B5.6 Nonlinear Dynamics, Bifurcations and Chaos Sheet 2 — HT 2025

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Consider the ODE system

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = \mu x_1 + 2 x_1^3 - x_1^5 \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = -x_2$$

where $\mu \in \mathbb{R}$ is a parameter.

- (a) Find and classify all bifurcations of the ODE system. Plot the bifurcation diagram.
- (b) Sketch the phase plane for $\mu = -3/4$.

Solution:

- (a) The origin [0,0] is a critical point for all values $\mu \in \mathbb{R}$. Other critical points are of the form $[x_c, 0]$, where x_c is a solution of $\mu = x_c^4 2x_c^2$. Completing the square, we have $(x_c^2 1)^2 = \mu + 1$, which implies:
 - (i) There is only one critical point $\mathbf{x}_0 = [0, 0]$ for $\mu \in (-\infty, -1)$, which is stable.
 - (ii) There are five critical points

$$\mathbf{x}_{-2} = \left[-\sqrt{1 + \sqrt{\mu + 1}}, 0 \right], \qquad \mathbf{x}_{-1} = \left[-\sqrt{1 - \sqrt{\mu + 1}}, 0 \right], \qquad \mathbf{x}_{0} = [0, 0],$$
$$\mathbf{x}_{1} = \left[\sqrt{1 - \sqrt{\mu + 1}}, 0 \right], \qquad \mathbf{x}_{2} = \left[\sqrt{1 + \sqrt{\mu + 1}}, 0 \right], \qquad \text{for} \quad \mu \in (-1, 0).$$

Moreover, the critical points \mathbf{x}_{-2} , \mathbf{x}_0 and \mathbf{x}_2 are stable nodes, while the critical points \mathbf{x}_{-1} and \mathbf{x}_1 are (unstable) saddles.

(iii) There are three critical points

$$\mathbf{x}_{-2} = \left[-\sqrt{1+\sqrt{\mu+1}}, 0\right], \quad \mathbf{x}_0 = [0,0], \quad \mathbf{x}_2 = \left[\sqrt{1+\sqrt{\mu+1}}, 0\right],$$

for $\mu \in (0, \infty)$. Moreover, the critical points \mathbf{x}_{-2} and \mathbf{x}_2 are stable, while the critical point \mathbf{x}_0 is unstable.

B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 2 — HT 2025

We have a subcritical pitchfork bifurcation at $\mu = 0$. The origin is (locally) stable for $\mu < 0$ and unstable for $\mu > 0$. Two branches of unstable fixed points bifurcate from the origin when $\mu = 0$, as can be seen on the following bifurcation diagram:

In addition to the subcritical pitchfork bifurcation at $\mu = 0$, we also have a saddlenode bifurcation at $\mu = -1$: stable node \mathbf{x}_{-2} moves towards saddle \mathbf{x}_{-1} as μ approaches -1 from above, and these two critical points collide (mutually annihilate) at $\mu = -1$. We also have a saddle-node bifurcation at $\mu = -1$, where stable node \mathbf{x}_2 collides with saddle \mathbf{x}_1 .

(b) Using $\mu = -3/4$, there are five critical points

$$\mathbf{x}_{-2} = \left[-\sqrt{\frac{3}{2}}, 0 \right], \quad \mathbf{x}_{-1} = \left[-\sqrt{\frac{1}{2}}, 0 \right], \quad \mathbf{x}_{0} = [0, 0], \quad \mathbf{x}_{1} = \left[\sqrt{\frac{1}{2}}, 0 \right], \quad \mathbf{x}_{2} = \left[\sqrt{\frac{3}{2}}, 0 \right]$$

with saddles at \mathbf{x}_{-1} and \mathbf{x}_1 and stable nodes at \mathbf{x}_{-2} , \mathbf{x}_0 and \mathbf{x}_2 .

