < ∞, τ > 0, with initial condition

u(x , 0) = U(x) = max
(
e

1
2
(k′+1) x − (K/B)e

1
2
(k′−1) x , 0

)
x ≥ 0 , (69)

and spatial condition (i.e., the barrier)

u(0, τ) = 0 . (70)
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By reflection we know that if u(x , τ) is a solution to the problem so is u(−x , τ).
We must reflect the initial condition and solve the problem

u(x , 0) =

{
U(x) for x > 0,

−U(−x) for x < 0,
(71)

that is u(x , 0) = max
(
e

1
2
(k′+1) x − (K/B) e

1
2
(k′−1) x , 0

)
for x > 0 ,

−max
(
e−

1
2
(k′+1) x − (K/B) e−

1
2
(k′−1) x , 0

)
for x < 0 .

(72)

Note that in this way we satisfy the boundary condition u(0, τ) = 0. Now instead of

solving problem (68) subject to (69) and (70) we solve (68) subject to (72).
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The Trick

We can also solve problem (68) subject to (72) by relating this to vanilla options.

Consider a vanilla call, with the same expiry and exercise price but no barrier.

Write its value as Cv (S , t;K ,T ) and Uv (x , τ) for the corresponding solution to the
heat equation (i.e., the one where have already transformed variables).

Inspect initial condition (72). The first part says that for x > ln(K/B)

e
1
2
(k′+1)x > (K/B) e

1
2
(k′−1) x , (73)

i.e., the transformed payoff is positive. Hence, according to this condition we have that
for 0 < x ≤ ln(K/B) the payoff is zero and positive for x > ln(K/B).
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Similarly, the second part of the initial condition (72) says that the payoff is zero for
− ln(K/B) ≤ x < 0 and negative for x < − ln(K/B).

Extend the payoff (recall that the initial condition (72) is the transformed payoff)
so (72) becomes u(x , 0) = max

(
e

1
2
(k′+1) x − (K/B) e

1
2
(k′−1) x , 0

)
, −∞ < x < ∞ ,

−max
(
e−

1
2
(k′+1) x − (K/B) e−

1
2
(k′−1) x , 0

)
, −∞ < x < ∞ .

(74)

This extended payoff is basically the initial condition for a call U(x) minus the
initial condition of a call but evaluated at −x .

u(x , 0) = U(x)− U(−x) for −∞ < x < ∞ . (75)
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The solution to the problem of the transformed option value is

u(x , τ) = Uv (x , τ)− Uv (−x , τ) .

Note that the right-hand side satisfies the heat equation and that it has the correct
initial value.

Moreover, the most important (since it is new for us) condition u(0, t) = 0 for all t.

Recall that U(x , τ) is the solution to the vanilla call option in the transformed variables,
in other words

Cv (S , t;K ,T ) = Cv

(
B ex ,T − τ/

1

2
σ2;K ,T

)
= B eα x+β τUv (x , τ) .
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Hence

Uv (x , τ) =
e−α x−β τ

B
Cv

(
B ex ,T − τ/

1

2
σ2;K ,T

)
,

and so

Uv (−x , τ) =
eα x−β τ

B
Cv

(
B e−x ,T − τ/

1

2
σ2;K ,T

)
.

Finally, Cd/o(S , t;K ,T )

= B eα x+β τ u(x , τ)

= B eα x+β τ (Uv (x , τ)− Uv (−x , τ))

= Cv

(
B ex ,T − τ/

1

2
σ2;K ,T

)
− e2αx Cv

(
B e−x ,T − τ/

1

2
σ2;K ,T

)
= Cv (S , t;K ,T )−

(
S

B

)2α

Cv (B
2/S , t;K ,T ) .
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American Options
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Overview

In this lecture we explore in more detail the Black–Scholes PDE

r V = Vt + r S VS +
1

2
σ2 S2 VSS . (76)

What PDE do American options satisfy?

Can the value of a European put fall below its intrinsic value?

Can the value of an American put fall below its intrinsic value?

