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Welcome to the 2024-2025 academic year incarnation of B7.3 Further Quantum Theory on the Oxford University
Mathematics course. This course builds on the material from A11 Quantum Theory. In that first course, many core
concepts of quantum theory (often called quantum mechanics, in reference to its status as a refinement of the classical
mechanics of particles that you’ve studied in your Dynamics course, as well as possibly in B7.1 Classical Mechanics)
were introduced. Here we will develop the subject more broadly and deeply, giving additional time and emphasis to
the abstract mathematical formalism of the theory while also developing important technical methods that are used to
analyse quantum mechanical systems in practice. Along the way, concepts from the theories of functional analysis, Lie
groups, and representation theory will arise and be introduced. (Students are not expected to have much familiarity
with these subjects in advance.) The rigorous foundations of quantum theory are thoroughly intertwined with deep
aspects of functional analysis, and as a consequence our treatment ofmany topics will by necessity gloss over interesting
subtleties. Whenever possible, I will indicate where a mathematically precise version of a statement exists but involves
more machinery than we have at our disposal before giving a simplified treatment that suits our purposes.

Synopsis

• The abstract formulation of quantum theory in terms of linear operators on Hilbert spaces; Dirac notation;
discrete and continuum states; time evolution and the propagator.

• Systems of several particles andHilbert space tensor products; distinguishable/indistinguishable particles; Fermi–
Dirac and Bose–Einstein statistics; Pauli exclusion principle; elementary aspects of quantum entanglement.

• Symmetries in quantum mechanics as unitary and anti-unitary operators; rotations, angular momentum, and
spin; spin-1/2 and projective representations of SO(3); addition of angular momentum; Spin-statistics theorem.
Tensor operators and the Wigner-Eckart theorem.

• Approximation methods: Rayleigh-Schrödinger perturbation theory; variational methods; WKB approxima-
tion. Bohr-Sommerfeld quantization.

• Elementary scattering theory in one dimension.

References

You can never have enough quantum mechanics textbooks (I count around fifteen on the bookshelves of my office as
I write this). Accordingly, you should feel free to utilise many sources and find some that are written in a way that you
find appealing. This being said, the primary textbook references for this course are as follows:

• S. Weinberg, Lectures on Quantum Mechanics (CUP 2015).

• J. Sakurai and J. Napolitano, Modern Quantum Mechanics (CUP 2017).

• D. Griffiths and D. Schroeter, Introduction to Quantum Mechanics (CUP 2018).

• K. Hannabuss, An Introduction to Quantum Theory (OUP 1997).

However, we won’t strictly adhere to the notational conventions of any of those. The following are also recommended
for reference:

• E. Merzbacher, Quantum Mechanics (Wiley International 1970).

• P. A. M. Dirac, The Principles of Quantum Mechanics (OUP 2011).

• R. Shankar, Principles of Quantum Mechanics (Springer 1994).



The first is an older text that treats a number of topics in a bit more detail. In particular, the section on Wave Packets
and Free Particle Motion in Merzbacher is nice, as well as the treatment of the WKB approximation. The second is a
classic, written by the master himself. The third is a more-comprehensive-than-average text that has a lot of worked
out examples, aimed more towards physicists.

Mathematical purists and rigour enthusiasts may want to consult the (quite advanced) textbooks:

• B. Hall, Quantum Theory for Mathematicians (Springer 2013).

• V. Moretti, Fundamental Mathematical Structures of Quantum Theory (Springer 2019).

These are both aimed well above the level of the present course, but (unlike most of the other references) they were
really written for mathematicians rather than physicists.

Note on these notes

These notes are meant to complement and supplement the lectures for this course. They may be updated over the
course of the term in response to developments in and feedback from the lectures and classes. Student feedback on the
notes is very welcome, especially if there are typos or places where the text lacks clarity. Please send comments and
corrections to christopher.beem@maths.ox.ac.uk.
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Prologue

Review ofWaveMechanics and Examples
A first course on quantum theory traditionally focuses on the study of the Schrödinger equation (primarily time-
independent, but occasionally time-dependent) for single-particle wave functions in one, two, and three spatial di-
mensions. These topics fall within the realm of what is often called wave mechanics. We include in this preparatory
section a brief review of that formalism along with a recap of several standard examples that should be familiar from
your previous studies. In the remainder of this course we will freely refer back to these standard results. This is not
meant to be a comprehensive review of the content from A11 QuantumTheory; you should be prepared to refer back
to material from that course when necessary.

Warning: this section will not be the subject of any lectures.

0.1 Review of wave mechanics

The primary object of wave mechanics is Schrödinger’s wave function for a particle moving in, say, one spatial dimen-
sion. This is a C-valued function, often denoted Ψ, of real position and time variables x and t,

Ψ : Rx × Rt → C . (0.1)

The wave function is conventionally normalised to obey (at any time),

∞∫
−∞

dx |Ψ(x, t)|2 = 1 . (0.2)

When so normalised, the wave function encodes (in particular) the probability density, ρ, for detecting the presence
of the particle in question at a given point and at a given time according to

ρ(x, t) = |Ψ(x, t)|2 . (0.3)

The normalisation condition (0.2) ensures that with this interpretation in place, the total probability for finding the
particle anywhere at all at any given time is one. Alternatively, one can work with wave functions that don’t necessarily
obey (0.2), in which case we have the modified expression for the probability density,1

ρ(x, t) =
|Ψ(x, t)|2∫∞

−∞ ds |Ψ(s, t)|2
. (0.4)

If a particle moves in one spatial dimension subject to an external potential energy function V(x), then the time-
dependent Schrödinger equation—a partial differential equation that encodes time evolution of the wave function—
takes the form

iℏ
∂Ψ
∂t

(x, t) = − ℏ2

2m
∂2Ψ
∂x2

(x, t) + V(x)Ψ(x, t) . (0.5)

Here ℏ is the reduced Planck constant, which is a fundamental unit of angular momentum (i.e., it has units of [mass]×
[length]2× [time]−1).2 It is a simple matter of differentiating under the integral, using the time-dependent Schrödinger
equation, and integrating by parts to confirm that if Ψ(x, t) evolves in time according to (0.5) then the normalisation
condition (0.2) will hold for all time t if it holds at any given time t0.

1Here we demand that Ψ be squared-normalisable so the denominator is well-defined. This is the normal requirement for a wave function
to be physically meaningful, though in the latter part of this course we will assign some meaning to certain non-normalisable wave functions.

2In SI units, the reduced Planck constant is ℏ ≈ 1.0546× 10−34 kg · m/s2. In a quantum mechanical world, it is often a better idea to make
a choice of units for which ℏ = 1 (so-called natural units). At a certain point in this course, it will make sense to think of ℏ more like a formal
small parameter.
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The differential operator (with respect to x) that acts on the wave function on the right hand side of this equation is
the Hamiltonian operator for the theory. If we introduce operators P and X that act on wave functions according to

(PΨ)(x, t) = −iℏ
∂Ψ
∂x

(x, t) , (XΨ)(x, t) = xΨ(x, t) , (0.6)

then the Hamiltonian operator takes the form of the total classical energy (alternatively, the Hamiltonian of the corre-
sponding classical system if you have taken B7.1 Classical Mechanics) with momentum and position replaced by their
operator counterparts,

H =
P 2

2m
+ V(X) . (0.7)

The time-dependent Schrödinger equation then takes the abstract form

iℏ
∂Ψ
∂t

(x, t) = (HΨ)(x, t) . (0.8)

In sufficiently well-behaved cases,3 we can look for a basis of separable solutions to this equation of the form

Ψ(x, t) = ψn(x) exp
(
− iEnt

ℏ

)
, (0.9)

in which case the (real) numbers {En}n=1,2,3... are identified with the energies of the particle when described by the
corresponding solution, and the functions {ψn} are stationary state wave functions (depending only on position) that
obey the time-independent Schrödinger equation,

(Hψn)(x) = −
ℏ2

2m
ψ ′′
n (x) + V(x)ψn(x) = Enψn(x) . (0.10)

The time-dependence for a stationary state is determined by its energy through the time-dependent phase in (0.9).
With the stationary state wave functions {ψn} forming a basis for the space of possible wave functions at a fixed time,
we can (in principle) understand time-evolution in complete generality,

Ψ(x, 0) =
∑
n

anψn(x) =⇒ Ψ(x, t) =
∑
n

an exp
(
− iEnt

ℏ

)
ψn(x) . (0.11)

This follows from the linearity of the time-dependent Schrödinger equation and is one of the fundamental and unusual
features of the quantum world.

0.2 Standard examples

When developingmore advancedmethods for studying quantummechanical systems, it is useful to be equippedwith a
small arsenal of standard examples from wave mechanics where the stationary-state wave functions ψn are understood
exactly. In this subsection, we review several of the most important of these for ease of reference in the future, and also
to fix certain notational conventions that will be recycled later in the course.

Example 0.2.1 (Particle in a box). When a particle is restricted to move in a fixed interval, say x ∈ [0, a] for
some positive real number a, the system is referred to as the particle in a (one-dimensional) box, or sometimes
a particle in an infinite square well. As part of the definition of the system, one specifies that the wave function
vanishes at the endpoints of the interval. (Alternatively, one could impose periodic boundary conditions and
so describe a particle moving on a circle of circumference a.) This is sometimes phrased as a particle moving
on the real line with a potential that is zero in the given interval and (positive) infinite outside of it.

3We will not dwell on the issue of under which conditions this is a sound strategy.
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The stationary state wave functions for the particle in the box satisfy the simple boundary value problem,

− ℏ2

2m
ψ ′′
n (x) = Enψn(x) , ψn(0) = ψn(a) = 0 , (0.12)

This can be solved by inspection. The wave functions must be sin functions, and the boundary condition at a
further constrains the possible energies En, giving the following set of normalisable solutions,

ψn(x) =
√

2
a

sin
(nπx

a

)
, En =

n2π2ℏ2

2ma2
, n = 1, 2, 3, . . . . (0.13)

The numerical prefactor is chosen so the wave functions will satisfy the standard normalisation condition;
more generally we have the orthogonality relation

a∫
0

dx ψn(x)ψm(x) = δn,m . (0.14)

These functions form an orthonormal basis for the space of wave functions on the interval in the sense of
Fourier series (so a general function gets represented as a suitably convergent infinite sum of basis functions).
Time-evolution of any given wave function (taken as the wave function at time t = 0) can then be determined
by decomposing it according to its Fourier representation and introducing time-dependent phases depending
on the energies in (0.13).

If one were to master only a single example in quantum mechanics, it should be the simple harmonic oscillator. The
general structure of the quantum mechanical harmonic oscillator appears time and again in quantum physics, includ-
ing, e.g., in relativistic quantum field theory and string theory.

Example 0.2.2 (Harmonic Oscillator). Here a particle is allowed to range over the entire real line but with
quadratic potential function V(x) = 1

2mω2x2 (here by convention we take ω ∈ R+), so the Hamiltonian
operator is given by

H =
1

2m
P2 +

mω2X2

2
. (0.15)

The potential is parameterised such that the classical angular frequency of oscillation for the system would be
ω.
The analysis of this system is simplified by introducing the first-order “ladder” operators,4

α± =
1√

2mℏω
(P± imωX) . (0.16)

These obey several important relations,

[α−, α+] = 1 , (0.17)
[H, α±] = ℏωα± , (0.18)

H = ℏω(α±α∓ ± 1
2 ) . (0.19)

Here we’ve adopted standard notation for the commutator of two differential operators A and B:

[A,B] := AB− BA . (0.20)

Equation (0.18) implies that if Hψ = Eψ, then Hα±ψ = (E ± ℏω)α±ψ. The α± operators can therefore be
understood to move amongst stationary states in the space of wave functions, shifting the energy by a definite
amount.
Consequently, the ground state wave function ψ0 (the stationary state wave function of least energy)must obey
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α−ψ0 = 0,5 and this can be immediately solved to give the expression (with normalisation constant)

ψ0(x) =
(mω

πℏ

) 1
4
exp

(
−mωx 2

2ℏ

)
. (0.21)

This stationary state has energy E0 = 1
2ℏω by virtue of (0.19), as can also be seen by direct calculation. All

higher energy states are obtained by the repeated action of α+,

ψn =
(−iα+)

n
√

n!
ψ0 , (0.22)

where the prefactor is such that these wavefunctions are all normalised and real. With a little bit of work, one
finds that these stationary state wave functions can be expressed explicitly as follows,

ψn(x) =
1√
2n n!

(mω
πℏ

) 1
4
exp

(
−mωx2

2ℏ

)
Hn

(√
mω
ℏ

x
)

, (0.23)

where Hn(x) is the n’th Hermite polynomial.6 These form a basis for the space of normalisable wave functions
on the real line, so the set of possible energies (the spectrum) of the quantum harmonic oscillator is given by{

En = ℏω
(

n +
1
2

)
, n = 0, 1, 2 . . .

}
. (0.24)

A more involved, but still exactly solvable, example is the Hydrogen (or Hydrogen-like or Hydrogenic) atom. This is
a problem of key historical importance; indeed much of the early development of Quantum Theory was motivated
by the desire to understand the spectroscopic properties of atoms such as Hydrogen. A detailed analysis of the time-
independent Schrödinger equation for this problem appeared in A11 QuantumTheory, including an introduction to
angular momentum in quantum theory. We give a lightning review of the solution here. We will return to it several
times throughout this course.

Example 0.2.3 (Hydrogenic atom). This is the problem of a single electrically charged particle (the electron)
moving in three dimensions subject to a Coulomb potential due to a pointlike nucleus with positive electric
charge Z times that of the electron in magnitude,7

V(r) = −Zqe
|r|

, (0.26)

so the Hamiltonian operator is given by the following second-order differential operator when acting on wave
functions ψ(r),

H = − ℏ2

2m
∇2 + V(r) . (0.27)

The normalisable stationary states for this system are labelled by three quantum numbers: (n, ℓ,m). These
are called the principal, orbital, and magnetic quantum numbers, respectively. Their ranges are restricted

4Beware, the conventions for the ladder operators here differ from some appearing in some text books by factors of±i.
5Though physically reasonable, the existence of a state with least energy requires an additional argument that we omit here. The argument

appears in A11 QuantumTheory.
6The Hermite polynomials are defined as

Hn(x) = (−1)nex
2 dn

dxn
(
e−x2

)
. (0.25)
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according to

n = 1, 2, 3, . . . ,
ℓ = 0, 1, . . . , n− 1 ,

m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ .

(0.28)

The stationary state wave functions take the form,8

ψnℓm(r, θ, φ) = Rn,ℓ(r)Ym
ℓ (θ, φ) =

√
2ℓ+ 1
4π

(ℓ−m)!

(ℓ+ m)!
Rn,ℓ(r)Pm

ℓ (cos θ)eimφ . (0.29)

The Ym
ℓ (θ, φ) are spherical harmonic functions, which obey

L2Ym
ℓ (θ, φ) = ℏ2ℓ(ℓ+ 1)Ym

ℓ (θ, φ) , L3Ym
ℓ (θ, φ) = ℏmYm

ℓ (θ, φ) , (0.30)

with respect to the orbital angular momentum operators,

L = −iℏ (x ∧∇) , L3 = −iℏ
(

x
∂

∂y
− y

∂

∂x

)
= −iℏ∂φ . (0.31)

The Pm
ℓ (cos θ) are the associated Legendre polynomials.9 The radial wave function takes the form

Rn,ℓ(r) = exp
(
− Zr

na0

)
fn,ℓ(r) , (0.32)

where fn,ℓ(r) is a polynomial of degree n − 1 and a0 = ℏ2/(mq2e) is the Bohr radius. The energy, En, depends
only on the principal quantum number and is given by

En = −
mq4eZ2

2ℏ2n2 = − q2eZ2

2a0n2 = −α2mc2Z2

2n2 , (0.33)

where in the last expression, α = q2e/ℏc ≈ 1/137 is the fine structure constant. Note that these stationary state
energies are always negative.

In contrast to the previous two examples, the stationary state wave functions for the Hydrogen atom do not form a
basis for all possible normalisable wave functions for the electron in a Coulomb potential. Rather, they form a basis
only for the bound state wave functions.10 The possibility of additional wave functions for the Hydrogen atom that are
not bound states is relevant in the context of scattering theory.

7We adopt Gaussian units to avoid factors of 4πε0. Here qe is the charge of the electron, often written as e.
8The normalisation in the last term in (0.29) is so that∫

S2

Ym
ℓ (θ, ϕ)Y

m′
ℓ′ (θ, ϕ) dθ dϕ = δℓ,ℓ′ δm,m′ . (0.34)

9We recall that the (misnamed) associated Legendre polynomials, which in general are not polynomials, are given for non-negativem by

Pm
ℓ (x) =

(−1)m

2ℓℓ!
(1− x2)

m
2

dℓ+m

dxℓ+m (x2 − 1)ℓ , (0.35)

while for negative m they are determined by the relation

P−m
ℓ (x) = (−1)m

(ℓ−m)!

(ℓ+m)!
Pmℓ (x) . (0.36)

Substituting x = cos θ, we see that the Pm
ℓ (cos θ) are indeed polynomials (of degree ℓ) in cos θ and sin θ.

10We do not give a technical definition of bound state here, but physically it corresponds to states where the electron stays localised in the
neighborhood of the nucleus instead of running off to infinity, analogous to the classical distinction between bound (elliptical) orbits versus
parabolic or hyperbolic orbits in the Kepler problem.



1 1 POSTULATES AND EXAMPLES

Chapter 1

Postulates and Examples
In this chapter we introduce (or in some cases recall) the foundational postulates of quantum theory. You will have
encountered these in a less detailed form inA11 QuantumTheory. Here we strive for accuracy, while stopping short of
a completely rigorous discussion (which would require a good deal of background material from functional analysis).
Where we gloss over technical subtleties there will normally be a footnote or comment to this effect. Interested students
are encouraged to take a look in the (advanced) textbooks by Hall and by Moretti for much more discussion.

After introducing the postulates, we will inspect two standard examples of quantum systems to pedagogically illustrate
the general quantum theoretic framework. These examples will be the two-state qubit system and the system of a single
particle moving on the real line.

1.1 Postulates of quantum theory

We adopt the abstract, algebraic formulation of quantum mechanics in terms of operators acting on Hilbert spaces.
This is the main language of the subject, and was developed to a high degree of completeness by P. A. M. Dirac and
John vonNeumann; people often refer to these as the Dirac–von Neumann axioms of quantum theory. Many aspects of
the original theory have come to be better understood mathematically since the inception of the framework, especially
in connection with infinite-dimensional Hilbert spaces and their attendant subtleties. Here we will introduce, with
comments, a set of working postulates/axioms for how physical systems should be described within the context of
quantum theory. A thorough familiarity with abstract linear algebra and metric/inner product spaces is assumed.

Postulate I (Space of states). States of a physical system correspond to rays in a complex Hilbert space.

This postulate requires some definitions, which we reproduce here. (Appendix A provides a more detailed review of
the definition of a Hilbert space and some discussion of advanced topics for those who are curious.)

Definition 1.1.1 (Hilbert Space). A complex Hilbert space is a complex vector space H (possibly infinite-
dimensional) with an Hermitian inner product (·, ·) : H × H → C. An Hermitian inner product is, in
particular, a positive definite sesquilinear form, so for any φi, ψj ∈ H, and α, β ∈ C we have,11

(φ1 + φ2, ψ1 + ψ2) = (φ1, ψ1) + (φ1, ψ2) + (φ2, ψ1) + (φ2, ψ2) ,

(αφ, βψ) = αβ(φ, ψ) ,
(1.1)

Hermiticity amounts to the additional relation

(φ, ψ) = (ψ, φ) . (1.2)

ForH infinite dimensional, it is also required thatH be complete (limits of Cauchy sequences must exist).

Furthermore, it is normally assumed that in the infinite dimensional case the Hilbert spaces dealt with in quantum
theory are separable, meaning they admit a countable basis. The issues of completeness and separability will not play
any significant role in this course, though they are important for providing rigorous foundations to the subject.

Definition 1.1.2 (Ray). A ray inH is the set of non-zero, scalar multiples of a given non-zero vector.

11Observe that we adopt “physics conventions”, in which the inner product is conjugate-linear in the first argument. In the (non-physical)
mathematical literature, it is more common to have the second entry be conjugate linear. This is clearly a matter of convention.
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Alternatively, let us introduce an equivalence relation∼ on the set of non-zero vectors inH,

ψ ∼ αψ ∀ α ∈ C× . (1.3)

Then a ray is an equivalence class with respect to ∼. This characterisation of rays in H lets us identify the space of
quantum states with the quotient of the space of nonzero vectorsH \ {0} by the equivalence relation, i.e.,

{Quantum States} =
(
H \ {0}/

∼
)
∼= P(H) . (1.4)

The latter equivalence identifies this space with the projectivisation of theHilbert space (cf.ASOProjective Geometry).
It is often convenient to adopt the convention of working with normalised state vectors (as in the discussion of wave
functions in Chapter 0. This leaves an overall phase ambiguity, so we also have

P(H) ∼=
(
{ψ ∈ H | (ψ, ψ) = 1}/(

ψ ∼ eiϕψ , ϕ ∈ R
)) . (1.5)

The two characterisations are completely equivalent, but by working with normalised vectors one often ends up with
superficially simpler formulæ.

Remark 1.1.3. The interplay between the physical space of states, P(H), and the larger Hilbert spaceH underlies sev-
eral interesting phenomena in quantum theory. By working in Hilbert space, which in particular is a vector space,
one makes manifest the important linear aspects of quantum theory. However, as we shall see in our discussion of
symmetries and, in particular, of spin, it is sometimes important not lose sight of the true space of states being the
projectivised Hilbert space.

Postulate II (Observables). Observables of a physical system correspond to self-adjoint operators on the Hilbert
spaceH.

Recall that a linear map A : H → H is referred to in the quantum mechanical setting (amongst other places) as an
operator (as in differential operator).

Definition 1.1.4 (Adjoint). The adjoint of a linear operator A : H → H is another operator A∗ : H → H such
that for any φ, ψ ∈ H we have,

(φ,Aψ) = (A∗φ, ψ) . (1.6)

For the case of finite-dimensional H (identified with Cn with the standard inner product after making a choice of
orthonormal basis), operators are just n × n complex matrices, and the adjoint is the transpose-conjugate. There is
a complication in the case of infinite-dimensional H. There, linear operators are generally only partially defined, so
their domain D(A) ⊊ H. (These are referred to as unbounded operators.) The adjoint of an unbounded operator then
has its own domain D(A∗), and self-adjointness requires D(A) = D(A∗)which is not automatic. In this course we will
not generally discuss the domains of the observables we study in any systematic way. See Appendix A for a bit more
advanced discussion of this.

There is an important and, in the general case, deep result that we will utilise (often implicitly) throughout this course:
the spectral theorem for self-adjoint operators on a Hilbert space. The statement of this theorem in the general case
already involves a lot of technology. Roughly speaking, the theorem says that a self-adjoint operator on a Hilbert space
admits a complete (orthonormal) basis of eigenvectors, so for a general observable we can write something like,

ψ =
∑
n

cnψn , (1.7)

where the ψn are eigenstates of the observable A,

Aψn = anψn . (1.8)
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The set of eigenvalues {an} is then referred to as the spectrum of the operator A.

Remark 1.1.5. The rough characterisation of the spectral theorem above omits an important subtlety associated with
infinite-dimensional Hilbert spaces, which is the possibility of a continuous spectrum. We will return to this in the
next chapter. For now you should take the above characterisation as impressionistic in general, but accurate in many
important examples.

Postulate III (Measurement). When measuring an observable A, the only possible results correspond to the ele-
ments of the spectrum of A. The probability of a given result a is the squared norm of the orthogonal projection of
the (normalised) initial state onto the a-eigenspaceHa ⊆ H.

In the case when all eigenvalues of A are nondegenerate, this means that for a (normalised) state ψ as in (1.7), the
probability of obtaining, say, ai when measuring A is exactly |ci|2. More generally, suppose that for some subset {ψi∈I}
of the A eigenbasis, the A eigenvalues are all degenerate ai∈I = a. Let Πa denote the orthogonal projection operator
onto the a eigenspaceHa ⊂ H for which the {ψi∈I} form a basis, i.e., the operator that acts on a state as given in (1.7)
according to

Πaψ =
∑
i∈I

ciψi . (1.9)

Then the probability of observing a when measuring A is given by

(Πaψ,Πaψ) =

(∑
i∈I

ciψi,
∑
i∈I

ciψi

)
=
∑
i∈I

|ci|2 . (1.10)

These probabilistic statements are compatible with the following definitions.

Definition 1.1.6 (Expectation Value). The expectation value of the observable A in a state ψ is given by

Eψ(A) ≡ 〈A〉ψ = (ψ,Aψ) =
∑
n

an|cn|2 . (1.11)

Definition 1.1.7 (Dispersion). The dispersion of the observable A in the state ψ is given by

Δψ(A) = Eψ

((
A− 〈A〉ψ

)2)
= Eψ

(
A2 − 〈A〉2ψ

)
. (1.12)

These definitions agree with the usual statistical notion of the expectation and variance of a random variable.12

Postulate IV (Wave function collapse). Immediately following a measurement of the observable A that yields the
result a, the state of the system will be the orthogonal projection of the initial state onto the a-eigenspace.

This postulate is the subject of quite a lot of discussion—this usually takes place under the banners of interpretations
of quantum mechanics and the measurement problem. These discussions sometimes have a philosophical flavour and
will not be pursued in this course; indeed we will spend very little or no time discussing measurement. Some of the
(more technical than interpretative) aspects of quantum measurement play an important role in quantum information
theory, and if you’re interested you might look into C7.4 Introduction to Quantum Information.

As a practical matter, the statement of wave function collapse has the reasonable consequence that if one measures an
observable A and finds some value a, then immediately measuring A again will reproduce the result a with absolute
certainty.

12In the above discussion, our formulæ were all tailored to the case of a normalised state vector ψ. For general ψ, one must divide by the
normalising factor ⟨ψ|ψ⟩ in both cases.
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Remark 1.1.8 (Compatible and IncompatibleMeasurements). If two observablesA and B commute, so [A,B] =
0,13 then there exists (in the same sense as in Postulate II) a basis of states which are simultaneous eigenstates of
A and B. In this case, one can unambiguously observeA and B simultaneously because the projection operators
onto the appropriate eigenspaces commute. On the other hand, if [A,B] 6= 0 then measurement of A and B
are incompatible, in the sense that if one measures A it will effect the outcome of a measurement of B and vice
versa. In the special case of position and momentum operators, this idea is encapsulated in the Heisenberg
uncertainty relation that you have seen in your previous course.

Postulate V (Time evolution). The time development of a given state ψ is controlled by a special observable called
the Hamiltonian, usually denoted by H, according to the general time-dependent Schrödinger equation,

iℏ
dψ
dt

= Hψ . (1.13)

In general, H as an operator can depend explicitly on time H = H(t), but this doesn’t effect the form of the time-
dependent Schrödinger equation. (Inmost of the exampleswe study thiswill not be the case; we study time-independent
Hamiltonians.)

An important consequence of this equation is that the inner product (a.k.a. the overlap) between any two state vectors
is preserved under time evolution,

d
dt
(φ, ψ) =

(
dφ
dt

, ψ
)
+

(
φ,

dψ
dt

)
,

=

(
Hφ
iℏ

, ψ
)
+

(
φ,

Hψ
iℏ

)
,

=
i
ℏ
(Hφ, ψ)− i

ℏ
(φ,Hψ) ,

= 0 ,

(1.14)

where we have used the self-adjointness of H. In particular, setting φ = ψ, this implies that normalised state vectors
remain normalised under time evolution.

We can say a bit more about how to formalise time evolution for finite intervals of time as follows. (We will also revisit
some of this material in a later section.) Let us define an operator U(t1; t0) : H → H that sends a state vector (thought
of as the state of our system at time t0), call it ψt0 , to its time evolution forward to time t1 > t0, which we call ψt1 .
Because (1.13) is linear, then U(t1; t0) is itself a linear operator. We now have

(φt1 , ψt1) = (U(t1; t0)φt0 ,U(t1; t0)ψt0) ,

= (φt0 ,U(t1; t0)
∗U(t1; t0)ψt0) ,

= (φt0 , ψt0) .

(1.15)

with the last equality a consequence of the time-independence of overlaps. We conclude that the time-evolution op-
erator U(t1; t0) obeys the important relation

U(t1, t0)∗ = U(t1, t0)−1 . (1.16)

Such operators are called unitary operators.

13Once again, there is a small subtlety with defining this commuting property for general operators in infinite-dimensional Hilbert spaces,
but we won’t encounter any examples where the subtlety is relevant
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Definition 1.1.9 (Unitary Operator). A unitary operator U on a Hilbert space is a linear map U : H → H that
obeys

U∗U = UU∗ = 1H . (1.17)

This is, equivalently, a surjective map fromH toH obeying U∗U = 1H.

The requirement to separately consider left- and right-composition by U∗ or to demand surjectivity is associated with
the subtleties of infinite-dimensional Hilbert space. In finite dimensional settings, and for a given choice of orthonor-
mal basis, a unitary operator is just the same thing as a unitary matrix.

When the Hamiltonian itself is time-independent, the time evolution operator will only depend on the time interval
t1 − t0 and we can write U(t1 − t0) instead, or just U(t) for simplicity. To understand time-evolution then amounts to
identifying the basis of states that diagonalises the action of the Hamiltonian, i.e., the stationary states obeying

Hψn = Enψn . (1.18)

The time evolution operator U(t) can be understood very simply in the basis of stationary states, with its action given
by

U(t)ψn(x) = exp
(
− iEnt

ℏ

)
ψn(x) , (1.19)

from which the action on a general state can be deduced by linearity. We observe that we can write this operator as an
exponentiation of the Hamiltonian operator,

U(t) = exp
(
− iHt

ℏ

)
, (1.20)

where the expression on the right has an obvious interpretation when applied to stationary states, and themore general
case follows by linearity.

1.2 Example: the qubit

The simplest instances of quantum systems are those with finite-dimensional Hilbert spaces. The simplest non-trivial
example is when theHilbert space has dimension two, in which case the system is a qubit.14 Choosing any orthonormal
basis we get a (non-canonical) identificationH ∼= C2 with inner product

(u, v) = u · v . (1.21)

The space of quantum states is the complex projective line (i.e., the Riemann sphere), P(C2) = CP1. Topologically
CP1 ∼= S2, the two-sphere, so the space of quantum states of the qubit system is actually a sphere—this is sometimes
called the Bloch sphere.

Observables in this qubit system are 2× 2 self-adjoint (a.k.a. Hermitian) matrices. A basis for these is as follows,

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.22)

Here σ0 is the identity operator, so does not play much of a role as an observable. The σi, i = 1, 2, 3 are the so-called
Pauli matrices, which enjoy the commutation relations

[σ1, σ2] = 2iσ3 , [σ2, σ3] = 2iσ1 , [σ3, σ1] = 2iσ2 . (1.23)

In the given basis, σ3 is diagonalised with eigenvalues ±1. Meanwhile σ1 and σ2 are not diagonalised, and the non-
trivial commutators imply that these are incompatible observables. Indeed, the σ1 eigenstates are the vectors (1, 1)t

14Qubits are the building blocks of quantum computers. They stand in as the quantummechanical analogue of a classical bit, which is a degree
of freedom that takes one of two values 0 and 1. Unlike classical bits, qubits can exist in any complex linear superposition of their two basis states,
which accounts for their more powerful computational properties.
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and (1,−1)t, and those of σ2 are (1,−i)t and (1, i)t. By choosing one of these as a basis one could diagonalise σ1 or σ2
instead, or in fact an arbitrary real linear combination of the σi. We will encounter more properties of these matrices
when we revisit this Hilbert space in the context of our treatment of rotations and spin.

For a qubit, the possible time-evolution operators are elements of the two-dimensional unitary group U(2) of 2 × 2
matrices whose transpose-conjugate (adjoint) is their inverse. It is interesting to consider the action of this group on
the space of quantum states. In particular, note that there is a subgroup U(1) ⊂ U(2) of matrices of the form

U =

(
eiϕ 0
0 eiϕ

)
, (1.24)

whose action on the space of quantum states is actually trivial (because states related by an overall phase are equivalent).
Thus, we have that the action of U(2) on the space CP1 factors through the quotient by this U(1) subgroup, which
happens to be isomorphic to the three-dimensional (special) orthogonal group,

U(2)/U(1) ∼= SO(3) . (1.25)

There is an obvious action of SO(3) on CP1 which is just the rigid rotations of the two-sphere, and indeed this is how
this action arises (we won’t prove it here). We are most familiar with SO(3) in connection with rotations in three-
dimensional space, and its appearance here is no accident, as we will see in more detail later in Chapter 6.

1.3 Example: Particle on the real line

The principal instance of this formalism treated inA11 QuantumTheory arose in describing the movement of a single
point-particle in d = 1, 2, or 3 dimensions. For now we restrict to d = 1. In this case, a state vector is represented by a
Schrödinger wave function ψ : R → C, a complex-valued function of position x ∈ R. The Hermitian inner product
of two state vectors φ and ψ is given by

(φ, ψ) =
∫
R

φ(x)ψ(x) dx . (1.26)

Physical wave functions are required to be square-normalisable (sometimes we will just say “normalisable”):

(ψ, ψ) =
∫
R

|ψ(x)|2 dx <∞ . (1.27)

The Hilbert space assigned to such a system is then, roughly speaking, the vector space of complex, square-integrable
functions on Rd. With some technical improvements,15 this leads to the definition of the Hilbert space H ∼= L2(R)
(here L is for Lebesgue and the exponent indicates that it is the absolute value squared that appears in the norm).