The phase plane is plotted in the figure on the next page, where we visualize stable critical points using filled-in black dots and unstable critical points as empty dots. The figure also includes 14 illustrative trajectories, each starting at the boundary of the plotted box $[-2, 2] \times [-2, 2]$ and converging to one of the stable nodes \mathbf{x}_{-2} , \mathbf{x}_0 or \mathbf{x}_2 .

2. Consider the system of n = 2 chemical species X_1 and X_2 which are subject to the following $\ell = 6$ chemical reactions:

$$\begin{array}{cccc} X_1 \xrightarrow{k_1} X_2 & & X_2 \xrightarrow{k_2} X_1 & & X_1 \xrightarrow{k_3} \emptyset \\ \\ \emptyset \xrightarrow{k_4} X_2 & & 2X_1 \xrightarrow{k_5} 3X_1 & & 3X_1 \xrightarrow{k_6} 2X_5 \end{array}$$

Let $x_1(t)$ and $x_2(t)$ be the concentrations of the chemical species X_1 and X_2 , respectively.

- (a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations) describing the time evolution of $x_1(t)$ and $x_2(t)$.
- (b) Assume the problem has already been non-dimensionalized and choose the values of dimensionless rate constants as

$$k_1 = 3,$$
 $k_2 = 1,$ $k_3 = 12,$ $k_4 = \mu,$ $k_5 = 9$ and $k_6 = 2,$

where $\mu > 0$ is a single parameter that we will vary.

Find and classify all bifurcations of the ODE system.

- (c) Plot the bifurcation diagram.
- (d) Sketch the phase plane for $\mu = 9/2$.

Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have:

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = k_2 x_2 - (k_1 + k_3) x_1 + k_5 x_1^2 - k_6 x_1^3$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = k_4 + k_1 x_1 - k_2 x_2$$

(b) Using our values of parameters $k_1 = 3$, $k_2 = 1$, $k_3 = 12$, $k_4 = \mu$, $k_5 = 9$, $k_6 = 2$, we have

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2 - 15 x_1 + 9 x_1^2 - 2 x_1^3$$
$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = \mu + 3 x_1 - x_2$$

The nullclines can be written as functions of x_1 :

$$x_2 = 15 x_1 - 9 x_1^2 + 2 x_1^3 \tag{1}$$

$$x_2 = \mu + 3x_1 \tag{2}$$

The x_1 -nullcline is independent of μ and is plotted below as the black curve.

The x_2 -nullcline is a straight line that depends on μ . We plot x_2 -nullcline for five different values of μ below:

The ODE system has two saddle-node bifurcations: one at $\mu = 4$, where the critical point [2, 10] bifurcates into a saddle and a node for $\mu > 4$, and one at $\mu = 5$, where the critical point [1, 8] bifurcates into a saddle and a node for $\mu < 5$.

Both bifurcations can be further analyzed using the the extended center manifold theory. We define new (local) variables by

bifurcation at $\mu = 4$: $\overline{x}_1 = x_1 - 2$, $\overline{x}_2 = x_2 - 10$, $\nu = \mu - 4$,

bifurcation at $\mu = 5$: $\overline{x}_1 = x_1 - 1$, $\overline{x}_2 = x_2 - 8$, $\nu = \mu - 5$.

Then the ODE system can be written in the matrix form as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix} = \begin{pmatrix} -3 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix} + \begin{pmatrix} \mp 3 \, \overline{x}_1^2 - 2 \, \overline{x}_1^3 \\ \nu \end{pmatrix}$$
(3)

where the top sign (minus –) corresponds to the local variables used for the bifurcation at $\mu = 4$ and the bottom sign (plus +) corresponds to the local variables used for the analysis of the bifurcation at $\mu = 5$. We define new coordinates by

$$\begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

with the inverse transform

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix}.$$

Then the system (3) can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \mp 3 (y_1 + y_2)^2 - 2 (y_1 + y_2)^3 \\ \nu \end{pmatrix}.$$

The extended system is given by

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \\ \nu \end{pmatrix} = \begin{pmatrix} -4 & 0 & -1/4 \\ 0 & 0 & 1/4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \nu \end{pmatrix} + \frac{\mp 3 \left(y_1 + y_2 \right)^2 - 2 \left(y_1 + y_2 \right)^3}{4} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}. \quad (4)$$