Perpetual options.
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European call

The value of the European call can fall below its intrinsic value
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Figure: The European call on a dividend paying stock.
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European put

The value of the European put can fall below its intrinsic value

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

K= 100, σ = 0.2, T = 6 months, r = 0.05, D
0
 = 0

Stock Price

£

 

 
Put value
Payoff
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Can PA(S , t;K ,T ) < max(K − S , 0) ?

Suppose that S is such that PA(S , t;K ,T ) < max(K − S , 0), and consider
exercising the option

Arbitrage opportunity: buy the asset in the market for S

at the same time buy the option for PA

then exercise the option

sell the asset for K

will yield a risk-less profit of K − PA − S

Therefore we must have that

PA(S , t;K ,T ) ≥ max(K − S , 0) .
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American-style PDE

We want to hedge an American option and do it the usual way

Π(S , t) = V (S , t)−∆ S .

Delta-hedge the portfolio ∆ = ∂V /∂S to obtain

dΠ(S , t) =

(
Vt +

1

2
σ2 S2 VSS

)
dt .

All we can expect then is that the holder of the portfolio cannot make more
than the risk-free rate

dΠ ≤ r Π dt

∂V

∂t
+

1

2
σ2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V ≤ 0 ,

because only if the option is held till maturity does the delta-hedge work and
the equality dΠ = r Π dt holds – like a European option.
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Example: American put

For example, the pricing PDE for an American put satisfies

∂PA

∂t
+

1

2
σ2 S2 ∂

2PA

∂S2
+ r S

∂PA

∂S
− r PA ≤ 0 .

We can check that if we exercise early, ie PA = K − St , then

∂PA

∂t
+

1

2
σ2 S2 ∂

2PA

∂S2
+ r S

∂PA

∂S
− r PA = −r K < 0 .

And if it is optimal not to exercise, then

∂PA

∂t
+

1

2
σ2 S2 ∂

2PA

∂S2
+ r S

∂PA

∂S
− r PA = 0 .
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To Hold or Not to Hold

Á. Cartea (MI & OMI) B8.3 124 / 191



Exercise Region American Call
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American Call Option 
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Exercise Region American Call
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Free Boundary American Call
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Perpetual Options
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Perpetual option

Perpetual options are American options with no expiry; T = ∞

The value of the perpetual call and put can be determined in closed-form

The Black–Scholes PDE becomes an ODE because the value of the option
does not change with time t

In other words, if T = ∞, Vt = 0

This makes the valuation problem simpler to solve because regardless of t the
problem is ‘always the same’.

The exercise boundary can be determined explicitly and is fixed
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Perpetual option

Since the value of the option V , which could be a call or a put, does not decay
with time, Vt = 0, the pricing equation satisfies

1

2
σ2 S2 ∂

2V

∂S2
+ (r − D0)S

∂V

∂S
− r V ≤ 0 , (77)

with equality when it is optimal to hold.

Thus, when it is not optimal to exercise the ODE we must solve

1

2
σ2 S2 ∂

2V

∂S2
+ (r − D0)S

∂V

∂S
− r V = 0 , (78)

where the hold region for the call is S < S⋆ and for the put S⋆ < S .

What is the price of a perpetual call if D0 = 0?
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Exercise Perpetual Call
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Trial solution V (S , t) = Sβ and obtain the characteristic equation

β± =
1

2

(
1− 2 (r − D0)

σ2

)

±1

2

√√√√((1− 2 (r − D0)

σ2

)2

+
8 r

σ2

)
.

Hence the solution to (78) is given by the linear combination

V (S) = ASβ+ + B Sβ− ,

where A and B are constants (that we need to determine).
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Perpetual call

Payoff of call is
CA(S⋆) = max(S⋆ − K , 0) .

We also know that as S → 0 the price CA(S) → 0.

We must rule out the solution that contains the negative root β−.