The observables that are most frequently discussed in this setting are realised as differential operators on wave func-
tions. In particular, the most natural observables from a physical viewpoint are the momentum and position operators
P and X, which act according to

(Pψ)(x) = −iℏ
(

dψ
dx

)
(x) , (Xψ)(x) = xψ(x) . (1.28)

More generally, one constructs many self-adjoint differential operators as observables by composing the actions of P
and X appropriately.16 For example, the Hamiltonian operator is usually taken to have its classical form

H =
P2

2m
+ V(X) , (1.29)

15As youmay know if you have takenA4 Integration orB4.1 Functional Analysis, to really define this space well one needs to form equivalence
classes of functions that agree almost everywhere, i.e., outside of sets of Lebesgue measure zero).

16However, recall that because in general (AB)∗ = B∗A∗, a generic composition of P’s and X’s will not be self-adjoint despite P and X
themselves being so.
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for some function V that is frequently (though not always) bounded below. This acts on states-as-wave-functions
according to

(Hψ)(x) = − ℏ2

2m
ψ′′(x) + V(x)ψ(x) . (1.30)

The stationary states, or H eigenstates, are those {ψn}, that obey the wave-function version of the time-independent
Schrödinger equation (see the review in Chapter 0),

− ℏ2

2m
ψ′′
n (x) + V(x)ψn(x) = Enψn(x) , (1.31)

for En in the spectrum of H. For examples like the harmonic oscillator, these form an orthonormal basis for L2(R).

Remark 1.3.1. ThoughX and P are intuitively two very natural observables for this system, note that the space of
all square-integrable functions includesmany functions which are not differentiable (or even continuous!) and
many functions which, aftermultiplication by x, would no longer be square normalisable. This is an instance of
the aforementioned complication that observables are often only defined on a (dense) subspace of the Hilbert
space in the infinite-dimensional case. X and P also don’t admit proper eigenfunctions inH, an issue that we
will return to in the coming Chapter 2.

A class of observables that are quite well behaved, and which you in fact studied a bit in A11 Quantum Theory in
different terms, are the projection operators

ΠE : H −→ H ,

ψ(x) 7−→ 1E(x)ψ(x) ,
(1.32)

where 1E(x) is the indicator function for a measurable set E ⊆ R. This operator is easily verified to be self-adjoint and
a projection (in that ΠE ◦ΠE = ΠE), which implies that its eigenvalues can only be zero or one. Indeed, by inspection
one observes that a function can only be an eigenfunction if it is supported entirely within E (in which case it has
eigenvalue one) or if it is supported entirely outside of E (in which case it has eigenvalue zero).

A measurement of ΠE corresponds to asking the yes/no question “is the particle located within the region E?”. The
expectation value for this operator is given by

Eψ(ΠE) =

∞∫
−∞

dx |ψ(x)|21E(x) =
∫
E

dx |ψ(x)|2 , (1.33)

which is exactly how inA11 QuantumTheory you computed the probability that the particle was located in the region
E. Here we see that this result is reproduced in a framework where one only asks questions of a system that can be
encoded in an observable.

Remark 1.3.2. The identification E→ ΠE is an example of what is called a projection-valued measure, and this
is the object whose existence is guaranteed by the application of (one formulation of) the spectral theorem to
the position operator X.
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Chapter 2

Dirac’s Formalism and ContinuumNormalisation

The subject of this section is, in some sense, a matter of notational formalism. We will (re-)introduce the bra-ket
formalism of Dirac for representing states and observables in quantum mechanical systems. In reality, Dirac’s for-
malism (in the broadest sense) is more substantive than just a change of notation. The novelty arises when discussing
observables with a continuous spectrum. This can happen only in infinite-dimensional Hilbert spaces.

2.1 States, dual states, and matrix elements

The basic notational device introduced by Dirac is the bra-ket. Here we represent vectors in a Hilbert space as kets,

ψ ∈ H ←→ |ψ〉 . (2.1)

Since a Hilbert space is equipped with an inner product, we can also assign to a given state a dual vector

φψ : H → C ,

: χ 7→ (ψ, χ) .
(2.2)

By sesquilinearity of the inner product on H, this map is C-conjugate-linear: φλψ = λ̄φψ for λ ∈ C. An important
result in functional analysis is the following.

Theorem 2.1.1 (Riesz–Fréchet representation theorem). Let H be a Hilbert space. For every continuous linear func-
tional φ ∈ H∗, there exists a unique ψ ∈ H such that φ = φψ (using the notations above).

We do not provide a proof here. In the finite-dimensional setting, it is not a difficult result, but in the infinite-
dimensional case it is not as obvious. Indeed, the presence of the adjective continuous in the above theorem statement
is relevant precisely in the case of infinite-dimensionalH (all linear functionals are continuous in a finite dimensional
Hilbert space). This theorem establishes a canonical bijective, antilinear isometry betweenH andH∗.

In Dirac notation, we denote elements of the (continuous) dual spaceH∗ by bras:

φ ∈ H∗ ←→ 〈φ| . (2.3)

As a somewhat overloaded notational convention, we often use as the label for a bra the name of the state inH to which
it corresponds under the Riesz–Fréchet isometry,

φψ ←→ 〈ψ| . (2.4)

With these conventions in place, we denote the inner product between two states φ and ψ as a composite bra-ket, where
the state and dual state are fused together in the visually natural manner,

(φ, ψ) ←→ 〈φ|ψ〉 . (2.5)

An operator A can act on states/kets from the left, whereupon we will notationally allow it to be “absorbed” into the
ket

A |ψ〉 = |Aψ〉 . (2.6)

Similarly, operators act from the right upon bras, and are replaced by their adjoint when absorbed into the bra,

〈φ|A = 〈A∗φ| . (2.7)
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Within an inner product, an operator can be moved about accordingly,

(φ,Aψ) = 〈φ|Aψ〉 = 〈φ|A|ψ〉 = 〈A∗φ|ψ〉 = (A∗φ, ψ) . (2.8)

The quantity 〈φ|A|ψ〉 will be referred to as the matrix element of A between φ and ψ.

2.2 Constructions with bra-kets

The bra-ket formalism is convenient for representing an array of natural constructions involving linear operators on
Hilbert spaces. For example, given the state |α〉 and the dual-state 〈β|, we can construct the outer product,

|α〉 〈β| : H → H ,

|ψ〉 7→ |α〉 〈β|ψ〉 = (〈β|ψ〉) |α〉 .
(2.9)

So we can concatenate bras and kets in the visually obvious manner and get meaningful operations. Outer products
also behave well under taking adjoints,17

(|α〉 〈β|)∗ = |β〉 〈α| . (2.10)

Now let {|i〉 , i ∈ I} be an orthonormal basis forH (here I is some finite or countably infinite indexing set). Orthonor-
mality means we have 〈i|j〉 = 〈j|i〉 = δij. We can then write an arbitrary vector inH uniquely as a (possibly infinite)
linear combination of these basis vectors,

|ψ〉 =
∑
i∈I

ci |i〉 . (2.11)

The components cj for some j ∈ I are extracted by acting with the bra corresponding to |j〉,

〈j|ψ〉 =
∑
i∈I

ci 〈j|i〉 =
∑
i∈I

ciδij = cj . (2.12)

We see that we can realise the orthogonal projection Πj onto the one-dimensional subspace spanned by the basis vector
|j〉 using the outer product, |j〉 〈j|,18

|j〉 〈j|ψ〉 = cj |j〉 . (2.14)

More generally, for a linear subspace H′ ⊆ H with orthonormal basis |i′〉 , i′ ∈ I′, we can form the manifestly self-
adjoint, orthogonal projection operator fromH ontoH′:

ΠH′ =
∑
i′∈I′
|i′〉 〈i′| . (2.15)

In particular, for the caseH′ = H, we have an expression for the identity operator,

ΠH ≡ 1H =
∑
i∈I

|i〉 〈i| . (2.16)

This expression is often referred to as a resolution of the identity or completeness relation. Given a linear operator
A : H → H, we can then resolve it in terms of its matrix elements with respect to the given basis,

A = 1HA1H =
∑
i,j∈I

|i〉 〈i|A|j〉 〈j| =
∑
i,j∈I

Aij |i〉 〈j| . (2.17)

where
Aij = 〈i|A|j〉 . (2.18)

17Verify this relation if it isn’t obvious to you by inspection.
18For the a general state vector ψ, not necessarily normalised, we have the orthogonal projection operator,

Πψ =
|ψ⟩ ⟨ψ|
⟨ψ|ψ⟩

. (2.13)
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Finally, for A an observable if the states {|i〉} are an orthonormal basis of A eigenstates obeying A |i〉 = ai |i〉 then we
have matrix elements Aij = aiδij and (2.17) becomes the spectral decomposition of A,

A =
∑
i

ai |i〉 〈i| . (2.19)

Remark 2.2.1. In the case where H is finite-dimensional, this is all pretty familiar. The outer product |i〉 〈j|
corresponds to the matrix that is all zeroes except for having a one in the i’th row at the j’th column, and
(2.17) describes the building up the operator A entry by entry as a matrix, while (2.19) corresponds to the
matrix expression for A in the basis where A is diagonalised, which is the usual spectral decomposition of an
Hermitian matrix. The resolution of the identity is just the expression for the identity operator as the identity
matrix.

In terms of bra-kets, we can represent the expectation value of an observable as follows. If our basis {|i〉} diagonalises
the observable A as above, then we have

Eψ(A) = Eψ(A1H) =
∑
i∈I

〈ψ|A|i〉 〈i|ψ〉 ,

=
∑
i∈I

ai| 〈i|ψ〉 |2 ,
(2.20)

which matches the notion of expectation value for a random variable.

2.3 Continuous observables

We now come to the important issue of observables with continuous spectrum. In finite dimensional Hilbert spaces
(and, it turns out, for something called a compact operator on an infinite-dimensional Hilbert space) the spectrum of
any observable is discrete, being just the set of eigenvalues. For more general operators in infinite-dimensional Hilbert
spaces we may potentially encounter a subtlety.

Just the definition of the spectrum of an operator is in fact more subtle in the infinite-dimensional case than just the
eigenvalues. Indeed, we have the following:

Definition 2.3.1 (Spectrum). The spectrum of a self-adjoint operator A on a Hilbert space H is the subset
σ(A) ⊆ R such that for λ ∈ σ(A), the shifted operator A − λ1H does not have a (bounded, everywhere
defined) inverse.

We will not dwell on the bounded/everywhere-defined caveats, which are relevant for a fully rigorous treatment. In
finite dimensions, the equivalence of non-invertibility and λ being an eigenvalue is automatic upon consideration of
the characteristic polynomial.

In the infinite-dimensional case, more elaborate situations are possible, and in particular the spectrum can include
a continuum. Indeed, we can think of the position operator X acting on L2(R). Considering our definition, a value
λ ∈ σ(X) if for any g ∈ L2(R) we can’t find an f ∈ L2(R) that solves the problem,

(x− λ)f(x) = g(x) . (2.21)

But clearly this is the case for any real λ (to be precise, we could take g(x) to be an indicator function for a finite interval
including x = λ). So for X the spectrum is the entire real line.

This is intuitively compatible with our Postulate III, since the possible observable values of the position operator should
be roughly the entire real line. However now there is apparently some tension with our desire to assign a basis of eigen-
states to the set of points in the spectrum of an observable. Dirac suggested in his original treatise on the subject to
forge ahead and formally extend his bra-ket formalism to include kets associated even to elements of a continuous
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spectrum. This is indeed the approach method that is standard in the physics community. His proposal can in retro-
spect be understood as being essentially an application of the spectral theorem for self-adjoint operators in its most
sophisticated form. We will introduce the method now in an operational sense.

2.3.1 Generalised position eigenstates

To get our discussion off the ground, let’s continue with the particle moving on the real line, so with Hilbert space
L2(R).19 The two fundamental observables in this setting are the position and momentum operators, and as we saw
above, for the position operator X the spectrum is the entire real line.

Dirac instructs us to define an generalised position eigenstate |ξ〉 for this operator for each ξ ∈ R,20

X |ξ〉 = ξ |ξ〉 . (2.22)

Were we to use a wave function ψξ(x) to represent such a state, it would have to satisfy the unlikely-looking identity

xψξ(x) = ξψξ(x) . (2.23)

For this to hold, it must be that ψξ(x) = 0 for x 6= ξ, and indeed if this were an element of L2(R) that would mean it
was the zero function, so certainly this can’t correspond to a non-zero element of the Hilbert space.

Nevertheless, we formally introduce such an object. Since this generalised state is meant to represent a situation where
the particle is definitely at x = ξ, it is reasonable to demand

〈ξ|ψ〉 = ψ(ξ) , 〈ψ|ξ〉 = ψ(ξ) . (2.24)

This is actually an important idea: the value of the wave function at a point x = ξ is the overlap of the state in question
with the generalised position eigenstate |ξ〉. Expressing this in terms of wave functions, we have

∞∫
−∞

dx ψξ(x)ψ(x) = ψ(ξ) , (2.25)

We recognise this to be precisely the sifting property of (confusingly named) Dirac δ-function. Rather than a function,
this is a distribution, meaning it is a linear functional on functions. You have met the Dirac δ-function previously in
M4Multivariable Calculus, and maybe also in ASO Integral Transforms. Indeed, we will identify

|ξ〉 ←→ ψξ(x) = δ(x− ξ) . (2.26)

Note that while these generalised position eigenstates are not normalisable in the usual sense of L2(R), they do obey a
continuum normalisation condition,21

〈
ξ
∣∣ξ′〉 = ∞∫

−∞

dx δ(x− ξ)δ(x− ξ′) = δ(ξ − ξ′) . (2.27)

This is a fairly natural generalisation of the usual normalisation condition where we have a Kronecker δ, but with the
Dirac δ instead.

Happily, it turns out that we can for the most part use these generalised position eigenstates in the same ways we would
use ordinary basis states as discussed previously, with various sums converted into integrals as appropriate. Justification

19A similar discussion here could take place for the particle moving on an interval [0, 1] ⊂ R, with Hilbert space L2([0, 1]). The free particle
on the entire real line is even a bit more subtle.

20Here we begin to adopt a fairly standard notational choice: in the context of discussing a particular observable (in this case X), we denote
states whose eigenvalue is some number (in this case ξ ∈ R) by a ket whose label is that same eigenvalue (in this case |ξ⟩). There is some danger
of getting confused if not sufficiently diligent with this notational system, so be careful!

21Such (generalised) states are sometimes referred to as being δ-function normalisable states.
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for this rests upon some deep pieces of functional analysis that we are sweeping under the rug,22 but as we mentioned
above, the quantum mechanical formalism (due to Dirac) actually predated the rigorous justification. In particular, we
have a resolution of the identity in terms of these position eigenstates,

1L2(R) =
∞∫

−∞

dξ |ξ〉 〈ξ| . (2.28)

Acting on genuine states (corresponding to authentic, normalisable wave functions), we have

1L2(R) |ψ〉 =
∞∫

−∞

dξ |ξ〉 〈ξ|ψ〉 ,

=

∞∫
−∞

dξ ψ(ξ) |ξ〉 ,

(2.29)

The final expression gives the continuum analogue of the decomposition of a general state in an orthonormal basis.

Generalising this resolution of the identity, if we integrate the outer product |ξ〉 〈ξ| over any measurable subset E ⊂ R,
we obtain the self-adjoint projection operator corresponding to multiplication by the indicator function 1E discussed
in Chapter 1.3,23

ΠE =

∫
E

dξ |ξ〉 〈ξ| , 〈x|ΠE |ψ〉 = 1E(x)ψ(x) . (2.30)

Indeed, we note that for a finite measure subset E this gives an actual projection operator onH, while the outer product
itself is not well-defined as a map on the Hilbert space. Since these projections are supposed to arise when considering
measurements, this state of affairs is often understood as corresponding to the physical impossibility of measuring
position with infinite precision; one could only ever check that a particle is within some error bar of a particular
position.

2.3.2 Generalised momentum eigenstates

There is a similar story with the momentum operator P = −iℏ d
dx . We introduce (generalised) momentum eigenstates

|p〉,
P |p〉 = p |p〉 , p ∈ R , (2.31)

and if we denote the actual wave function associated to this state as ψp(x), then we can easily solve the corresponding
differential equation, at least formally,

− iℏ ψ′
p(x) = pψp(x) =⇒ ψp(x) = N e

ipx
ℏ , (2.32)

whereN is some normalisation factor. The problem is now clear and and feels familiar: these wave functions are not
square-normalisable at all (on the entire real line), so this is not giving us an element of L2(R). Rather this is a kind of
generalised eigenstate, which we can interpret as a distribution.

Using our previous understanding of the relationship between wave functions and generalised position eigenstates, we
deduce the overlap equation

〈x|p〉 = ψp(x) = N e
ipx
ℏ . (2.33)

22There are several realisations of these generalised eigenstates within a more rigorous framework. In one version of the spectral theorem for
self-adjoint operators on infinite-dimensional Hilbert spaces, one constructs the Hilbert space of interest as a direct integral of smaller Hilbert
spaces, and these generalised states can be understood as elements of the (Hilbert-space) integrand of that direct integral. Alternatively, Hilbert
spaces arising in quantummechanics can be equipped with additional structure known as a Gel’fand triple. In this case the generalised states are
elements of a larger space of distributions that form a part of that structure. You don’t need to know any of this for the present course, but it is a
beautiful subject!

23In one rigorous treatment of these constructions, it is this assignment of a self-adjoint projection operator to (measurable) subsets of R that
is rigorously defined and guaranteed to exist by the spectral theorem; such an assignment is called a projection valued measure.
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We can then derive the continuum normalisation condition for the momentum eigenstates,

〈p|p′〉 = |N |2
∞∫

−∞

dx e−
ipx
ℏ e

ip′x
ℏ = 2πℏ |N |2

∞∫
−∞

ds e2πi(p−p′)s = 2πℏ |N |2δ(p− p′) , (2.34)

where in the last equation we have recognised the integral representation for the delta function. It is then natural to
adopt the normalisation conventions N = (2πℏ)−1/2 giving canonical continuum normalisation to the generalised
momentum eigenstates. We have an analogous resolution of the identity in terms of momentum states,

1H =

∞∫
−∞

dp |p〉 〈p| . (2.35)

This formalism of position and momentum (generalised) bases for L2(R) gives us a nice new perspective on the quan-
tum mechanics of a particle. To a given state vector |ψ〉, we can associated either its expression in position space,

ψ(x) = 〈x|ψ〉 , |ψ〉 =
∞∫

−∞

dx ψ(x) |x〉 , (2.36)

or its expression in momentum space,

ψ̂(p) = 〈p|ψ〉 , |ψ〉 =
∞∫

−∞

dp ψ̂(p) |p〉 . (2.37)

So there are actually (at least) two wave functions associated to the state ψ of a particle on the real line. These, it turns
out, are related by the Fourier transform,

ψ(x) = 〈x|ψ〉 =
∞∫

−∞

dp 〈x|p〉 〈p|ψ〉 = 1√
2πℏ

∞∫
−∞

dp e
ipx
ℏ ψ̂(p) . (2.38)

ψ̂(p) = 〈p|ψ〉 =
∞∫

−∞

dx 〈p|x〉 〈x|ψ〉 = 1√
2πℏ

∞∫
−∞

dx e−
ipx
ℏ ψ(x) . (2.39)

Indeed, the Fourier transform is a unitarymap from L2(R) to itself (this is the Plancherel theorem), so the change from
position to momentum representation is just a change of basis for our Hilbert space.

Remark 2.3.2. This formalism for generalised position eigenstates generalises immediately to the case of a
particle moving in, say, d = 2 or d = 3 dimensions. There for x = (x1, . . . , xd) we have the generalised
eigenstates

Xi |x〉 = xi |x〉 , (2.40)

obeying the continuum normalisation condition,

〈x|x′〉 = δd(x− x′) , (2.41)

and the corresponding resolution of the identity,

1L2(Rd) =

∞∫
−∞

· · ·
∞∫

−∞

dx1 · · · dxd |x〉 〈x| . (2.42)

Similarly, we have generalised momentum eigenstates corresponding to non-normalisable plane-wave wave
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functions,
|p〉 −→ ψp(x) =

1
(2πℏ)d/2

e
ip·x
ℏ , (2.43)

obeying the same continuumnormalisation condition and admitting the same type of resolution of the identity.
d-dimensional wave functions in position space and momentum space are related now by the d-dimensional
Fourier transform.

2.4 Application: free particle propagator

A nice application of the machinery we have developed here is in defining an important object in studying quantum
mechanical dynamics: the propagator. Intuitively, this is the quantity that tells you the quantum mechanical amplitude
(square root of probability density) for a particle that starts at a given position to be detected at some other position at
some definite time in the future. In terms of generalised position eigenstates, this is the quantity

U(x1, t1; x0, t0) := 〈x1|U(t1; t0)|x0〉 , (2.44)

where U(t1; t0) is the unitary time evolution operator introduced previously. If one has the propagator under good
control, then the time evolution of general quantum states can be described using the following double integral

〈
ψ1|U(t1, t0)|ψ0

〉
=
〈
ψ1
∣∣ ∞∫

−∞

dx1 |x1〉 〈x1|

U(t1; t0)

 ∞∫
−∞

dx0 |x0〉 〈x0|

∣∣ψ0
〉
,

=

∞∫
−∞

∞∫
−∞

dx1 dx0 ψ1(x1)U(x1, t1; x0, t0)ψ0(x0) .

(2.45)

In general, the propagator is not so easy to compute. Here wewill do it for the case of the free particle in one dimension.
The Hamiltonian is H = P2/2m and the (generalised) energy eigenstates are precisely the (generalised) momentum
eigenstates:

H |p〉 = Ep |p〉 =
p2

2m
|p〉 . (2.46)

As we know well, time evolution for these states then proceeds via phase multiplication,

U(t1, t0) |p〉 = exp
(
−iEp(t1 − t0)

ℏ

)
|p〉 = exp

(
−ip2(t1 − t0)

2mℏ

)
|p〉 . (2.47)

This means that the momentum-space propagator is very simple for the free particle,

〈p1|U(t1; t0) |p0〉 =: Û(p1, t1; p0, t0) = δ(p1 − p0) exp
(
− ip20(t1 − t0)

2mℏ

)
. (2.48)

The position-space propagator is then obtained by a double Fourier transform,24

U(x1, t1; x0, t0) = 〈x1|

 ∞∫
−∞

dp0 |p0〉 〈p0|

U(t1; t0)

 ∞∫
−∞

dp1 |p1〉 〈p1|

 |x0〉 , (2.49)

=

∞∫
−∞

∞∫
−∞

dp0 dp1 〈x1|p1〉 Û(p1, t1; p0, t0) 〈p0|x0〉 , (2.50)

24The attentive reader will notice that upon setting t → −iτ, the final result for the propagator becomes the Green’s function for the one-
dimensional heat equation, with the thermal conductivity given by ℏ/2m. Indeed, the same “imaginary time” replacement applied to the time-
dependent Schrödinger equation for this system yields the heat equation with said thermal conductivity.
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=
1

2πℏ

∞∫
−∞

∞∫
−∞

dp0 dp1 δ(p1 − p0) exp
(

ip1x1 − ip0x0
ℏ

− ip20(t1 − t0)
2mℏ

)
, (2.51)

=
1

2πℏ

∞∫
−∞

dp exp
(

ip(x1 − x0)
ℏ

− ip2(t1 − t0)
2mℏ

)
, (2.52)

=

(
m

2πiℏ(t1 − t0)

) 1
2

exp
(
−m(x1 − x0)2

2iℏ(t1 − t0)

)
. (2.53)

The last integral is somewhat subtle, but can be computed using results for Fresnel integrals.25

It is interesting to observe that instantly when t1 > t0, the propagator is nonzero for arbitrarily large x1 − x0. This
reflects the infinite uncertainty in momentum that is associated with the completely localised position eigenstate at
time t0. However, the phase in the exponential is also very large for large x1− x0 and small t1− t0, so when we average
over positions (as we should if we start with a normalisable wave function) then there will be cancellations and the
wave function will remain somewhat localised near its original support.

25The general formula is
∞∫

−∞

dx exp
(

i
2
ax2 + ibx

)
=

(
2πi
a

) 1
2
exp

(
−
ib2

2a

)
.
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Chapter 3

Composite Systems, Tensor Products, Entanglement
It is important to be able to build up the description of a quantum system from those of more elementary subsystems
with a smaller number of degrees of freedom. In this section we introduce the basic mathematical machinery for doing
this (theHilbert space tensor product), and look at simple aspects of the phenomenon of quantumentanglement, which
arises naturally as a consequence.

3.1 Hilbert space tensor product

Suppose we encounter two quantum systems that (at least in some idealisation) do not interact with one another, and
that are to be taken together in a single description. (You might imagine two atoms kept far enough apart so as to be
non-interacting.) The two systems, taken on their own, will have their states encoded by Hilbert spaces H1 and H2,
respectively, while as a composite system we should assign a single Hilbert space H3. How should this Hilbert space
H3 be characterised? The following construction arises naturally from physical considerations:

• For state vectors
∣∣ψ1
〉
∈ H1 and

∣∣ψ2
〉
∈ H2, there should exist a definite state vector that we will denote by∣∣ψ1 ⊗ ψ2

〉
∈ H3. Such a vector is referred to as a pure tensor or a simple tensor, or alternatively, as decomposable.26

The set of objects defined in this manner is justH1 ×H2.

• By the linearity of quantum theory, we should be able to take linear superpositions of these pure tensors.

At this stage we have effectively reproduced the following definition:

Definition 3.1.1 (Free Vector Space). The free vector space on the set H1 × H2 is the vector space of all finite
linear combinations of elements ofH1 ×H2.

The free vector space overcounts in some obvious ways, and we introduce a number of identifications.

• Since state vectors only encode physical states up to overall scalar multiplication, the consequence of rescaling
either tensor factor should be no different from rescaling the vector as a whole:∣∣λψ1 ⊗ ψ2

〉
∼ λ

∣∣ψ1 ⊗ ψ2
〉
∼
∣∣ψ1 ⊗ λψ2

〉
for λ ∈ C .

• If system two is definitely in state
∣∣ψ2
〉
, then when system one is in a superposition of two states, the total system

is in the superposition of the corresponding two decomposable states where the second system remains in
∣∣ψ2
〉
.∣∣(ψ1 + φ1)⊗ ψ2

〉
∼
∣∣ψ1 ⊗ ψ2

〉
+
∣∣φ1 ⊗ ψ2

〉
.

• The same argument as above should hold with the two systems switched.∣∣ψ1 ⊗ (ψ2 + φ2)
〉
∼
∣∣ψ1 ⊗ ψ2

〉
+
∣∣ψ1 ⊗ φ2

〉
.

Definition 3.1.2 (Tensor Product). The vector space tensor product is then defined as the quotient of the free
vector space above by the equivalence relations given above,

H1 ⊗H2 := F(H1,H2)/ ∼ . (3.1)

26When not using bra-ket notation, it is common to write this vector as ψ2 ⊗ ψ2. We may also sometime use
∣∣ψ1, ψ2

〉
or

∣∣ψ1
〉
⊗

∣∣ψ2
〉

interchangeably. Hopefully the meaning of the notation will always be clear in context.
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An inner product onH1 ⊗H2 is inherited from those onH1 andH2 by defining for pure tensors〈
ψ1 ⊗ ψ2|φ1 ⊗ φ2

〉
=
〈
ψ1|φ1

〉 〈
ψ2|φ2

〉
, (3.2)

and extending this to general elements by sesquilinearity. Note that this definition is compatible with the equivalence
relations given above.

Definition 3.1.3 (Hilbert Space Tensor Product). The Hilbert space tensor product is obtained by taking the
completion of this vector space tensor product with respect to the norm induced by the inner product.

As usual, this completion is a technical detail that is relevant in the infinite dimensional case. It essentially means that
we allow the possibility of taking infinite linear combinations of pure tensors whose norm is still finite. Finer aspects
of this construction won’t be important or examinable in this course, though we will see examples.

Remark 3.1.4 (Alternate construction of tensor product). There is an equivalent, in a sense much simpler,
definition of the Hilbert space tensor product that is often used. Let {|αi〉} and {|βj〉} denote bases forH1 and
H2, respectively. Then H1 ⊗ H2 can be identified with the Hilbert space with given basis {|αi ⊗ βj〉} (again,
in the infinite dimensional case one requires completeness, which allows infinite linear combinations of these
with finite norm). To a purist, the first definition has the advantage being explicitly basis-independent. For
practical purposes, this latter definition is often the most useful.

If a system is described by a tensor product Hilbert spaceH1 ⊗H2, then operators and observables that are defined to
act separately onH1 andH2 naturally extend to the tensor product. If A1 : H1 → H1 and A2 : H2 → H2, then we can
define

A1 ⊗ A2 : H1 ⊗H2 −→ H1 ⊗H2∣∣ψ1 ⊗ ψ2
〉
7−→

∣∣A1ψ1 ⊗ A2ψ2
〉
.

(3.3)

In particular, when either A1 or A2 is the identity operator, then this gives operators that act on the tensor product only
through the second or first tensor factor, respectively. Such operators naturally commute,

(A1 ⊗ 1H2)(1H1 ⊗ A2) = (A1 ⊗ A2) = (1H1 ⊗ A2)(A1 ⊗ 1H2) , (3.4)

which is in agreement with the physical criterion that making observations on one system should not impact another,
in principle disjoint, system.

We can similarly form the n-fold tensor productH1⊗H2⊗. . .⊗Hn with basis αi1⊗βi2⊗. . .⊗γin with ij indexing a basis
ofHj. This is the Hilbert space for the composite of the n quantum mechanical systems described byHi, i = 1, . . . , n.
When the constituent Hilbert spaces are all identical toH we simply write⊗nH orH⊗n.

A first important behaviour of Hilbert spaces under tensor product is that their dimensions (when finite) combine
multiplicatively,

dim(H1 ⊗H2) = dimH1 × dimH2 . (3.5)

This follows immediately from the second construction of the tensor product given above, where the number of basis
elements clearly obeys this relation. It is worth pausing to compare this situation with what one encounters classi-
cally. If a two classical systems have configuration spaces of dimensions d1 an d2, say, then taken together their joint
configuration space will be of dimension d1 + d2. In this sense, quantum mechanical state spaces get very big very
fast compared to their classical analogues. Indeed, this is one of the properties that underlies the power of quantum
computation.

There is a subspace of the tensor product Hilbert space that behaves a bit more classically: this is the subspace of pure
tensors. Note that this is not a linear subspace ofH1 ⊗H2, since the property of being a pure tensor is not preserved
under addition. The dimensionality of the subspace of pure tensors does behave additively,

dim(H1 ⊗H2)decomposable = dimH1 + dimH2 − 1 , (3.6)
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where the correction by one comes from the equivalence of rescaling the two tensor factors in a pure tensor.

Remark 3.1.5. Another way to see this result is to consider the relevant subspaces in projectivisedHilbert space.
Here we have that subspace of decomposable states is of the form

P(H1)× P(H2) ⊂ P(H1 ⊗H2) . (3.7)

The dimensionality of the left hand side is dimH1 + dimH2 − 2, and deprojectivising to recover the subspace
of the Hilbert space adds one dimension. The embedding describing how the left hand side of (3.7) sits inside
the right hand side is known as the Segre embedding.

We see that in composite systems, the pure tensors are highly non-generic. The generic state, on the other hand, displays
what is called quantum entanglement.

Definition 3.1.6 (Entangled State). In a composite quantum system, a state which is not described by a pure
tensor is known as an entangled state.

Below we explore the notion of entanglement a bit in a simple example: the composition of two qubits.

3.2 Tensor product of qubits; entanglement

Let’s consider the tensor product in the simplest case of combining several qubits (see Chapter 1.2). We recall that the
qubit has Hilbert space H ∼= C2; let us now (adopting Dirac notation) fixed an orthonormal basis {|0〉 , |1〉} for the
qubit such that σ3 |1〉 = 1 and σ3 |0〉 = −1.27 We can then take as a basis for the tensor product C2 ⊗ C2 ∼= C4 the
following pure tensors

|0⊗ 0〉 , |0⊗ 1〉 , |1⊗ 0〉 , |1⊗ 1〉 . (3.8)

Within this vector space, the most general state takes the form

a |0⊗ 0〉+ b |0⊗ 1〉+ c |1⊗ 0〉+ d |1⊗ 1〉 . (3.9)

while the most general pure tensor takes the form

(α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) = αγ |0⊗ 0〉+ αδ |0⊗ 1〉+ βγ |1⊗ 0〉+ βδ |1⊗ 1〉 (3.10)

One can check that a state of the form (3.9) can be written as in (3.10) if and only if ad − bc = 0, so indeed the set of
pure states is a nonlinear subspace ofH with dimension 2 + 2− 1 = 3.