The corresponding stable and center subspaces are

$$E^{s} = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}, \qquad E^{c} = \operatorname{span} \left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1/4\\0\\4 \end{pmatrix} \right\}.$$

The extended center manifold is given by

$$y_1 = h(y_2, \nu) = c_{01}\nu + c_{20}y_2^2 + c_{11}\nu y_2 + c_{02}\nu^2 + \dots$$
 (5)

Differentiating with respect of time t, we get

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{\partial h}{\partial y_2}(y_2,\nu) \frac{\mathrm{d}y_2}{\mathrm{d}t} + \frac{\partial h}{\partial \nu}(y_2,\nu) \frac{\mathrm{d}\nu}{\mathrm{d}t} = \frac{\partial h}{\partial y_2}(y_2,\nu) \frac{\mathrm{d}y_2}{\mathrm{d}t}$$

Using (4) and (5), we get

$$\left(4c_{01} + \frac{1}{4}\right)\nu + \left(4c_{20} \pm \frac{9}{4}\right)y_2^2 + \left(4c_{11} \pm \frac{9c_{01}}{2} + \frac{c_{20}}{2}\right)\nu y_2 + \left(4c_{02} \pm \frac{9c_{01}^2}{4} + \frac{c_{11}}{4}\right)\nu^2 \dots = 0,$$

where the top sign (plus +) corresponds to the local variables used for the bifurcation at $\mu = 4$ and the bottom sign (minus -) corresponds to the local variables used for the analysis of the bifurcation at $\mu = 5$. This implies

$$c_{01} = -\frac{1}{16}, \qquad c_{20} = \pm \frac{9}{16}, \qquad c_{11} = \pm \frac{9}{64}, \qquad c_{02} = \pm \frac{45}{4096}.$$

Thus the center manifold is given locally by

$$y_1 = -\frac{1}{16}\nu \mp \frac{9}{16}y_2^2 + \dots,$$

and we have saddle-node bifurcations at $\mu = 4$ (top signs) and $\mu = 5$ (bottom signs) with the dynamics on the center manifold given by

$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{1}{4}\,\nu \mp \frac{3}{4}\,y_2^2 + \dots$$

(c) The bifurcation diagram is plotted below. The first coordinate of all steady states (x_1) is visualized as a function of parameter μ :

To plot this diagram, we can substitute for x_2 in equation (1) by using equation (2). We get a polynomial equation

$$\mu = 12 x_1 - 9 x_1^2 + 2 x_1^3, \tag{6}$$

which can be solved to obtain all steady states. However, we can also observe that equation (6) defines μ as a function of x_1 , so we can simply plot it and swap the axis to obtain the above bifurcation diagram.

(d) Using $\mu = 9/2$, equation (6) reads as follows

$$4x_1^3 - 18x_1^2 + 24x_1 - 9 = 0.$$

The solutions of this equation are $3/2 \pm \sqrt{3}/2$ and 3/2. Using (2), we conclude that there are three critical points

$$\mathbf{x}_{-} = \left[\frac{3-\sqrt{3}}{2}, 9-\frac{3\sqrt{3}}{2}\right], \qquad \mathbf{x}_{0} = \left[\frac{3}{2}, 9\right], \qquad \mathbf{x}_{+} = \left[\frac{3+\sqrt{3}}{2}, 9+\frac{3\sqrt{3}}{2}\right],$$

where \mathbf{x}_{-} and \mathbf{x}_{+} are stable nodes and \mathbf{x}_{0} is a saddle. The phase plane is plotted here:

We visualized stable critical points using filled-in black dots and the unstable critical point as an empty dot. The above figure also includes 8 illustrative trajectories, each starting at the boundary of the plotted box $[0,3] \times [4,14]$ and converging to one of the stable nodes \mathbf{x}_{-} or \mathbf{x}_{+} .

