
B5.6 Nonlinear Dynamics, Bifurcations and Chaos

Sheet 1 — HT 2025

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Find the stable, unstable and center subspaces Es, Eu and Ec of the linear system

dx

dt
= Mx

with matrix M ∈ R
4×4 given by

(a)

M =













1 1 0 0

−1 0 0 0

0 1 −1 −1

0 0 1 0













(b)

M =













0 −1 0 0

1 0 0 0

1 0 2 0

0 0 1 −2













(c)

M =













−11 0 9 −2

−5 −12 7 6

−19 0 17 −2

−17 −8 19 2













Solution: We denote the eigenvalues and generalized eigenvectors of M by

λj = aj + i bj and wj = uj + ivj,

where aj, bj ∈ R, uj ,vj ∈ R
4, for j = 1, 2, 3, 4.

(a) The matrix M is diagonalizable (semi-simple). It has four different eigenvalues and

eigenvectors given by

a1 = a2 = −1

2
, a3 = a4 =

1

2
, b1 = b3 =

√
3

2
, b2 = b4 = −

√
3

2
,
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u1 = u2 =













0

0

−1

2













, v1 = −v2 =
√
3













0

0

1

0













.

u3 = u4 =













2

2

1

2













, v3 = −v4 =
√
3













−2

2

1

0













.

Consequently, we have

Es = span



































0

0

1

0













,













0

0

0

1



































, Eu = span



































2

2

1

2













,













−2

2

1

0



































, Ec = ∅.

(b) The matrix M is diagonalizable (semi-simple). It has four different eigenvalues and

eigenvectors given by

λ1 = −2, λ2 = 2, λ3 = i, λ4 = −i,

w1 =













0

0

0

1













, w2 =













0

0

4

1













, u3 = u4 =













−5

0

2

1













, v3 = −v4 =













0

5

1

0













.

Consequently, we have

Es = span



































0

0

0

1



































, Eu = span



































0

0

4

1



































, Ec = span



































−5

0

2

1













,













0

5

1

0



































.

(c) The characteristic polynomial of matrix M is (λ−8)(λ+4)3. Consequently, matrix

M has two eigenvalues: λ1 = 8 (with multiplicity 1) and λ2 = −4 (with algebraic

multiplicity 3 and geometric multiplicity 1). The corresponding eigenvectors are

w1 =













1

2

3

4













and w2 =













1

1

1

1













. (1)
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The generalized eigenvectors corresponding to λ2 = −4 are

w3 =













1

0

1

0













and w4 =













4

1

4

0













. (2)

They satisfy the equations (M − λ2I)w3 = 2w2 and (M − λ2I)w4 = 8w3, which

implies (M − λ2I)
2w3 = 0 and (M − λ2I)

3w4 = 0. Consequently, we have

Es = span



































1

1

1

1













,













1

0

1

0













,













4

1

4

0



































, Eu = span



































1

2

3

4



































, Ec = ∅.

2. Consider the linear system
dx

dt
= Mx

with matrix M ∈ R
4×4 given as in Question 1(c), i.e.

M =













−11 0 9 −2

−5 −12 7 6

−19 0 17 −2

−17 −8 19 2













and the initial condition

x(0) = x0.

(a) Assume that x0 ∈ Eu where Eu is the unstable subspace calculated in part 1(c).

Assume that x0 6= 0. Show that

lim
t→∞

‖x(t)‖= ∞ and lim
t→−∞

x(t) = 0

(b) Assume that x0 ∈ ES where ES is the stable subspace calculated in part 1(c).

Assume that x0 6= 0. Show that

lim
t→∞

x(t) = 0 and lim
t→−∞

‖x(t)‖= ∞

Mathematical Institute, University of Oxford

Radek Erban: erban@maths.ox.ac.uk

Page 3 of 9



B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 1 — HT 2025

Solution:

(a) If x0 ∈ Eu and x0 6= 0, then there exists a constant α1 6= 0 such that x0 = α1 w1,

where w1 is given by (1), and the solution of our initial value problem is

x(t) = α1 e
λ1 t w1.

Since λ1 = 8 > 0 and α1 6= 0, we have

lim
t→∞

‖x(t)‖= ∞ and lim
t→−∞

x(t) = 0.