If we combine more qubits the dimension of the Hilbert space grows exponentially. In particular,

⊗n C2 ∼= C2n , (3.11)

while the space of pure tensors is dramatically smaller (namely 2n− 1). Indeed, entangled states are by a wide margin
the generic ones in large composite quantum systems.

The two qubit system lets us study some of the strange properties of quantum entangled systems. Suppose we have two
qubit systems that are prepared (somehow) in the initial state28

|EPR〉 = |1⊗ 0〉 − |0⊗ 1〉√
2

. (3.12)

27These basis vectors are often denoted instead by |↑⟩ and |↓⟩ respectively due to their interpretation in terms of spins, and sometimes also
|+⟩ and |−⟩. We may use either or both of these when we revisit this system in later chapters.

28EPR here stands for Einstein–Podolsky–Rosen, the authors of a famous paper pointing out seemingly paradoxical properties of entangled
quantum systems. This kind of a state is also sometimes called a Bell pair.
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Suppose now that Alice carries the first qubit with her to a faraway star system, while Bob remains on Earth with the
second qubit. If Alice takes a measurement corresponding to the observable σ3 on her qubit (so corresponding to the
observable σ3 ⊗ σ0 on the tensor product Hilbert space), there is a 50% probability that she will find the value +1
and a 50% probability that she will find the value −1. In either case, she should find that the quantum state collapses
according to the wave function collapse postulate,

Alice measures σ3 finds + 1 =⇒ |ψ〉 = |1⊗ 0〉 ,
Alice measures σ3 finds − 1 =⇒ |ψ〉 = |0⊗ 1〉 .

(3.13)

In each of the collapsed states, the results of a σ3 measurement by Bob of his qubit (corresponding to the observable
σ0 ⊗ σ3 on the combined system) should return a definite answer. Which answer is returned is dictated by the results
of Alice’s measurement. One might phrase this in a paradoxical-sounding way, as saying that when Alice makes her
measurement, it instantaneously impacts the outcomes of Bob’s experiment.

A still more surprising version of this situation occurs if we consider the possibility that Alice might either measure σ3
or, say, σ1, while Bob will definitely measure σ3. In the former case, as we said above, the result of Bob’s experiment is
determined completely once Alice’s measurement has been performed. However, if Alice performs a σ1 measurement,
then the resulting state after acting with the appropriate projection operator is

Alice measures σ1 finds + 1 −→ |ψ〉 ∼ |1⊗ 1〉+ |0⊗ 1〉 − |0⊗ 0〉 − |1⊗ 0〉 ,
Alice measures σ1 finds − 1 −→ |ψ〉 ∼ |1⊗ 1〉+ |1⊗ 0〉 − |0⊗ 0〉 − |0⊗ 1〉 .

(3.14)

In this case, depending on Alice’s choice of what observable to measure, the probability distribution of outcomes for
Bob’smeasurement changes completely. This sounds odd, especially in view of Einstein’s theory of relativity, which says
that there should be no communication faster than the speed of light. Upon additional scrutiny, however, the situation
is perhaps not quite so paradoxical; though the result of Alice’s measurement (and even her choice of what to measure)
has an implication for what Bob might measure, Bob has no way of knowing what result Alice done or found. What
we really get from the entangled state is an interesting set of correlations between the results of various experiments
Alice and Bob might peform.29

3.3 Multi-particle systems of distinguishable particles

Another incarnation of the tensor product arises when we consider systems of several elementary particles. If our
particles move in d dimensional space, then the Hilbert space for the i’th particle will be identified as Hi ∼= L2(Rd),
and for n particles we are supposed to be interested in the Hilbert space

H ∼= L2(Rd)1 ⊗ L2(Rd)2 ⊗ · · · ⊗ L2(Rd)n . (3.15)

The result of the Hilbert space tensor product turns out to just be the space of square-normalisable wave functions of
the n particle positions ψ(x1, x2, . . . , xn), i.e.,

H ∼= L2(Rd×n) . (3.16)

At a technical level, this is a case where the final step of completing the Hilbert space is relevant. We identify a pure
tensor of single-particle wave functions with a separable n-particle wave function,

ψ1(x1)⊗ ψ1(x1)⊗ · · · ⊗ ψn(xn) ←→ ψ(x1, x2, . . . , xn) = ψ1(x1)ψ1(x1) · · · ψn(xn) . (3.17)

A general n-particle wave function certainly can’t be written as a finite linear combination of separable wave functions
of the above form. However, given a basis ψi(x), i = 1, 2, . . . ,∞ for L2(Rd), pure tensors formed from these basis
elements do form an orthonormal basis for L2(Rd×n).

29There is a lot more to say here and we won’t pursue it in this course. A further refinement of this hypothetical, due to John Stewart Bell,
led to the famed Bell’s inequality, which highlights the degree to which quantum physics diverges from what is possible in a classical world. The
subject is worth investigating for one’s own edification.



3 COMPOSITE SYSTEMS, TENSOR PRODUCTS, ENTANGLEMENT 20

Remark 3.3.1. The technical subtlety associatedwith completion of theHilbert space is, at least formally, evaded
when we choose to work with generalised position eigenstates. In this case, we introduce basis elements

|x1, . . . , xn〉 = |x1〉 ⊗ · · · ⊗ |xn〉 , (3.18)

which obey

〈x1, . . . , xn|x′1, . . . , x′n〉 = δd(x1 − x′1) · · · δ
d(xn − x′n) = δn×d((x1; . . . ; xn)− (x′1; . . . ; x

′
n)) , (3.19)

where in the last expression we are using the n × d-dimensional Dirac delta function. Then the most general
state takes the form

|ψ〉 =
∫
Rnd

ddx1 · · · ddxnψ(x1, . . . , xn) |x1, . . . , xn〉 , (3.20)

which is just an n-particle wave function in the usual sense as an element of L2(Rn×d).
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Chapter 4

Identical Particles and Statistics
A curious consequence of the quantum mechanical picture of the world is that elementary particles of the same type
(electrons, quarks, etc.) naturally come to be thought of as being fundamentally indistinguishable. To motivate this
consider the following thought experiment (see Figure 1).30
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Figure 1. Distinguishable versus indistinguishable elementary particles in classical and quantum physics.

Suppose that at time t = 0 you have a pair of electrons whose positions are known well enough to distinguish them
(i.e., one is definitely in one half of the room and the other is definitely in the other half). After a period of time elapses,
the wave function of the system will have evolved so that both electrons could be anywhere in the room with some
probability. At this point, we may make measurements to determine the positions of two electrons, but we will have no
way to distinguish the two different electrons. In contrast to the classical case, we can’t keep track of “electron one” by
following it along its trajectory during the time interval—it had no definite trajectory when it was not being observed!

4.1 Indistinguishable particles and wave functions

We will consider the consequences of indistinguishability on multi-particle wave functions, beginning with the case
of two particles. A two particle wave function is a (square-normalisable) function of two positions ψ(x1, x2). If we
now demand that the wave function represent indistinguishable particles, then it should assign the same probability
(density) to find “particle one” at x1 and “particle two” at x2 as it does to finding “particle one” at x2 and “particle two”
at x1.31 In other words, the wave function should obey

|ψ(x2, x1)|2 = |ψ(x1, x2)|2 =⇒ ψ(x2, x1) = λψ(x1, x2) , (4.1)

where λ = eiϕ is a phase. Iterating this relation we see that

ψ(x1, x2) = λ2ψ(x1, x2) , (4.2)

so there are just two possibilities: λ = ±1.32 In the case λ = 1 we are restricting ourselves to symmetric functions of
the two particles’ positions, while for λ = −1 we have anti-symmetric functions.

30It also turns out that the indistinguishability of elementary particles is built directly into quantum field theory, which is the framework that
synthesises quantum theory with the special theory of relativity.

31Scare quotes because, of course, there is no unambiguous notion of particle one and particle two; this is just referring to the order of the
arguments in the wave function.

32There is an oft-mentioned caveat here, which is that in two-dimensions there is a possibility for a more general phase λ, with the correspond-
ing particles referred to as anyons. To see the possibility of this more general phase, it is necessary to be a bit more flexible about the description
of the Hilbert space for several particles to allow multi-valued functions of positions. We will not pursue this here.
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4.1.1 Permutations and Statistics

In the case of many particles, the exchange of the two particle positions generalises to an action of the symmetric group
Sn on the space of n-particle wavefunctions,(

Sn, L2(Rn×d)
)
−→ L2(Rn×d)

(π, ψ(x1, . . . , xn)) 7−→ (π ◦ ψ)(x1, . . . , xn) = ψ(xπ(1), . . . , xπ(n)) .
(4.3)

By the same argument we had for the case n = 2, indistinguishability implies that this action obeys

ψ(xπ(1), . . . , xπ(n)) = λ(π)ψ(x1, . . . , xn) , (4.4)

with λ(π) a (now π-dependent) phase: λ(π) = eiϕ(π). Composing the action of two permutations π, σ ∈ Sn we find

ψ(x(π◦σ)(1), . . . , x(π◦σ)(n)) = λ(π)ψ(xσ(1), . . . , xσ(n)) = λ(π)λ(σ)ψ(x1, . . . , xn) ,
= λ(π ◦ σ)ψ(x1, . . . , xn) .

(4.5)

So we have the rule λ(π ◦ σ) = λ(π)λ(σ).

Definition 4.1.1. A multiplicative character of a group G is a group homomorphism from G into the circle
group U(1) (or more generally into the ring of units k× of a field k).

Thus, we have that the map λ : Sn → C defines a multiplicative character for the permutation group Sn.

It turns out that there are only two inequivalent multiplicative characters for Sn. First observe that any two elements
of Sn that are conjugate to each other are mapped to the same value by a multiplicative character,

λ(π ◦ σ ◦ π−1) = λ(π)λ(σ)λ(π−1) = λ(π)λ(σ)λ(π)−1 = λ(σ) , (4.6)

where we have used that λ(π−1) = λ(π)−1, which follows from the character being a group homomorphism. Now
recall that in Sn, a transposition is a permutation that just swaps two elements of {1, . . . , n}, say r and s, and is denoted
(r s). Such transpositions are all conjugate to one another:

(r s) = (1 r)(2 s)(1 2)(2 s)−1(1 r)−1 . (4.7)

Thus we have that λ((r s)) = λ((1 2)) = ±1, where our previous argument in the two-particle case implies the latter
equality.

General permutations are generated by the composition of transpositions, and are unambiguously classified as either
being odd or even according to whether they arise from an odd or even number of transpositions. Thus we have the
following

Proposition 4.1.2. Let λ : Sn → C be a multiplicative character for the symmetric group. Then either λ(π) ≡ 1 or
λ(π) = ε(π), where ε gives the signature of the permutation,

ε(π) :=

{
1 for π even ,
−1 for π odd .

(4.8)

The two possibilities for wave functions of indistinguishable particles are then either totally symmetric wave functions
(λ ≡ 1) or totally antisymmetric wave functions (λ = ε), generalising the two-particle case. For a given species
of elementary (indistinguishable) particle, one of these two cases must apply. This leads to a binary classification of
indistinguishable particles:

Definition 4.1.3. Indistinguishable particles satisfying (4.4) are called bosons if the corresponding group char-
acter is the trivial one; these particles are said to obey Bose–Einstein statistics. Particles satisfying (4.4) with the
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nontrivial character (ε) are called fermions; these particles are said to obey Fermi–Dirac statistics.

The known elementary fermions in nature are electrons, muons, τ-particles, and neutrinos, along with their anti-
particles (collectively, leptons), as well as quarks. Also composite particles made up of an odd number of elementary
fermions, such as protons and neutrons, are fermions. The known elementary bosons in nature are photons, gluons,
W- and Z-bosons, gravitons, and the Higgs boson. Also composite particles made up of an even number of elementary
fermions, such as mesons.

An important fact, which can be observed empirically in nature, is that the statistics of a particle is correlated with its
spin (we will give a full treatment of spin in Chapter 5.2.5). In fact, this empirical fact is also a mathematical theorem
that can be proven within the context of relativistic quantum field theory.

Theorem 4.1.4 (Spin-statistics theorem in three dimensions). In a relativistic quantum theory in three spatial dimen-
sion, particles with integer spin must obey Bose–Einstein statistics. Particles with half-integer spin (n + 1

2 for n ∈ N)
must obey Fermi–Dirac statistics.

An analogous theorem holds in any number of spatial dimensions greater than three, where one must be a bit more
precise about the meaning of integer/half-integer spin (spin is no longer characterised by a single number in higher
dimensions).

4.2 Bosonic and fermionic wave functions

It is useful to have practical tools for producing and manipulating wave functions for particles obeying appropriate
statistics. To this end we can define projection operators onto the subspaces of completely symmetric and completely
anti-symmetric (bosonic and fermionic, respectively) wavefunctions. In particular, for a general n-particle wave func-
tion ψ, define33

Πλψ =
1
n!

∑
π∈Sn

λ(π−1)ψ(xπ(1), . . . , xπ(n)) , (4.9)

where as before, λ is the identity for Bose–Einstein and is ε for Fermi–Dirac. We can think of this as averaging over
the action of the permutation group, with the average weighted by the relevant group character. We easily prove the
following:

Proposition 4.2.1. For σ ∈ Sn we have

(Πλψ)(xσ(1), . . . , xσ(n)) = λ(σ)(Πλψ)(x1, . . . , xn) , (4.10)

Π2
λ = Πλ , andΠλ is self-adjoint. ThusΠλ is an orthogonal projection operator onto bosonic/fermionicwave functions.

Proof. For the first result, we proceed by direct calculation:

(Πλψ)(xσ(1), . . . , xσ(n)) =
1
n!

∑
π∈Sn

λ(π−1)ψ(x(π◦σ)(1), . . . , x(π◦σ)(n)) ,

=
1
n!

∑
π∈Sn

λ(σ ◦ (π ◦ σ)−1)ψ(x(π◦σ)(1), . . . , x(π◦σ)(n)) ,

=
1
n!

∑
π̃∈Sn

λ(σ ◦ π̃−1)ψ(xπ̃(1), . . . , xπ̃(n)) ,

= λ(σ)(Πλψ)(x1, . . . , xn) .

To go from the second to the third line, we have used that for fixed σ ∈ Sn, as π ranges over Sn, so does π̃ = π ◦ σ and
so we can replace the latter by the former in the summation.

33Since for our multiplicative characters λ(π) = ±1 = λ(π−1), the π−1 argument could be replaced with a π. The expression here is the one
that generalises to more general finite groups with multiplicative characters that realise more general phase values.
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Using this, we then confirm that

Πλ(Πλψ)(x1, . . . , xn) =
1
n!

∑
π∈Sn

λ(π−1)(Πλψ)(xπ(1), . . . , xπ(n)) ,

=
1
n!

∑
π∈Sn

λ(π−1)λ(π)(Πλψ)(x1, . . . , xn) ,

= (Πλψ)(x1, . . . , xn) ,

where we have used that |Sn| = n!. Finally, self-adjointness can be shown by term-by-term change of variables in the
inner product. We leave the details to the interested reader. The stated result then follows. ■

4.2.1 Two-particle projections

For the two-particle case (n = 2), where the space of distinguishable-particle wave functions is L2(Rd × Rd), the
two projectors we have just defined are just the operations of taking symmetric and antisymmetric combinations,
respectively:

Π1ψ(x1, x2) =
ψ(x1, x2) + ψ(x2, x1)

2
, Πεψ(x1, x2) =

ψ(x1, x2)− ψ(x1, x2)
2

. (4.11)

In this case, all wave functions can be decomposed into symmetric and antisymmetric parts, so the full space of (distin-
guishable) two-particle wave functions can be decomposed into bosonic and fermionic wave functions. Alternatively,
this can be phrased as the identity

Π1 + Πε = 1L2(Rd×Rd) , (4.12)

which can be re-interpreted as the resolution of the identity for the permutation operator that exchanges x1 ↔ x2.

Note that this is not the situation for larger values of n; there are wavefunctions that cannot be decomposed into just
totally-symmetric and totally-antisymmetric parts. We will make a related observation when we count bosonic and
fermionic states associated to finite-dimensional Hilbert spaces later in this Chapter.

4.2.2 n-particle projections

Though the general projection operator is a little complicated to perform in practice for general wave functions (it
involves choosing a sufficiently efficient way to sum over permutations), there is a case where things can be phrased
more compactly. This is where we start with a separable distinguishable-particle wave function:

ψ(x1, . . . , xn) = ψ1(x1)ψ2(x2) . . . ψn(xn) . (4.13)

This is a particularly natural class of wavefunctions to consider when considering non-interacting identical particles,
where we might choose the ψi to be stationary states of the one-particle Hamiltonian acting on xi to get stationary
states for the full n-particle system.

The fermionic projection can then be realised in terms of what’s called the Slater determinant of the single-particle
wave-functions.

Definition 4.2.2. The Slater determinant of the wave-functions {ψi(x)} is the determinants

∣∣ψ1, . . . , ψn
〉
=

1√
n!

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . . . . ψn(x1)
ψ1(x2) ψ2(x2) . . . . . . ψn(x2)

...
...

...
...

...
ψ1(xn) . . . . . . . . . ψn(xn)

∣∣∣∣∣∣∣∣∣ . (4.14)

The normalisation is such that if the ψi are mutually orthonormal, then
∣∣ψ1, . . . , ψn

〉
is normalised. We then have that

Πε
(
ψ1(x1) · · · ψn(xn)

)
=

1√
n!

∣∣ψ1, . . . , ψn
〉
. (4.15)
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Since arbitrary states can be expressed as (infinite) linear combinations of separable states, all fermionic wave functions
can be obtained as (infinite) linear combinations of these types of states.

An analogous construction works in the bosonic case, though this uses the so-called permanent of a matrix, which is
like the determinant but without the signs,

Π1ψ =
1
n!

perm


ψ1(x1) ψ2(x1) . . . . . . ψn(x1)
ψ1(x2) ψ2(x2) . . . . . . ψn(x2)

...
...

...
...

...
ψ1(xn) . . . . . . . . . ψn(xn)

 . (4.16)

As in the fermionic case, arbitrary bosonic wave functions can be constructed from these permanent states.

4.3 Symmetric and anti-symmetric tensor products

Though above we focused on fermionic and bosonic wave functions, the (anti-)symmetrisation procedure we have
developed applies equally well to the case when we are taking tensor powers of some general Hilbert spaceH such as
the qubit Hilbert space (or even a general vector space, for that matter). Here the n-fold tensor product ofH admits a
natural action of the symmetric group Sn just as was the case for wave functions: for ψi ∈ H, we have

(Sn,H⊗n) −→ H⊗n(
π, ψ1 ⊗ · · · ⊗ ψn

)
7−→ ψπ(1) ⊗ · · · ⊗ ψπ(n) .

(4.17)

This action on pure tensors extends by linearity to all ofH⊗n.

We can then define bosonic and fermionic projection operators analogous to the ones we used for wave functions
above. Just like we had for separable wave functions, we can define the action of these projection operators on pure
tensors inH⊗n in terms of the determinants and permanents. We can analogously define bosonic and fermionic states
in the n-fold tensor product of identical Hilbert spaces as the ranges of the corresponding orthogonal projectors:

Definition 4.3.1. The n-fold symmetric tensor product�nH of the Hilbert spaceH is the subspace of the n-fold
tensor productH⊗n on which Π1 acts as the identity, or equivalently,

�n H = RanH⊗nΠ1 . (4.18)

This is sometimes also denoted SymnH, and these are states that are compatible with Bose–Einstein statistics.

Definition 4.3.2. The n-fold antisymmetric tensor product of the Hilbert spaceH is the subspace of the n-fold
tensor productH⊗n on which Πε acts as the identity, or alternatively,

∧n H = RanH⊗nΠε . (4.19)

This is sometimes called the exterior tensor product, and these states are compatible with Fermi–Dirac statistics.

From the standard properties of determinants, a Slater determinant state will vanish identically if two of the constituent
ψi are proportional. Thismeans that the basis ofn-particle stateswe get by actingwith the fermionic projection operator
on a basis of pure tensors all come from states where each of the n particles is in a distinct basis state. This is often
phrased in terms of the following,

The Pauli exclusion principle: Two fermions cannot occupy the same state.

Indeed, this leads to a significant reduction in the number of fermionic states that can be constructed from a given set
of single-particle states. To see this more explicitly, let us count the bosonic and fermionic states that can be built from
a given N-dimensional Hilbert space under iterated symmetric and anti-symmetric tensor products.
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Lemma 4.3.3. The space of fermionic n-particle states built from an N-dimensional single-particle Hilbert space H
has dimension given by

dim (∧nH) =
(

N
n

)
. (4.20)

Proof. We choose a basis for H and build a basis of states for the fermionic n-particle Hilbert space using Slater de-
terminants where the ψi are elements of that basis. There are N choices for ψ1, but since ψ2 cannot be the same as ψ1,
there are N− 1 choices for ψ2 and so on. The final state is independent of the ordering of ψ1, . . . , ψn so we have

dim (∧nH) = N(N− 1) · · · (N− n + 1)
n!

=
N!

n!(N− n)!
=

(
N
n

)
. (4.21)

■
Which leads to an immediate important observation, which will play an important role when we consider atomic
structure in the presence of several electrons.

Corollary 4.3.4. At most N identical, non-interacting fermionic particles can coexist in a given N-dimensional single-
particle Hilbert spaceH.

For completeness, we also consider bosonic multi-particle states built from a given N-dimensional Hilbert space.

Lemma 4.3.5. The space of bosonic n-particle states built from an N-dimensional single-particle Hilbert spaceH has
dimension given by

dim (�nH) = (N + n− 1)!
(N− 1)! n!

. (4.22)

Proof. In order to prove this we introduce a generating function known as a partition function that has much wider
applicability. In general a separable bosonic state can be represented as

Π1
(
ψ⊗k1
1 ⊗ ψ⊗k2

2 · · · ψ⊗kN
N
)
,

∑
ki = n . (4.23)

The overall order doesn’t matter because of the symmetrisation, so we only pay attention to how many times each basis
element appears. We therefore want to count the number of non-negative integer partitions of n, ({ki ∈ Z⩾0} such
that the

∑
i ki = n). Let us replace the ψi by formal variables xi, whereupon our problem becomes that of counting the

number of distinctmonomials of the form xk11 xk22 · · · x
kN
N of total degree n. If we furthermultiply each xi by an additional

formal variable s, then the total power of s will be the total degree. Taking the sum over all k1, . . . , kN, we obtain

∑
k1,...,kN∈N

(sx1)k1(sx2)k2 . . . (sxN)kN =

N∏
j=1

∞∑
kj=0

(sxj)kj =
N∏
j=1

1
1− sxj

. (4.24)

If we set all the xi to one, we obtain 1/(1 − s)N and the coefficient of sn will simply count the number of terms where∑
ki = n. The generalised binomial theorem then gives the following, from which the result follows.

1
(1− s)N

=
∑
n∈N

(
N + n− 1

n

)
sn , (4.25)

■

One can now observe explicitly that while for n = 2 there is an accidental equality

dimH⊗n = Nn = dim∧nH+ dim�nH , n = 2 , (4.26)

for more than two particles we have

dimH⊗n = Nn > dim∧nH+ dim�nH , n > 2 . (4.27)

So for more than two particles, a general multi-particle state cannot be decomposed into bosonic and fermionic parts.
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Chapter 5

Symmetries andUnitary Groups
In this chapter, we turn our attention to the realisation of symmetries in quantum theories/systems. Before developing
a formal theory of quantum symmetry, we will look at a simple example that illustrates many features of the formalism
and most of the key ideas.

5.1 An appetizer: spatial and time translations

Consider a particle moving freely (subject to no forces) on the real line (so, as in Chapter 1.3, the Hilbert space is
identified as H ∼= L2(R), and additionally the Hamiltonian is just H = P2/2m). There is a clear physical sense in
which linear translations in space should be symmetries of the theory, as they are in the classical setting. How does this
manifest in the quantum mechanical formalism?

For a ∈ R, we can define an operator T(a) : H → H that corresponds to a translation of the entire system by a relative
to a fixed reference frame. This will act on wavefunctions according to

(T(a)ψ)(x) = ψ(x− a) . (5.1)

To understand why the minus sign, observe that the value of the transformed wavefunction at a will be the value of the
original wave function at the origin. In terms of our generalised position eigenstates, we have34

T(a) |ξ〉 = |ξ + a〉 , (5.2)

because a (generalised) eigenstate thatwas previously localised at x = ξ should be localised at x = ξ+a after translation.
We see this is equivalent to (5.1) as follows,

(T(a)ψ)(x) = 〈x|T(a)|ψ〉 =
∞∫

−∞

dξ 〈x|T(a)|ξ〉 〈ξ|ψ〉 ,

=

∞∫
−∞

dξ 〈x|ξ + a〉 ψ(ξ) ,

=

∞∫
−∞

dξ δ(x− ξ − a)ψ(ξ) ,

= ψ(x− a) .

(5.3)

We make some immediate observations regarding the structural properties of these translation operators:

(1) T(a)T(b) = T(a + b) ∀ a, b ∈ R ,

(2) T(a)−1 = T(−a) ∀ a ∈ R ,

(3) T(0) = 1 .

The adjoint of this translation operator is determined by a change of variables in the integral expression for the inner
product,

〈χ|T(a)ψ〉 =
∞∫

−∞

dx χ(x)ψ(x− a) =
∞∫

−∞

dx χ(x + a)ψ(x) = 〈T(−a)χ|ψ〉 . (5.4)

so we have
34Keeping track of the signs here is a good exercise in disambiguating generalised position eigenstates from their wavefunctions
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(4) T(a)∗ = T(−a) = T(a)−1

As in our discussion of time translation, this last condition identifies the operators T(a) as unitary operators. The
four properties that we have listed then precisely identify this structure as a unitary representation of the additive group
(R,+) on the Hilbert spaceH.

Definition 5.1.1. The unitary group U(H) is the group of unitary operators on the Hilbert space H. For the
case of when H is finite-dimensional (say dim(H) = n), this can be identified with the usual matrix group
U(n).

Definition 5.1.2. A unitary representation of a group G on a Hilbert spaceH is a group homomorphism from
G to U(H).

In the case of infinite-dimensional H, such a group homomomorphism is required to be what is called strongly con-
tinuous. We will not need to pay attention to that restriction in this course and so will not define it carefully—what it
means is roughly that for any ψ ∈ H, the induced map from G toH is continuous. (See, though, Def. 5.2.5 below for
a related condition.)

An important feature of the group of translations is that they can be taken arbitrarily small, in which case the transla-
tion operator should become (in a suitable sense) arbitrarily close to the identity operator. We can observe how this
transpires in terms of the action of translations on (differentiable) wave functions:35

lim
ε→0

(T(ε)ψ)(x) = lim
ε→0

ψ(x− ε) = ψ(x)− εψ′(x) + O(ε2) . (5.5)

We interpret this result as defining an infinitesimal expansion of the translation operator itself,

T(ε) = 1− iε
ℏ

Tinf + O(ε2) , (Tinfψ)(x) = −iℏψ′(x) . (5.6)

We have inserted conventional factors of i and ℏ that allows us to make the identification of Tinf with the momentum
operator P.

The relationship between translations and momentum is easier to tease out in momentum space. On generalised
momentum eigenstates, we have

T(a) |p〉 =

∞∫
−∞

dx T(a) |x〉 〈x|p〉 =

∞∫
−∞

dx |x + a〉N e
ipx
ℏ ,

=

∞∫
−∞

dx |x〉N e
ip(x−a)

ℏ = e−
ipa
ℏ

∞∫
−∞

dx |x〉N e
ipx
ℏ , (5.7)

= e−
ipa
ℏ |p〉 = e−

iPa
ℏ |p〉 ,

so on our (continuum) basis of generalised momentum eigenstates we have the operator relation

T(a) = exp
(
− iPa

ℏ

)
, (5.8)

from which we formally deduce Tinf = P just by taking the power series expansion of the exponential. We summarise
this situation by saying that P is the infinitesimal generator of translations.36 Note also that unitarity of T(a) follows

35The restriction to differentiable wave functions here is, once again, related to the infinite dimensionality of our Hilbert space, which means
that the infinitesimal version of translation that we are defining is only partially defined on L2(R). Differentiable wave functions are dense in
L2(R).

36If you are familiar with Noether’s theorem from classical mechanics, then this should sound familiar as a counterpart of the fact that mo-
mentum is the conserved quantity associated with translation invariance, and it generates infinitesimal translations via the Poisson bracket.
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from self-adjointness of P and vice versa,

T(a)∗ =
(
e−

iPa
ℏ

)∗
=
(
e

iPa
ℏ

)
= T(a)−1 . (5.9)

Thus far this discussion makes no reference to translations being a dynamical symmetry of the system, i.e., being a
symmetry of the equations of motion (in our case, the time-dependent Schrödinger equation). Physically, this should
depend on the potential V(X) being constant (or zero), as otherwise the potential would violate translation invariance.
To have translations as a dynamical symmetry, we would like to require that the symmetry transformation of the in-
finitesimal time evolution of a state vector is the same as the infinitesimal time evolution of the symmetry-transformed
state vector, i.e.,

T(a) |Hψ〉 = H |T(a)ψ〉 , (5.10)

which, by writing (without loss of generality) |ψ〉 = T(a)∗ |ϕ〉 for some |ϕ〉, we can equivalently characterise as

T(a)HT(a)∗ = H . (5.11)

Further looking at the case of infinitesimal translations, this gives the condition(
1− iε

ℏ
P + O(ε2)

)
H
(
1 +

iε
ℏ

P + O(ε2)
)

= H +
iε
ℏ
[H, P] + O(ε2) = H , (5.12)

from which we deduce the requirement [H, P] = 0. Using our expression for finite translations as an exponentiated
version of P, one can show that this vanishing commutator also implies the relation (5.11). And indeed, these will hold
for a Hamiltonian of the form H = P2/2m + V(X) only if V(X) is a constant.37

5.2 A more general theory of quantum symmetries

What we have seen above gives us some insight into the mathematical representation of of symmetries in quantum
systems. Now we will look at this topic more abstractly.

5.2.1 A first attempt at generalisation

If we try to generalise a bit fromwhatwehave seen in our example, wemight propose the following structures associated
with the presence of a symmetry in a quantum system. It will turn out that these are not quite the complete story; we
will return to the correct formulation after some technical discussion.

• Symmetries should be implemented via unitary operators onH, so as to preserve norms and transition ampli-
tudes.

• Symmetries naturally form a group—call it G—and the operators implementing their action onH should form
a unitary representation of that group,

U : G → U(H) , U(g1)U(g2) = U(g1g2) ∀ g1, g2 ∈ G . (5.13)

• For continuous symmetries, infinitesimal transformations are realised by self-adjoint operators that generate
finite transformations (parameterised by s ∈ R) via exponentiation according to

U(g(s)) = exp
(
− iGs

ℏ

)
, G = G∗. (5.14)

• For dynamical symmetries, we require

U(g)HU(g−1) = H , ([H,G] = 0 for infinitesimal generators) . (5.15)
37As a concrete example of this, in your first homework exercise, you will have shown that for the harmonic oscillator the finite spatial

translation of the ground state is a coherent state, which is certainly no longer an energy eigenstate, let alone the ground state.
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These properties do hold in quite a few examples of interest. For instance, you should compare the above to our
discussion of time evolution in Chapter 1. However, they are not the most general version of the story, and we have
also been a bit cavalier about some technical details in our discussion of infinitesimal symmetries. We address both of
these issues below.

5.2.2 Quantum symmetries and projective representations

The main shortcoming of the formulation above arises from having neglected the distinction between Hilbert spaceH
and the true space of quantum states, P(H). A priori, one expects that a quantum symmetry need only be formulated
as a map

s : P(H) −→ P(H) . (5.16)

Rather than requiring that overlaps be preserved, it should be sufficient to require that transition probabilities are pre-
served, as these are the physically meaningful quantities. Let us denote a quantum state corresponding to the ray inH
that passes through a vector ψ by [ψ], so [ψ] = [λψ] for λ ∈ C×. For quantum states [ψ], [φ] ∈ P(H), we then require
equality of the transition probabilities:

| 〈φ|ψ〉 |2

||φ||2||ψ||2
=
| 〈s(φ)|s(ψ)〉 |2

||s(φ)||2||s(ψ)||2
, (5.17)

where in this expression, ψ and φ could be any representatives of the quantum states [ψ] and [φ], respectively. (The
transition probabilities are, as usual, independent of the choice of such representative.) Naively, it appears that this
could be a weaker condition than the requirement of a unitary map on H. This is indeed the case, but perhaps to a
lesser extent than one might first think. The situation is explained by the following.

Theorem 5.2.1 (Wigner). For any quantum symmetry s defined as above on projectivised Hilbert space, there exists
an operator V(s) : H → H that is compatible with s that is either unitary or anti-unitary that induces s when treated
as a map of rays. When dim(H) ⩾ 2, the operator V(s) is unique up to an overall phase.

(In the case that dim(H) = 1, V(s) can be chosen to be either unitary or anti-unitary for the same s; in higher dimen-
sional Hilbert spaces it will be one or the other, with no choice involved other than the aforementioned phase.) We
will set aside the topic of anti-unitary operators for the moment and focus on symmetries that are realised as unitary
operators onH.

