B5.6 Nonlinear Dynamics, Bifurcations and Chaos
Sheet 1 — HT 2025

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Find the stable, unstable and center subspaces E*, E* and E° of the linear system

dx
=M
a -~
with matrix M € R** given by
(a)
11 0 O
-1 0 0 O
M=
0 1 -1 -1
0 0 1 0
(b)
0 -1 0 O
1 0 0 0
M =
1 0 2 0
0 0 1 -2
(c)
-1 0 9 =2
-5 =12 7 6
M=

-19 0 17 -2
—-17 -8 19 2

Solution: We denote the eigenvalues and generalized eigenvectors of M by
)\j:aj—l—ibj and WjZUj+iVj,

where a;,b; € R, u;,v; € R*, for j =1,2,3,4.

(a) The matrix M is diagonalizable (semi-simple). It has four different eigenvalues and

eigenvectors given by

1 1 V3 V3
L =09 = —— a3 = a4 = = by =b3=— by =by = ——,
1 2 92 9 3 4 9 ) 1 3 2 9 2 4 9
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0 0
0 0
u; = Ug = s V1——V2:\/§
-1 1
0
2 -2
2 2
Uz = Uy = , V3:—V4—\/§
1 1
2 0
Consequently, we have
0 0 2 -2
0 0 2 2
E? = span , , E" = span ; , EC=0
P 1 0 P 1 1
0 1 2 0

(b) The matrix M is diagonalizable (semi-simple). It has four different eigenvalues and

eigenvectors given by

0 0 -5 0
0 0 0 5
Wi = ., Wo = , Uz =uy = , V3= —Vy =
1 0 2 4 3 4 3 4 ]
1 1 0
Consequently, we have
0 0 -5 0
0 0 0 5
E?® = span ,  FE" =span , FE°=span ;

P 0 P 4 P 2 1
1 1 1 0

(c) The characteristic polynomial of matrix M is (A —8)(A+4)3. Consequently, matrix
M has two eigenvalues: A\; = 8 (with multiplicity 1) and Ay = —4 (with algebraic

multiplicity 3 and geometric multiplicity 1). The corresponding eigenvectors are

(1)

O N R
— = =
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The generalized eigenvectors corresponding to Ay = —4 are
1 4
0 1
w3 = and Wy = 2
= =1, (2)
0 0

They satisfy the equations (M — A\yl)w3 = 2wy and (M — Ay )wy = 8ws, which
implies (M — X\oI)*w3 = 0 and (M — X\1)*wy = 0. Consequently, we have

E? = span , E" = span

— = = =
O =R O
o o=
e R

2. Consider the linear system

dx
e
T x

with matrix M € R** given as in Question 1(c), i.e.

-1 0 9 =2
-5 =12 7 6
-19 0 17 =2
-17 -8 19 2

M =

and the initial condition
x(0) = xo.

(a) Assume that xo € E" where E* is the unstable subspace calculated in part 1(c).
Assume that xy # 0. Show that

tlim |x(t)||=0cc and lim x(t)=0
—00

t——o0

(b) Assume that x, € E° where E® is the stable subspace calculated in part 1(c).
Assume that xy # 0. Show that

tlgilo x(t) =0 and tlenoo | x(t)||= oo
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Solution:

(a) If xg € E" and x( # 0, then there exists a constant a; # 0 such that xg = a; wy,

where wy is given by (1), and the solution of our initial value problem is

)‘ltwl.

x(t)=ae
Since A\; =8 > 0 and «ay # 0, we have

lim ||x(t)[|[=00 and lim x(¢) = 0.

t—o0 t——o0
(b) If xo € E®, then there exist constants as, ag and ay such that
X0:a2W2+a3W3+Oé4W4, (3)

where wy, w3 and wy are given by (1)—(2), and the solution of our initial value

problem is
x(t) = (o + 2ast + S8ayt?) et wy + (a3 + Sayt) e wy + age’iwy. (4)

Indeed, substituting ¢ = 0 into (4) and using (3), we confirm that the solution (4)
satisfies the initial condition x(0) = x¢. Moreover, multiplying (4) by M and using

Mwy = Mwg, Mws = Agw3 + 2wy and Mwy = \awy + 8wz, we get
Mx(t) = Ao x(t) + 2 (a3 + 8ayt) 2wy + 8ay et ws,

which we also obtain by differentiating (4) as dx/dt. In particular, we have con-
firmed that formula (4) is the solution of our initial value problem with xq given
by (3). Since Ay = —4 and x( # 0, we conclude that at least one «;, j = 2,3,4, is
nonzero and equation (4) implies that

tlggox(t) =0 and tkr_noo I|x(t)||= oo .
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3. Consider the system of n = 2 chemical species X; and X, which are subject to the

following ¢ = 5 chemical reactions:

92X, FL 02X, + X, X+ Xy 259X, + X, 3X, 59X,
X, F0 2X, + X, 29X,

Let x1(t) and z5(t) be the concentrations of the chemical species X; and X, respectively.

(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations)

describing the time evolution of z(t) and z5(t).

(b) Assume the problem has already been non-dimensionalized and choose the values

of dimensionless rate constants as
kﬁl = W, ]{?2:1, kﬁ3:4, ]{?4:1 and k’5:1,

where p > 0 is a single parameter that we will vary.