3. Let $\mu > 0$ be a parameter. Consider the map

$$x_{k+1} = F(x_k; \mu)$$

where

$$F(x;\mu) = \mu x \exp[1-x].$$

- (a) Let $\mu > 0$ be fixed. Find $a(\mu)$ such that $F(x;\mu)$ maps interval $[0, a(\mu)]$ in $[0, a(\mu)]$.
- (b) Sketch the graphs of $F(x; \mu)$ and $F(F(x; \mu); \mu)$ on interval $[0, a(\mu)]$ for $\mu = 4$.
- (c) Find all fixed points and the values of μ for which the fixed points are stable.
- (d) Find a value of μ such that the map has a stable period 2-cycle.
- (e) Plot the bifurcation diagram.

Solution:

(a) The maximum of function F(x; μ) is equal to μ, which is achieved at x = 1.
 In particular, we can choose

$$a(\mu) = \begin{cases} 1 & \text{for } \mu \in (0,1); \\ \mu & \text{for } \mu > 1. \end{cases}$$

Then $F(x;\mu)$ maps interval $[0, a(\mu)]$ in $[0, a(\mu)]$ for all $\mu > 0$.

(b) The graphs of F(x; 4) and F(F(x; 4); 4) are given here:

B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 2 — HT 2025

Using the simplified notation (introduced in lectures), we have

$$F_{\mu}(x) = F(x;\mu) = \mu x \exp[1-x]$$

and

$$F_{\mu}^{(2)} = F_{\mu}(F_{\mu}(x)), \qquad F_{\mu}^{(3)} = F_{\mu}(F_{\mu}(F_{\mu}(x))), \qquad \dots$$

In particular, graphs plotted in part (b) visualize $F_{\mu}(x)$ and $F_{\mu}^{(2)}(x)$ and can be used to find fixed points and 2-cycles.

(c) To find formulas for fixed points, we solve

$$x = F_{\mu}(x) = \mu x \exp[1 - x].$$

This equation has two solutions

$$x = 0$$
, and $x = 1 + \log(\mu)$.

Differentiating, we obtain

$$F'_{\mu}(x) = \mu (1-x) \exp[1-x],$$

which implies

$$F'_{\mu}(0) = \mu \exp[1], \qquad F'_{\mu}(1 + \log(\mu)) = -\log(\mu).$$

In particular, the fixed point at x = 0 is stable for $\mu \in (0, 1/e]$ and the fixed point at $x = 1 + \log(\mu)$ is stable for $\mu \in [1/e, e)$.

If $\mu = 1/e$, then there is one stable fixed point at $x = 1 + \log(\mu) = 0$.

(d) To find 2-cycles, we have to solve:

$$x = F_{\mu}^{(2)}(x) = F_{\mu}(F_{\mu}(x)) = \mu^2 x \exp[2 - x - \mu x \exp[1 - x]]$$

Since $x \neq 0$, we have

$$x + \mu x \exp[1 - x] = 2(1 + \log(\mu)).$$

This equation is solved by the fixed point $x = 1 + \log(\mu)$, but it also has two other solutions for $\mu > e$ giving a period 2-cycle, which is stable until $\mu \approx 4.6$, so we can choose, for example, $\mu = 3$ or $\mu = 4$.

B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 2 — HT 2025

(e) To plot the bifurcation diagram, we can visualize the information derived in parts(c) and (d), and continue numerically:

or we can numerically compute the whole bifurcation diagram:

Section C: Problem 7

7. Let $x_0 \in [-1, 1]$ and $F : [-1, 1] \to [-1, 1]$. Define sequence $x_k \in [-1, 1], k = 0, 1, 2, ...,$ iteratively by