Definition 5.2.2. The projective unitary group of a Hilbert spaceH is the quotient

PU(H) = U(H)/{eiθ1H, θ ∈ R}

of the group of unitary transformations onH by the normal subgroup consisting of multiplications by a con-
stant phase.

What Wigner’s theorem is telling us, given this definition, is that (neglecting the anti-unitary caveat) a quantum sym-
metry can be unambiguously lifted to an element of the projective unitary group for the corresponding Hilbert space.

Definition 5.2.3. A projective unitary representation of a group G on a Hilbert spaceH is a group homomor-
phism U : G → PU(H).

What we should then be interested in are these projective unitary representations of a symmetry group G. We can
then lift these symmetries to actual unitary operators, but we have to choose phases. If we do this arbitrarily (choosing
arbitrary phases for each g ∈ G), then at the level of unitary operators the group law may not be obeyed, indeed we
only expect

U(g1)U(g2) = eiξ(g1,g2)U(g1g2) , ξ(g1, g2) ∈ [0, 2π) . (5.18)

Associativity of the multiplication of operators on G gives a condition on these phases,38

ξ(g1, g2g3) + ξ(g2, g3) = ξ(g1, g2) + ξ(g1g2, g3) mod 2π , (5.19)
38Though it is not important for us, this condition means that the map ξ : G×G → U(1) is what is known as a group 2-cocycle valued in U(1).
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It follows immediately that we have the following

Proposition 5.2.4. A projective unitary representation of a group G on a Hilbert spaceH is equivalently a map U : G →
U(H) obeying (5.18) and (5.19).

Indeed, this is sometimes used as the definition; physicists will say that “in quantum mechanics, the group law for
symmetries only needs to be obeyed up to phase ambiguities”. The phase ambiguities in the definitions of the operators
U(gi) themselves means we can modify the phases in (5.18) by taking a map ϕ : G → S1 to produce an equivalent
projective unitary representation but now with

ξ(g1, g2)→ ξ(g1, g2) + ϕ(g1) + ϕ(g2) mod 2π . (5.20)

Using this freedom to redefine phases, it turns out that in a large class of examples of continuous groups (when either
H is finite-dimensional or, if infinite-dimensional, if G is what is called a semi-simple group), one can set the phases
ξ(g1, g2) to be zero for transformations that are suitably close to the identity, thus realising something that looks like
a unitary representation for symmetries that are close to the identity. Globally there can be an obstruction to setting
these phases to zero for all group multiplications; we will see an explicit example of this in the next chapter in the
context of rotations.

5.2.3 One parameter unitary groups

In the discussion of translations some of the statements about the infinitesimal limit may have felt a bit sketchy. There
is actually a powerful theorem that puts these statements on firm footing. We start with a definition:

Definition 5.2.5. A strongly continuous one-parameter unitary group is a family U(t) for t ∈ R of unitary
operators on a Hilbert spaceH such that

• U(0) = 1H ,

• ∀s, t ∈ R , U(t + s) = U(t)U(s) ,

• ∀t ∈ R , lim
s→t

U(s)ψ = U(t)ψ .

The first two points defines a one-parameter unitary group, which you will recognise as being the same as a unitary
representation of the additive group (R,+) as we had in the case of translations. The third point is the notion of strong
continuity. We will not be very attentive to this continuity condition in this course; it will always hold in examples we
consider.

Definition 5.2.6. For U(·) a strongly continuous one-parameter unitary group, the infinitesimal generator of
U(·) is the operator K defined by39

Kψ = lim
t→0

1
i
U(t)ψ − ψ

t
. (5.21)

It turns out with this definition, K will be defined for a dense subset ofH (or all ofH in the finite-dimensional case).
We then have the following:

Theorem5.2.7 (Stone’sTheoremonOne-ParameterUnitaryGroups). LetU(·)be a strongly continuous, one-parameter
unitary group. The infinitesimal generator K of the family is a self-adjoint operator, and for all t we have,

U(t) = exp (itK) . (5.22)

Conversely, every self-adjoint operator K generates a strongly continuous one-parameter unitary group this way.

39This definition differs by a conventional minus sign and factor of ℏ relative to what we used in the case of momentum and translations. In
the quantum mechanical setting we will normally include those additional factors.
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The exponential of K can be defined in terms of its action on a basis of (generalised) K-eigenstates. We will not study a
proof of this theorem; instead it is meant to provide a justification for some of the more casual manipulations that have
arisen and will arise when studying symmetries in what follows. It should be noted that even in the finite dimensional
case this is a non-trivial theorem; it establishes a kind of differentiability for families of operators/matrices based only
upon continuity.

We can observe now that the quantityU(t1−t0) that we considered in Chapter 1 and in the discussion of the propagator
is precisely a one-parameter unitary group whose infinitesimal generator is the Hamiltonian. This is in the case when
the Hamiltonian is time-independent. In the time-dependent case, one actually gets a unitary groupoid! We will not
discuss this further.

5.2.4 Anti-unitary operators

Now we return to the issue of anti-unitary operators, which appeared in the statement of Wigner’s theorem, and define
such an entity.

Definition 5.2.8. An anti-unitary operator on a Hilbert spaceH is a surjective linear map A : H → H obeying

〈Aφ|Aψ〉 = 〈φ|ψ〉 = 〈ψ|φ〉 . (5.23)

We can see that an anti-unitary operator must be C anti-linear. A standard example of an anti-unitary operator on a
complex Hilbert space is a complex conjugation operation, which takes states of the form

ψ =
∑
i

ciψi −→ Aψ =
∑
i

ciψi , (5.24)

for {ψi} an orthonormal basis. (This operation clearly depends on the basis.) In the case of L2(R), one has a similar
operation that takes the complex conjugate of a wave function.

An important observation is that if A is anti-unitary, then A2 is unitary,〈
A2φ

∣∣A2ψ
〉
= 〈Aψ|Aφ〉 = 〈φ|ψ〉 . (5.25)

This means that any symmetry that can be realised as the square of another symmetry will be realised unitarily onH.
In the case of continuous groups of symmetries, like translations and rotations, this lets us get away with ignoring anti-
unitary symmetries all together. On a homework exercise, you will investigate the relationship between anti-unitary
symmetries and time-reversal.

5.2.5 The form of quantum symmetries

We are now in position to formulate a more precise characterisation of the form that symmetries take in quantum
mechanical systems.

• Symmetries are implemented via unitary or anti-unitary operators onH.

• Symmetries naturally form a group, and the operators implementing them form a projective representation of
that group onH.

• Continuous symmetries are generated, in the sense of Stone’s theorem, by self-adjoint operators via exponenti-
ation.

• For unitarily realised symmetries to be compatible with time evolution (dynamical symmetries), we require any
of the following equivalent conditions

– U(t)U(g) = U(g)U(t) ,

– [H,U(g)] = 0
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– [U(t),G] = 0

– [H,G] = 0

Here U(t) = exp(−iHt/ℏ) is the time evolution operator while U(g) is the unitary corresponding to an element
g ∈ G of the symmetry group. If U(g) is part of a one-parameter group, then its infinitesimal generator is G.
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Chapter 6

Rotations, AngularMomentum, andTheir Representations

In this chapter, we analyse a crucial symmetry that appears time and again in important quantum systems: that of three-
dimensional rotations. You know well from your geometry course (and perhaps elsewhere) that the proper rotation
group in three dimensions is SO(3), which can be identified with the group of three-by-three orthogonal matrices with
unit determinant. In line with the general structures described in the previous chapter, we expect that for a quantum
system describing objects in three-dimensions, there should be a (projective) unitary representation of SO(3) on our
Hilbert space. We will have seen how this cashes out in practice by the end of the chapter.

6.1 Rotation group SO(3) and its infinitesimal generators

We begin with a review of some technical aspects of the the three-dimensional orthogonal group O(3). This group is
normally realised as a group of three-by-three real matrices acting on Cartesian coordinates xi = (x1, x2, x3) according
to,

xi −→
3∑

j=1
Rijxj , RR⊺ = 13×3 , (6.1)

where 13×3 is the three-by-three identity matrix. The special orthogonal group SO(3) restricts to those transformations
that are rotations—it is the subgroup of O(3) for which det(R) = 1.

As with translations, rotations can be taken arbitrarily close to the identity. To characterise this, let us consider a one-
parameter family of rotation matrices R(t) with R(0) = 13×3. (You may wish to think of this as the family of rotations
about a fixed axis with t proportional to the angle of rotation.) We can define the matrix elements of an infinitesimal
rotation matrix ω according to

Rij(t) = δij + tωij + O(t2) . (6.2)

Expanding the condition R(t)R⊺(t) = 13×3 to first order in t (or alternatively differentiating at t = 0) gives

ωij + ωji = 0 , (6.3)

or in matrix notation, ω + ω⊺ = 0, i.e., ω is a skew symmetric matrix. As you saw in prelims, it is natural to organise
the components ωij of this matrix into a vector ω = (ω1, ω2, ω3) = (ω32, ω13, ω21), and this encodes the axis about
which the instantaneous rotation is taking place and the rate of rotation (in the vector’s magnitude). The vector and
matrix index labelling for these parameters are related according to

ωi = −
1
2

∑
j,k

εijkωjk , ωij = −
∑
k

εijkωk . (6.4)

The first-order action of R(t) on the coordinate xi then is given by

R(t)x = x+ tδx+ O(t2) ,

δxi =
∑
j

ωijxj =
∑
j

εijkωjxk = (ω ∧ x)i . (6.5)

The group SO(3) is non-Abelian, so in general pairs of rotations do not commute, i.e., RR̃ 6= R̃R. This lack of commu-
tativity is encoded in the commutator RR̃R−1R̃−1, which is itself element of SO(3) that will be the identity if and only
if R and R̃ commute. Let us consider this commutator at the level of infinitesimal rotations. If we take t small in R(t)
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and R̃(t), then expanding the commutator to second order we have40

R(t)R̃(t)R(t)−1R̃(t)−1 = (1 + tω + . . .) (1 + tω̃ + . . .) (1− tω + . . .) (1− tω̃ + . . .) ,

= 1 + t2 (ωω̃ − ω̃ω) + . . . ,
(6.6)

so here the noncommutativity manifests in terms of the matrix commutator [ω, ω̃] = ωω̃ − ω̃ω. Notice that

[ω, ω̃]ik =
∑
j

ωijω̃jk − ω̃ijωjk = −
∑
l

εikl(ω ∧ ω̃)l , (6.7)

where to prove this it is useful to use the identity
∑

k εijkεklm = δilδjm − δimδjl. Alternatively, if we tacitly use (6.4) to
identify vectors with skew-symmetric matrices,

[ω, ω̃] = (ω ∧ ω̃) . (6.8)

The vector space of three-by-three skew-symmetric matrices endowed with the bilinear operation of the matrix com-
mutator (observe that this preserves skew-symmetry) is known as the Lie algebra so(3). In the theory of Lie groups,
one finds that this matrix commutator encodes the full structure of the group SO(3) up to a single ambiguity, to which
we will return later in our discussion of spin.

6.2 Rotations and wave functions

As our first example, we can define a an action of the rotation group on wave functions in three dimensions, i.e., on
the Hilbert space L2(R3), in a natural manner:

SO(3)× L2(R3) −→ L2(R3) ,

(R, ψ) 7−→ (U(R)ψ) , (U(R)ψ) (Rx) = ψ(x) ,
(U(R)ψ) (x) = ψ(R⊺x) .

(6.9)

The appearance of the transpose (i.e., inverse) in the argument is analogous to the minus sign that we included in our
translation operator, and analogously to that case we have for generalised position eigenstates,

U(R) |x〉 = |Rx〉 . (6.10)

This action is manifestly complex linear. It is also unitary, since we have

〈U(R)ψ|U(R)ψ〉 =
∫
R3
|ψ(R⊺x)|2 d3x =

∫
R3
|ψ(x̃)|2 d3x̃ = 〈ψ|ψ〉 , (6.11)

where the change of variables x → x̃ = R⊺ x introduces no Jacobian because R is an orthogonal matrix. Under
composition, we see the importance of the transpose:41

(U(R1)U(R2)ψ) (x) = (U(R2)ψ) (R⊺
1 x) = ψ(R⊺

2R
⊺
1 x) = ψ ((R1R2)

⊺x) = (U(R1R2)ψ) (x) . (6.12)

so our operators satisfy the group law,
U(R1R2) = U(R1)U(R2) , (6.13)

and we have a unitary representation of SO(3).

Let us consider the infinitesimal version of this action. Using the expansion for rotation matrices in Equation (6.2), we

40You can feel free to take this equation for granted, but deriving it while keeping second-order terms might be instructive.
41You might try rewrite the manipulations in Equation (6.12) using bra-ket notations for wave functions to get a feeling for the way the

compositions here are behaving and the relation to the action on generalised position eigenstates.
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have

ψ(R⊺(t)x) = ψ
(
x− tω ∧ x+ O(t2)

)
,

≈ ψ(x)− t(ω ∧ x) · ∇ψ(x) ,
= ψ(x)− t ω · (x ∧∇ψ) ,

=

(
1L2(R) −

it
ℏ

ω · L
)

ψ(x) .

(6.14)

where L is the orbital angular momentum operator that you met in A11 Quantum Theory, which we can rewrite in
terms of position and momentum operators,

L := X ∧ P . (6.15)

You have seen in that previous course, and one can compute explicitly, that the components Li of the angular momen-
tum operator obey the commutation relations

[Li, Lj] = iℏ
∑
k

εijkLk . (6.16)

For general vectors ω and ω̃, one then finds

[ω · L, ω̃ · L] = iℏ(ω ∧ ω̃) · L , (6.17)

or alternatively, in terms of the infinitesimal generators with extra constants included,[
− i
ℏ
ω · L,− i

ℏ
ω̃ · L

]
= − i

ℏ
(ω ∧ ω̃) · L , (6.18)

We observe that these exactly match the commutation relation (6.8) with the replacement

ω ←→ − i
ℏ
ω · L , (6.19)

where on the left hand side, ω represents a skew-symmetric matrix, and on the right hand side ω is a vector indicating
the axis of rotation and we have operators on L2(R). We say that these operators furnish a representation of the Lie
algebra so(3) on the Hilbert space L2(R).

6.3 General unitary representations

In the previous analysis, we had a manifest action of the rotation group on the space of wave functions. In a more
general and abstract setting, we must consider a general (projective) unitary representation of the rotation group on a
Hilbert spaceH. This isn’t such an easy thing to get our hands on, sowewill approach the problem through infinitesimal
rotations. We introduce infinitesimal generators of rotations (in the sense of Stone’s theorem) and denote them by J.
For a one-parameter families of rotations R(t), we then have (just as we did for wave functions),42

U (R(t)) = 1H −
it ω · J
ℏ

+ O(t2) . (6.20)

We can compare the group-theoretic commutator of two rotations with the composition taken both before and after
applying the map to U(H); we have the equation

U (R(t))U
(
R̃(t)

)
U (R(t))∗ U

(
R̃(t)

)∗
= U

(
R(t)R̃(t)R(t)−1R̃(t)−1) , (6.21)

where on the left we have the commutator of elements of U(H), and on the right we have the image in U(H) of the
commutator of elements of SO(3). Letting each rotation be infinitesimal of the same order, we get, by comparing terms
at second order,

[ω · J, ω̃ · J] = iℏ(ω(1) ∧ ω(2)) · J (6.22)
42For the very discerning reader, the linear dependence on ω in (6.20) requires some explanation.
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which is exactly analogous to (6.18) with L replaced by J. In components, this is

[Ji, Jj] = iℏ
∑
k

εijkJk . (6.23)

This is an important result; whenever we have a representation of the rotation group on a Hilbert space, we get a trio
of self-adjoint angular momentum operators, {Ji}, that obey the commutation relations (6.23) and generate the action
of more general rotations via exponentiation in the sense of Stone’s theorem. This is an instance of a fundamental
relationship between representations of Lie groups and representations of Lie algebras.

6.4 Angular momentummultiplets

Wehave (at least partially) reduced problem of studying of rotations in quantum systems to the study of representations
of the angular momentum operators:

Definition 6.4.1. A representation of the angular momentum operators is a Hilbert space,H, equipped with an action
of three self-adjoint operators Ji : H → H, i = 1, 2, 3, satisfying the commutation relations (6.23).

Remark 6.4.2. This is equivalent to a representation of the Lie algebra so(3) on H. The difference is in the
factor of ℏ on the right hand side of (6.23), which can be removed by an appropriate rescaling of the Ji. Also, in
some cases it is conventional for a representation of so(3) to be described in terms of anti-self adjoint operators
(operators obeying A∗ = −A), in which case a factor of i is incorporated into the rescaling as well.

Definition 6.4.3. An irreducible representation of the angular momentum operators is a representation of the angular
momentum operators for which there is no a proper subspace Hsub ⊂ H with Ji : Hsub → Hsub, i.e., H contains no
proper sub-representation of the angular momentum operators.

InA11QuantumTheory, in the context of discussing orbital angularmomentum for three-dimensionalwave functions,
you identified the structure of general irreducible representations of the angular momentum operators. Here we will
recall the story in the general case. We define the total angular momentum operator J2 = J · J. A short calculation
shows that

[J2, Ji] = 0 , (6.24)

so the action of the Ji operators preserves eigenspaces of J2. Since J2 is self-adjoint, we can choose to work in a basis of
its eigenstates for any representation of the angular momentum operators, and so ifH is an irreducible representation,
then J2 must just act by a multiple of the identity on H. We can give a completely explicit description of all finite-
dimensional, irreducible representations if we furthermore choose to diagonalise J3.

Theorem 6.4.4. The irreducible representations of the angular momentum operators are labeled by a non-negative
half-integer j = 0, 1

2 , 1, . . . ∈
1
2N known as the spin of the representation. Denote the Hilbert space admitting such a

representation byHspin j. The dimension ofHspin j is 2j + 1 and J2 acts with eigenvalue ℏ2j(j + 1).

There is an orthonormal basis of Hspin j consisting of eigenvectors |j,m〉 of J3 with J3 |j,m〉 = ℏm |j,m〉 for m =

−j,−j + 1, . . . j− 1, j.

Proof. We introduce the ladder operators J± = J1 ± iJ2, which commute with J2. We also can check that

[J3, J±] = ±ℏJ± . (6.25)

This gives them the interpretation as raising and lowering operators for eigenvectors |j,m〉 of J3 (with eigenvalue ℏm,
say):

J3 (J± |j,m〉) = ±ℏJ± |j,m〉+ J±J3 |j,m〉 = ℏ(m± 1) (J± |j,m〉) . (6.26)

Thus J± |j,m〉 is a multiple of an eigenvector for J3 with eigenvalue ℏ(m± 1). The following then shows that the values
for |m|must be bounded.



6 ROTATIONS, ANGULAR MOMENTUM, AND THEIR REPRESENTATIONS 38

Figure 2. Depiction of irreducible representation of the angular momentum operators.

Lemma 6.4.5. Let J2 |ψ〉 = λℏ2 |ψ〉 and J3 |ψ〉 = ℏm |ψ〉. Then for all ϕ ∈ H,

〈J±ϕ|J±ψ〉 = ℏ2 (λ −m(m± 1)) 〈ϕ|ψ〉 and ||J±ψ||2 = ℏ2 (λ −m(m± 1)) ||ψ||2 . (6.27)

Proof. Observe from the angular momentum commutation relations that

J+J− = J2 − J23 + ℏJ3 , J−J+ = J2 − J23 − ℏJ3 , (6.28)

so the identities follow from

〈J−ϕ|J−ψ〉 = 〈ϕ|J+J−ψ〉 =
〈
ϕ
∣∣(J2 − J23 + ℏJ3)ψ

〉
, (6.29)

and using the eigenvalue relations (and similarly for the J+ plus version of (6.29)). ■

Given that λ is fixed on an irreducible representation, |m| cannot be too large as otherwise the norm squared of these
states would be negative. The only way to avoid |m| becoming arbitrarily large in the negative direction is if for some
smallest value m−, J−|ψm−

〉 = 0 where J3|ψm−
〉 = ℏm−|ψm−

〉, which requires λ = m−(m− − 1). The only way
that |m| can avoid becoming arbitrarily large in the positive direction is if analogously for some largest value m+,
J+|ψm+

〉 = 0, so λ = m+(m+ + 1). To realise both situations at once, we need

λ = j(j + 1) , m− = −j , m+ = j . (6.30)

By construction m+ − m− = 2j must be an integer (since starting with the |ψm−
〉 and acting repeatedly with J+ we

must arrive eventually at |ψm+
〉). Hence the constraints on the eigenvalues are as stated in the theorem.

To finish off the proof, we require that the J3 eigenvalues be nondegenerate. This follows from irreducibility. Suppose
that there are two linearly independent eigenvectors |j,m; 1〉 and |j,m; 2〉 that, without loss of generality, can be taken
to be mutually orthogonal. Then it follows from the expressions above that Jn± |j,m; 1〉 and Jn± |j,m; 2〉 are orthogo-
nal. Thus there will be two nontrivial Ji-invariant subspaces spanned by Jn± |j,m; 1〉 and by Jn± |j,m; 2〉, contradicting
irreducibility. ■

We conclude with a few additional comments:

• If we are working in a definite irreducible representation of spin j, we might sometimes simply denote the state
kets |m〉 to encode the J3 eigenvalue.
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• The basis |j,m〉 ofHspin j is unique up to an overall normalisation for the entire representation if we impose the
normalisation conditions

|j,m± 1〉 = J± |j,m〉
ℏ
√

j(j + 1)−m(m± 1)
. (6.31)

This definition ensures in particular that the states |j,m〉 all have the same norm, so if we choose a particular
state, say |j, j〉, to be unit normalised and construct the rest of the representation by the action of J−, then all of
these states will be unit normalised.

• Important examples of representations with integer spin were given in A11 QuantumTheory in terms of spher-
ical harmonics. These are angular momentum representations realised using the orbital angular momentum
operators L, which can be written in spherical polar coordinates as

L± = iℏ e±iφ
(
cot θ

∂

∂φ
± i

∂

∂θ

)
, L3 = −iℏ

∂

∂φ
. (6.32)

The total spin j is usually denoted by ℓ in this context and is required to be an integer. The wave functions
Ψm

ℓ (φ, θ) corresponding to the basis states |ℓ,m〉 take the form

Ym
ℓ (φ, θ) = Pm

ℓ (cos θ)eimφ , (6.33)

where Pm
ℓ (x) are associated Legendre functions. The requirement that ℓ and m be integral follows from the need

for eimφ to be single valued.

Example 6.4.6 (Spin 1/2). We saw that while half-integral spin is acceptable in the context of representations
of the angular momentum operators, it doesn’t arise in the context of orbital angular for three-dimensional
wave functions. Let us investigate the simplest case: spin j = 1/2.
The discussion above gives an explicit realisation of this representation,

Hspin 1
2
∼= C2 = Span

{ ∣∣ 1
2 ,

1
2
〉
,
∣∣ 1
2 ,−

1
2
〉 }

. (6.34)

Of course this is just our old friend the qubit. The above action of J± and hence J1 and J2 is determined by (6.31)
for which in this case the denominator is just ℏ, and the eigenvalue condition determines J3. It follows that in
this basis we have

J =
ℏ
2
σ , (6.35)

where σ = (σ1, σ2, σ3) are the same Pauli spin matrices we met in our qubit discussion. Now let us consider
a general rotation by some angle θ about an axis designated by the unit vector n; we denote this by Rn(θ). By
Stone’s theorem, this should be realised on our two-dimensional Hilbert space by the unitary matrix

U(Rn(θ)) =: Un(θ) = exp
(
− iθ

ℏ
n · J

)
= exp

(
− iθ

2
n · σ

)
. (6.36)

An explicit computation of this matrix exponential yields a simple expression for the matrix that should rep-
resent the rotation,

Un(θ) = cos
(

θ
2

)
12×2 − i sin

(
θ
2

)
n · σ . (6.37)

It is easy to confirm that these are unitarymatrices, and in addition they aremanifestly traceless, so are elements
of SU(2). Indeed, by letting n range over the unit sphere in three dimensions and letting θ run from 0 to 2π,
this gives a parameterisation of the most general element of SU(2). However, compared to rotations this is
double counting! Rotating by θ around the axis defined by n is the same as rotating by 2π− θ around the axis
defined by−n.
Indeed, for fixed n, we see that setting θ = 2π doesn’t give us back the identity, but rather minus the iden-
tity. It is only upon taking θ = 4π that our unitary matrix returns to the identity. So there is a two-to-one
correspondence between the elements of SU(2) and the inequivalent rotations, i.e., the elements of SO(3).
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We are encountering in this example precisely a situation where our symmetry group ( SO(3)) is implemented
via a projective unitary representation that is not strictly a unitary representation of the group we started with.
We can see this in terms of the group law. Consider the rotation Rn(π) that performs a half rotation about the
axis n. Then performing this twice we have have

U (Rn(π))U (Rn(π)) = Un(2π) = −12×2 . (6.38)

whereas if we compose the rotations before taking the map to unitary matrices, we have

U (Rn(π)Rn(π)) = U(Rn(2π)) = U(Rn(0)) = 12×2 . (6.39)

The sign difference is precisely the type of “extra phase” that is allowed for projective representations!
It turns out that this example is indicative of the general story for half-integer-spin representations. These are
projective unitary representations of SO(3) that do not lift to unitary representations of SO(3). Rather, they
correspond to unitary representations of SU(2), where the relation between the two groups is by a quotient,

P SU(2) := SU(2)/{±1} ∼= SO(3) . (6.40)

In the case of orbital angular momentum, there is manifestly a representation of the honest rotation group via
the action on wave functions; consequently only integer spin can occur.

Remark 6.4.7. There is a beautiful observation to make here that I cannot help but include for your entertain-
ment (I hope). As was observed above, we have a realisation of SU(2) by a choice of unit vector in R3 and an
angle θ ∈ 2π. This gives us a realisation of SU(2) as a circle fibration over the two-sphere (you can imagine
a circle corresponding to the choice of angle sitting over each point on the two-sphere corresponding to the
choice of unit vector). This is what’s known as the Hopf fibration, which realises the three sphere S3 ∼= SU(2)
as a circle fibration over S2. The rotation group SO(3) then gets identified as the quotient space S3/Z2, with Z2
acting as the antipodal map.
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Chapter 7

Intrinsic Spin and Addition of AngularMomentum
When we model a quantum mechanical particle or system that has some internal structure, the action of the rotation
group can be more complicated than what we have in the case of wave functions. We could describe such a system in
terms of its center of mass, which will be labelled by a point in R3, as well as some internal structure whose quantum
mechanical configurations are encoded in a Hilbert spaceHinternal. The full Hilbert space for such a structured particle
will then given by

H = L2(R3)⊗Hinternal . (7.1)

We will then have a (projective) unitary representation of SO(3) on this Hilbert space generated by some total angular
momentum operators J. At the infinitesimal level, we know that J will act on the center of mass wave function as the
orbital angular momentum operator L, while we can introduce operators S that describe the action onHinternal,

J = L⊗ 1Hinternal + 1L2(R) ⊗ S , (7.2)

where the L and S operators commute and each satisfy the angular momentum commutation relations,

[Li, Lj] = iℏ
∑
k

εijkLk , [Si, Sj] = iℏ
∑
k

εijkSk . (7.3)

If we are describing elementary particles, we expectHinternal to support an irreducible angular momentum representa-
tion; otherwise we would think of the different subrepresentations as corresponding to (detectably!) different versions
of the elementary particle, and therefore we would call them different types of elementary particles. If a particle has
Hspin j as its internal Hilbert space with the attendant operators S describing rotations, then we say the particle itself
has intrinsic spin j (though often we simply shorten this to say the particle has spin j). This intrinsic spin is the quantity
that appears in the spin statistics theorem of Chapter 4.

7.1 Addition of angular momentum

To understand the full action of rotations on a system with both orbital angular momentum and intrinsic spin, we will
have to understand the action of the total angular momentum operators in a system where we initially understand
the action of the components L and S separately. Similarly, if we have a system of n particles each of which has some
angular momentum operator Ji acting on its single-particle Hilbert space, then we will want to understand the total
angular momentum43 J = J(1)+ . . .+ J(n) acting on the composite Hilbert space starting with an understanding of the
individual angular momentum representations. This procedure is, in the physics literature, usually referred to as the
addition of angular momentum. We first pose the problem in the context of there being two constituent representations
of angular momentum.

Problem 7.1.1. Consider the Hilbert spaceH ∼= H1 ⊗H2 whereHi supports an irreducible representation of the angular
momentum operators J(i) with spin ji. We have dimH = (2j1 + 1)(2j2 + 1). How does this composite system decompose
into irreducible representations of the total angular momentum operator J = J(1) + J(2)?

The answer is given in the following Proposition.

Proposition 7.1.2. Under the action of the total angular momentum, the tensor productH ∼= H1 ⊗H2 of irreducible
representations with spins j1 and j2, respectively, decomposes into irreducible representations according to

H1 ⊗H2 =

j1+j2⊕
J=|j1−j2|

Hspin J . (7.4)

43Here and in what follows we drop the explicit tensor notation for these sums of operators acting on different tensor factors of a composite
Hilbert space.
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Thus we can find an orthonormal basis for this tensor product that we denote by |J,M〉 with J = |j1 − j2|, |j1 − j2| +
1, . . . , j1 + j2 − 1, j1 + j2 and M = −J,−J + 1, . . . , J− 1, J which obey44

(J(1))2 |J,M〉 = ℏ2j1(j1 + 1) |J,M〉 , J2 |J,M〉 = ℏ2J(J + 1) |J,M〉 , (7.5)

(J(2))2 |J,M〉 = ℏ2j2(j2 + 1) |J,M〉 , J3 |J,M〉 = ℏM |J,M〉 . (7.6)

Figure 3. Depiction of states in the tensor product of irreducible representations of angular momentum with spins j1 and j2, where
we assume j1 ⩾ j2.

Proof. Thesituation described in the following proof is illustrated in Figure 3, which hopefullymakes the combinatorics
of the proof easier to follows.

We assume, without loss of generality, that j1 ⩾ j2. We then proceed inductively, first finding the representation of
highest total spin Hspin (j1+j2) inside H, then in the complement H⊥

spin (j1+j2) ⊂ H finding the representation of next
highest total spin, and so on.

We will write our pure-tensor basis vectors as |j1,m1〉 ⊗ |j2,m2〉 = |m1;m2〉,45 which as a reminder, obey

(J(1))2 |m1;m2〉 = ℏ2j1(j1 + 1) |m1;m2〉 , J (1)3 |m1;m2〉 = ℏm1 |m1;m2〉 ,

(J(2))2 |m1;m2〉 = ℏ2j2(j2 + 1) |m1;m2〉 , J (2)3 |m1;m2〉 = ℏm2 |m1;m2〉 .
(7.7)

These are evidently already eigenvectors of J3 = (J (1))3 + (J (2))3, with eigenvalues M = m1 + m2. There is a unique
state with maximum M = j1 + j2, which we must be able to identify with the “top” state in a spin j1 + j2 representation;
we can therefore identify

|J = j1 + j2,M = j1 + j2〉 = |j1; j2〉 . (7.8)

44These states are often written as |j1, j2; J,M⟩ to make manifest the constituent spins that are being combined. We will leave these implicit to
avoid overly burdensome notation whenever possible.

45As with the previous basis states, these will sometimes be labelled |j1,m1; j2,m2⟩ to indicate the constituent spins. We will avoid this when
possible to minimise notational clutter.
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The rest of the spin J = j1+j2 representation can be recovered by actingwith the total lowering operator J− = J (1)− +J (2)− .
Normalising these using (6.31), we obtain the states |J = j1 + j2,M〉 for M < J. These necessarily constitute a complete
spin J = j1 + j2 subrepresentation inH.

Nextwe consider the stateswithM = j1+j2−1. There are two linearly independent such states, |j1 − 1; j2〉 and |j1; j2 − 1〉.
One combination of these occurs in the spin j1+j2 representation defined above as |J = j1 + j2,M = j1 + j2 − 1〉. Taking
a vector in the orthogonal complement, we get a state vector that is necessarily the top state in a spin j1+ j2−1 represen-
tation, since acting with a raising operator must give zero, else this would be part of the previous spin j1 + j2 represen-
tation. We therefore denote a normalised element of this orthogonal complement by |J = j1 + j2 − 1,M = j1 + j2 − 1〉.
Again acting with J (1)− + J (2)− on this state generates a full irreducible subrepresentation, this time of spin j1 + j2 − 1.

If j2 = 1
2 , then the degeneracy for M eigenvalues with j1 + j2 − 1 ⩾ M ⩾ −(j1 + j2 − 1) is just two, corresponding to

the m2 = ± 1
2 states, and so must be spanned by the corresponding M-eigenstates of the two multiplets we have just

found. In this case we would be done.

If j2 > 1
2 , then the degeneracy for the M = j1 + j2 − 2 eigenvalue is three with (m1,m2) = (j1, j2 − 2), (j1 − 1, j2 − 1)

or (j1 − 2, j2). Thus, as before, there is a nontrivial orthogonal normalised vector |j1 + j2 − 2, j1 + j2 − 2〉 orthogonal
to those M = j1 + j2 − 2 eigenvalues of total spin j1 + j2 and j1 + j2 − 1, unique up to a phase. This gives rise to a spin
J = j1 + j2 − 2 representation by lowering.

In general, the degeneracy states with J3 eigenvalue M is given by 1 + j1 + j2 − |M| for |M| ⩾ j1 − j2, but is 2j2 + 1
otherwise as it cannot exceed the number of choices 2j2 + 1 for m2 (see Figure 3). So we can carry on by induction,
generating a new multiplet at each stage, until we eventually produce all the angular momentum multiplets with spins
from J = j1 − j2 to J = j1 + j2, as required. This gives a total of 2j2 + 1 irreducible representations (2j2 + 1 being the
maximal degeneracy of the M eigenvalue, realised for |M| ⩽ j1 − j2). ■

Before moving on, we will look at the simplest case of addition of angular momentum: the tensor product of two spin
1/2 systems.
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Example 7.1.3 (Two qubits). We can be very explicit in examining the two-qubit system,

H = H⊗2
spin 1

2
. (7.9)

If we adopt the basis for the spin- 12 qubit from the last chapter, we have as our basis for the tensor product
Hilbert space

∣∣± 1
2 ;±

1
2
〉
, with the signs chosen independently. To make things easier on the eyes, we will adopt

the notation |±±〉. If we organise these by J3 eigenvalue M = m1 + m2, we have

M = +1 : |++〉
M = 0 : |+−〉 |−+〉
M = −1 : |−−〉

(7.10)

Starting with the top state, we produce the following states in the spin-one subrepresentation of this system,

|1, 1〉 = |++〉 , |1, 0〉 = |+−〉+ |−+〉√
2

, |1,−1〉 = |−−〉 . (7.11)

There is an additional spin-zero state (so a rotationally-invariant state),46

|0, 0〉 = |+−〉 − |−+〉√
2

. (7.12)

It may be worth remarking that the spin-one representation consists of bosonic (symmetric) states, while the
spin-zero representation is the one fermionic (anti-symmetric) state in this tensor product. Indeed, the total
angular momentum operators can be seen (by inspection) to commute with the action of permutations on the
n-fold tensor product of identical representations of angular momentum, which means that the bosonic and
fermionic subspaces will always transform among themselves under rotations.

Example 7.1.4 (Everything from spin one half). The previous example suggests a general construction of the
spins j representation for any j using spin- 12 representations as building blocks. Consider the n-fold symmetric
tensor product of the qubit Hilbert space�nHspin 1

2
. By our results in Chapter 4, this has dimension

dim
(
�nHspin 1

2

)
= n + 1 . (7.13)

If we consider the state |++ · · ·+〉, this has

J(tot)3 |++ · · ·+〉 = ℏn
2
|++ · · ·+〉 , (7.14)

so this must be an element of a representation with spin greater than or equal to n/2. But on dimensionality
grounds, this can only be a representation of spin n/2 exactly, and indeed it is clear that this state is the top state
of its angular momentum representation. Thus, if you like, you can think of any irreducible representation of
angular momentum in terms of an appropriate number of identical (bosonic) qubits. This can prove a useful
mental heuristic for these representations.

7.2 Clebsch–Gordan coefficients

Equation (7.4) tells us—in general terms—how the tensor product of irreducible angular momentum representations
will transform under the total angular momentum. However, to work with these composite systems and do calcula-
tions in practice, one needs to be able to concretely construct and manipulate the elements of the different irreducible
representations appearing in the direct sum on the right hand side of that equation. In practice, this usually means

46You might recognise this as the EPR state from our brief discussion of entanglement.
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having expressions for the precise linear combinations of the states |m1;m2〉 that constitute the states |J,M〉 and vice
versa. To this end we make the following definition.

Definition 7.2.1. The Clebsch–Gordan coefficients Cj1 j2(J,M;m1,m2) are defined by

|J,M〉 =
∑
m1,m2

m1+m2=M

Cj1j2(J,M;m1,m2) |m1;m2〉 , (7.15)

so these are the coefficients of the expansion of our orthonormal basis of states in the (J,M) basis in terms of
those in the separable, (m1,m2) basis.

The coefficients defined as such are not uniquely specified defined, because there is some choice of overall phases
in the states for each irreducible representation involved. However, this freedom can be fixed by requiring that the
Clebsch–Gordan coefficients be real along with an additional convention that we will describe momentarily.

Because both bases are orthonormal, we can deduce a number of useful expressions involving the Clebsch–Gordan
coefficients. For example, we can realise them explicitly in terms of inner products of the form

Cj1j2(J,M;m1,m2) = 〈m1;m2|J,M〉 . (7.16)

If we adopt the conventions mentioned above to ensure reality of the Clebsch–Gordan coefficients, then we will also
have

Cj1j2(J,M;m1,m2) = 〈J,M|m1;m2〉 . (7.17)

The completeness relation for our Hilbert space leads to the following identity,

1 = 〈J,M|J,M〉 ,

=
∑
m1,m2

〈J,M|m1;m2〉 〈m1;m2|J,M〉 ,

=
∑
m1,m2

|Cj1j2(J,M;m1,m2)|2 .

(7.18)

Analogously, the completeness relation for the |J,M〉 states gives

1 = 〈m1;m2|m1;m2〉 ,

=
∑
J,M

〈m1,m2|J,M〉 〈J,M|m1;m2〉 ,

=
∑
J,M

|Cj1j2(J,M;m1,m2)|2 .

(7.19)

More generally, we have

δJJ′δMM′ =
∑
m1,m2

〈J,M|m1;m2〉 〈m1;m2|J′,M′〉 ,

=
∑
m1,m2

Cj1j2(J,M;m1,m2)Cj1j2(J
′,M′;m1,m2) ,

δm1m′
1
δm2m′

2
=
∑
J,M

〈m1,m2|J,M〉 〈J,M|m′
1;m

′
2〉 ,

=
∑
J,M

Cj1j2(J,M;m1,m2)Cj1j2(J,M;m′
1,m′

2) .

(7.20)

We will now see take a look at how the computation of these coefficients works out in some simple examples.
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Example 7.2.2. Let j2 = 1
2 with j1 6= 0 an arbitrary spin. Then the highest-spin state takes the usual form∣∣j1 + 1

2 , j1 +
1
2
〉
=
∣∣j1; 1

2
〉
. Acting with the total lowering operators, we get

∣∣j1 + 1
2 , j1 −

1
2
〉
=

1
ℏ
√

2j1 + 1
J−
∣∣j1 + 1

2 , j1 +
1
2
〉
,

=
1

ℏ
√

2j1 + 1

(
J (1)− + J (2)−

) ∣∣j1; 1
2
〉
,

=
1√

2j1 + 1

(√
2j1
∣∣j1 − 1; 1

2
〉
+
∣∣j1;− 1

2
〉)

. (7.21)

We can identify the most general (normalised) orthogonal complement in the M = j1 − 1
2 eigenspace as

∣∣j1 − 1
2 , j1 −

1
2
〉
∼ 1√

2j1 + 1

(∣∣j1 − 1; 1
2
〉
−
√

2j1
∣∣j1;− 1

2
〉)

. (7.22)

At this point we can use some of our freedom in introducing phases to fix the overall phase of this state. De-
manding that the Clebsch–Gordan coefficients (so the coefficients of the expansion) be real gives us

∣∣j1 − 1
2 , j1 −

1
2
〉
= ± 1√

2j1 + 1

(√
2j1
∣∣j1;− 1

2
〉
−
∣∣j1 − 1; 1

2
〉)

. (7.23)

To fix the final sign ambiguity, onemay adopt a standard convention known as theCondon–Shortley convention.
This amounts to declaring that

Cj1j2(J, J; j1, J− j1) > 0 . (7.24)

In the above, this selects the plus sign, and with that highest state fixed, we can produce the rest of the spin
j1− 1

2 multiplet by acting with J−. (Note that this convention depends on the order of the two constituent spins
j1 and j2.)
One can read off the Clebsch–Gordan coefficients from the resulting expressions for our states, e.g., from (7.21)
and (7.23). We have:

Cj1 1
2

(
j1 + 1

2 , j1 +
1
2 ; j1,

1
2
)

= 1 ,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1,−

1
2
)

=
1√

2j1 + 1
,

Cj1 1
2

(
j1 + 1

2 , j1 −
1
2 ; j1 − 1, 1

2
)

=
√

2j1
2j1+1 , (7.25)

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1,−

1
2
)

=
√

2j1
2j1+1 ,

Cj1 1
2

(
j1 − 1

2 , j1 −
1
2 ; j1 − 1, 1

2
)

=
−1√
2j1 + 1

.

You can look up tables of Clebsch–Gordan coefficients in textbooks and online, but you should learn to love them and
practice deriving some!

Example 7.2.3 (Application to hydrogen energy levels). An important application of this general story arises
in the analysis of atoms. Let us start with a single-electron atom (a.k.a., a Hydrogen-like atom). We model this
as an electron moving in an external Coulomb potential, and you have studied the corresponding stationary
state wave functions inA11 QuantumTheory. However, the electron has intrinsic spin 1/2, so we should really
think of its Hilbert space as being the tensor product

Helectron ∼= L2(R3)⊗Hspin 1/2 . (7.26)

A general state in the electron Hilbert space will then consist of two wavefunctions, one for each of the possible
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internal spin states
|ψ〉 =

∣∣ψ+ ⊗+ 1
2
〉
+
∣∣ψ− ⊗−

1
2
〉
, (7.27)

where
∣∣± 1

2
〉
are the ms = ± 1

2 intrinsic spin eigenstates for, say, the S3 operator, and ψ±(x) give the wave func-
tions for the situation that the electron has ms = ± 1

2 . In non-relativistic quantum mechanics, the Schrödinger
equation does not mix the two m-values, so the component wave functions ψ±(x) must both individually
satisfy the same Schrodinger equation.47

If we take the wavefunctions ψ±(x) to be the stationary state wave functions you met for the Hydrogen atom
previously, we end up with stationary states that we write as

|n, ℓ,mℓ;ms〉 = fnℓ(r)Ymℓ

ℓ (θ, φ)⊗ |ms〉 , (7.28)

where on the right we have separated out the explicit wave function part in front and left only the intrinsic spin
state in the ket. Here, as elsewhere, the Ymℓ

ℓ (θ, φ) are the spherical harmonics with eigenvalues ℏ2ℓ(ℓ+ 1) for
L2 and ℏmℓ for L3, and fnℓ(r) is a (particular) polynomial in r of degree n − 1 multiplied by exp(−Zr/na0).
These states simultaneously diagonalise L2, S2, L3, S3, and H, with energy

En =
E0

n2 , E0 = −
Z2q2e
2a0

. (7.29)

The energy eigenstates depend only on the principal quantum number, n, and for a given n there are states with
ℓ = 0, . . . , n − 1, and for each ℓ there are 2ℓ + 1 different values of mℓ. Each such wave function also occurs
twice, once for each of the two values of ms. Adding everything up, there is a degeneracy of 2n2 for the energy
level En.
Now for various purposes (we will see more on this in future chapters) it can prove useful to adopt a basis of
states that diagonalises the total angular momentum operator J2 (where J = L + S). Following our previous
discussion of addition of angular momentum, we can find a basis of states that does this with eigenvalue j(j +
1)ℏ2, where j = ℓ± 1

2 (or j = 1
2 if ℓ = 0). These are given by the linear combinations,∣∣n, ℓ, j,mj

〉
=

∑
mℓ,ms

mℓ+ms=mj

Cℓ, 12
(j,mj;mℓ,ms) |n, ℓ,mℓ;ms〉 . (7.30)

where Cℓ, 12
(j,mj;mℓ,ms) are of course the Clebsch–Gordan coefficients. This gives us a basis of stationary

states that are eigenvectors for H, L2, J2, and J3, the latter with eigenvalue mj, but not for L3 and S3.
There is a standard nomenclature for the electron stationary states in this basis. The set of states with given
values of n, ℓ, and j are known as nℓj orbitals. For historical reasons, instead of writing the numerical value for
ℓ = 0, 1, 2, 3, 4, . . ., one normally substitutes the letters s, p, d, f, g, . . . respectively (continuing alphabetically).
Each such orbital contains 2j + 1 states with mj = −j,−j + 1, . . . , j− 1, j. So, for example:

• For all n, we have the ℓ = 0 states (s orbitals) which appear only in the orbital ns 1
2
with the two states

corresponding to mj = ms = ± 1
2 .

• For n ⩾ 2 we can have ℓ = 1 states (p orbitals) which arise in the configuration np 1
2
with two states or

np 3
2
with four states, giving a total of 6 states for the np orbitals.

• In general, we have orbits nℓℓ± 1
2
with n ⩾ ℓ + 1, and a similar counting for the nℓ type of energy level

gives a total of 2(ℓ− 1
2 ) + 1 + 2(ℓ+ 1

2 ) + 1 = 4ℓ+ 2 states.

Remark 7.2.4. While we have reorganised the Hydrogen stationary states so as to diagonalise the total
angular momentum operator, it may not yet be clear that this is a superior basis to choose. We will
see in some examples in the next chapter that when we start considering corrections to the Hydrogen
atom Hamiltonian arising from more subtle physical effects, these will often lead to a preference for
one basis over another.

47In a relativistic setting, the usual Schrödinger equation is replaced by the Dirac equation, which does mix up the different spin states. This
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7.3 Irreducible tensor operators and the Wigner–Eckart theorem

Just as the Hilbert space of a rotational system can be organised in terms of the action of the angular momentum
operators, so too can many operators in such systems. It then turns out that the matrix elements of operators with
definite angular momentum properties (the so-called irreducible tensor operators, see below) are controlled by the
same rules of addition of angular momentum that we have just developed.

We define an action of the rotation group on operators by conjugation by the corresponding unitaries,

A R−→ A′ = U(R)AU(R)∗ . (7.31)

This definition is arranged so that under a combined action of rotations on states and operators, matrix elements remain
fixed. (The idea is that if we simultaneously rotate the state of our system and the measuring apparatus (the operators),
then the corresponding measurements/matrix elements should be invariant.)

〈ψ|A|φ〉 R−→ 〈U(R)ψ|A′|U(R)φ〉 = 〈ψ|U(R)∗U(R)AU(R)∗U(R)|φ〉 = 〈ψ|A|φ〉 . (7.32)

From this we can infer the transformation of an operator under an infinitesimal rotation, which is formulated in terms
of the angular momentum operators,

U(R)AU(R)∗ ≈ (1− iε
ℏ

ω · J)A(1 + iε
ℏ

ω · J) ≈ A− iε
ℏ
[ω · J,A] . (7.33)

Thus we identify the infinitesimal transformation δωA of an operator A with the commutator with the angular mo-
mentum operators,

δωA = − i
ℏ
[ω · J,A] . (7.34)

7.3.1 Vector operators

A number of operators that appear frequently in rotational systems have good reason to transform nicely under rota-
tions. In particular, the position operators X or the momentum operators P should, in principle, transform as vectors
under rotations. More precisely, they will transform according to,48

U(R)VU(R)∗ = R−1V , U(R)(n · V)U(R)∗ = (Rn) · V , (7.35)

Notice that with this definition, if we act with rotations on the states of a system while leaving the (vector) operators
fixed,49 then we have

〈ψ|V|φ〉 R−→ 〈ψ|U(R)∗VU(R)|φ〉 =
〈
ψ
∣∣U(R−1)VU(R−1)∗

∣∣φ〉 = R 〈ψ|V|φ〉 , (7.36)

so our measured expectation values/matrix elements transform by the rotation matrix R. Working infinitesimally, we
have

δω(n · V) = (ω ∧ n) · V , (7.37)

so in terms of angular momentum operators, we have

[ω · J,n · V] = iℏ(ω ∧ n) · V . (7.38)

we recognise this as the component-free expression for the commutation relations for the angular momentum opera-
tors, with some J’s replaced by V’s. Indeed working in components, we arrive at the following definition.

is beyond the scope of our course.
48The R−1 rather than R here is coming from the same place as the R−1 appearing in the action of rotations on wavefunctions.
49We think of this as rotating the state of our system while leaving the measuring apparatus/laboratory equipment fixed
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Definition 7.3.1. A vector operator is any triple of operatorsV in a rotational system that obey the commutation
relations

[Ji,Vi] = i
∑
k

εijkVk . (7.39)

As an examples, we have (by direct computation) that the position, momentum, and angular momentum operators are
all vector operators in this sense. More generally, operators can transform as irreducible representations (of arbitrary
spin) of the rotation group/angular momentum operators. We make the following definition.

Definition 7.3.2. An irreducible tensor operator operator of spin k is a (2k + 1)-tuple of operators T (k)
q for

q = −k,−k + 1, . . . , k− 1, k in a rotational system that obey the commutation relations

[J3,T (k)
q ] = ℏ qT (k)

q ,

[J±,T (k)
q ] = ℏ

√
k(k + 1)− q(q± 1)T (k)

q±1 .
(7.40)

Note that for the case k = 1, the basis T(1)
q is related to the Cartesian basis according to

T (1)
0 = V3 , T (1)

±1 = ∓
V1 ± iV2√

2
, (7.41)

and with this change of basis the commutation relations in (7.39) and (7.40) coincide. The key result that motivates
our definition of general tensor operators is the following theorem, which allows for a drastic simplification in the
computation of matrix elements of tensor operators.

Theorem 7.3.3 (Wigner–Eckart). The matrix elements of an irreducible tensor operator of spin k with respect to an-
gular momentum eigenstates are given by〈

α; J,M
∣∣∣T (k)

q

∣∣∣β; j,m〉 = Cj,k(J,M;m, q)
〈
α; J
∣∣∣∣∣∣T (k)

∣∣∣∣∣∣β; j〉 . (7.42)

Here α and β represent additional labels on the states that are not affected by the action of angular momentum oper-
ators. The double-bracketed object

〈
α; J
∣∣∣∣T (k)

∣∣∣∣β; j〉 on the right hand side is called the reduced matrix element, and is
some number that doesn’t depend on the labels m, M, and q.

The punchline here is that by symmetry, the matrix elements of tensor operators between definite angular momentum
states are determined entirely up to a single constant for each choice of the three angular momentum multiplets being
coupled (two irreps as states and the choice of tensor operator), with the dependence on the particular states/elements
of the angular momentum multiplets being entirely encoded in Clebsch–Gordan coefficients. In practice, the overall
constant can then usually be evaulated by making a convenient choice of M, m, and q.

Proof. We consider the following matrix elements:〈
α; J,M

∣∣∣[J±,T (k)
q ]
∣∣∣β; j,m〉 = ℏ

√
k(k + 1)− q(q± 1)

〈
α; J,M

∣∣∣T (k)
q±1

∣∣∣β; j,m〉 , (7.43)

which we can also rewrite by acting with the J± operators in the commutators to the left and to the right on the states,
which yields

ℏ
√

J(J + 1)−M(M∓ 1)
〈
α; J,M∓ 1

∣∣∣T (k)
q

∣∣∣β; j,m〉− ℏ
√

j(j + 1)−m(m± 1)
〈
α; J,M

∣∣∣T (k)
q

∣∣∣β; j,m± 1
〉

. (7.44)
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Now observe that for the Clebsch–Gordan coefficients, we have

〈J,M|J±|j1,m1; j2,m2〉 = ℏ
√

j1(j1 + 1)−m1(m1 ± 1) 〈J,M|j1,m1 ± 1; j2,m2〉

+ ℏ
√

j2(j2 + 1)−m2(m2 ± 1) 〈J,M|j1,m1; j2,m2 ± 1〉

= ℏ
√

J(J + 1)−M(M∓ 1) 〈J,M∓ 1|j1,m1; j2,m2〉 .

(7.45)

Comparing the two sets of relations, we find that we have identical recursion relations with the relation

(J,M, j,m, k, q)↔ (J,M, j1,m1, j2,m2) . (7.46)

These recursion relations allow to determine both the Clebsch–Gordan coefficients (with fixed J, j1, j2) and our matrix
elements (with fixed α, β, J, k, j) by homogeneous linear relations in terms of a single coefficient/matrix element. The
two sets of numbers thus must agree up to an overall rescaling. ■

The Wigner–Eckart theorem tells us that the rules for addition of angular momentum also constrain the possible ma-
trix elements of tensor operators in rotational systems. For example, for a vector operator like X, P, or even J itself,
matrix elements can only be non-zero between states whose total angular momentum differs by at most one! This is
an important selection rule in many applications, for example in atomic physics.
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Chapter 8

Rayleigh–Schrödinger PerturbationTheory

In this chapter we turn to an important practical and conceptual question in quantum theory, which is how to approx-
imate the energy levels of systems that are close to being described by a system that we can solve. We will say a little (but
not a lot) more below about what we mean by “close”, but intuitively, we can imagine (for example) modelling an atom
with several electrons as being approximated by such an atom where the electrons do not interact among themselves
except through their fermionic statistics. Alternatively, when we consider a Hydrogen-like, single-electron atom in
the real world, we think of it as being well-described by the usual Hamiltonian with Coulomb potential, but there are
actually small corrections to this due to the effects of (for instance) special relativity.

8.1 Formal perturbation theory

We imagine a scenario in which the Hamiltonian (for now we take this to be time-independent) of a quantum system
can be written as a perturbation of a reference Hamiltonian H (0), so taking the form

H = H (0) + δH . (8.1)

We have in mind (though it need not be the case to develop the abstract formalism) that H (0) is a Hamiltonian whose
spectral problemwe have understood exactly, such as that of the harmonic oscillator or the Hydrogen atom (restricting
to bound states). Now we want to consider δH as being small in an appropriate sense, and we make this explicit by
writing

δH = εH (1) , (8.2)

where ε represents a small parameter, either in the sense of being numerically small (with H (1) being somehow fixed in
size and so not scaling like an inverse power of ε), or more accurately for our immediate purposes, in the sense of being
formally small. So we will take our energy levels and stationary states to be formal series expansions in this parameter
ε,

ψε = ψ(0) + εψ(1) + ε2ψ(2) + . . .+ εnψ(n) + . . . ,

Eε = E(0) + εE(1) + ε2E(2) + . . .+ εnE(n) + . . . ,
(8.3)

and ask that these satisfy the time-independent Schrödinger equation as formal series,

Hψε = Eεψε , order by order in ε . (8.4)

The issue of normalisation for this formal solution can be a little bit subtle, since the normalisation of our formal
solution will itself in principle be a formal series in ε. In particular, given one formal series solution of (8.4), we can
produce another by multiplying both sides by (the same) formal series in ε with numerical coefficients.

It turns out that a convenient normalisation is, rather than demanding ψε be unit normalised, to require〈
ψ(0)

∣∣∣ψε

〉
= 1 , (8.5)

which is equivalent to 〈
ψ(0)

∣∣∣ψ(n)
〉
= δn,0 . (8.6)

It may be useful to ponder the enforcement of this normalisation if given a formal solution with an arbitrary normali-
sation.
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Writing out (8.4) as an expansion in ε, we have,(
H (0) + εH (1)

)(
ψ(0) + εψ(1) + ε2ψ(2) + . . .

)
=(

E(0) + εE(1) + ε2E(2) + . . .
)(

ψ(0) + εψ(1) + ε2ψ(2) + . . .
)
,

(8.7)

and equating coefficients of order εn gives an infinite sequence of relations

H (0)ψ(n) + H (1)ψ(n−1) =

n∑
m=0

E(m)ψ(n−m) . (8.8)

Thefirst of these relations, where n = 0 (by conventionwe let ψ(−1) = 0) just tells us that zeroth term in each expansion
corresponds to an eigenstate and energy level of the unperturbed system,

H (0)ψ(0) = E(0)ψ(0) . (8.9)

The higher order terms will then be our object of focus. However, first we should make a short comment about the
interpretation of this formal series.

Remark 8.1.1 (Analytic considerations). The analytic status of these formal series solutions is an interesting
subject. Natural questions include whether we can assign some numerical value to ε so that the resultant series
expansions for the energies and the eigenstates converge, and if so what the radius of convergence might be.
The following theorem due to Kato gives a sense of under what conditions we can guarantee convergence.

Theorem 8.1.2. If there exist real constants a, b ⩾ 0 such that for any ψ in the domain of H (0), we have

||H (1)ψ|| ⩽ a||ψ||+ b||H (0)ψ|| , (8.10)

then the formal series for ψε and Eε will have a non-zero radius of convergence.

Estimating this radius of convergence is a more subtle issue. Observe that for the case of a finite dimensional
Hilbert space, this is always satisfied since all of the quantities appearing in (8.10) will be bounded. In the
infinite dimensional case, the simplest scenario is again when the left hand side is simply bounded for all
ψ ∈ H; in such a case there is always a non-zero radius of convergence.
The cases that are most often of interest in a physical setting are of the more complicated variety, where H
is infinite dimensional and the operators in question lead to unbounded left hand side of (8.10). In these
cases establishing the bound in question might be a difficult problem. However, even when the series have
zero radius of convergence, these expansions can often be interpreted as asymptotic series, and can be used to
do computations that give good agreement with experiment (sometimes extraordinarily good agreement) by
simply truncating the formal series after a fixed number of terms. In our applications this will be our modus
operandi, and we will never have to grapple with the analytic subtleties of convergence.

8.2 First order perturbation theory (nondegenerate)

Now we return to our equation in (8.8) and look at the first correction term (m = 1),

H (1)ψ(0) + H (0)ψ(1) = E(1)ψ(0) + E(0)ψ(1) . (8.11)

Rewriting this gives (
H (0) − E(0)

)
ψ(1) = −

(
H (1) − E(1)

)
ψ(0) . (8.12)

We want this equation to determine both E(1) and ψ(1), given the unperturbed (zeroth order) information. For now we
assume that E(0) is a nondegenerate energy level, so ψ(0) is the only state vector (up to rescaling) with eigenvalue E(0).
An important practical fact is that we can determine the energy correction E(1) without worrying about ψ(1). To do
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this, we take the inner product of both sides of equation (8.12) with the state vector ψ(0),〈
ψ(0)

∣∣∣(H (0) − E(0)
)∣∣∣ψ(1)

〉
= −

〈
ψ(0)

∣∣∣(H (1) − E(1)
)∣∣∣ψ(0)

〉
. (8.13)

The left hand side vanishes, since H (0) can act to the left and just give E(0), and we get the equation for our energy
correction

E(1) =
〈
ψ(0)

∣∣∣H (1)
∣∣∣ψ(0)

〉
. (8.14)

This simple expression is extremely important and extraordinarily powerful; in a slogan it tells us that the leading
correction to the energy of a stationary state is given by the expectation value of the perturbation in that state.

We then turn to the problem of determining ψ(1). We will find an expression for the expansion of this correction vector
in terms of a basis of stationary state vectors for the unperturbed Hamiltonian, which we denote by {ψ(0)

n }, where

H (0)
∣∣∣ψ(0)

n

〉
= E(0)

n

∣∣∣ψ(0)
n

〉
. (8.15)

We label these states so that the state whose perturbation we are studying is the m’th state (n = m), with energy E(0)
m .

We write such an expansion of the correction vector using a resolution of the identity,∣∣∣ψ(1)
m

〉
=
∑
n

∣∣∣ψ(0)
n

〉〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
=
∑
n ̸=m

(〈
ψ(0)
n

∣∣∣ψ(1)
m

〉) ∣∣∣ψ(0)
n

〉
. (8.16)

where the n = m term drops out of the summation due to our normalisation condition (8.5). Now we can compute
the coefficients by taking the inner product of both sides of (8.12) with ψ(0)

n , which yields〈
ψ(0)
n

∣∣∣(H (0) − E(0)
m

)∣∣∣ψ(1)
m

〉
= −

〈
ψ(0)
n

∣∣∣(H (1) − E(1)
m

)∣∣∣ψ(0)
m

〉
,

=⇒
(
E(0)
n − E(0)

m

)〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
= −

〈
ψ(0)
n

∣∣∣H (1)
∣∣∣ψ(0)

m

〉
, (8.17)

=⇒
〈
ψ(0)
n

∣∣∣ψ(1)
m

〉
=

〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)

m
〉

E(0)
m − E(0)

n
.

This allows us to write a general expression for the first correction to the mth energy eigenstate,

ψ(1)
m =

∑
n ̸=m

(〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)

m
〉

E(0)
m − E(0)

n

)
ψ(0)
n . (8.18)

Remark 8.2.1. There is a nice way to understand this expression for the first correction to energy eigenstates
that is somewhat slicker and provides a nice heuristic that we will reuse later. In principle, we would like to
take (8.12) and solve for ψ(1)

m by inverting the operator appearing on the left hand side,∣∣∣ψ(1)
m

〉
=

−1
H (0) − E(0)

m

(
H (1) − E(1)

m

) ∣∣∣ψ(0)
m

〉
. (8.19)

However, the operator H (0) − E(0)
m is definitely not invertible, since it has a kernel (spanned by ψ(0)

m in this
non-degenerate case) so is not injective. A related fact is that the range of this operator doesn’t include all of
H; ψ(0)

m is absent, and indeed it is the only one of our basis vectors that is absent.
Consequently, we can only hope to define this inverse operator on the subspace ofH that is orthogonal to ψ(0)

m ,
and even then its action can only be defined only up to the possible addition of multiples of ψ(0)

m . The first
of these requirements gives us a solvability condition: the right hand side of (8.12) must lie in the orthogonal
complement to ψ(0). This is precisely the condition that we used to determine E(1)

m . The second issue means
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that we must adopt a convention for the component of ψ(1)
m in the direction of ψ(0)

m . This is exactly what our
normalisation condition (8.5) accomplishes.
With both of those issues square away, we can get an expression for ψ(1)

m upon inserting a resolution of the
identity for the orthogonal complementH⊥ to ψ(0)

m . (This must act as the identity given that we have ensured
that the state vector on the right of (8.12) is lies inH⊥.)∣∣∣ψ(1)

m

〉
=

−1
H (0) − E(0)

m

∑
n ̸=m

∣∣∣ψ(0)
n

〉〈
ψ(0)
n

∣∣∣ (H (1) − E(1)
m

) ∣∣∣ψ(0)
m

〉
,

=
∑
n ̸=m

(〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)

m
〉

E(0)
m − E(0)

n

)∣∣∣ψ(0)
n

〉
.

(8.20)

In passing to the second line, we have defined the action of the inverted operator using the usual rule that on
eigenvectors of an observable A with eigenvalue a, we let a function of the observable f(A) act by f(a). We
observe that this (admittedly formal) procedure neatly reproduces the more piecemeal analysis carried out
above.

Example 8.2.2 (Energy of the Helium atom ground state). A classic application of first order perturbation
theory is to the study of a di-electronic atom (an atom with two electrons) like Helium. For now we will ignore
the effects of spin and fermionic statistics. We are therefore studying wavefunctions ψ(x1, x2) of two position
vectors, with a Hamiltonian of the form

H = H1 + H2 + Hint , (8.21)

where
Hi = −

ℏ2

2m
∇2

i −
Zq2e
|xi|

, i = 1, 2, Hint =
q2e

|x1 − x2|
. (8.22)

Here the nuclear charge Z would be two for Helium, H1 and H2 are the standard single-electron Hamiltonians
including a Coulomb potential from the nucleus, and Hint is the interaction Hamiltonian that encodes the
repulsion between the two electrons.
If we could ignore the interaction term and had as our Hamiltonian just H1 + H2, then this system would be
the tensor product of two copies of the Hydrogen atom system, and we would have stationary states that were
separable,

ψn1,n2(x1, x2) = ψn1(x1)ψn2(x2) . (8.23)

In particular, the ground state is non-degenerate and given by50

ψ1,1(x1, x2) =
(

Z3

πa30

) 1
2

exp
(
−Zr1

a0

)
×
(

Z3

πa30

) 1
2

exp
(
−Zr2

a0

)
,

=

(
Z3

πa30

)
exp

(
−Z(r1 + r2)

a0

)
.

(8.24)

Though it is certainly not clear that the interaction Hamiltonian can be thought of as being small, we can
nevertheless proceed with a formal perturbative analysis setting δH = Hint.51 The first order correction to the
ground state energy using our machinery from above is then given by the expectation value,

E(1)
1 =

〈
ψ(0)

∣∣∣Hint

∣∣∣ψ(0)
〉
=

(
Z3

πa30

)2 ∫
R6

q2e exp
(

−2Z(r1+r2)
a0

)
|x1 − x2|

d3x1 d3x2 . (8.25)

Evaluating integrals like these is (unfortunately) largely unavoidable when it comes time to turn the abstract
algebra of perturbation theory into actual numbers for systems like the Helium atom. We can perform this
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integral by first noting that spherical symmetry allows us to fix x1 to point in the ẑ direction (we then pick up a
factor of 4π from the angular integration for x1). Introducing spherical polar coordinates for x2, we then have

x1 · x2 = r1r2 cos θ , |x1 − x2| = (r21 + r22 − 2r1r2 cos θ)1/2 . (8.26)

The φ integral for x2 is trivial and gives an extra factor of 2π. Thus the original six-dimensional integral reduces
to (

8Z6q2e
a60

) ∞∫
0

∞∫
0

π∫
0

exp
(
−2Z(r1 + r2)

a0

)
r21 r22 sin θ√

r21 + r22 − 2r1r2 cos θ
dθ dr1 dr2 . (8.27)

The angular integral can be done immediately,

2π∫
0

sin θ dθ√
r21 + r22 − 2r1r2 cos θ

=
1

r1r2

√
r21 + r22 − 2r1r2 cos θ

∣∣∣∣θ=π

θ=0
. (8.28)

=
1

r1r2
((r1 + r2)− |r1 − r2|) , (8.29)

=

{
2
r1 r1 > r2 ,
2
r2 r2 > r1 .

(8.30)

By symmetry the integration regions where r1 > r2 and that with r2 > r1 contribute equally, so we can write
just take twice the part where r1 > r2 and the resulting radial integral becomes

E(1)
1 =

(
32Z6q2e

a60

) ∞∫
0

∞∫
r2

exp
(
−2Z(r1 + r2)

a0

)
r1r22 dr1 dr2 . (8.31)

This leaves radial integrations, and these can be performedwith the help of the following useful integral identity

Lemma 8.2.3. For any non-negative integer n, we have

∞∫
R

e−krrn dr =
n!e−kR

kn+1

n∑
j=0

(kR)j

j!
. (8.32)

This is proved by induction on n by differentiating with respect to k.

Applying this lemme twice in (8.31) gives the final result,

E(1)
1 =

5
8

Zq2e
a0

. (8.33)

Selecting Z = 2 as is appropriate for Helium and performing a crude truncation of the perturbation series to
first order, this gives an estimation for the ground state energy as

E1 ≈ E(0)
1 + E(1)

1 = −2q2e
a0

(
2− 5

8

)
= −2.75q2e

a0
. (8.34)

The experimental result for the Helium atom’s ground state energy is

E(exp)
1 ≈ −2.92q2e

a0
. (8.35)

Thoughwe don’t have systematic control of higher order corrections, it is gratifying to see that the estimate with
a coefficient of 2.75 is much closer to the experimental value than the zeroth order estimate with a coefficient
of 4.

50In more detail, not ignoring spin, the ground state for a single electron is two dimensional and can be represented as ψ1(x)(α
∣∣ 1
2
〉
+β

∣∣− 1
2
〉
)
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8.3 First order perturbation theory (degenerate)

We need to be wary of the case where the energy level whose corrections we are considering is degenerate in the
unperturbed theory. For example, we may be considering a Hydrogen-like ion where the energy levels all have some
degeneracy. In this case, the analysis of the previous subsection needs to be improved a bit.

This is most readily observed by considering the calculation that yielded the first correction to the energy. Suppose
that both ψ(0) and φ(0) both have unperturbed energy E(0). Taking the inner product of both sides of (8.12) with both
ψ(0) and φ(0), we find

E(1) =
〈
ψ(0)

∣∣∣H (1)
∣∣∣ψ(0)

〉
, 0 =

〈
φ(0)

∣∣∣H (1)
∣∣∣ψ(0)

〉
. (8.36)

The first of these is the same relation we had before and could be thought to determine the first energy correction, but
the second may or may not be satisfied depending on whether we have been lucky in our choice of basis vectors ψ(0)

and φ(0). Indeed, the problem is precisely that there is an ambiguity in the basis that we choose for the degenerate E(0)

eigenspace, whereas after perturbation there is a preferred choice of basis. This resolution proceeds as follows.

Theorem 8.3.1. Let φ1, . . . , φd be an orthonormal basis for the E(0) eigenspace of H (0). Then (8.12) can be solved if
and only if E(1) and ψ(0) are chosen so that E(1) is a solution to

det
(〈

φr

∣∣∣H (1)
∣∣∣φs

〉
− E(1)δrs

)
= 0 , (8.37)

i.e., E(1) should be an eigenvalue of the matrix whose with entries
〈
φr

∣∣H (1)
∣∣φs
〉
, and ψ(0) =

∑d
r=1 crφr is the corre-

sponding eigenvector ∑
s

〈
φr

∣∣∣H (1)
∣∣∣φs

〉
cs = E(1)cr . (8.38)

In a slogan, this says that before setting up the first order perturbation problem, one should choose a basis for the
degenerate E(0) eigenspace that diagonalises the action of the restriction of H (1) to that subspace. In this basis, the
rules are the same as in the non-degenerate setting.

Proof. This follows directly from the requirement that we avoid the potential contradictions arising as in (8.36), but
we will argue more abstractly along the lines of Remark 8.2.1.

We need to be able to solve (8.12), but again H (0) − E(0) has a (now d-dimensional) kernel and is not invertible, and
we need to make our choices to ensure that the right hand side lies in the range of H (0) − E(0). There is a helpful
proposition whose proof will not be important, though we give most of it (omitting a technical detail).

Proposition 8.3.2. The range Ran(A) of a self-adjoint operator A on a Hilbert space H (for which zero is not an
accumulation point of the spectrum) coincides with the orthogonal complement of its kernel.

Proof. We first establish that Ran(A) ⊆ ker(A)⊥. Let ψ ∈ Ran(A), so we can write ψ = Aψ′. Then we have for any
ϕ ∈ ker(A),

〈ϕ|ψ〉 = 〈ϕ|Aψ′〉 = 〈Aϕ|ψ′〉 = 0 , (8.39)

which gives the inclusion. We next establish that Ran(A)⊥ ⊆ ker(A). First, note that for ϕ ∈ Ran(A)⊥, we have that
for all ψ ∈ H, we have

0 = 〈ϕ|Aψ〉 = 〈Aϕ|ψ〉 , (8.40)

with α, β some arbitrary complex numbers. With two particles in the ground state, we cannot make the wave function antisymmetric in the
positions x1 and x2 because the ground state is unique, but we can make the total state antisymmetric using the spins, giving the two-particle
ground state

|ψ⟩ = ψ1(x1)ψ1(x2)
(∣∣ 1

2 ;−
1
2
〉
−

∣∣− 1
2 ;

1
2
〉)

,

where
∣∣ 1
2 ;−

1
2
〉
is the state in which the first particle has intrinsic spin ms =

1
2 and the second ms = − 1

2 , etc.. At the level of spins, or course,
this is a simple case of addition of angular momentum whereH1/2 ⊗H1/2 = H1 ⊕H0 and we take the (unique) spin-0 state.

51One way one could contrive a more convincing setting for this perturbative analysis would be to take the large Z limit. Then the Coulomb
potential due to the nucleus becomes arbitrarily strong compared to the inter-electronic interaction, so that the approximation of ignoring the
interaction seems plausible.
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so Aϕ must be the zero vector, and thus ϕ ∈ ker(A), and taking orthogonal complements, ker(A)⊥ ⊆ (Ran(A)⊥)⊥.
All that remains is make the identification52

(Ran(A)⊥)⊥ ?
= Ran(A) . (8.41)

It turns out this is not true automatically; it requires the operator A to have a closed range. This, in turn, follows (via a
straightforward but uninteresting-for-our-purposes proof) from the condition that zero not be an accumulation point
in the spectrum of A. With both inclusions in place, we get then recover the stated identification. ■

Thus what we need to ensure is that the the right hand side of (8.12) is orthogonal to the operator’s kernel. Taking the
inner product with any one of the ϕr we find,

0 =
〈
ϕr

∣∣∣(H (1) − E(1)
)∣∣∣ψ(0)

〉
=
∑
s

〈
ϕr

∣∣∣H (1)
∣∣∣ϕs

〉
cs − E(1)δrscs , (8.42)

where ψ(0) is expanded in terms of the ϕi as in the statement of the theorem. This is precisely the condition that E(1) be
an eigenvalue of thematrixwithmatrix elements

〈
ϕr

∣∣H (1)
∣∣ϕs
〉
with ψ(0) (thought of as an element of the d-dimensional

E(0) eigenspace) the corresponding eigenvector. ■

In practice, what one should usually do is to choose the basis ϕ1, . . . , ϕd to already diagonalise the restriction to the
E(0) eigenspace of the perturbation H (1) (i.e., to be the eigenvectors appearing in the above theorem). Using these as
the unperturbed state vectors when seting up the formal perturbation problem (say, setting ψ(0) = ϕ1) then gives for
the first correction to such an eigenstate,

ψ(1) =
∑

E(0)n ̸=E(0)

(〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)〉

E(0) − E(0)
n

)∣∣∣ψ(0)
n

〉
+

d∑
j=2

λj
∣∣∣ϕj

〉
, (8.43)

where the parameters λi parameterise the ambiguity in defining the preimage of the right hand side of (8.12) due to
the enlarged kernel of H (0) − E(0). At this stage these parameters represent genuine ambiguities. You will see on the
third problem sheet that these parameters are fixed upon continuing to higher orders in perturbation theory.

Example 8.3.3 (Strong field Zeeman effect). A simple example of degenerate perturbation theory arises in what
is known as the Zeeman effect (or Zeeman splitting) for Hydrogen-like atoms. If we apply a constant magnetic
field B to such an atom, there turns out to be a correction to the Hamiltonian of the following form,

δH =
qe

2mec
B · (L+ geS) . (8.44)

Here, ge ≈ 2 is a numerical constant known as the gyromagnetic ratio of the electron. Without loss of generality,
we will take B to be oriented in the x3-direction.
When considering the effect of this perturbation, we must account for the degeneracy of the Hydrogen energy
levels, and as we understood in the previous chapter, there are at least two natural bases for the degenerate
energy eigenspaces of the Hydrogen atom, depending on whether we want to diagonalise the total angular
momentum (

∣∣n, ℓ, j,mj
〉
states) or the x3 component of both orbital and spin angularmomentum (|n, ℓ,mℓ;ms〉

states). For this perturbation, then, we should use the latter states since they are actually already simultaneous
eigenvectors of L3 and S3.
If we restrict to states with principle quantum number n (so unperturbed energy En), then the first order
corrections are given by

E(1)
n,ℓ,mℓ,ms

= 〈n, ℓ,mℓ;ms|δH|n, ℓ,mℓ;ms〉 =
qeB
2mec

(mℓ + gems) . (8.45)

52It should be a familiar fact that the iterated orthogonal complement is the identity for finite-dimensional inner product spaces; the novelty
here is that in infinite dimensions it isn’t necessarily true.
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The above example is a bit artificial as an example of perturbation theory, because the |n, ℓ,mℓ;ms〉 states actually are
exact eigenstates of the perturbedHamiltonian, as they diagonalise the J3 and S3 operators appearing in δH on the nose.
Correspondingly, you should be able to convince yourself that the correction (8.43) to the energy eigenstates vanishes
exactly. Therefore this analysis is valid for large values of B. In fact, it is only value for sufficiently large values of B,
because for small B there are competing corrections that need to be accounted for.

Example 8.3.4 (Fine structure of Hydrogen). More elaborate applications of degenerate perturbation theory
arise in a relativistic account of the Hydrogen atom. The relativistic treatment of the electron requires replac-
ing the usual Schrödinger equation with something known as the Dirac equation, but in the context of the
Hydrogen atom, the corrections due to relativistic effects are quite small, and can be treated perturbatively.
A complete treatment of the first order relativistic corrections to the Hydrogen atom can be found in many
textbooks, but for our purposes here we will restrict to just one (of three) correction term(s)—the spin orbit
coupling:

δHSO =
q2e

2m2
ec2

L · S
r3

. (8.46)

Intuitively, this term arises from the interaction between the spin of the electron and and the magnetic field it
experiences in its rest frame due to its motion through the electric field of the nucleus.
According to our previous discussion of deegenerate first order perturbation theory, our task is to find the
eigenvalues of

〈
φr

∣∣δHSO
∣∣φs
〉

where the {φr} span an eigenspace E(0
n of H(0). The eigenspaces of H(0) are

highly degenerate, being determined by just the principal quantum number n, and we previously encountered
two standard bases for these states: {|n, ℓ,mℓ;ms〉} and {

∣∣n, ℓ, j,mj
〉
}. It turns out that the restriction of the

spin-orbit perturbation, 〈φr|H′|φs〉, is already diagonal in the added-spin basis {
∣∣n, ℓ, j,mj

〉
}. This is because

we can write
L · S =

1
2
(J2 − L2 − S2) , (8.47)

and so δHSO, J2, L2, S2, and J3 all commute. Thus we have〈
n, ℓ, j,mj

∣∣∣∣L · Sr3

∣∣∣∣n, ℓ′, j′,m′
j

〉
= δℓℓ′δjj′δmjm′

j

ℏ2

2
(j(j + 1)− ℓ(ℓ+ 1)− s(s + 1))

〈
1
r3

〉
n,ℓ

, (8.48)

where s = 1/2 for the electron and the expectation value can be computed just using radial wavefunctions. We
quote that, for the nth radial eigenfunction,

〈
1
r3

〉
n,ℓ

=

∞∫
0

dr
|fn,ℓ(r)|2

r3
r2 =

1
a30n3ℓ(ℓ+ 1

2 )(ℓ+ 1)
, (8.49)

where as usual, a0 = ℏ2/(mq2e) is the Bohr radius. Thus, for the full first-order correction from the spin-orbit
term we have

E(1)
n,ℓ,j =

q4e
4a20n3mec2

(j(j + 1)− ℓ(ℓ+ 1)− 3
4 )

ℓ(ℓ+ 1
2 )(ℓ+ 1)

,

=
n
(
E(0)
n

)2
mec2

(
j(j + 1)− ℓ(ℓ+ 1)− 3

4
ℓ(ℓ+ 1

2 )(ℓ+ 1)

)
.

(8.50)

Recalling that j = ℓ± 1
2 for the spin one-half electron, this simplifies to

E(1)
n,ℓ,j =


n(E(0)n )

2

mec2

(
1

(ℓ+ 1
2 )(ℓ+1)

)
, j = ℓ+ 1

2
n(E(0)n )

2

mec2

(
−1

ℓ(ℓ+ 1
2 )

)
, j = ℓ− 1

2

. (8.51)

The above manipulation actually breaks down for ℓ = 0, where the radial integral (8.49) is divergent. In the
case of an ℓ = 0 state, the spin orbit coupling should be thought of as vanishing identically (roughly, because L
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acts as zero). But surprisingly, the above expression (8.51) actually applies correctly upon setting ℓ = 0, noting
that the divergence has been cancelled at this point and only the first case in the equation obtains. However,
to compute the ℓ = 0 correction and confirm this assertion requires including another correction term (the
Darwin term) in the Hydrogen Hamiltonian.

8.4 Higher order perturbation theory

We will briefly comment on the extension of this approach to higher orders in the perturbative expansion. To begin,
let us just proceed directly to second order, where the O(ε2) term in (8.7) amounts to the equation

H (0)ψ(2) + H (1)ψ(1) = E(0)ψ(2) + E(1)ψ(1) + E(2)ψ(0) . (8.52)

We reorganise this suggestively as(
H (0) − E(0)

)
ψ(2) = −

(
H (1) − E(1)

)
ψ(1) + E(2)ψ(0) , (8.53)

which again tells us that to be able to determine ψ(2) we have to find the preimage under H (0) − E(0) of the vector on
the right hand side. If for now we assume that the unperturbed energy level in question is non-degenerate, then as at
first order, our first task will be to establish a solvability condition that the right hand side is orthogonal to the kernel
of H (0) − E(0), which is to say that it is orthogonal to ψ(0). This determines E(2):

E(2) =
〈
ψ(0)

∣∣∣(H (1) − E(1)
)∣∣∣ψ1

〉
=
〈
ψ(0)

∣∣∣H (1)
∣∣∣ψ1
〉

, (8.54)

which, plugging in our expression for ψ(1), gives

E(2) =
∑

ψ(0)
n ̸=ψ(0)

〈
ψ(0)

∣∣H (1)
∣∣ψ(0)

n
〉 〈

ψ(0)
n

∣∣H (1)
∣∣ψ(0)〉

E(0) − E(0)
n

=
∑

ψ(0)
n ̸=ψ(0)

∣∣〈ψ(0)
n

∣∣H (1)
∣∣ψ(0)〉∣∣2

E(0) − E(0)
n

. (8.55)

Let us make a few comments.

• If ψ(0) is the unperturbed ground state, then the denominator in (8.55) is always negative and so the second
order energy correction is necessarily negative.

• This formula is especially useful if H (1)ψ(0) is itself an energy eigenstate, so that we only get one nonvanishing
term in the sum due to the orthogonality of the different energy eigenstates.

• If energy levels are well separated, then we expect the terms corresponding to mixing with nearby energy eigen-
states to dominate the correction due to suppression in the denominator by energy difference.

Continuing to the second-order correction to the energy eigenstate (subject to our normalisation condition), we will
have an expansion,

ψ(2) =
∑

ψ(0)
n ̸=ψ(0)

〈
ψ(0)
n

∣∣∣ψ(2)
〉

ψ(0)
n , (8.56)
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and we can solve for the coefficients using (8.52). Ultimately, we find53

ψ(2) =
∑

ψ(0)
n,m ̸=ψ(0)

〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)

m
〉 〈

ψ(0)
m

∣∣H (1)
∣∣ψ(0)〉(

E(0)
n − E(0)

)(
E(0)
m − E(0)

) ψ(0)
n −

∑
ψ(0)
n ̸=ψ(0)

〈
ψ(0)
n

∣∣H (1)
∣∣ψ(0)〉 〈ψ(0)

∣∣H (1)
∣∣ψ(0)〉(

E(0)
n − E(0)

)2 ψ(0)
n .

(8.58)

Clearly, at this point (and even more at higher orders) things get quite cluttered in these general expressions.

Often it is more important to have expressions for higher order corrections to energy levels than it is to have the high
order expressions for the actual state vectors. From our general perturbative expansion, this would naively require
obtaining ψ(k−1) if we want to compute E(k) because expanding Hεψε = Eεψε to order k gives from the coefficient of
εk

H (0)ψ(k) + H (1)ψ(k−1) = E(0)ψ(k) + E(1)ψ(k−1) + . . .+ E(k)ψ(0) , (8.59)

and taking the inner productwith ψ(0) (imposing the solvability condition in the nondegenerate case), using
〈
ψ(0)

∣∣ψ(l)〉 =
0 that follows from the normalization condition, we obtain

E(k) =
〈
ψ(0)

∣∣∣H (1)
∣∣∣ψ(k−1)

〉
, (8.60)

In fact, one can avoid calculating all the way up to ψ(k−1) using a clever trick that draws out relations between the
different perturbative corrections.

Lemma 8.4.1. As a formal expansion in ε1 and ε2, we have〈
ψε1

∣∣∣H (1)
∣∣∣ψε2

〉
=

Eε1 − Eε2
ε1 − ε2

〈
ψε1

∣∣ψε2

〉
. (8.61)

Proof. We have Hε1 −Hε2 = (ε1 − ε2)H (1) so we can compute,〈
ψε1

∣∣Hε1 −Hε2
∣∣ψε2

〉
=

〈
ψε1

∣∣Hε1
∣∣ψε2

〉
−
〈
ψε1

∣∣Hε2
∣∣ψε2

〉
, (8.62)

(ε1 − ε2)
〈
ψε1

∣∣∣H (1)
∣∣∣ψε2

〉
= Eε1

〈
ψε1

∣∣ψε2

〉
− Eε2

〈
ψε1

∣∣ψε2

〉
. (8.63)

which leads to the conclusion. ■

Note that Eε1 − Eε2 is proportional to ε1 − ε2, so the right hand side can still be taken as a formal expansion in the two
variables.

By expanding both sides of (8.61), and considering each monomial in the ε’s, we generate various identities for the
perturbative corrections. Indeed, our first naive higher order formula (8.60) represents the coefficient of εk−1

2 . However,
we can be a bit more efficient if we are clever.

Corollary 8.4.2. E(2k+1) can be expressed in terms of only the ψ(r) with r ⩽ k and and their matrix elements with
respect to H (1).

53An alternate way to organise this calculation is to write

ψ(2) = −
1(

H (0) − E(0)
)ΠH⊥

E(0)

(
H (1) − E(1)

)
ψ(1) , (8.57)

where the projection operator ΠH⊥
E(0)

serves to eliminate components in the direction of ψ(0), which is the result of appropriately fixing the

value of E(2).
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Proof. The coefficient on the right hand side of (8.61) can be expanded as

Eε1 − Eε2
ε1 − ε2

=

∞∑
n=1

ε1n − ε2n

ε1 − ε2
E(n) (8.64)

=
∞∑
n=1

E(n)

n−1∑
j=0

ε1jε2n−1−j

 , (8.65)

so at order ε1kε2k we have E(2k+1). This is then equal to the coefficient of ε1kε2k in the expansion of〈
ψε1

∣∣H (1)
∣∣ψε2

〉〈
ψε1

∣∣ψε2

〉 . (8.66)

That term clearly depends only on ψ(r) for r ⩽ k. ■

The simplest example of this gives us an economical expression for the third order energy correction,

E(3) =
〈
ψ(1)
∣∣∣H (1)

∣∣∣ψ(1)
〉
− E(1)

〈
ψ(1)
∣∣∣ψ(1)

〉
, (8.67)

which we can calculate using only the results from our previous first-order computations.
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Chapter 9

VariationalMethods
It is no surprise that many (or most) quantum systems of practical interest are not particularly close to being exactly
solvable, rendering perturbation theory at least difficult to control and at worst completely unhelpful. There are an
important class of techniques that go by the name of variational methods that can be applied quite generally in these
circumstances, though they often require a bit of creativity to exploit well. In this chapter we present the essential idea
behind these methods and study (again!) the Helium atom as a nice example.

9.1 Rayleigh quotients for observables

The main tool behind the variational methods of this chapter will be the so-called Rayleigh quotient.

Definition 9.1.1 (Rayleigh Quotient). For an observable A, the (real) function

fA : H −→ R ,

ψ 7−→ Eψ(A) =
〈ψ|A|ψ〉
〈ψ|ψ〉

.
(9.1)

is known as the Rayleigh quotient for A.

It may seem a bit overwrought to introduce a new name for what we already know as the expectation value of A in the
state ψ. The point here is to highlight the fact that this is now being thought of as a (smooth) function on H, which
may not have been the way you previously thought of expectation values.

A key property of the Rayleigh quotient is that the stationary values/vectors for fA(ψ) are precisely eigenvalue/vectors
for A. This can be demonstrated by first establishing the following technical lemma.

Lemma 9.1.2. Given a linear subspaceK ⊆ H, then

d
dt

fA(ψ + tϕ)
∣∣∣∣
t=0
= 0 , ∀ϕ ∈ K ⇐⇒ (A− fA(ψ)) |ψ〉 ∈ K⊥ . (9.2)

Stated differently, this means that ψ ∈ K is a stationary vector of the Rayleigh quotient if and only if it is an eigenvector
of the restricted Hamiltonian ΠKHΠK : K → K.

Proof. For ϕ ∈ K, also iϕ ∈ K, so stationarity with respect to adding ϕ implies

d
dt

fA(ψ + tϕ) = 0 and
d
dt

fA(ψ + itϕ) = 0 . (9.3)

By direct computation, the first of these relations gives

0 =
d
dt
〈ψ + tϕ|A|ψ + tϕ〉
〈ψ + tϕ|ψ + tϕ〉

∣∣∣∣
t=0

, (9.4)

=
d
dt
〈ψ|A|ψ〉+ t 〈ϕ|A|ψ〉+ t 〈ψ|A|ϕ〉+ O(t2)
〈ψ|ψ〉+ t 〈ϕ|ψ〉+ t 〈ψ|ϕ〉+ O(t2)

∣∣∣∣
t=0

, (9.5)

=
〈ϕ|A|ψ〉+ 〈ψ|A|ϕ〉

〈ψ|ψ〉
− 〈ψ|A|ψ〉 (〈ϕ|ψ〉+ 〈ψ|ϕ〉)

〈ψ|ψ〉2
, (9.6)

= 2<
(
〈ϕ|(A− fA(ψ))|ψ〉

〈ψ|ψ〉

)
. (9.7)
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This gives the real part of the desired equation. If we repeat the argument with ϕ → iϕ we get the imaginary part as
well, and thus deduce a state being stationary under the addition of vectors ϕ ∈ K is equivalent to it satisfying

〈ϕ|(A− fA(ψ))|ψ〉 = 0 , (9.8)

so equivalently, (A− fA(ψ)) |ψ〉 ∈ K⊥. ■

If we setK = H, thenK⊥ = {0} and we have the strong relation

(A− fA(ψ)) |ψ〉 = 0 . (9.9)

This means that the critical points of fA(ψ) are precisely the eigenvectors of A and the critical values are the eigenvalues
of A.

Remark 9.1.3. Usually our observables are unbounded operators, so we can’t really choose K = H, rather we
can choose K = D(A), the domain of A. Fortunately, the conclusion still applies as long as D(A) is a dense in
H, as the orthocomplement of a dense subset of a Hilbert space is empty.

9.2 The virial theorem

With the stationarity property we just established for the the Rayleigh quotient, we can obtain useful—and quite
general—information about energy eigenstates by considering variations within one-parameter families of states. An
important example is the following important theorem, which generalises an analogous result in classical mechanics.

Theorem 9.2.1 (Virial theorem). Assume the Hamiltonian for a quantum mechanical system has the conventional
form H = T + V with

T =
P2

2m
= − ℏ2

2m
∇2 , V = V(X) . (9.10)

Then for any stationary state ψ (so Hψ = Eψ), the following condition holds:

2Eψ(T) = Eψ(x · ∇V) . (9.11)

If V is homogeneous of degree N (i.e., V(λx) = λNV(x)), then we have the following stronger result,

Eψ(T) =
N

N + 2
E , Eψ(V) =

2
N + 2

E . (9.12)

Proof. The idea of the proof is to perform a variational analysis for the family of wave functions of the form ψλ(x) =
λd/2ψ(λx) for a given reference wave function ψ. The factor of λd/2 is included to ensure that all of these wave func-
tions have the same normalisation; this is a matter of convenience, which allows us to ignore the denominator when
computing Rayleigh quotients.

Now suppose that ψ is a (normalised) stationary state; then the Rayleigh quotient of ψλ must be stationary as a function
of λ at λ = 1,54

d
dλ

fH(ψλ)

∣∣∣∣
λ=1

= 0 . (9.13)

Proceeding by direct computation, we have by the chain rule ∇ψλ(x) = λ
d+2
2 (∇ψ) (λx), which gives us for the

54Note that while Lemma (9.1.2) is formulated for linear subspaces ofH, the conclusion implies that in any smoothly parameterised family of
states {ψλ⃗} that includes a stationary state, that stationary states must give a points of fH (⃗λ).
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Rayleigh quotient,

fH(ψλ) =

∫
Rd

(
−ℏ2λd+2

2m
|(∇ψ)(λx)|2 + λdV(x)|ψ(λx)|2

)
ddx ,

=

∫
Rd

(
−λ2ℏ2

2m
|∇′ψ(x′)|+ V(λ−1x′)|ψ(x′)|2

)
ddx′ , (9.14)

= λ2Eψ(T) + Eψ(V(λ−1x)) .

In the passing to the second line we have defined x′ = λx. With this, (9.13) gives the condition

0 = 2Eψ(T) +
d
dλ

Eψ(V(λ−1x))
∣∣∣∣
λ=1

= 2Eψ(T)− Eψ(x · ∇V(x)) , (9.15)

which reproduces (9.11).

For V homogeneous of degree N, x · ∇V = NV and we get the simpler result

2Eψ(T) = NEψ (V) . (9.16)

We also have for an energy eigenstate
E = Eψ(T) + Eψ(V) , (9.17)

and putting these together gives

Eψ(T) =
N

N + 2
E , Eψ(V) =

2
N + 2

E , (9.18)

as required. ■

Remark 9.2.2. We offer some additional comments here.

• We see that for the Coulomb potential, for which N = −1, we must have E < 0 because V < 0 and
Eψ(V) is twice the size of Eψ(T). (Alternatively, T is a positive operator, so the fact that Eψ(T) = −E
gives the negativity of E.)

• For the harmonic oscillator, kinetic and potential energies are equal, Eψ(V) = Eψ(T) = 1
2E.

• This quantum virial theorem has a classical version, which is the original virial theorem. The classical
theorem has takes much the same form, but with expectation values of quantum observables replaced
by time averages of the classical counterparts over classical trajectories.

9.3 Approximating the ground state

The flagship application of variational methods in quantum theory is to the study of the ground state and ground state
energy of complex quantum systems. To this end, one observes the following.

Proposition 9.3.1. If fH is bounded below and achieves its minimum E0 := infP(H) fH, then E0 is the ground state
energy (minimum eigenvalue) and any state ψ for which fH(ψ) = E0 is a ground state.

Proof. fH is stationary at its minimum, so this will necessarily correspond to an eigenstate. Its eigenvalue will be the
minimal one because all other eigenvalues are also realised as values of fH. ■

Conversely, when a system does have a normalisable ground state ψ0, the function fH achieves its lower bound at ψ0.
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This relatively simple observation is very powerful. What it suggests is that we can try to find an approximate ground
state by finding the minimum E0,approx of fH restricted to some cleverly chosen subset of H. We are guaranteed that
E0,approx ⩾ E0 by the above, so this procedure produces rigorous upper bounds for E0. If we are lucky and creative,
such an upper bound may also be good approximations (though to estimate errors would be beyond the scope of the
discussion here).

Example 9.3.2 (Helium again). We return to the two-electron Helium atom, with Hamiltonian

H =
P2
1

2m
+

P2
2

2m
− 2q2e

(
1
|x1|

+
1
|x2|

)
+

q2e
|x1 − x2|

= T + V + δH , (9.19)

where
T =

P2
1

2m
+

P2
2

2m
, V = −2q2e

(
1
|x1|

+
1
|x2|

)
, δH =

q2e
|x1 − x2|

. (9.20)

As we saw in the previous chapter, we can try to treat δH as a small correction and use first-order perturbation
theory to get decent results for the ground state energy. However, the approximation in that case was theoret-
ically quite uncontrolled. This is a perfect case in which to attempt a variational estimate, and indeed we can
do quite well.
We will use a one-parameter family of wavefunctions like we did with the virial theorem. To motivate our
variational Ansatz, we use a physical argument. The idea is that if we want to model the dynamics of two
electrons in the Helium atom as being non-interacting, we should adjust the effective value of the nuclear
charge to account for screening, i.e., each electron should on average see less than the full charge of the nucleus
since the other electron is producing an electric field with the opposite sign. In other circumstances, this kind
of an approximation is sometimes called a mean field approximation, and it can be quite effective.
To put this idea into practice, we adopt trial wave functions of the form

ψZ(x1, x2) =
(

Z3

πa30

)
exp

(
−Z(r1 + r2)

a0

)
, (9.21)

where Z is now a variational parameter with respect to which we will minimise. This is the exact ground state
for the “effective Hamiltonian”,

HZ =
P2
1

2m
+

P2
2

2m
− Zq2e

(
1
r1
+

1
r2

)
= T +

Z
2
V , (9.22)

satisfying HZψZ = EZψZ with EZ = −Z2q2e/a0.
We nowwant tominimise the Rayleigh quotient associated to the true HamiltonianH evaluated on these states
as a function of Z, so we need to compute

fH(ψZ) = EψZ
(T) +

2
Z
EψZ

(
Z
2
V
)
+ EψZ

(δH) . (9.23)

We have multiplied and divided by 2/Z in the second term in order to make it claer that the first two terms can
be evaluated using the virial theorem with respect to the effective Hamiltonian HZ. Indeed, we have

EψZ
(T) = −EZ =

Z2q2e
a0

, EψZ

(
Z
2
V
)

= 2EZ = −2Z2q2e
a0

. (9.24)

The last term in (9.23) is the matrix element that what we computed previously when we analysed this problem
using first-order perturbation theory, and we import the result here,

〈
ψZ

∣∣δH∣∣ψZ
〉
= q2e

〈
ψZ

∣∣∣∣ 1
|x1 − x2|

∣∣∣∣ψZ

〉
=

5
8

Zq2e
a0

. (9.25)
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Putting it all together, we have for our Rayleigh quotient

fH
(
ψZ
)
=

q2e
a0

(
Z2 − 27

8
Z
)

=
q2e
a0

[(
Z− 27

16

)2
−
(

27
16

)2
]
. (9.26)

As a function of Z, this is minimised at Z = 27
16 , which we can interpret as telling us the extent to which each

electron shields the charge of the nucleus from the perspective of the other electron. We interpret the minimal
value as an upper bound on the Helium ground state energy,

E0 ⩽ fH(ψ 27
16
) = −q2e

a0

(
27
16

)2
≈ 2.85

q2e
a0

. (9.27)

This should be compared to our estimate of −2.75q2e/a0 from first-order perturbation theory and the experi-
mental value of approximately−2.92q2e/a0; the variational upper bound is well below the first order estimate,
and indeed is within three percent of the experimental value.
The variational estimate for the Helium ground state energy can be substantially improved by considering a
more general Ansatz for the trial wave function. Indeed, an accuracy to within three parts in 108 has been
obtained for this calculation using a family of 393 basis functions.

The above result represents a marked improvement over what found using elementary perturbation theory. The fact
that we do better is not a coincidence at all. Indeed, we have the following.

Proposition 9.3.3. Let H = H(0) + δH as before and let the family of states {ψλ} over which we will minimise be
chosen so that ψ(0)

0 (the ground state of H(0)) is contained in the family. Let E(0)
0 + E(1)

0 be the first order perturbation
theoretic estimate of the ground state energy found before. Then for Evar = inf{ψλ} fH we have

E(0)
0 + E(1)

0 ⩾ Evar ⩾ Eground . (9.28)

Proof. Recall that E(1)
0 =

〈
ψ(0)
0

∣∣∣δH∣∣∣ψ(0)
0

〉
so that

E(0)
0 + E(1)

0 =
〈
ψ(0)
0

∣∣∣H(0) + δH
∣∣∣ψ(0)

0

〉
= fH

(
ψ(0)
0

)
, (9.29)

and since ψ(0)
0 ∈ {ψλ}, this is an upper bound for the infimum of fH on {ψλ}. ■

9.4 Approximating excited states

Though the ground state energy tends to be of particular interest, we may also want to approximate the energies of
excited states. If wewere to have perfect knowledge of the first k eigenstates ψ0, . . . ψk−1, with energies E0,E1, . . . ,Ek−1,
say, then it would be straightforward to use the same variational ideas as we did above to approximate the k+ 1st state.
LettingK = Span{ψ0, . . . , ψk−1}, we would have the following.

Proposition 9.4.1. If infK⊥ fH is attained on for some ψk ∈ K⊥, then this is the k + 1st lowest energy eigenstate, and
fH(ψk) ⩾ Ej, j = 0, . . . , k− 1.

Proof. Since for our choice of subspace, H : K → K, self adjointness implies that H : K⊥ → K⊥. Applying the main
variational result for fH on K⊥ gives that if fH achieves its infimum at ψk, then (H − fH(ψk))

∣∣ψk
〉
= 0 and ψk is the

eigenstate with the lowest eigenvalue in K⊥. Since the lowest k eigenvalues lie in K by assumption, this must be the
k + 1st lowest eigenvalue. ■

If this was the end of the story, we would be in the unfortunate situation of needing to have an exact result for lower
lying states before approximating the higher ones. It turns out that one can proceed without knowledge of the first k
eigenvectors/eigenvalues using the following important theorem.
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Theorem 9.4.2 (Min-max). If the infimum,

inf
K⊆H

dimK=k

max
ψ∈K

fH(ψ) , (9.30)

is attained, then it is equal to the kth lowest energy eigenvalue Ek−1, and the state vector on which it is attained is a
corresponding eigenvector.

Wewill give the proof for the case whereH has a basis of normalisable energy eigenstates. In the general case (involving
generalised eigenstates/continuous spectrum operators), the statement of the theorem and the proof become slightly
more technical.

Proof. Let E0 ⩽ E1 ⩽ E2 ⩽ . . . be the ordered energy eigenvalues and let ψ0, ψ1, . . . be the corresponding station-
ary state vectors. Let Hk−1 = Span{ψ0, . . . , ψk−2}. Now for any k-dimensional subspace K ⊆ H, we will have
dim

(
K ∩H⊥

k−1
)
⩾ 1 simply for dimensional reasons. Thus, there will be a (normalised) state vector ψ ∈ K that can

be expressed in terms of the ψn for n ⩾ k− 1,

ψ =

dimH∑
n=k−1

anψn ,

dimH∑
n=k−1

|an|2 = 1 . (9.31)

For this state, we have

fH(ψ) =
d∑

n=k−1

|an|2En ⩾
d∑

n=k−1

|an|2Ek−1 = Ek−1 , (9.32)

so maxψ∈K fH(ψ) ⩾ Ek−1.

On the other hand, forK = span{ψ0, ψ1, . . . , ψk−1} we have exactly that maxψ∈K fH(ψ) = Ek−1, so the result follows.
■

By themin-max theorem, themaximum value of fH on any k-dimensionalK ⊆ H is an upper bound for the kth energy
level of the system. In practice, rather than focus on just the kth energy level, more often than not it makes sense to
consider the first k energies collectively in what is sometimes called the Rayleigh–Ritz method.

9.5 The Rayleigh–Ritz method

For a given choice of k-dimensionalK ⊆ H, by maximising as in the min-max theorem we can bound the kth energy
level. In turn, that maximum value of fH on K will be the largest eigenvalue of the restricted Hamiltonian ΠKHΠK
(this follows immediately from Lemma 9.1.2).

What if, while still restricting to K, we wish to bound the k − 1st energy level? By the min-max theorem, we will get
such a bound if we restrict to any (k− 1)-dimensional subspace ofK′ ⊂ K and again maximise the Rayleigh quotient
overK′.

What is the optimal choice of such a K′? By an argument identical to that appearing in the proof of the min-max
theorem, it is the orthocomplement of the eigenspace of ΠKHΠK with largest eigenvalue, and the strongest upper
bound we get on the (k − 1)st energy level ((with K fixed) is precisely the second largest eigenvalue of the restricted
Hamiltonian ΠKHΠK. Continuing the argument mutatis mutandis, we arrive at the following procedure.

Definition 9.5.1 (Rayleigh–Ritz variational method (RRVM)). Consider a (self-adjoint) Hamiltonian operator
H acting on a Hilbert space H admitting a family of normalisable energy eigenstates with energies bounded
below,

E0 ⩽ E1 ⩽ · · ·Ek ⩽ · · · . (9.33)

In the RRVM, we choose a k-dimensional subspaceK ⊆ H (the trial subspace and compute the eigenvalues of
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the restricted Hamiltonian ΠKHΠK, which we denote by

EK
0 ⩽ EK

1 ⩽ · · ·EK
k . (9.34)

Then by the variational arguments above, we have

EK
n ⩾ En , n = 0, . . . , k− 1 . (9.35)

Remark 9.5.2. By another (straightforward) generalisation of the argument used to prove the min-max theo-
rem, one can show that by applying the RRVM for any k + 1-dimensional subspace K∨ ⊇ K, one can only
improve on the estimates derived usingK, i.e.,

EK
n ⩾ EK∨

n ⩾ En , n = 0, . . . , k− 1 . (9.36)

You will explore this dependence of the RRVM results on the size of the trial subspace on Problem Sheet 3.

When applying the RRVM, it is not always convenient to pick one’s basis for their trial subspace to be orthonormal from
the start. (It is a computationalmatter to orthonormalise, but in practicewemaywant to delay doing the computations.)
For a not-necessarily-orthonormal basis {φ1, . . . , φk} for the trial subspace K, the eigenvalue condition is equivalent
to the solvability of the system of equations

k∑
i=1

ci
〈
φj

∣∣∣H− λ
∣∣∣φi

〉
= 0 , j = 1, . . . , k ,

for constants c1, . . . , ck. This amounts to the matrix degeneracy condition,

det
(〈

φj

∣∣∣H∣∣∣φi

〉
− λ

〈
φj

∣∣∣φi

〉)
,

which is also sometimes called the secular equation.

We see an elementary implementation of the RRVM in the following example.

Example 9.5.3 (Angular momentum (rigid rotor) via Rayleigh–Ritz). The variational methods introduced
in this section can be used not just for the Hamiltonian of a system, but for any self-adjoint operator with
bounded-below spectrum. Indeed, consider the case of a particle moving on the sphere (the rigid rotor). The
total angular momentum operator in spherical polar coordinates (and atomic units: ℏ = 1), has the form

L2 = − 1
sin2 θ

(
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

)
. (9.37)

We can obtain Rayleigh–Ritz estimates for the first two eigenvalues of L2 by taking, as a basis for a space of
trial functions ψ1(θ, φ) = 1 and ψ2(θ, φ) = cos2 θ. We then need to solve the characteristic equation for the
projection of the L2 operator to this trial space,

det
(〈

ψj

∣∣∣L2
∣∣∣ψk

〉
− λ

〈
ψj

∣∣∣ψk

〉)
= 0 . (9.38)
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Clearly L2ψ1 = 0, and we calculate that

L2ψ2 = −
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ
cos2 θ

)
=

2
sin θ

∂

∂θ
(
sin2 θ cos θ

)
,

=
2

sin θ
(
2 sin θ cos2 θ − sin3 θ

)
= 2

(
2 cos2 θ − sin2 θ

)
,

= 2
(
3 cos2 θ − 1

)
= 2

(
3ψ2 − ψ1

)
.

(9.39)

We also need the following normalisations and inner products,

||ψ1||
2 =

∫
sin θ dθ dϕ = 4π ,

||ψ2||
2 =

∫
cos4 θ sin θ dθ dϕ = 2π

(
− 1

5
cos5 θ

) ∣∣∣∣π
0
=

4π
5

,

〈
ψ1
∣∣ψ2
〉
=

∫
cos2 θ sin θ dθ dϕ = 2π

(
− 1

3
cos3 θ

) ∣∣∣∣π
0
=

4π
3

.

(9.40)

We clearly have
〈
ψj

∣∣∣L2ψ1

〉
= 0 =

〈
ψ1

∣∣∣L2ψj

〉
, so the only remaining element is

〈
ψ2
∣∣L2ψ2

〉
=
〈
ψ2
∣∣6ψ2 − 2ψ1

〉
=

24π
5
− 8π

3
=

32π
15

. (9.41)

Our eigenvalue equation therefore gives

0 =

∣∣∣∣−4λπ − 4πλ
3

− 4πλ
3

32π
15 −

4πλ
5

∣∣∣∣ = 62π2

45
λ(λ − 6) . (9.42)

so λ = 0 or λ = 6, which correspond to ℓ = 0 and ℓ = 2, respectively, in the standard formula ℓ(ℓ + 1) for
the eigenvalues of L2 (with ℏ = 1). The first case gives the eigenvector ( 1

0 ), that is ψ1; the second gives
(−1

3
)
or

3ψ2 − ψ1. We recognise these as precisely (up to normalisation) the spherical harmonics Y 0
0 and Y 0

2 .
While we have ended up landing on exact eigenstates/eigenvalues, we did not get the first two, but rather the
first and fifth lowest eigenstates of L2—we missed the three ℓ = 1 states. This is, of course, compatible with our
eigenvalues being upper bounds for the first two eigenvalues. However, in our trial basis we explicitly chose
only φ-independent functions, so we have effecively enfoced by hand that we are only studying states with
m = 0. In the m = 0 sector, we have ended up with the first and third eigenstates. Our trial basis is also
invariant under the reflection θ ↔ π − θ, which restricts to even values of ℓ, and in this subspace we have
indeed found exactly the first two eigenstates.
This is frequently a useful trick in applying Rayleigh–Ritz; one specialises to a subspace of the Hilbert space
with some definite behaviour with respect to other symmetries of theHamiltonian and thus can avoidworrying
about many lower-energy states with different symmetry properties which are orthogonal to that subspace.

A further elaboration of this method can be implemented by considering families of subspaces Kλ . In this case, we
would attempt to compute the eigenvalues of the restricted Hamiltonian as a function of the parameters {λ}, and then
the best bound for a given eigenvalue would come from minimising as a function of λ. In this case, the best bound for
two different energy levels Em and En (n 6= m) might very well come from different values of λ.
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Chapter 10

WKBApproximation

We now come to a much different kind of approximation, the semi-classical approximation for stationary state wave
functions. This is also known as the WKB approximation, in honour of physicists Wentzel, Kramers, and Brillouin
who developed the method in the mid 1920’s. Unlike the approximation methods of the previous chapters, which were
formulated in the abstract language of Hilbert spaces and observables, the semi-classical approximation that we will
consider here is very much tailored to the study of wave functions in particular. Indeed, there is an entire branch of
the analysis of PDEs known as semi-classical analysis that is closely related to the methods presented here.

We begin by describing an informal “derivation” of what we will soon come to understand as the zeroth order WKB
approximation. Recall that the momentum operator acts on wave functions according to

(Pψ)(x) = −iℏψ′(x) . (10.1)

Now for a given potential energy function V(x) and a given energy E, the classical momentum of a particle with that
energy at a given x (assuming E > V(x)) would be given by

p(x) =
√

2m(E− V(x)) . (10.2)

One might then imagine that a wave function for a state with energy E would obey something like an equation of the
form

Pψ(x) ?
= ±p(x)ψ(x) , (10.3)

which is just a first order ordinary differential equation. This can be solved directly as follows,

ψ(x) ?
= exp

± i
ℏ

x∫
x0

p(s) ds

 . (10.4)

In general, this analysis is obviously flawed; in particular, when we evaluate the kinetic energy operator P2/2m on such
a wave function, the second action of P will not only bring down another copy of p(x) but by the product rule will also
differentiate p(x). Consequently, this analysis exactly valid only when p(x) is a constant, in which case we just have a
plane wave solution, i.e., a generalised momentum/energy eigenstate.

Nevertheless, there is some appeal to the idea that the operator P should more or less look like the classical momentum
as a function of x, at least in some kind of limit. Indeed, if there is a limiting situation in which quantum mechanics
starts to systematically reduce to classical mechanics, one might very well expect such a relation to hold. It turns out
there is often such a limit—it is known as the semi-classical limit—and the above ad hoc wave function is just the first
approximation in a systematic expansion.

10.1 The semi-classical expansion andWKB approximation

The starting point for making the previous procedure more systematic is to rewrite a stationary state wave function in
terms of (the exponential of) its logarithm,

ψ(x) = exp
(

iS(x)
ℏ

)
. (10.5)

In light of the heuristic discussion before, we anticipate that the phase S might be related to the integral of the classical
momentum in some regime. The time-independent Schrödinger equation in terms of this polar expression takes the
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form (after dividing through by ψ(x) and rearranging some terms),55

S′(x)2 − iℏS′′(x) = 2m(E− V(x)) = p2(x) . (10.6)

The key assumption that we make at this point is that as an expansion in ℏ, we have

S(x) = S(0)(x) + ℏS(1)(x) + . . . . (10.7)

This is sometimes referred to as a semi-classical expansion, since the parameter ℏ can be thought of as characterising a
scale where quantum effects become important, so the ℏ→ 0 limit should in some sense be a classical limit.56

Solving order by order in ℏ, we find that the first two terms in the semi-classical expansion of (10.6) and are given by

S′0(x)
2 = p(x)2 , (10.8)

2S′0(x)S
′
1(x) = iS′′0 (x) . (10.9)

The first equation (10.8) can be solved to give

S0(x) = ±
x∫

x0

p(s) ds , (10.10)

where, as before, p represents the classical momentum as a function of position (and, implicitly, energy). This repro-
duces our heuristic result (10.4), as promised. Continuing to the first correction (10.9), we compute

iS′1(x) = −
p′(x)
2p(x)

, (10.11)

which we can integrate to find
iS1(x) = − log

(√
p(x)

)
. (10.12)

The WKB approximation refers to the situation where we truncate the series at this order, giving us the approximate
WKB wave functions

ψ±(x) =
1√
p(x)

exp

± i
ℏ

x∫
x0

p(s) ds

 . (10.13)

In general, this is a local approximation for the wave function and we need to be careful about what happens in the
various regions of space, as we will see in a bit. However, there is a simple example where the analysis to this point is
entirely sufficient to proceed.

Example 10.1.1 (WKB for particle in a lumpy box). Consider the case of infinite potential barriers at, say, x = a
and x = b with a < b, and assume E > V(x) for x ∈ (a, b), though V(x) may be a nontrivial function. We
then have WKB wave functions that, by our previous analysis, take the form

ψWKB(x) = C+ψ+(x) + C−ψ−(x) , a ⩽ x ⩽ b , (10.14)

and we need to impose the boundary conditions ψ(a) = ψ(b) = 0. Letting x0 = a in our expressions (10.13),

55This equation is an instance of the so-called Riccati equation for S′(x).
56In a physical context, one must be wary about the notion of taking ℏ → 0, since ℏ is a dimensionful parameter with units of angular

momentum; one should instead take an appropriate collection of other dimensionful parameters in the problem and form a dimensionless
combination involving ℏ that can then be taken to zero by scaling the other variables relative to ℏ. For our analysis here it won’t be important to
keep track of this issue and we will instead treat ℏ as a small parameter; this is what is usuall done in the mathematical treatment of this subject.
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the boundary condition at x = a requires that we set C+ + C− = 0, so we have

ψWKB(x) =
C√
p(x)

sin

 1
ℏ

x∫
a

p(s) ds

 . (10.15)

Then the requirement ψ(b) = 0 gives the quantisation condition,

1
ℏ

b∫
a

p(x) dx = nπ , n = 1, 2, 3, . . . . (10.16)

For the case of constant potential V = V0, this is just the conventional particle in a box and the WKB wave
functions are the true stationary states; (10.16) gives exactly the correct energy levels:

√
2m(E− V0)(b− a) = nπℏ =⇒ E = V0 +

n2π2ℏ2

2m(b− a)2
. (10.17)

In the case of a non-constant potential, (10.16) gives an approximation to the energy levels of the system.

Estimating the accuracy of the WKB approximation can require some subtle analysis, but to produce a rough proxy for
the domain of the validity of the approximation we can inspect when the typical term in the leading equation (10.8) is
much larger than the typical term in the subleading equation (10.9),

(S′0(x))
2 � ℏ |S′′0 (x)| . (10.18)

Putting in our solution for S0(x), we have
p(x)2 � ℏ |p′(x)| , (10.19)

which we rewrite presciently as
ℏ

p(x)2
|p′(x)| =

∣∣∣∣ d
dx

(
ℏ

p(x)

)∣∣∣∣� 1 , (10.20)

Now if we introduce the local de Broglie wavelength λ(x) = h/p = 2πℏ/p, which represents the wavelength of the
generalised momentum eigenstate of momentum p(x), then we have for our condition (dropping a factor of 2π since
we are dealing with an extreme inequality), ∣∣∣∣ d

dx
(λ(x))

∣∣∣∣� 1 . (10.21)

To reach an intuitive interpretation of our condition, we further multiply again by the de Broglie wavelength,

λ(x)
∣∣∣∣ d
dx

(λ(x))
∣∣∣∣� λ(x) . (10.22)

This says that the WKB approximation has a chance of being reliable when the change of the local de Broglie wavelength
over the course of one such wavelength is small compared to that wavelength. So in terms of percentages, the local de
Broglie wavelength should be slowly varying.

We can re-express this condition directly in terms of energies. Using the expression for the classical momentum, we
have

p′(x) =
mV ′(x)
p(x)

=
mλ(x)V ′(x)

2πℏ
, (10.23)

which, when we plug it into (10.19), yields the consistency condition (this time dropping a factor of 4π),

|λ(x)V ′(x)| � p(x)2

2m
. (10.24)

This says that over the course of a de Broglie wavelength, the potential energy should be slowly varying relative to the
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Figure 4. Example of a general potential with a single classically allowed region for the given value of energy (between x = a and
x = b). A WKB wave function for this type of potential and energy level will be defined in three separate regions and subjected to
connection conditions at the classical turning points x = a and x = b.

kinetic energy. Thus we expect the WKB approximation to do well for high energies and slow-varying potentials.

10.2 WKB in forbidden regions

For more general potentials (see Figure 4, for example), for a fixed value of E, E−V(x) will become negative for some
values of x. These regions in space are referred to as the classically forbidden regions, and as p2/2m = E − V < 0, for
these regions the classical momentum defined by (10.2) becomes pure imaginary. Instead of the momentum we then
introduce the real quantity

q(x) =
√

2m(V(x)− E) , (10.25)

which is an analogue of the classical momentum in the forbidden region. We then solve (10.8) with an imaginary S0(x),

S0(x) = ±i
x∫

x0

q(s) ds . (10.26)

The O(ℏ) term proceeds analogously, and we arrive at the WKB wave functions for classically forbidden regions,

ψforbidden
± (x) =

1√
q(x)

exp

± 1
ℏ

x∫
x0

q(s) ds

 . (10.27)

Instead of being oscillatory, these are exponentially growing or decaying as a function of x. Though it is less intuitive,
the analysis of validity performed above still applies in this case, with the de Broglie wavelength being replaced by the
distance over which the exponentially growing/decaying solution increases/decreases by a factor of e.

10.3 WKB connection formulæ

We assume that, as in the figure, E − V(x) ⩾ 0 on the interval [a, b] with b > a, and is negative outside and vanishes
at a and b. These two points are referred to as the classical turning points, in reference to the classical trajectory at this
energy. In order for our approximate solution to be normalisable, the solution in the left-most classically forbidden
region must be exponentially growing with x (so decaying as x→ −∞), and in the right-most forbidden region must
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be exponentially decaying with x. We therefore seek a solution of the form57

ψ(x) =



CI√
q(x)

exp
(
− 1

ℏ
∫ a
x q(s) ds

)
, x < a ,

C+√
p(x)

exp
( i
ℏ
∫ x
a p(s) ds

)
+ C−√

p(x)
exp

(
− i

ℏ
∫ x
a p(s) ds

)
, a < x < b ,

C̃+√
p(x)

exp
(

i
ℏ
∫ b
x p(s) ds

)
+ C̃−√

p(x)
exp

(
− i

ℏ
∫ b
x p(s) ds

)
, a < x < b ,

CII√
q(x)

exp
(
− 1

ℏ
∫ x
b q(s) ds

)
, x > b .

(10.28)

There is a key subtlety having to do with deciding how to connect the exponentially increasing/decreasing solutions
across the classical turning points at a and b to the oscillatory WKB wave functions in the classically allowed region.
Indeed, all of our WKB wave functions actually diverge at a and b due to the denominator vanishing when E = V(x).
This represents is a breakdown in the WKB approximation in the vicinity of classical turning points.

To investigate the situation, we perform an additional approximate analysis in a small neighbourhood of the classical
turning point. For x ≈ b, say, we approximate the potential (assuming it is sufficiently smooth) as a linear function,

V(x) ≈ V(b) + (x− b)V ′(b) , (10.29)

where in this case V ′(b) is positive. We then consider the Schrödinger equation for this approximation. Setting y =

x− b and ψ̃(y) = ψ(x), we have

− ℏ2

2m
ψ̃′′

(y) = (E− V(b)− yV ′(b)) ψ̃(y) = −yV ′(b)ψ̃(y) . (10.30)

Introducing a further variable z =
(
2mV ′(b)/ℏ2

)1/3 y and defining φ(z) = ψ̃(y), this becomes a famous ordinary
differential equation, the Airy equation,

φ′′(z) = zφ(z) . (10.31)

We will take for granted the following integral expressions for a basis of solutions of the Airy equation (you can try to
confirm for yourself that these solve the Airy equation by differentiating under the integral).

Ai(z) =
1
π

∞∫
0

cos
(

t3

3
+ zt

)
dt ,

Bi(z) =
1
π

∞∫
0

(
sin
(

t3
3 + zt

)
+ exp

(
− t3

3 + zt
))

dt .

(10.32)

What will be important for our purposes here is the large |z| asymptotics of these functions, which take the form (again,
feel free to take this for granted),

Ai(z) ∼
exp

(
− 2

3z
3
2

)
2
√

πz 1
4

, Bi(z) ∼
exp

(
2
3z

3
2

)
√

πz 1
4

, z� 1 , (10.33)

Ai(z) ∼
cos
(

2
3 (−z) 3

2 − π
4

)
√

π(−z) 1
4

, Bi(z) ∼
cos
(

2
3 (−z) 3

2 + π
4

)
√

π(−z) 1
4

, z� −1 , (10.34)

We see that it is Ai(z) that behaves like a decaying exponential for large positive z, while Bi(z) instead behaves like a
growing exponential. This suggests that we should want to use the Ai(z) solution to interpolate between the forbidden
and allowed regions.58

57Notice the strategic choice of limits of integration adopted here. We have given two versions of the wave function in the classically allowed
region, one adapted for comparing to the left-most forbidden region and the other adapted for comparing to the right-most forbidden region.

58In a careful treatment, we should further subdivide our space to include turning point regions where we use this Airy approximation, and
these should overlap with the regions where the WKB wave functions are valid. This level of detail is important for an estimation of the size of
errors in the WKB approximation, but will not be necessary for us.
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Indeed, if we consider the forbidden-region decaying exponential WKB wave function in the right region and use the
same approximation (10.29) for the potential near x = b, then we find

CII√
q(x)

exp

− 1
ℏ

x∫
b

q(s) ds

 ≈ CII

(2mV ′(b)y)
1
4
exp

−(2mV ′(b)
ℏ2

) 1
2

y∫
0

s
1
2 ds

 ,

=
CII exp

(
− 2

3z
3
2

)
(2mV ′(b)ℏ) 1

6 z 1
4
,

≈ CII κ Ai(z) .

(10.35)

where κ = 2
√

π/(2mV ′(b)ℏ) 1
6 is a numerical constant that we could also have absorbed into our overall constant. This

matches precisely with the asymptotics of the Ai(z) function up to an overall numerical factor, so we will use Ai(z) to
interpolate from the forbidden to the allowed region.

In the allowed region, then, we have to match to an appropriate combination of oscillatory WKB wave functions. To
this end, we observe that in the allowed region we have, under the approximation (10.29) for x ≈ b,

2CII√
p(x)

cos

 1
ℏ

b∫
x

p(s) ds− π
4

 ≈ 2CII

(−2mV ′(b)y) 1
4
cos

(2mV ′(b)
ℏ2

) 1
2

0∫
y

(−s)
1
2 ds− π

4


=

2CII cos
(

2
3 (−z) 3

2 − π
4

)
(2mV ′(b)ℏ) 1

6 (−z) 1
4

,

≈ κ CIIAi(z) .

(10.36)

We conclude that to interpolate with the Ai(z) Airy function, we should choose C̃± in the allowed region so that they
combine to give the first expression in (10.36). An analogous treatment at the turning point x = a implies that the
allowed-region WKB wave function on the right hand side of that turning point should be given by

ψ(x) =
2CI√
p(x)

cos

 1
ℏ

x∫
a

p(s) ds− π
4

 . (10.37)

The resulting connection formulæ are summed up in the following.

Proposition 10.3.1. For continuation to the exponentially decreasing solution past the turning point at b we must have

C̃+ = CII e−
πi
4 , C̃− = CII e

πi
4 =⇒ ψ(x) =

2CII√
p(x)

cos

 1
ℏ

b∫
x

p(s) ds− π
4

 , (10.38)

Similarly, for continuation to the solution that exponentially decays as x → −∞ past the turning point at a we must
have

C+ = CI e−
πi
4 , C− = CI e

πi
4 =⇒ ψ(x) =

2CI√
p(x)

cos
(

1
ℏ

∫ x

a
p(x) ds− π

4

)
, (10.39)

Remark 10.3.2. Though not important in this particular analysis, one does run into situations where one wants
to match onto the exponentially growing solution on the other side of the classical turning point. In this case
we have, by an analogous analysis, that if the wave functions in the forbidden regions are of the form

ψI(x) =
DI exp

( 1
ℏ
∫ a
x q(s) ds

)√
q(x)

, ψII(x) =
DII exp

( 1
ℏ
∫ x
b q(s) ds

)√
q(x)

, (10.40)
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then the matching must be done with the Bi(z) Airy function and one has in the classically allowed region

C̃+ =
DII

2
e

πi
4 , C̃− =

DII

2
e−

πi
4 =⇒ ψ(x) =

DII√
p(x)

cos

 1
ℏ

b∫
x

p(s) ds +
π
4

 , (10.41)

for matching to the right and

C+ =
DI

2
e

πi
4 , C− =

DI

2
e−

πi
4 =⇒ ψ(x) =

DI√
p(x)

cos

 1
ℏ

x∫
a

p(x) ds +
π
4

 , (10.42)

for matching to the left. Taken together, this full set of connection formulæ allow us to match an arbitrary
solution across turning points.

Remark 10.3.3. An important feature of this result is that, when all is said and done, we can forget about the
Airy functions and the interpolation region; the relation between the coefficients in the allowed and forbidden
regions is fixed universally subject to only the assumption that the potential is smooth at the turning points.

Remark 10.3.4. There is another way of deducing these connection formulæ that is quite elegant, though the
justification is not entirely transparent. The idea is to analytically continue the WKB wave functions around
the classical turning point, avoiding the singularity, and matching on either side. In other words, for (say) the
turning point at x = a, set x − a = ρeiφ , with ρ sufficiently large that the WKB approximation can plausibly
stays reliable. Starting with the exponential solution in the forbidden region, we continue along the path in
the upper half plane (φ ∈ (0, π)) and this produces the coefficient C− near a; the C+ term is instead obtained
by analytic continuation in the lower half plane (φ ∈ (π, 2π)). In this treatment, the important phase shift by
π/4 arises from the analytic continuation of the 1/√p ' (x− a)− 1

4 factor. A similar analysis follows at x = b.

10.4 Bohr–Sommerfeld quantisation

We produced two expressions for the WKB wave function in the classically allowed region by matching to the appro-
priate exponential wave functions in both forbidden regions. The requirement that these two expressions agree gives
the Bohr–Sommerfeld quantisation rule, which generalises the quantisation condition from our example to the case
with finite potential in the classically forbidden regions.

Corollary 10.4.1 (Bohr–Sommerfeld quantisation rule). Normalisable semiclassical solutions satisfying the connection
formulæ at classical turning points exist if and only if

b∫
a

p(x) dx =

(
n +

1
2

)
πℏ . (10.43)

Proof. Equating the two expressions for the allowed-region WKB wave function we have

CI√p
cos

 1
ℏ

x∫
a

p(s) ds− π
4

 =
CII√p

cos

 1
ℏ

b∫
x

p ds− π
4

 . (10.44)

Rewriting the argument of the cosine on the right hand side, we have

1
ℏ

b∫
x

p(s) ds− π
4
=

1
ℏ

b∫
a

p(s) ds− 1
ℏ

x∫
a

p(s) ds− π
4
. (10.45)
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Further using the fact that cosine is an even function, we have that one of the following must hold

CI = +CII ,
1
ℏ

b∫
a

p(x) dx =
π
2
+ 2nπ , n = 0, 1, 2, . . . ,

CI = −CII ,
1
ℏ

b∫
a

p(x) dx =
π
2
+ (2n + 1)π , n = 0, 1, 2, . . . .

(10.46)

Allowing for either sign this gives the expected condition,

b∫
a

p(x) dx =

(
n +

1
2

)
πℏ , n = 0, 1, 2, . . . . (10.47)

The correction factor of 1/2 coming from the connection conditions is known as the Maslov correction. ■

This condition is capable of giving surprisingly good answers. For example, it is exact for the simple harmonic oscillator.

A common interpretation/application/perspective on (10.43) arises from expressing the same quantity as an area in-
tegral. Indeed, if we identify the region A(E) ⊂ R2

x,p where p2 ⩽ 2m(E − V(x)), then we estimate the number of
quantum states corresponding to the classical states whose trajectories are confined to this region in phase space by

# states(E) ≈ n(E) =
1

πℏ

b(E)∫
a(E)

p dx =
1

2πℏ

∫∫
A(E)

dp dx , (10.48)

where the final equality involves a factor of two because the area of the region includes both the area above the x-axis
and the area below it. Since wave functions decay exponentially fast outside the region, this number can also be thought
of as an estimate of the number of states whose wave functions are supported in A(E).

This formula is often summarised by saying that there is, roughly, a quantum state for each 2πℏ unit of area in phase
space; this can be generalised to systems in higher dimensions, in which case there is roughly one quantum state for
each (2πℏ)d unit of volume in phase space.

10.5 The radial WKB approximation

The WKB method we’ve been studying is particularly suited to the case of one-dimensional systems. We can easily ex-
tend this to three dimensional problems in the case where spherically symmetry allows us to restrict to definite angular
momentum eigenstates and then solve a one-dimensional radial problem. Indeed, with central potential V(x) = V(r),
we have for ψ(x) = R(r)Ym

ℓ (θ, φ) the radial (time-independent) Schrödinger equation,

− ℏ2

2m

[
1
r
∂2

∂r2
(rR)

]
+

ℏ2

2m
ℓ(ℓ+ 1)

r2
R(r) = (E− V(r))R(r) , (10.49)

which can be rewritten as a one-dimensional Schrödinger equation for rR(r) (with a modified potential for nonzero
angular momentum),

− ℏ2

2m
∂2

∂r2
(rR) =

(
E− V(r)− ℏ2

2m
ℓ(ℓ+ 1)

r2

)
(rR) . (10.50)

Consequently we have radial WKB wave functions given by

R±(r) =
1

rp(r) 1
2
exp

± i
ℏ

r∫
p(r)

 , (10.51)
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Figure 5. Radial potentials (in this case similar to the Coulomb potential) with and without “centrifugal” term from angular mo-
mentum. In the case without, there is a single classical turning point at router, while for the case with angular momentum there is
also an inner turning point at rinner.

where
p(r)2 = 2m

(
E− V(r)− ℏ2

2m
ℓ(ℓ+ 1)

r2

)
. (10.52)

In the case where V(r) is a strictly increasing function of r (such as the harmonic oscillator or the Hydrogen atom),
there is an important distinction between the case where ℓ = 0 (spherically symmetric states), for which there is no
inner turning point, and the case where ℓ 6= 0, for which for any energy there will be an inner turning point as long as
the potential diverges less than quadratically with radius at the origin. (See Figure 5.)

The semiclassical wave function must still satisfy the connection conditions of 10.3.1 at r = router. However, there is a
new ingredient in the case when ℓ = 0, which is that for R(r) to be bounded, rR(r) should vanish at the origin. As a
result, we must have the sin combination of R± wave functions,

R(r) =
C

rp(r) 1
2
sin

 1
ℏ

r∫
0

p(s) ds

 =
C̃

rp(r) 1
2
cos

 1
ℏ

router∫
r

p(s) ds− π
4

 , (10.53)

and to match both expressions we need

1
ℏ

router∫
0

p(s) ds =
(

n +
3
4

)
π , n = 0, 1, 2, . . . . (10.54)

For the Hydrogen atom, this yields good estimates for the energies of s-orbitals, as you will see on Problem Sheet 4.

Remark 10.5.1. For states with nonzero angular momentum, one has an inner turning point so there is a naive
quantisation condition of the usual form,

1
ℏ

router∫
rinner

p(s) ds =
(

n +
1
2

)
π , n = 0, 1, 2, . . . . (10.55)

There is a subtlety here, because the resulting exponentially decaying WKB wave function in the interior for-
bidden region won’t actually be bounded at r = 0 due to the enhanced singularity in the effective potential.
There is a curious correction known as the Langer correction that can be implemented to improve errors arising
from this problem at the origin, and you will encounter this as well on Problem Sheet 4.
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10.6 Time-dependent WKB∗

The relationship between the WKB approximation and classical physics can be drawn out further by considering the
analogous approximation to solutions of the time-dependent Schrödinger equation. Below we will freely cite concepts
from B7.1 Classical Mechanics.

Lemma 10.6.1. Parameterising a quantum-mechanical wave function according to

Ψ(x, t) = A(x, t) exp
(

i
ℏ
S(x, t)

)
, (10.56)

where A and S are both real, the Schrödinger equation with Hamiltonian H = P2/2m + V(X) is equivalent to the
following pair of equations,

∂S
∂t

+
|∇S|2

2m
+ V =

ℏ2

2m
∇2A
A

, (10.57)

∂A2

∂t
+∇ ·

(
A2

m
∇S
)

= 0 . (10.58)

Proof. Direct calculation yields

∇Ψ =

(
∇A
A

+
i
ℏ
∇S
)

Ψ ,
∂Ψ
∂t

=

(
1
A
∂A
∂t

+
i
ℏ
∂S
∂t

)
Ψ , (10.59)

and continuing,

∇2Ψ =

(
∇2A
A

+
i
ℏ
∇2S + 2

i
ℏ
∇A
A
· ∇S− 1

ℏ2
|∇S|2

)
Ψ . (10.60)

Substituting these into Schrödinger’s equation and dividing by Ψ yields a complex equation whose real and imaginary
parts are, after a little manipulation, the desired pair of equations. ■

The probability density is |Ψ|2 = A2 and the probability current is

j := i
ℏ
2m
(
Ψ∇Ψ − Ψ∇Ψ

)
=

A2

m
∇S , (10.61)

so we can interpret (10.58) as exactly the conservation of probability. The first equation is more subtle to interpret, and
is the site of the WKB assumption. Indeed, the ℏ→ 0 limit is implemented by ignoring the right hand side of (10.57).
This yields:

Definition 10.6.2 (The semi-classical approximation of the time-dependent Schrödinger equation). This de-
termines the wave function Ψ = AeiS/ℏ satisfying

∂S
∂t

+
|∇S|2

2m
+ V = 0 , (10.62)

known as the Hamilton–Jacobi equation, and

∂A2

∂t
+∇ ·

(
A2

m
∇S
)

= 0 , (10.63)

the continuity equation.

Remark 10.6.3. This approximation has the best chance to be validwhen the right hand sideℏ2∇2A/A of (10.57)
is small, so in particular, A 6= 0.
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We recall that the Hamilton–Jacobi equation arises in classical mechanics as the equation satisfied by the action of the
classical trajectory ending at the point x at time t. For our Hamiltonian, the classical equations of motion are

mẌ = −∇V , (10.64)

which arise as the Euler–Lagrange equations that follow from extremising the action functional,

S[X(t)] =
t∫

t0

L
(
X(s), Ẋ(s)

)
ds , where L(X, Ẋ) = m

2
|Ẋ|2 − V(X) . (10.65)

The solution to the Hamilton–Jacobi equation S(t, x) arises as the value of S[Xx(t)]whenXx(s) are a family of solutions
to the classical equations of motion (10.64) chosen so that Xx(t) = x. One might, for example, consider the family of
trajectories for which x(0) = y for a fixed y.

With the suggested boundary condition, evaluating S(x, t) requires us to integrate along the classical trajectory that
joins y to x. Thus the initial velocity is chosen so that the classical trajectory arrives at x at time t. The momentum of
the trajectory when it passes through x at time t is then determined by

p = ∇S . (10.66)

For a free classical particle (i.e., V = 0) our prescription leads to

S =

∫ t

0

m
2
ẋ2 dt =

m|x− y|2

2t
, where ẋ = (x− y)/t . (10.67)

It can be easily verified that this satisfies (10.62) with V = 0.

Theorem 10.6.4. Given a solution S(x, y) to the Hamilton–Jacobi equation with the aforementioned boundary condi-
tions, a solution to the continuity equation is given by

A2 = det
(

∂2S
∂xj∂yk

)
. (10.68)

Proof. For simplicity we only prove the one-dimensional case, which follows from direct calculation. The calculation
in higher dimensions is more involved but not in a deep way.

∂A2

∂t
=

∂3S
∂x∂y∂t

,

= − ∂2

∂x∂y

[
1

2m

(
∂S
∂x

)2
+ V

]
,

= − ∂

∂x

(
1
m

∂S
∂x

∂2S
∂x∂y

)
,

= − 1
m

∂

∂x

(
∂S
∂x

A2
)

.

which gives the continuity condition. ■

Thus for the free particle, we obtain

A2 = det
(
−m

t
13×3

)
= −

(m
t

)3
, (10.69)

so that the WKB wave function at a future time t is given by

Ψ(x, t) =
(m

t

)3/2
exp

(
im|x− y|2

2ℏt

)
. (10.70)
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Comparing to our result for the propagator (2.53), we see that up to overall normalisation this is exactly the evolution
to time t of the generalised position eigenstate for position y at time zero. That we get the exact answer is actually no
surprise, as in this case∇2A = 0, so the WKB equations reproduce the full time-dependent Schrödinger equation.

For time-independent systems and states of definite energy, one can separate out the time dependence and, in the
one-dimensional case, recover our previous time-independent analysis.

Proposition 10.6.5. For a time-independent potential V(x, t) = V(x), the Hamilton–Jacobi equation has solutions of
the form

S(x, t) = W(x)− Et , (10.71)

provided that
|∇W|2

2m
+ V = E . (10.72)

The corresponding wave functions,

Ψ(x, t) = A(x, t) exp
(

i(W(x)− Et)
ℏ

)
, (10.73)

give the approximate eigenstates of energy with eigenvalue E.

Proof. This follows by direct substitution. ■
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Chapter 11

OneDimensional Scattering

We have spent most of our time in this course discussing normalisable stationary states, their properties, and the
methods used to calculate them. In the application of quantum theory to the real world, there is another large and
important subject that has something of a different flavour: the theory of scattering.

The basic formulation of the problem is as follows: we imagine that there is some “stuff” that is localised in space,
and we want to predict what will happen if we throw some probe particle at the stuff. (Alternatively, one might be
interested in observing the result of such throwing-a-particle-at-stuff experiments and reconstructing a microscopic
model of the stuff. This is referred to as an inverse scattering problem.) The scattering problem arises in both classical
dynamics and in quantum mechanics, but of course here we consider the quantum version. In this case one wants to
assess the probability amplitude for various configurations of outgoing scattered particles.

Figure 6. Cartoon representation of a scattering problem.

In the classical setting, we would specify the asymptotic trajectory (say, momentum and impact parameter) of the
incoming probe particle in the far past (as you will recall from your study of hyperbolic orbits in the Kepler problem in
prelims Dynamics) and predict the subsequent trajectory and, in particular, the late-time trajectory when the particle
escapes back to infinity.

In the quantum mechanical setting, there is some subtlety in how we realise this intuitive scattering question within
our mathematical formalism. The general treatment is quite technical. In this chapter we consider a simplified version
of the story, where space is one-dimensional.

11.1 Left-right asymmetric scattering

We consider a situation as depicted in Figure 7, where the potential takes constant values outside of a bounded inter-
action region. The idea is then that particles will propagate freely in the L and R regions, so we can consider particles
incident from (say) the left and ask for the amplitude for them to be either reflected back to the left or transmitted
through the interaction region out to the right.

To really model the process described above, we would need to perform a time-dependent analysis in which our initial
state is a kind of a wave packet localised in the L region andmoving to the right, and then we would ask for the late time
behaviour of that state. This would require a more involved investigation than we want to pursue for now. Fortunately,
it turns out that we can treat this as a time independent problem. We consider (generalised) energy eigenstates with
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Figure 7. One-dimensional scattering with a localised interaction region.

energy E > VL,R, which will necessarily look like plane waves in the L and R regions,

for x ∈ L , ψ(x) = ψL(x) = ALeikLx + BLe−ikLx , ℏkL = pL ,
p2L
2m

= E− VL ,

for x ∈ R , ψ(x) = ψR(x) = AReikRx + BRe−ikRx , ℏkR = pR ,
p2R
2m

= E− VR .

(11.1)

The AL,R terms correspond to the particle having positive momentum, while the BL,R terms describe negative momen-
tum. In the “interaction region” the potential is nontrivial, and it may be difficult to produce an exact expression for
the stationary state wave functions there, but on general grounds as the solutions to the time-independent Schrödinger
equation we know there will be a two-dimensional space of such wave functions at fixed energy that will interpolate
between the plane wave behaviour to the left and the right. Matching onto the solutions in the L and R regions, the
detailed form of these solutions will give rise to a linear relationship between the coefficients (AL,BL) and (AR,BR),
which we encode in a (energy-dependent) matrix M,(

AL

BL

)
= M

(
AR

BR

)
. (11.2)

Here we will focus on the case of scattering from the left, which we encode by setting BR = 0, as a nonzero value for BR

would be interpreted as indicating some nonzero probability for the particle to be arriving from the right. In this case,
we define the following physically important quantities.

Definition 11.1.1. The reflection coefficient R and the transmission coefficient T are defined (as functions of
energy) for one-dimensional scattering according to

R =
|BL|2

|AL|2
, T =

kR|AR|2

kL|AL|2
. (11.3)

These coefficients obey an important conservation condition related to their probabilistic interpretation.

Proposition 11.1.2. The reflection and transmission coefficients are related according to

R + T = 1 . (11.4)

We interpret R as the probability that a particle incident from the left with energy E will be reflected off of the potential,
and T to be the probability that the particle is transmitted through the potential.
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Proof. The simple relation follows from the probability conservation condition for stationary states, which in one di-
mension reads as§

∂xj(x) = 0 , j(x) =
ℏ

2mi

(
ψ(x)∂xψ(x)− ψ(x)∂xψ(x)

)
. (11.5)

Youhave encountered this conservation rule in yourA11QuantumTheory, and it follows as an immediate consequence
of the time-independent Schrödinger equation. Applying this condition to stationary scattering states as above, we have

j(x) =

{
pL
m |AL|2 − pL

m |BL|2 , x ∈ L ,
pR
m |AR|2 − pR

m |BR|2 , x ∈ R .
(11.6)

Conservation of the probability current then equates the value of j(x) on either side of the interaction region and gives

pL
m
|AL|2 +

pR
m
|BR|2 =

pL
m
|BL|2 +

pR
m
|AR|2 . (11.7)

setting BR = 0 and dividing through by the left hand side gives R + T = 1. ■

Remark 11.1.3. Equation (11.7) is often understood in slightly different terms by making a somewhat different
(and non-canonical) interpretation of these generalised energy eigenstates. If we say that a wave function of
the form

ψ(x) = Ae
ipx
ℏ , (11.8)

describes an ensemble of particles (sometimes people say a beam of particles) travelling with momentum p and
density |A|2, then the flow rate of these particles will be given by p

m |A|
2. In these terms, our probability current

j is reinterpreted as an actual flow rate of particles, and the conservation rule becomes a conservation condition
for the number of particles in a given region in a steady state: the rate of particles entering into the interaction
region (left hand side) is equal to the rate of particles exiting (right hand side).

Remark 11.1.4. It is a remarkable (and not all that obvious) fact that the time-independent analysis given here
is sufficient to make predictions about what happens in a more physical scattering setup when one starts with a
wave packet approaching the interaction region from the left. The idea is that one can decompose a wave packet
in, say, the L region in terms of the scattering states (rather than the usual plane waves of Fourier analysis), and
then the time evolution of the wave packet will proceed analogously to what we saw in our discussion of the
propagator in Chapter 2. Because the scattering states know about the structure of the interaction region, as
the wave packet evolves the it will arrive from the left at the interaction region, do something in the interaction
region, and ultimately there will be a reflected and a transmitted wave packet emitted to the left and right,
respectively. Importantly, the relative amplitudes will be controlled by R and T (up to the issue of there being
a spread of energies in the wave packet, but if the experiment is repeated many times then the law of large
numbers dictates that R and T will control the average behaviour, which justifies the “ensemble of particles”
interpretation to some extent). A careful analysis of this story goes well beyond our treatment here, but the
important conclusion is that this time-independent analysis captures the real physics of the situation!

11.2 Local potential scattering and the S matrix

To have a one-dimensional analogue of higher-dimensional scattering off of a localised potential, it is natural to impose
that VL = VR. (In higher dimensions, if the potential is localised in one region then you can go around the potential
and so the asymptotic value of the potential should be the same in every direction.) In this case, the conservation
condition takes the even nicer form

|AL|2 + |BR|2 = |BL|2 + |AR|2 . (11.9)

From a physical point of view (rather than that of solving ODEs), we should be inclined to think of the problem as
being that of determining BR and AL (the amplitudes of the outgoing parts of the wave function) given AL and BR (the
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Figure 8. Scattering off of a piecewise constant potential.

amplitudes of the incident parts of the wave function). As long as the upper left-hand component M11 of the matrix M,
we can find such a relation, (

AR

BL

)
= S

(
AL

BR

)
, S =

(
1

M11
−M12

M11
M21
M11

detM
M11

)
. (11.10)

By virtue of (11.9), the matrix S is a norm-preserving endomorphism of C2 and so a unitary 2 × 2 matrix. Indeed,
this is a baby version an important object, the unitary S-matrix, which encodes the relationship between incoming and
outgoing scattering wavefunctions. (This is an object of significant importance in relativistic quantum field theory and
high energy particle physics, where scattering experiments are the main tool of the trade.)

We can then recognise the R and T coefficients in terms of the S matrix coefficients,

T = |S11|2 , R = |S21|2 , (11.11)

and the condition R + T = 1 is a simple consequence of unitarity of S.

Remark 11.2.1. We specialised to scattering from the left, but we could also consider scattering from the right,
in which case AL = 0. Then the corresponding reflection and transmission coefficients would be given by
Tright = |S22|2 and Rright = |S12|2, which obey an analogous conservation condition.

11.3 Piecewise constant potentials

A (somewhat contrived) class of examples that can be solved exactly, and consequently form a nice test environment
for our methods, are the piecewise constant potentials (see Figure 8). For these we have a set of junction points−∞ =

a0 < a1 < · · · < an−1 < an =∞ and set

V(x) = Vi , x ∈ (ai−1, ai) , (11.12)

where in these conventions we have VL = V0 and VR = Vn. Then our wave function will be piecewise a linear
combination of plane waves or exponentials,

ψ(x) = ψi(x) = Ajeikjx + Bje−ikjx , x ∈ [aj−1, aj] . (11.13)

(If in some region we have E < Vj, then we will define kj = iμj with μj > 0. Then the plane wave eikjx becomes a
decaying exponential e−μjx while e−ikjx becomes a growing exponential eμjx.)
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Figure 9. Scattering from a rectangular barrier.

The boundary conditions (continuity of ψ and ψ′) at x = ai require

ψj(aj) = ψj+1(aj) ⇒ Ajeikjaj + Bje−ikjaj = Aj+1eikj+1aj + Bj+1e−ikj+1aj ,

ψ′
j(aj) = ψ′

j+1(aj) ⇒ kj
(
Ajeikjaj − Bje−ikjaj

)
= kj+1

(
Aj+1eikj+1aj − Bj+1e−ikj+1aj

)
,

(11.14)

and this condition can be solved to express the coefficients (Aj,Bj) in terms of (Aj+1,Bj+1). We encode the relation in
a matrix Mj:

Mj =
1

2kj

(
sje−idjaj dje−isjaj

djeisjaj sjeidjaj

)
, sj = kj + kj+1 , dj = kj − kj+1 . (11.15)

We then have for our total scattering process, M = M1M2 · · ·Mn−1

Example 11.3.1 (Single barrier scattering and tunnelling). The simplest case of a piecewise constant scattering
problem is that of scattering off of a rectangular barrier. In this case there are just two junction points, and as
in Figure 9, for ease of notation we will set a1 = 0, a2 = a, VL = VR = 0, V1 = V. For scattering from the left
(in which case BR = 0) we can write (

AL

BL

)
= M1M2

(
AR

0

)
, (11.16)

So ultimately we are interested in the left-hand column of the M matrix. Now specialising our general expres-
sion for the matrices Mj to our case, we have

M1 =
1
2k

(
s d
d s

)
, Mi =

1
2k′

(
seida −de−isa

−deisa se−ida

)
, s = k + k′ , d = k− k′ , (11.17)

which when composed gives us

M =
1

s2 − d2

(
s2eida − d2eisa sd(e−ida − e−isa)

sd(eida − eisa) s2e−ida − d2e−isa

)
. (11.18)

With some massaging we compute the full S matrix, which is given by

S =
1

d2eias − s2eiad

(
d2 − s2 ds(e−iad − e−ias)

ds(eiad − e−ias) d2 − s2

)
,

=
1

2ikk′ cos(k′a) + (k2 + k′2) sin(k′a)

(
2ikk′e−ika (k2 − k′2) sin(ak′)e−2ika

(k2 − k′2) sin(ak′) 2ikk′e−ika

)
.

(11.19)
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From this we extract the reflection and transmission coefficients,

T =
4k2k′2

(k2 + k′2)2 sin2(k′a) + 4k2k′2 cos2(k′a)
,

R =
(k2 − k′2)2 sin2(k′a)

(k2 + k′2)2 sin2(k′a) + 4k2k′2 cos2(k′a)
.

(11.20)

As sanity checks, we can observe that as k′ → k (so no barrier), (T,R) → (1, 0), and as k′ → ∞ (infinite
barrier), (T,R)→ (0, 1), and also that the unitarity condition T + R = 1 does indeed hold here.
To treat the case where E < V transparently, we make the replacement k′ = iμ′ with μ′ > 0. Being careful
with signs coming from imaginary arguments in trigonometric functions, we have

T =
4k2μ′2

(k2 − μ′2)2 sinh2(μ′a) + 4k2μ′2 cosh2(μ′a)
,

R =
(k2 + μ′2)2 sinh2(μ′a)

(k2 − μ′2)2 sinh2(μ′a) + 4k2μ′2 cosh2(μ′a)
.

(11.21)

The most striking result here (though it was clear from the setting up of our problem that this would be the
case) is that T 6= 0 when E < V. This is the phenomenon of quantum tunnelling, wherein a particle can trans-
mit through a barrier that would classically block it completely; this behaviour have important technological
applications, such as in scanning tunnelling microscopes.

Example 11.3.2 (Bound states and poles). A close relative of our previous example is scattering from a rect-
angular potential well, as in Figure 10. In the first instance, we can simply repurpose our S matrix from the
previous example, where now we will have k′ > k, but otherwise everything will be the same as in (11.19).
The novel feature of this example is that in addition to the scattering states we’ve been studying, there are also
bound states with V < E < 0; the bound state wave functions will be of the form

ψbound(x) =


BLeμx , x < 0 ,

A1eik
′x + B1e−ik′x , 0 < x < a ,

ARe−μx , x > a ,

(11.22)

We observe that this is a wave function of precisely the type we considered for scattering states but with the
replacement k = iμ, μ =

√
−2mE just as in the previous example but now for the wavefunctions in the left

and right regions.
Now the bound states correspond to solutions with AL = BR = 0, which by (11.10) requires that the S matrix
become singular. Indeed, upon making the replacement k → iμ the (now somewhat formal, as there is no
scattering) S matrix takes the form

S =
1

2μk′ cos(k′a) + (μ2 − k′2) sin(k′a)

(
2μk′eμa (μ2 + k′2) sin(ak′)e2μa

(μ2 + k′2) sin(ak′) 2μk′eμa

)
, (11.23)

and each term becomes singular precisely when

2μk′ cos(k′a) + (μ2 − k′2) sin(k′a) = 0 . (11.24)

Looking back to (11.2), the condition to be able to find a solution with AL = BR = 0 requires precisely that
M11 = 0, and it is the M11 denominator in each entry of the S-matrix that is being set to zero by the condition
above. For your own entertainment, you may wish to observe that if instead we take k → −iμ, then the same
bound states are responsible for the S matrix developing a kernel.
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Figure 10. Bound state in a rectangular well.

Remark 11.3.3. What we’ve observed here is a shadow of a much more general phenomenon in quantum me-
chanical scattering, where information about bound states can be extracted from the analytic structure (zeroes
and poles) of the continuation of scattering data to complex kinematical variables (in this case the asymptotic
momentum).
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Chapter 12

Epilogue
In this final chapter, we gesture towards some of the topics that, unfortunately, can’t be made to fit into an eight week
course but nevertheless are equally deserving of discussion. I hope the interested reader will look into them indepen-
dently.

Time dependent phenomena and methods

In almost the entirety of this course (with the exception of the discussion of the propagator early on) we have aggres-
sively maintained a focus on aspects of the quantum theory that could be studied through time-independent methods.
Of course, the world is dynamical and it is often useful to havemore intrinsically time-dependent tools at one’s disposal.
Some key words in these areas are:

• Pictures of time evolution. Using the unitary time evolution operator U(t1; t0), one can recast the subject of
time evolution as applying to the operators of quantum theory rather than the states (this is called the Heisenberg
picture of time evolution). One can go further and evolve states and operators using different time evolution
operators (one involving interactions and one corresponding to free propagation). This leads to the interaction
picture. This formalism is especially important in perturbative scattering theory.

• Time-dependent perturbation theory. A realistic, and therefore important, situation to deal with is when a sys-
tem is perturbed in a manner that is explicitly time-dependent. This could mean that the “underlying” Hamil-
tonian is time-dependent (say, because you are on the surface of the Earth which is exposed to electromagnetic
radiation from the sun periodically), or that we have an underlying time-independent systemwhich wemomen-
tarily disturb in a dynamical way (say, by momentarily hitting a Hydrogen atom with a laser beam). This gives
rise to slightly different questions than those we addressed in our analysis of perturbation theory. For example,
at what rate will the time-dependent perturbation mediate transitions between some given eigenstates of the
original system? If you shine a laser at a gas of Hydrogen atoms, how frequently do you expect to ionise the
atoms (knock electrons out of bound states into scattering states)? In the case where the time-dependent effect
is small, these problems can be treated by a generalisation of perturbation theory to a time-dependent context.

Higher-dimensional scattering

In more than one spatial dimension, the particulars of scattering gets quite a bit more complicated. In particular, the
issue of angular dependence takes center stage: given particles incident on a local potential with a fixed momentum,
how likely are they to be scattered in any particular direction? This is encoded in something called a differential cross
section, and higher-dimensional scattering theory is largely concerned with calculating these cross sections.

The Feynman path integral

An influential “third way” of thinking about quantum theory (in contrast to the algebraic approach of Heisenberg or
the differential equation approach of Schrödinger) was supplied by Richard Feynman in a 1948 paper (building on
earlier work by himself and others, including Dirac). The idea, roughly, is if we want to compute the propagator,

U(xf, tf ; xi, ti) =
〈
xf
∣∣U(tf ; ti)∣∣xi〉 . (12.1)

then by repeated insertions of resolutions of the identity separated by very short time evolution, one arrives at a picture
where one should sum over all possible trajectories of the particle between the initial and final position. This sum over
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histories is encoded in the Feynman path integral, which is denoted as follows

U(xf, tf ; xi, ti) =

x(tf)=xf∫
x(ti)=xi

[Dx]e
i
ℏ S[x(t)] . (12.2)

The beautiful result of Feynman’s derivation is that the weight with which each trajectory contributes is the (imaginary
exponential of) the classical action of that trajectory. The integration measure (denoted by [Dx]) is a subtle thing
to make rigorous sense out of, though in some settings thse subtleties can be overcome. Regardless, the intuition
gained from this formulation has proven invaluable for quantum physicists. Indeed, from this perspective, the WKB
approximation that we studied in Chapter 9.5 amounts to performing a stationary-phase approximation for the path
integral!

You can learn all about path integrals in, for example, C7.1Theoretical Physics.

Entanglement and quantum information theory

We only touched ever-so-briefly upon the issue of quantum entanglement. A more detailed study of the manipulation
of finite quantum systems leads to the subject of quantum computing and quantum information theory, in which
entanglement is leveraged to perform computational tasks that would seem impossible using conventional classical
methods. You can learn all about this in C7.4 Introduction to Quantum Information.
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Appendix A

Hilbert SpaceMinutiæ
In the interest of making these notes more self-contained, we provide in this appendix a more in depth account of
the definition of and several important properties of Hilbert spaces. The finer points associated with the infinite-
dimensional case go beyond the syllabus for the course and are properly treated in a course on Functional Analysis.

A.1 Definitions

Definition A.1.1 (Sesquilinear Form). A sesquilinear form on a complex vector space V is a map

(·, ·) : V× V→ C ,

obeying

(αφ1 + βφ2, ψ) = ᾱ(φ1, ψ) + β̄(φ2, ψ) ,
(φ, αψ1 + βψ2) = α(φ, ψ1) + β(φ, ψ2) ,

(A.1)

so it is linear in the second argument and conjugate-linear/C-antilinear in the first argument.59

Definition A.1.2 (Hermitian Form). An Hermitian form on a complex vector space V is a sesquilinear form
that obeys the further Hermiticity condition,

(φ, ψ) = (ψ, φ) . (A.2)

This means that for an Hermitian form, (ψ, ψ) ∈ R for any ψ ∈ V.

Definition A.1.3 (Hermitian Inner Product). An Hermitian inner product on a complex vector space V is a
positive definiteHermitian form, i.e., anHermitian form obeying the additional positive definiteness condition

(φ, φ) ⩾ 0 , (φ, φ) = 0 ⇐⇒ φ = 0 . (A.3)

Such an inner product induces a norm on V,

||φ|| :=
√
(φ, φ) . (A.4)

Definition A.1.4 (Hilbert Space). A complex Hilbert space is a complex vector space equipped with an Her-
mitian inner product such that all Cauchy sequences converge (so it is complete). This means that for any
sequence of vectors {φ1, φ2, . . .} such that ∀ε > 0, there exists a natural number N ∈ N such that

||φn − φm|| < ε , m, n > N , (A.5)

there is an element φ ∈ H such that {φn} → φ.

∗Definition A.1.5 (Separable Hilbert Space). A complex Hilbert space is called separable if it admits a countable
orthonormal basis.

59As in the main text, here we adopt “physics conventions” in which the inner product is conjugate-linear in the first argument. Often in the
mathematics literature the reverse convention is utilised, where the form is conjugate-linear in the second argument and linear in the first.



A HILBERT SPACE MINUTIÆ 92

Every finite-dimensional Hilbert space is separable; separability is a technical condition relevant for the infinite-
dimensional case. In this infinite dimensional case, an orthonormal basis is meant in the sense of infinite linear com-
binations,60 so any vector ψ can be written in terms of the basis vectors {ψn} as

ψ =

∞∑
n=1

anψn , an := (ψn, ψ) , (A.6)

where
∞∑
n=1
|an|2(ψn, ψn) <∞ . (A.7)

One is normally only liable to encounter separableHilbert spaces in quantummechanical settings, so often themodifier
“separable” is omitted entirely.

A.2 Illustrative examples

Example A.2.1 (The Lebesgue space L2). Wave functions for a particle moving in n dimensions are normally
identified with square-integrable functions from Rn to C, with inner product given by

(ψ, φ) =
∫

ψ(x)φ(x) dnx . (A.8)

Strictly speaking, this space (often denoted L2(Rn)) is too big; it includes nonzero functions that are nev-
ertheless zero almost everywhere, and so the Hermitian form doesn’t obey the correct positive-definiteness
property (there are many functions with zero “norm”).

This can be dealt with by taking the quotient by the subspace N of functions whose norm vanishes, which is
equivalent to identifying any two functions that agree almost everywhere. This gives the Lebesgue space,

L2(Rn) =
(
L2(Rn)/

N
)
. (A.9)

In this course, we will normally get away with thinking mostly of continuous (or even smooth) wavefunctions and the
issue of identifying up to equivalence will not arise.

Example A.2.2 (Incomplete pre-Hilbert space). The requirement of completeness is only relevant for infinite-
dimensional Hilbert spaces. To get some intuition for this condition, we can consider the space C([−1, 1],C)
of continuous, complex-valued functions on the interval [−1, 1]. This is an Hermitian inner product space with

(f , g) =
+1∫

−1

f(x)g(x) dx . (A.10)

This space is incomplete, as can be seen by considering the following family of functions

fn(x) =


0 −1 ⩽ x ⩽ − 1

n ,
xn+1
2 − 1

n ⩽ x ⩽ + 1
n ,

1 + 1
n ⩽ x ⩽ 1 .

(A.11)

This set of functions can be checked to form a Cauchy sequence, but the limit is the discontinuous function
that is zero for x < 0 and one for x > 0. Thus the space of continuous functions with the given inner product
is not a Hilbert space; it is sometimes called a pre-Hilbert space. The completion of this space, which is the

60What is called a Schauder basis.
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relevant Hilbert space for considering quantum mechanics on the interval, is the Lebesgue space L2([−1, 1]) of
(equivalence classes of) complex-valued, square-integrable functions on [−1, 1].

ExampleA.2.3 (Non-separableHilbert space). Though theywon’t showup in this course (ormuch of anywhere
in quantum theory), it may be useful to at least see an example of a Hilbert space that is not separable, because
seeing is believing. We define the space ℓ2(R) to be the set of functions f : R → C such that f(x) 6= 0 for
countably many x, and ∑

x∈R

| f(x)|2 <∞ . (A.12)

The inner product is given by
(f , g) =

∑
x∈R

f(x)g(x) . (A.13)

This admits an uncountable, orthonormal basis which are the functions {f s} with s ∈ R, where

fs(x) =

{
1 x = s ,
0 otherwise .

(A.14)

This clearly has a much different flavour from the sorts of Hilbert spaces we meet when discussing elementary
particles or spin systems.

A.3 Operators on Hilbert space

Here we collect some definitions and examples related to the subtleties of operator theory for infinite-dimensional
Hilbert spaces. This is only for readers who are independently curious about the subtleties of the rigorous treatment
of infinite-dimensional Hilbert spaces; it will not be necessary to concern oneself with this material in the course for
the problem sheets or the exam.

Definition A.3.1. An unbounded operator (A,D(A)) on a Hilbert space H is a linear map A : D(A) → H
from a linear subspace D(A) ⊆ H toH. It is conventional to require that D(A) is dense inH.

The operators studied in the quantum mechanics of L2(R) tend to be unbounded operators. For example, the mo-
mentum operator P is naturally defined for D(P) the subspace of once-differentiable functions with square-integrable
derivatives. The position operator X is likewise defined for functions whose growth at infinity is sufficiently mild that
they are still square-integrable after multiplying by x.

Definition A.3.2. The adjoint operator of an unbounded operator (A,D(A)) on a Hilbert spaceH is another
unbounded operator (A∗,D(A∗)) onH obeying

(φ,Aψ) = (A∗φ, ψ) , ∀ψ ∈ D(A) , ∀φ ∈ D(A∗) . (A.15)

The domain D(A∗) is defined to be the linear subspace of H for which φ → (φ,Aψ) is continuous for any
ψ ∈ D(A). By the Riesz–Fréchet isomorphism, A∗φ is uniquely defined for a φ ∈ D(A∗) by virtue of the
aforementioned continuous linear functional.

In this unbounded setting, a self adjoint operator is, importantly, an operator A for which not only A = A∗, but
D(A) = D(A∗).

Example A.3.3 (Unbounded operators and adjoints). An instructive example of this subtlety comes in the case
of the particle in a box, as reviewed in the prologue of these lecture notes. Recall that here the Hilbert space is
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L2([0, a]) and the Hamiltonian operator is H = P2/2m.
The Hamiltonian is in fact an unbounded operator, and so needs to be equipped with a choice of domain; the
domain used to define the particle in the box is the set of wave functions that vanish at the x = 0 and x = a
and that are twice differentiable, with the result being square integrable. With this choice of D(H), one finds
that D(H∗) = D(H), so the Hamiltonian is truly self-adjoint and the spectral theorem must hold (as you have
taken for granted in the past).

On the other hand, consider the momentum operator P for the particle in the box. If we take the same domain
D(P) as for H, then (because P is a first order differential operator), D(P∗) is strictly larger than D(P). Indeed,
for any ψ ∈ D(H) and any differentiable φ, we have

a∫
0

φ(x)(Pψ)(x) dx =

a∫
0

Pφ(x)(ψ)(x) dx , (A.16)

so D(P∗) and includes all differentiable functions. Thus we cannot apply the spectral theorem in this case, and
indeed we do not have a basis of P-eigenfunctions obeying the prescribed boundary conditions on the interval
[0, a].
This example is discussed at length at a quite sophisticated level here.

https://doi.org/10.1119/1.1328351
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