Use an analysis of the dynamics on the center manifold to show that

(i) The origin [z1, xs] = [0, 0] is an asympotically stable critical point if p < 4.
(ii) The origin [z, zo] = [0,0] is an asymptotically unstable critical point if > 4.

(c¢) Find and classify all critical points and sketch the phase plane in the nonnegative
quadrant {x; > 0, 25 > 0} for: (i) p € (0,4); and (ii) u > 4.

Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have:

dQTl

—— = kyx12y — k33

dt 2 L1 L2 347

dx

d_t2 = kle—k4[)ﬁ2—k5l’%$2

(b) Using our values of parameters k; = p, ko = 1, k3 = 4, ky = ks = 1, we have

dl‘l

E = X1 T2 —437? (5)
dx
d_t2 = pat — 12 — 211 (6)
The origin [z, 2] = [0,0] is a critical point and we have
0 O
Df(0,0) = .
0 -1
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In particular, the linearization has eigenvalues —1 and 0 and the center subspace
is spanned by the eigenvector (1,0)T which corresponds to the 0 eigenvalue. The

center manifold is tangent to the center subspace, so it can be locally written as
Ty = co ] + 3 + ey} + O(23). (7)
Differentiating with respect of ¢ and substituting (5) and (6), we get
(11— co)2? — c3x® + (co(T — 2¢5) — ¢4) 2] + O(2°) = 0.

Consequently, co = p, ¢3 = 0 and ¢y = p(7 — 2p). Substituting into equation (7),
we get

vy = pat + (7 = 2p) 2} + O(a]).
Substituting into equation (5), we get the dynamics on the center manifold as

dx
S = (u— e+ (7 - 2m) 2%+ OGS,

Consequently, we obtain that the origin is asymptotically stable for u < 4 and
unstable for > 4. If u = 4, we have

d(lfl

Thus we conclude that the origin is asymptotically stable for u < 4.
(¢) The critical points are given as solutions of the system :

0 = xy29 — 4xi’

0 = pat — a9 — 7779
Consequently, the first equation implies that we either have z; = 0 or xy = 427
Substituting into the second equation, we deduce:

(i) If u € (0,4), then the origin is the only critical point which is asymptotically
stable.

(ii) If p > 4, then there are three critical points given by

0,0}, [ﬂj{u—q, L—ﬂ;?u—q.

The first two critical points are in the nonnegative quadrant {z; > 0, x5 > 0}.

The origin [z1,xs] = [0,0] is asymptotically unstable and [—V“z_‘l, w— 4] is a

stable node for p > 4.
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The illustrative phase planes in domain [0, 2] x [0,2] are plotted below for p = 3
and p = 5. The black dots denote the critical points (filled-in dots are stable and
empty dots are unstable). Five illustrative trajectories starting at the boundary of
the box are plotted using different colours. They converge to the origin [0, 0] for
p =3, and to the critical point [1/2, 1] for u = 5.
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Section C: Problem 7

7. Let g € C*(R) be a given function satisfying g(z) > 1 for all # € R. Consider the initial

value problem

i—j = z? with  z(0) =z (%)
and the initial value problem
dx x?
o) wi z(0) = 29 (A)

(a) Find the solution of the initial value problem (%) and the maximum interval I* (z)

where the solution is defined for each initial condition zy € R.

(b) Let zo be given and denote the orbits corresponding to systems (%) and (A) by
I'* and I'A | respectively. Show that

I‘;: =T for all g € R,

xQ?

i.e. the ODEs () and (A) have the same phase portrait.

(¢) Find g(z) such that the initial value problem (A) has its unique solution on the

maximum interval I4(zg) = R for each initial condition z, € R.
Solution:
(a) Given the initial condition x(0) = = € R, the solution of ODE (¥) is

Lo

for te I*(x), (8)

where the maximal interval of existence I* () is
( 1
(—oo, —> for xg > 0,
Lo
I*(l'o) =494 R for Ty = 0,

(b) We define the new time 7 by

r=r(t) = / o(a(s; 20)) ds. (9)

Since g(x) > 1 for all z € R, we conclude that 7(t) is a strictly increasing function

of t. In particular, its inverse ¢(7) exists and we can use the chain rule to deduce
dr  dzdt  2?
dr — dtdr  g(z)’

(10)
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i.e. x(t(1)) solves the initial value problem (A). Using (8), the orbit IX¥ C R based

on xg € R is given by

F;g = {x(t; zo) ‘ te I*(xo)} = {1 —x(;xo

t e I* (JZO)} .
Using (10), this can be rewritten as

I3 = {altizo) [t € (o)} = {w(t(7);w0) | 7 € I*(w0) } = T,

(c) Let g(x) = 1+ 2. Then the initial value problem (A) is given as

dx z? .

It has the unique solution x(7) = 0 for zy = 0 and

Tag+ad—14+/(tog+a—1)2+423
2370

x(1) = for xy #0, (11)

which is defined on the maximum interval of existence I*(zy) = R for each initial
condition 7y € R. Substituting g(z) = 1+ 2% and (8) into our rescaling of time

equation (9), we get

(#) :t(1+ : _xéxo) (12)

Substituting equation (12) into the solution formula (11), we obtain the solution
formula (8). In particular, we confirm that the ODEs (%) and (A) have the same
phase portrait and the trajectories of (A) are defined for all 7 € R.
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