At exercise we have that

C (S⋆) = S⋆ − K ,

ASβ+
⋆ = S⋆ − K ,

which in the literature is known as the ‘value matching’ condition.
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The holder must choose the largest

A =
S⋆ − K

Sβ+
⋆

,

such that the option value is maximal. Hence

max
S⋆

S⋆ − K

Sβ+
⋆

. (79)

The first order condition is

Sβ+
⋆ − β+ (S⋆ − K )Sβ+−1

⋆

S2β+
⋆

= 0

− 1− β+ (S⋆ − K )S−1
⋆ = 0 , (80)

which is known as the ‘smooth pasting’ condition.
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Therefore

S⋆ =
β+

β+ − 1
K ,

and

A = K 1−β+

(
β+ − 1

β+

)β+ 1

β+ − 1
.

Finally, the value of the perpetual call is

C (S) =


(

β+−1
β+ K

)β+
K

β+−1 S
β+ for S < S⋆ ,

S − K for S ≥ S⋆ .
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Implied Volatility
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Overview

Examine how the prices of European calls and puts depend on the volatility
of the underlying stock

Back out the implied volatility (IV) using the prices of traded options

Study different shapes of IV

Derive analytical formulae for the bounds of the slope of the IV curve

Revisit Black–Scholes with time-varying deterministic volatility

Non-traded assets

Stochastic volatility models

The leverage effect

Á. Cartea (MI & OMI) B8.3 137 / 191



Implied Volatility

Let C (S , t;K ,T ) denote the observed (market) European call option price

IV is the value of the volatility parameter that must go into the
Black–Scholes formula

C (S , t;K ,T , σ) = St Φ(d1)− e−r (T−t) K Φ(d2) ,

where

d1 =
ln(St/K ) + (r + 1

2 σ
2) (T − t)

σ
√
T − t

and

d2 =
ln(St/K ) + (r − 1

2 σ
2) (T − t)

σ
√
T − t

,

to match the market price

C (S , t;K ,T , I ) = C . (81)
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1 The Vega of a European call is positive, i.e.,

∂C

∂σ
=

S e−
d21
2

√
T − t√

2π
> 0 ,

so there is a unique I > 0 because of the monotonicity of the Black–Scholes
formula in the volatility parameter σ.

2 The implied volatility from the put and call options of the same strike and
time to maturity are the same because put-call-parity. (True in practice?)
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Questions

What should happen to IV if the world was as assumed by the Black–Scholes
model?

What happens in practice?

What is the interpretation?

What do we expect to happen to IV across time?
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Plotting IV

Plot IV as a function of moneyness

For moneyness we use

m =
lnF/K

ATMV
√
T

where ATMV is at-the-money implied volatility, T expiry of option, K strike,
F forward price of stock (with same expiry)

This measure of moneyness allows for comparisons across maturities and
assets
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Call premia

moneyness

C(S,t;K,T,σ)

0

In the Black-Scholes world what σ did the
market use to obtain these call premia?
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Black–Scholes IV

moneyness

Implied
Vol

0

This is the implied volatility to math the
call premia in the BS world

I
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IV

moneyness

Implied
Vol

0

But what the market uses does not
conform to the BS world

I
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IV Smile

moneyness

Implied
Vol

0

S(t) currently trading here
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IV Smirk

moneyness

Implied
Vol

0

But what the market uses does not
conform to the BS world

I

Á. Cartea (MI & OMI) B8.3 146 / 191



IV & Dist

m 

Implied 
Vol 

I 

m 

Gaussian distribution 
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IV & Dist

Implied 
Vol 

I 

m 

m 

Gaussian 
Black-Scholes 

Increase thickness 
of tails 
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IV & Dist

Implied 
Vol 

I 

m 

m 

Gaussian 
Black-Scholes 

Increase thickness 
and skew of tails 
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The smile shows that there is a premium charged for

out-of-the-money put options, and
for in-the-money calls

above their Black–Scholes price computed with at-the-money volatility.

In other words, the market prices options as though the lognormal model
underestimates the probability of large movements in the underlying.

The downward slope of the implied volatility is a consequence of the
asymmetry in the risk-neutral distribution of the underlying stock return.

The convexity shown by the implied volatility is a consequence of the
thickness of the tails of the distribution.
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Bounds

We can derive bounds on the slope of the volatility smile by differentiating (81)
with respect to K .