$$x_{k+1} = F(x_k) \,.$$

(a) Let $F(x) = 2x^2 - 1$, *i.e.* we have

$$x_{k+1} = 2 x_k^2 - 1.$$

- (i) Find maxima and minima of F in interval [-1, 1] and verify that $F([-1, 1]) \subset [-1, 1]$.
- (ii) Let $h(y) = \cos(\pi y)$ and define function $G : [0, 1] \to [0, 1]$ by $G = h^{-1} \circ F \circ h$. Find $G(y) = h^{-1}(F(h(y)))$ for $y \in [0, 1]$ as a piecewise defined function.
- (iii) Define the sequence $y_k \in [0, 1]$, k = 0, 1, 2, ..., iteratively by $y_{k+1} = G(y_k)$. Find a relation between x_k and y_k .
- (iv) Find the invariant distribution p(x), defined for $x \in [-1, 1]$, and satisfying: If the random variable X is distributed according to p(x), then the random variable F(X) is also distributed according to p(x).
- (v) Write a computer code which plots a histogram of first 10^6 points in the orbit of $x_0 = 0.7$ obtained by $x_{k+1} = F(x_k)$. Plot the invariant distribution p(x)(obtained in part (iv)) in the same figure for comparison.
- (b) Let $F(x) = x(4x^2 3)$, *i.e.* we have

$$x_{k+1} = x_k \left(4 \, x_k^2 - 3 \right).$$

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

(c) Let $F(x) = 8x^2(x^2 - 1) + 1$, *i.e.* we have

$$x_{k+1} = 8 x_k^2 (x_k^2 - 1) + 1.$$

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

Solution:

- (a) Let $F(x) = 2x^2 1$. Then F'(x) = 4x.
 - (i) Since F'(x) = 4x, the minimum is at x = 0 and is equal to -1. The maxima are at the boundaries of the interval [-1, 1] and F(±1) = 1. Therefore, F([-1,1]) ⊂ [-1,1].

B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 2 - HT 2025

(ii) Since $h(y) = \cos(\pi y)$ for $y \in [0, 1]$, we have $h^{-1}(z) = (\arccos z)/\pi$ for $z \in [-1, 1]$, which implies

$$G(y) = h^{-1}(F(h(y))) = \frac{1}{\pi}\arccos\left(2\cos^2(\pi y) - 1\right) = \frac{1}{\pi}\arccos\left(\cos(2\pi y)\right).$$

Since $\arccos: [-1,1] \rightarrow [0,\pi],$ we conclude

$$G(y) = \begin{cases} 2y & \text{for } y \in [0, 1/2] \\ 2(1-y) & \text{for } y \in [1/2, 1]. \end{cases}$$

(iii) Let $x_0 = h(y_0)$. Then, using $G = h^{-1} \circ F \circ h$, we have

$$y_0 = h^{-1}(x_0)$$

$$y_1 = G(y_0) = h^{-1}(F(h(y_0))) = h^{-1}(F(x_0)) = h^{-1}(x_1)$$

$$y_2 = G(y_1) = h^{-1}(F(h(y_1))) = h^{-1}(F(x_1)) = h^{-1}(x_2)$$

$$\vdots = \vdots$$

In particular, we have $y_k = h^{-1}(x_k)$ by induction.

(iv) The invariant distribution is

$$p(x) = \frac{1}{\pi\sqrt{1-x^2}}.$$
(7)

(v) The blue histogram of first 10^6 points in the orbit of $x_0 = 0.7$ compared with the invariant distribution (red line) given by formula (7):

(b) Let $F(x) = x(4x^2 - 3)$. Then $F'(x) = 12x^2 - 3$ and F has maxima at x = -1/2and x = 1 where F(-1/2) = F(1) = 1 and minima at x = -1 and x = 1/2 where

$$F(-1) = F(1/2) = -1. \text{ Using } \cos(3z) = 4 \cos^3(z) - 3 \cos(z), \text{ we get}$$
$$G(y) = \begin{cases} 3y & \text{for } y \in [0, 1/3] \\ 2 - 3y & \text{for } y \in [1/3, 2/3] \\ 3y - 2 & \text{for } y \in [2/3, 1]. \end{cases}$$

The invariant distribution is again given by (7) and the histogram is:

(c) Let $F(x) = 8x^2(x^2 - 1) + 1$. The invariant distribution is again given by (7) and the histogram is:

