B5.6 Nonlinear Dynamics, Bifurcations and Chaos

Sheet 0 — HT 2025

Revision of some Prelims and Part A material, we will build on.

Please solve before the course starts. Do not hand in.

Solutions will be given in our first lecture in Week 1 (Wednesday, 22/01/2025).

1. Let matrix $M \in \mathbb{R}^{3\times 3}$ and vector $\mathbf{x}_0 \in \mathbb{R}^3$ be given as

$$M = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 2 \\ -1 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \mathbf{x}_0 = \begin{pmatrix} 8 \\ 1 \\ 3 \end{pmatrix}$$

- (a) Let $\mathbf{x}_k \in \mathbb{R}^3$, $k = 0, 1, 2, \dots$, be a sequence defined iteratively by $\mathbf{x}_{k+1} = M\mathbf{x}_k$. Find \mathbf{x}_k .
- (b) Find the solution of the system of ordinary differential equations (ODEs)

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = M\mathbf{x}$$
 with the initial condition $\mathbf{x}(0) = \mathbf{x}_0$.

2. Let matrix $M \in \mathbb{R}^{2 \times 2}$ be given as

$$M = \begin{pmatrix} 1 & 2 \\ -1 & \mu \end{pmatrix}.$$

(a) Given $\mathbf{x}_0 \in \mathbb{R}^2$, consider sequence $\mathbf{x}_k \in \mathbb{R}^2$, $k = 0, 1, 2, \ldots$, defined iteratively by $\mathbf{x}_{k+1} = M\mathbf{x}_k$. Show that

$$\lim_{k \to \infty} \|\mathbf{x}_k\| = 0, \quad \text{for} \quad \mu \in (-2, -1),$$

and

$$\lim_{k \to \infty} \|\mathbf{x}_k\| = \infty, \quad \text{for} \quad \mu \in (-1, \infty).$$

(b) Find and classify the critical point of the planar ODE system

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = M\mathbf{x}$$

for each value of the parameter $\mu \in \mathbb{R}$.

3. Let $\mu \in [0, 4]$ be a parameter and $x_0 = 0.7$. Define the sequence $x_k \in \mathbb{R}$, $k = 0, 1, 2, \ldots$, iteratively by

$$x_{k+1} = \mu x_k \left(1 - x_k \right).$$

Write a computer code which plots the first 200 values of this sequence for the following values of parameter μ :

$$\mu = 0.5, \qquad \mu = 2, \qquad \mu = 3.2, \qquad \mu = 3.5, \qquad \mu = 3.55, \qquad \mu = 3.8, \qquad \mu = 4.$$

B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 0 — HT 2025

4. Let X be a continuous random variable on interval [0,1] with the probability density function $p:(0,1)\to(0,\infty)$ given by

$$p(x) = \frac{1}{\pi \sqrt{x(1-x)}}.$$

Let function $F:[0,1] \to [0,1]$ be defined by F(x) = 4x(1-x).

Find the probability density function of random variable F(X).

5. Let $\mu \in \mathbb{R}$ be a parameter. Consider a planar autonomous system of ODEs given by:

$$\frac{dx}{dt} = x - \mu y + y^{2}(1 - x) - x^{3}
\frac{dy}{dt} = \mu x - xy(1 + x) + y - y^{3}$$
(*)

(a) Let $\mu \in (-1,1)$. Show that the ODE system (*) has three critical points given by

$$[0,0], \qquad \left[\sqrt{1-\mu^2},\mu\right] \qquad \left[-\sqrt{1-\mu^2},\mu\right]$$

Classify the critical points and sketch the phase plane.

(b) Write a computer code which calculates five solutions of ODEs (*) for the initial conditions

$$[x_1(0), y_1(0)] = [-2, -2],$$
 $[x_2(0), y_2(0)] = [-2, 2],$ $[x_3(0), y_3(0)] = [2, -2],$ $[x_4(0), y_4(0)] = [2, 2]$ and $[x_5(0), y_5(0)] = [0.1, 0.1].$

Plot trajectories $[x_i(t), y_i(t)], j = 1, 2, 3, 4, 5$, in the phase plane for

$$\mu = \frac{9}{10}$$
 and $\mu = 2$.

(c) Transform the ODE system (*) to polar coordinates, *i.e.* write a system of ODEs for variables r(t) and $\theta(t)$, where

$$x(t) = r(t)\cos\theta(t)$$
 and $y(t) = r(t)\sin\theta(t)$.

(d) Show that the ODE system (*) has a periodic solution (limit cycle) for all values of parameter μ satisfying $|\mu| > 1$.