∂C

∂K
=
∂C

∂K
+
∂C

∂σ

∂I

∂K
≤ 0 , (82)

hence we have that
∂I

∂K
≤ −∂C/∂K

∂C/∂σ
. (83)

Similarly, put prices must be increasing in K . Moreover, since puts and calls must
have the same implied volatility I we must have

∂I

∂K
≥ −∂P/∂K

∂P/∂σ
. (84)

We can substitute and rearrange to obtain

−
√
2π

S
√
T − t

(1− Φ(d2)) e
−r (T−t)+d2

1/2 ≤ ∂I

∂K
≤

√
2πΦ(d2)

S
√
T − t

e−r (T−t)+d2
1/2 ,

where d1 and d2 are as usual but with σ replaced by I .
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Implied Deterministic Volatility

Assume that the stock price follows the SDE

dSt
St

= µ dt + σ(S , t) dWt ,

were σ(S , t) is a deterministic function of (S , t). Obtain pricing PDE

∂V

∂t
+

1

2
σ2(S , t)S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0 . (85)

Simplify this approach and let σ(S , t) depend on time only. Thus

dSt
St

= r dt + σ(t) dWt .
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Use Ito’s lemma to write

ST = St e
r (T−t)− 1

2

∫ T
t

σ2(s) ds+
∫ T
t

σ(s) dWs .

As an example let us price a European call with payoff max(ST − K , 0). It suffices
to observe that the distribution of log-returns is

ln(ST/St) ∼ N
(
(r − 1

2 σ
2) (T − t), σ2 (T − t)

)
,

where

σ2 =
1

T − t

∫ T

t

σ2(s) ds .

Therefore the price of the call is given by??
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C (S , t;K ,T ,
√
σ2) = St Φ(d1)− e−r (T−t) K Φ(d2) ,

where

d1 =
ln(St/K ) + (r + 1

2σ
2) (T − t)√

σ2
√
T − t

,

and

d2 =
ln(St/K ) + (r − 1

2 σ
2) (T − t)√

σ2
√
T − t

.

In other words, we use the average variance over the interval [t,T ].

Á. Cartea (MI & OMI) B8.3 154 / 191



Stochastic Volatility Models

Stein and Stein proposed

dS = r S dt + σ S dW1 , (86)

dσ = α dt + β dW2 , (87)

for constants α and β.
Another very popular model is Heston’s

dSt = µSt dt +
√
vt St dW1 (88)

d
√
vt = −β

√
vt dt + δ dW2 . (89)

We can use Ito’s lemma to show that the variance vt follows the process

dvt = κ (θ − vt) dt + σ
√
vt dW2 , (90)

where ρ is the correlation between W1 and W2.
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The remainder of the material in non-examinable
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Non-traded asset

dXt

Xt
= µ dt + σ dWt ,

where Wt is the usual Brownian Motion and X is not traded.

How can we price a European-style option written on X?

Can we proceed as in the Black–Scholes case above?

How are we going to hedge this option?
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Let Π(X , t) be a portfolio containing a number of V , with expiry T , and b
number of F , with expiry T1 > T , and a+ b = 1,

Π(X , t) = a V (X , t) + b F (X , t)

and its returns process given by

dΠ

Π
= a

dV

V
+ b

dF

F
.

Now using Ito’s lemma write

dΠ

Π
=

(1− b)

V

((
Vt + µXVX +

1

2
σ2 X 2 VXX

)
dt + σ X VX dW

)
+

b

F

((
Ft + µXFX +

1

2
σ2 X 2 FXX

)
dt + σ X FX dW

)
. (91)
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Make portfolio risk-neutral:

b∗ =
F VX

F VX − V FX
,

hence

dΠ

Π
=

1− b∗

V

(
Vt + µXVX +

1

2
σ2 X 2 VXX

)
dt

+
b∗

F

(
Ft + µX FX +

1

2
σ2 X 2 FXX

)
dt .

then dΠ/Π = r dt , so

r =
1− b∗

V

(
Vt + µX VX +

1

2
σ2 X 2 VXX

)
+
b∗

F

(
Ft + µX FX +

1

2
σ2 X 2 FXX

)
.
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After some algebra we have