(b) If x0 ∈ Es, then there exist constants α2, α3 and α4 such that

x0 = α2 w2 + α3 w3 + α4 w4 , (3)

where w2, w3 and w4 are given by (1)–(2), and the solution of our initial value

problem is

x(t) = (α2 + 2α3t+ 8α4t
2) eλ2 t w2 + (α3 + 8α4t) e

λ2 t w3 + α4 e
λ2 t w4 . (4)

Indeed, substituting t = 0 into (4) and using (3), we confirm that the solution (4)

satisfies the initial condition x(0) = x0. Moreover, multiplying (4) by M and using

Mw2 = λ2w2, Mw3 = λ2w3 + 2w2 and Mw4 = λ2w4 + 8w3, we get

Mx(t) = λ2 x(t) + 2 (α3 + 8α4t) e
λ2 t w2 + 8α4 e

λ2 t w3 ,

which we also obtain by differentiating (4) as dx/dt. In particular, we have con-

firmed that formula (4) is the solution of our initial value problem with x0 given

by (3). Since λ2 = −4 and x0 6= 0, we conclude that at least one αj, j = 2, 3, 4, is

nonzero and equation (4) implies that

lim
t→∞

x(t) = 0 and lim
t→−∞

‖x(t)‖= ∞ .
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3. Consider the system of n = 2 chemical species X1 and X2 which are subject to the

following ℓ = 5 chemical reactions:

2X1

k1−→ 2X1 +X2 X1 +X2

k2−→ 2X1 +X2 3X1

k3−→ 2X1

X2

k4−→∅ 2X1 +X2

k5−→ 2X1

Let x1(t) and x2(t) be the concentrations of the chemical speciesX1 andX2, respectively.

(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations)

describing the time evolution of x1(t) and x2(t).

(b) Assume the problem has already been non-dimensionalized and choose the values

of dimensionless rate constants as

k1 = µ, k2 = 1, k3 = 4, k4 = 1 and k5 = 1,

where µ > 0 is a single parameter that we will vary.

Use an analysis of the dynamics on the center manifold to show that

(i) The origin [x1, x2] = [0, 0] is an asympotically stable critical point if µ ≤ 4.

(ii) The origin [x1, x2] = [0, 0] is an asymptotically unstable critical point if µ > 4.

(c) Find and classify all critical points and sketch the phase plane in the nonnegative

quadrant {x1 ≥ 0, x2 ≥ 0} for: (i) µ ∈ (0, 4); and (ii) µ > 4.

Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have :

dx1

dt
= k2 x1 x2 − k3 x

3

1

dx2

dt
= k1 x

2

1
− k4 x2 − k5 x

2

1
x2

(b) Using our values of parameters k1 = µ, k2 = 1, k3 = 4, k4 = k5 = 1, we have

dx1

dt
= x1 x2 − 4x3

1
(5)

dx2

dt
= µx2

1
− x2 − x2

1
x2 (6)

The origin [x1, x2] = [0, 0] is a critical point and we have

Df(0, 0) =

(

0 0

0 −1

)

.
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In particular, the linearization has eigenvalues −1 and 0 and the center subspace

is spanned by the eigenvector (1, 0)T which corresponds to the 0 eigenvalue. The

center manifold is tangent to the center subspace, so it can be locally written as

x2 = c2 x
2

1
+ c3 x

3

1
+ c4 x

4

1
+O(x5

1
). (7)

Differentiating with respect of t and substituting (5) and (6), we get

(µ− c2) x
2

1
− c3 x

3

1
+ (c2(7− 2c2)− c4) x

4

1
+O(x5

1
) = 0.

Consequently, c2 = µ, c3 = 0 and c4 = µ(7 − 2µ). Substituting into equation (7),

we get

x2 = µx2

1
+ µ(7− 2µ) x4

1
+O(x5

1
).

Substituting into equation (5), we get the dynamics on the center manifold as

dx1

dt
= (µ− 4) x3

1
+ µ(7− 2µ) x5

1
+O(x6

1
).

Consequently, we obtain that the origin is asymptotically stable for µ < 4 and

unstable for µ > 4. If µ = 4, we have

dx1

dt
= − 4x5

1
+O(x6

1
).

Thus we conclude that the origin is asymptotically stable for µ ≤ 4.

(c) The critical points are given as solutions of the system :

0 = x1 x2 − 4x3

1

0 = µx2

1
− x2 − x2

1
x2

Consequently, the first equation implies that we either have x1 = 0 or x2 = 4x2

1
.

Substituting into the second equation, we deduce:

(i) If µ ∈ (0, 4), then the origin is the only critical point which is asymptotically

stable.

(ii) If µ > 4, then there are three critical points given by

[0, 0],

[√
µ− 4

2
, µ− 4

]

,

[

−
√
µ− 4

2
, µ− 4

]

.

The first two critical points are in the nonnegative quadrant {x1 ≥ 0, x2 ≥ 0}.
The origin [x1, x2] = [0, 0] is asymptotically unstable and

[√
µ−4

2
, µ− 4

]

is a

stable node for µ > 4.
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The illustrative phase planes in domain [0, 2] × [0, 2] are plotted below for µ = 3

and µ = 5. The black dots denote the critical points (filled-in dots are stable and

empty dots are unstable). Five illustrative trajectories starting at the boundary of

the box are plotted using different colours. They converge to the origin [0, 0] for

µ = 3, and to the critical point [1/2, 1] for µ = 5.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2
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Section C: Problem 7

7. Let g ∈ C1(R) be a given function satisfying g(x) ≥ 1 for all x ∈ R. Consider the initial

value problem
dx

dt
= x2 with x(0) = x0 (⋆)

and the initial value problem

dx

dτ
=

x2

g(x)
with x(0) = x0. (N)

(a) Find the solution of the initial value problem (⋆) and the maximum interval I⋆(x0)

where the solution is defined for each initial condition x0 ∈ R.

(b) Let x0 be given and denote the orbits corresponding to systems (⋆) and (N) by

Γ⋆
x0

and ΓN
x0
, respectively. Show that

Γ⋆
x0

= ΓN
x0
, for all x0 ∈ R,

i.e. the ODEs (⋆) and (N) have the same phase portrait.

(c) Find g(x) such that the initial value problem (N) has its unique solution on the

maximum interval IN(x0) = R for each initial condition x0 ∈ R.

Solution:

(a) Given the initial condition x(0) = x0 ∈ R, the solution of ODE (⋆) is

x(t) =
x0

1− t x0

for t ∈ I⋆(x0), (8)

where the maximal interval of existence I⋆(x0) is

I⋆(x0) =



























(

−∞,
1

x0

)

for x0 > 0,

R for x0 = 0,
(

1

x0

,∞
)

for x0 < 0.

(b) We define the new time τ by

τ ≡ τ(t) =

∫ t

0

g(x(s; x0)) ds. (9)

Since g(x) ≥ 1 for all x ∈ R, we conclude that τ(t) is a strictly increasing function

of t. In particular, its inverse t(τ) exists and we can use the chain rule to deduce

dx

dτ
=

dx

dt

dt

dτ
=

x2

g(x)
, (10)
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i.e. x(t(τ)) solves the initial value problem (N). Using (8), the orbit Γ⋆
x0

⊂ R based

on x0 ∈ R is given by

Γ⋆
x0

=
{

x(t; x0)
∣

∣ t ∈ I⋆(x0)
}

=

{

x0

1− t x0

∣

∣

∣

∣

t ∈ I⋆(x0)

}

.

Using (10), this can be rewritten as

Γ⋆
x0

=
{

x(t; x0)
∣

∣ t ∈ I⋆(x0)
}

=
{

x(t(τ); x0)
∣

∣ τ ∈ IN(x0)
}

= ΓN
x0
.

(c) Let g(x) = 1 + x2. Then the initial value problem (N) is given as

dx

dτ
=

x2

1 + x2
with x(0) = x0 .

It has the unique solution x(τ) ≡ 0 for x0 = 0 and

x(τ) =
τ x0 + x2

0
− 1 +

√

(τ x0 + x2

0
− 1)2 + 4x2

0

2x0

for x0 6= 0 , (11)

which is defined on the maximum interval of existence IN(x0) = R for each initial

condition x0 ∈ R. Substituting g(x) = 1 + x2 and (8) into our rescaling of time

equation (9), we get

τ(t) = t

(

1 +
x2

0

1− t x0

)

. (12)

Substituting equation (12) into the solution formula (11), we obtain the solution

formula (8). In particular, we confirm that the ODEs (⋆) and (N) have the same

phase portrait and the trajectories of (N) are defined for all τ ∈ R.
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