F

FX

(
Ft + µX FX + 1

2 σ
2 X 2 FXX

F
− r

)

=
V

VX

(
Vt + µX VX + 1

2 σ
2 X 2 VXX

V
− r

)
. (92)
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By looking at equation (91), note that if we held a portfolio with only one option
V (X , t), i.e., a = 1 and b = 0, the returns would be given by

dV

V
=

1

V

((
Vt + µXVX +

1

2
σ2 X 2 VXX

)
dt + σ X VX dW ;

)
hence the ‘volatility’ coefficient of this portfolio would be given by

σV =
σX VX

V
, (93)

and the drift coefficient is given by

µV =

(
Vt + µXVX +

1

2
σ2 X 2 VXX

)
/V . (94)
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We can write equation (92) as

1
σ X FX

F

(
Ft + µX FX + 1

2 σ
2 X 2 FXX

F
− r

)
=

1
σ X VX

V

(
Vt + µXVX + 1

2 σ
2 X 2 VXX

V
− r

)
.

Note that the left-hand side of this equation only depends on F that expires at
time T1 and the right-hand side only depends on V that expires at time T < T1...
Any suggestions?
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... hence we can write

1

σ X VX/V

(
Vt + µXVX + 1

2 σ
2 X 2 VXX

V
− r

)
= λ(t).

Next, use (93) and (94) to write

1

σV
(µV − r ) = λ(t) .

How may we interpret this relationship?
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λ(t): Market Price of Risk

λ(t) measures the excess return µV − r per unit of volatility σV an investor
expects to obtain from holding a risky asset.

We can rewrite this expression as

µV − r = σV λ(t)

Vt + µX VX +
1

2
σ2X 2VXX − rV = σ X VX λ(t) .

Hence we obtain a pricing PDE of the form

Vt + (µ− σ λ(t))X VX +
1

2
σ2 X 2 VXX − r V = 0 . (95)
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What happens if X is traded?

We must stress that the market price of risk “appears” because X is not a traded
asset, so we cannot hedge instruments written on X . For suppose that X = S
where S is traded, hence V = S must satisfy (95). Straightforward substitution
implies

(µ− σλ(t))S = r S ,

hence
µ− σλ(t) = r ,

and equation (95) becomes the usual Black–Scholes PDE.
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Pricing PDE with stochastic volatility

Let us derive a pricing PDE when we have a two factor model.

dSt = µSt dt + σ St dW1 ,

dσ = p(S , σ, t) dt + q(S , σ, t) dW2 , (96)

where p and q are deterministic functions and the correlation between W1 and W2

is ρ.
Form hedge portfolio

Π = V −∆S −∆1V 1. (97)
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dΠ =

(
Vt + µ S VS +

1

2
σ2 S2 VSS + p Vσ +

1

2
q2 Vσσ −∆µ S + ρ σ q S VSσ

)
dt

−∆1

(
V 1

t + µ S V 1
S +

1

2
σ2 S2 V 1

SS + p V 1
σ +

1

2
q2 V 1

σσ + ρ σ q S V 1
Sσ

)
dt

+σ S
(
VS −∆−∆1 V 1

S

)
dW1

+q
(
Vσ −∆1 V 1

σ

)
dW2 .

To eliminate randomness we choose

VS −∆−∆1V 1
S = 0 and Vσ −∆1V 1

σ = 0.
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Thus

dΠ =

(
Vt +

1

2
σ2 S2 VSS +

1

2
q2 Vσσ + ρ σ q S VSσ

)
dt

−Vσ

V 1
σ

(
V 1

t +
1

2
σ2 S2 V 1

SS +
1

2
q2 V 1

σσ + ρ σ q S V 1
Sσ

)
dt .

(98)

The portfolio must evolve like a bond hence dΠ = r Π dt. Therefore

Vt +
1
2
σ2 S2 VSS + 1

2
q2 Vσσ + ρ σ q S VSσ + rSVS − rV

Vσ
= (99)

V 1
t + 1

2
σ2 S2 V 1

SS + 1
2
q2 V 1

σσ + ρ σ q SV 1
Sσ + r S V 1

S − r V

V 1
σ

. (100)
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Proceeding as above (market price of risk)

Vt +
1

2
σ2 S2 VSS +

1

2
q2 Vσσ + ρ σ q S VSσ + r S VS − r V = −(p − λq)Vσ , (101)

or alternatively

Vt +
1

2
σ2 S2 VSS + r S VS − r V Black–Scholes

+ρ σ q S VSσ correlation

+
1

2
q2 Vσσ + p Vσ operator of volatility process on V

−λ q Vσ market price of volatility risk

= 0 .

It is straightforward to see that if p = 0 and q = 0 we are back to the usual
Black–Scholes PDE.
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Hull–White Formula

Assume we want to price a call option written on a stock where the volatility also
follows a stochastic process, say σt = f (Yt) where Y is stochastic, that is
independent of the Brownian motion of the stock.

C (S , t;K ,T ) = E
[
CBS

(
S , t;K ,T ,

√
σ2
)
| σs , t ≤ s ≤ T )

]
, (102)

where

σ2 =
1

T − t

∫ T

t

f (Ys)
2 ds .
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The leverage effect

Financial data suggest that returns are skewed rather than symmetric (more
so under the pricing measure).

Assume that the Brownian motion driving the returns process, say Wt , is
correlated with the Brownian motion of the volatility process, say Zt .

We can write Z̃t = ρWt +
√
1− ρ2 Zt , where Z̃t is independent of Wt ,

Pricing with the Black–Scholes framework becomes relatively more simple.

ρ is also known in the literature as the leverage effect and empirical studies
suggest that ρ < 0.

The financial interpretation is that in periods of high volatility prices go down
and vice-versa.
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Jumps in Prices

Á. Cartea (MI & OMI) B8.3 172 / 191



Overview

Poisson Processes

Example: modelling stock prices with diffusion and Poisson jumps
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Poisson process

A Poisson process is a process subject to jumps of fixed size or random size.

λ denotes the mean arrival rate of an event, during a time interval dt.

The probability that an event will occur is λ dt, and that it will not occur is
1− λ dt.

The event is a jump of size u, which can itself be a random variable. The
simplest is u = 1, so the Poisson process is a counting process.
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Formally, we let Nt be the number of events that occur by time t then Nt , t > 0 is
called a Poisson process, and it can be shown that

P{Nt = n} = e−λ t (λ t)
n

n!
, n = 0, 1, . . . . (103)

1 The probability of at least one event (ALOE ) happening in a time period of
duration ∆t is

P[ALOE ] = λ∆t + o(∆t) as ∆t → 0, λ > 0 .

2 The probability of two or more events happening in a period of time ∆t is
o(∆t). In other words, we do not see two events happening at the same time.
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Poisson Process

Time 

Number of jumps N 

1 
2 

6 
7 

8 

9 

10 

5 

4 

3 

13 

11 

12 
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Interarrival times

Another way to see a Poisson counting process is by looking at the interarrival
times; i.e., how long it takes between each Poisson event. Let Tj be the time of
the jth arrival, then

P[Tn+1 − Tn > s | T1, · · · ,Tn] = 1− e−λs .

In other words, the interarrival times T1, T2 − T1, · · · of a Poisson process are iid
with cdf 1− e−λs . Moreover, the pdf of the interarrival times is

P[τ > t] = λ e−λ t .

Exercise: Show that
P[τ > t + s | τ > t] = P[τ > s] .

That is, that the probability of observing an event does not depend on the past
events.
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A stock model: diffusion and jumps

dSt
St−

= µ dt + σ dWt − δ dNt , (104)

where Wt and Nt are independent and 0 ≤ δ ≤ 1 is a constant. (Note: We have
St− because is the price ‘just before the jump’. Below, for simplicity of notation
we write St .)

What is the solution of this SDE?

Assume that µ = 0 and σ = 0 and solve

dSt
St

= −δ dNt . (105)
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Poisson Process

Time 

Number of jumps: N 

1 
2 

6 
7 

8 

9 

5 

4 

3 

Time 

Change in N 

0 

0 
1 
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Stock Price with Fixed Jump Size δ = 0.1

Number of jumps: N 

1 
2 

5 
4 

3 

dN 

0 

0 

1 

10 

9.9  Stock price: dS(t) = - δ S(t) dN 
δ = 0.1 

8.1  

7.29  
6.561  
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A stock model: diffusion and jumps

Thus, the solution to
dSt
St

= −δ dNt ,

is

St = S0 (1− δ)Nt .

All that matters is the number of jumps Nt and not when they occurred!

And the solution to

dSt
St

= µ dt + σ dWt − δ dNt , (106)

is therefore
St = S0 e

(µ− 1
2 σ2)t+σWt (1− δ)Nt .
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Classical Model: MJD

Merton’s Jump Diffusion. Assume that the returns process follows

dSt
St

= (α− λ k) dt + σ dWt + (Y − 1) dNt . (107)

Another way to express (107) is

dSt
St

= (α− λ k) dt + σ dW , if no jumps occur,

dSt
St

= (α− λ k) dt + σ dWt + Y − 1 , if a jump occurs.
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We can apply Ito’s lemma to f = lnS to solve (107).

St = S0 e
(α− 1

2 σ2−λ k) t+σWt Y (n) , (108)

where Y (n) = 1 if n = 0, Y (n) = Πn
j=1Yj for n ≥ 1, where Yj are iid and n is

Poisson distributed with parameter λ t.
Note that

d(lnS) =

(
α− 1

2
σ2 − λ k

)
dt + σ dWt + lnY dNt .

Do we need any restriction on the support of Y ?
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Exercise: E[e−rtSt] =

= E
[
S0 e

−rte(α−
1
2σ

2−λk)t+σWtY (n)
]

= EN,Y

[
EW

[
S0 e

−rte(α−
1
2σ

2−λ k)t+σWtΠn
j=1Yj |Nt = n ,Y

]]
= S0 e

−rte(α−λk)tEN,Y [Π
n
j=1Yj ]

= S0 e
−rte(α−λk)tEN

[
EY [Π

n
j=1Yj |Nt = n]

]
= S0 e

−rte(α−λk)tEN [EY [Y ]n|Y ]

= S0 e
−rte(α−λ k)t

∞∑
n=0

e−λ t (λ tEY [Y ])n

n!

= S0 e
−rte(α−λ k)te−λ teλ tEY [Y ] .
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Exercise

Let

d(lnS) =

(
α− 1

2
σ2 − λ k

)
dt + σdW + lnYdN.

where α, σ, k are constants, W is a standard Brownian motion, N is a counting
process with intensity λ, and Y are iid. W , N, Y are independent.
Assume that α = r and k = EY [Y ]− 1. Show that

E
[
e−rT max(ST − K , 0)

]
=

∞∑
n=0

[
e−λ t(λ t)n

n!
EY

[
CE (S0Y

ne−λ(EY [Y ]−1)T , 0;T ,K )
]]

,

where CE denotes the value of a European call option in the Black–Scholes model.
Moreover, show that

E
[
e−rT max(ST − K , 0)

]
≥ CE (S0, 0;T ,K ) .

When do we get strict equality in the above equation?
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CE (S , 0;T ,K ) =

= E⋆[e−rT (ST − K)+]

= E⋆[e−rT max(S0 e
(r− 1

2
σ2−λ(EY [Y ]−1))T+σWTY (n)− K , 0)]

= E⋆
N,Y

[
E⋆
W [e−rT (S0e

(r− 1
2
σ2−λ(EY [Y ]−1))T+σWTY (n)− K)+|NT ,Y ]

]
= E⋆

N,Y

[
E⋆
W [e−rT (S0e

(r− 1
2
σ2−λ(EY [Y ]−1))T+σWTY (n)− K)+|NT ,Y ]

]
= E⋆

N,Y

[
E⋆
W [e−rT (S0Y (n)e−λ(EY [Y ]−1)T e(r−

1
2
σ2)T+σWT − K)+|NT ,Y ]

]
= E⋆

N,Y )

[
E⋆
W [e−rT max(Ŝe(r−

1
2
σ2)T+σWT − K , 0)|NT ,Y ]

]
= E⋆

N,Y

[
CE (Ŝ , 0;T ,K)

]
,

where Ŝ = S0Y (n)e−λ(EY [Y ]−1)T .
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In other words

CE =
∞∑
n=0

[
e−λ t(λ t)n

n!
EY

[
CE (S0Y

ne−λ(EY [Y ]−1)T , 0;T ,K)
]]

.

We can verify

E⋆
N,Y

[
CE (Ŝ , 0;T ,K)

]
≥ CE (E⋆

N,Y [Ŝ ], 0;T ,K)

= CE (S0, 0;T ,K).

Note that we would get strict inequality if P(Yk = 1) ̸= 1.

Á. Cartea (MI & OMI) B8.3 187 / 191



Ito’s lemma with jumps

Consider a process Xt for t > t0 of the form

Xt = X0 +

∫ t

t0

b(u,Xu−)du +

∫ t

t0

σ(u,Xu−) dWu +

N(t)∑
n

∆Xn , (109)

where ∆Xn = Xτn − Xτn− and τn denotes the jump times of the Poisson process. Here (I
am being very loose with notation and conditions) the minus sign is there to denote that
the variable is right before a jump occurs (if it occurs of course).
Now we want a more formal statement of Ito’s lemma with Poisson jumps. Thus,
assume that f (t,X ) is C 1,2 . Then df is given by

df =

(
ft(t,Xt−) + fX (t,Xt−)b(t,Xt−) +

1

2
fXX (t,Xt−)σ

2(t,Xt−)

)
dt

+fX (t,Xt−)σ(t,Xt−) dWt

+(f (t,Xt− +∆Xt)− f (t,Xt−)) dNt

and recall that ∆Xt = Xt − Xt−.
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Jump-Diffusion: option prices

Assume that the stock price S satisfies the dynamics

dSt = µ̃St dt + σ St dWt + S (YNt − 1) dNt ,

where W is Brownian motion, N is a Poisson process with intensity λ, Y is a
random variable (W , N, J are independent) and µ̃ = µ− λ k where µ, and k are
constants.

1 Easy to see that

E[dSt/St ] = µ dt if and only if k = E[Y − 1] .

2 Integrate the SDE between 0 and t to write

St = S0 e
µ̂ t+σWt Ỹ (Nt) ,

where µ̂ = µ− λ k − σ2

2 and

Ỹ (Nt) =


1 if Nt = 0 ,

Nt∏
i=1

Yi if n ≥ 1 ,

where the Ji are independently and identically distributed.
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Can we hedge an option?

1 Choose the portfolio in the usual way,

Π(S , t) = V (S , t)−∆St ,

2 Hedge the diffusion risk with
∆ = VS ,

but the jump risk still remains:

dΠ = Vt dt +
1

2
σ2 S2 VSS dt + {V (Y S)− V (S)−∆(Y S − S)} dNt .

Note that the S inside the braces { } is the stock price before the jump, i.e.
St− .

3 We could also choose other traded assets written on S to hedge the different
jump sizes. We could also decide not to hedge the diffusion risk and use S to
hedge a jump of specific size.
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1 To obtain a PDE for this problem, assume that E[dΠ] = r Π dt . Under which
specific assumptions (relevant to this problem) might one assume this?

2 One may assume that the jumps are not correlated to the market portfolio
hence their is no compensation for bearing jump risk. This is equivalent to
assuming that E[Y ]− 1 = k . Thus,

E[dΠ] =
(
Vt +

1

2
σ2 S2 VSS + E [V (J S)− V (S)] λ− S VS λE[J − 1]

)
dt ,

equate it to r (V − S VS) dt and write the PIDE

Vt +
σ2

2
S2 VSS + (r − λ k)S VS − r V + λE [V (S J, t)− V (S , t)] = 0 .

Note if there are no jumps (i.e., λ = 0) we obtain the Black–Scholes PDE.

Á. Cartea (MI & OMI) B8.3 191 / 191


