
B5.6 Nonlinear Dynamics, Bifurcations and Chaos

Sheet 3 — HT 2025

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Consider the ODE system

dx1

dt
= µx1 (1− x1) + x2

1 − x3
1 − 2x1 x2

dx2

dt
= x1 x2 − µx2

where µ ∈ (0, 1) is a parameter.

(a) Find and classify all bifurcations of the ODE system for 0 < µ < 1.

(b) Sketch the phase plane for µ = 1/2 and µ = 1/4.

Solution:

(a) The equilibrium points satisfy

0 = µx1 (1− x1) + x2
1 − x3

1 − 2x1 x2

0 = x1 x2 − µx2

Consequently, the second equation implies x1 = µ or x2 = 0. Substituting into the

first equation, we obtain the critical points

xc1 =
[

µ, µ− µ2
]

, xc2 = [0, 0] , xc3 = [1, 0] and xc4 = [−µ, 0].

The Jacobian matrix is

Df(x) =

(

µ+ 2(1− µ)x1 − 3x2
1 − 2x2 −2x1

x2 x1 − µ

)

,

giving

Df(xc1) =

(

µ− 3µ2 −2µ

µ− µ2 0

)

, Df(xc2) =

(

µ 0

0 −µ

)

,

Df(xc3) =

(

−µ− 1 −2

0 1− µ

)

and Df(xc4) =

(

−µ− µ2 2µ

0 −2µ

)

.

Consequently, xc2 and xc3 are saddles and xc4 is a stable node for all considered

values of parameter µ, i.e. for 0 < µ < 1. The eigenvalues corresponding to matrix

Df(xc1) satisfy

λ2 + (3µ2 − µ)λ + 2µ (µ− µ2) = 0
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giving

λ± =
µ− 3µ2 ± µ

√

9µ2 + 2µ− 7

2
.

If µ < 7/9, then we have two complex conjugate eigenvalues

λ± =
µ− 3µ2

2
± i

µ
√

|9µ2 + 2µ− 7|
2

.

The real part is positive for µ < 1/3 and negative for µ > 1/3. We have a pair of

purely imaginary eigenvalues at the bifurcation point µ = 1/3, when

λ± = ± 2

3
√
3
i

and the stability of the critical point xc1 changes at the bifurcation point µ = 1/3.

We introduce new variables

y1 = x1 − µ , y2 =
√
3
(

x2 − µ+ µ2
)

, µ = µ− 1

3
.

Then the ODE system transforms to

dy1
dt

=
(

−µ− 3µ2
)

y1 − 6µ+ 2

3
√
3

y2 − 2√
3
y1 y2 −

(

4µ+
1

3

)

y21 − y31

dy2
dt

=
2 + 3µ− 9µ2

3
√
3

y1 + y1 y2

which can be written in the form

d

dt

(

y1

y2

)

= M(µ)

(

y1

y2

)

+

(

− 2√
3
y1 y2 −

(

4µ+ 1
3

)

y21 − y31

y1 y2

)

, (1)

where matrix M(µ) is

M(µ) =

(

−µ− 3µ2 − 6µ+2

3
√
3

2+3µ−9µ2

3
√
3

0

)

Close to the bifurcation point µ = 0, matrix M(µ) has eigenvalues

λ±(µ) = α(µ) ± i ω(µ)

where

α(µ) = − µ+ 3µ2

2

and

ω(µ) =
2

3
√
3

√

1 +
27µ

6
− 27µ2

16
− 378µ3

16
− 243µ4

16

which implies

α(0) = 0 , ω(0) =
2

3
√
3
, α′(0) = −1

2
, and ω′(0) =

√
3

2
.
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Substituting µ = 0 into equation (1), the system reduces to

d

dt

(

y1

y2

)

=

(

0 −ω(0)

ω(0) 0

)(

y1

y2

)

+

(

h1(y1, y2)

h2(y1, y2)

)

where

h1(y1, y2) = − 2√
3
y1 y2 − 1

3
y21 − y31

and

h2(y1, y2) = y1 y2 .

Evaluating the partial derivatives at the origin 0 = [0, 0], we get

a(0) =
1

16

(

∂3h1

∂y31
+

∂3h1

∂y1∂y22
+

∂3h2

∂y21∂y2
+

∂3h2

∂y32

)

+
1

16ω(0)

[

∂2h1

∂y1∂y2

(

∂2h1

∂y21
+

∂2h1

∂y22

)

− ∂2h2

∂y1∂y2

(

∂2h2

∂y21
+

∂2h2

∂y22

)

− ∂2h1

∂y21

∂2h2

∂y21
+

∂2h1

∂y22

∂2h2

∂y22

]

=
1

16
(− 6 + 0 + 0 + 0) +

1

16ω(0)

[

− 2√
3

(

− 2

3
+ 0

)

− 1 (0 + 0)− 0 + 0

]

= − 1

4
.

Since a(0) < 0, we have a supercritical Hopf bifurcation at µ = 0, i.e. the original

system has a supercritical Hopf bifurcation at µ = 1/3. The normal form is

dr

dt
= −1

2
µ r − 1

4
r3 + . . .

dθ

dt
=

2

3
√
3
+

√
3

2
µ + . . .

Origin 0 is stable for µ > 0 (i.e. the critical point xc1 is stable for µ > 1/3) and

unstable for µ < 0 (i.e. the critical point xc1 is unstable for µ < 1/3). A stable

limit cycle is born with amplitude
√

2

(

1

3
− µ

)

and period 3 π
√
3 at the bifurcation point for µ < 1/3. The limit cycle can be

approximated by

y21 + y22 = 2

(

1

3
− µ

)

,

which corresponds to an ellipse in x1 and x2 variables

(

x1 − µ
)2

+ 3
(

x2 − µ+ µ2
)2

= 2

(

1

3
− µ

)

.

The bifurcation diagram can be drawn in the µ–x1 plane as follows:
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We can also draw the bifurcation diagram in the µ–x1–x2 space, when we can also

add the (stable) limit cycles for µ < 1/3. This plot (from two different viewing

angles) is visualized below:
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(b) If µ = 1/2, then the fixed point xc1 = [µ, µ− µ2] = [1/2, 1/4] is a stable spiral and

trajectories approach this stable critical point as shown below, where we plot eight

trajectories starting at the right boundary of the square [0, 1]× [0, 1]:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

If µ = 1/4, then the fixed point xc1 = [µ, µ− µ2] = [1/4, 3/16] is unstable and the

system has a limit cycle as illustrated below, where we observe that trajectories

(starting at the right boundary of the square [0, 1]× [0, 1]) approach the limit cycle

which is plotted using the black solid line:

0 0.2 0.4 0.6 0.8 1
0
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0.4
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1

Mathematical Institute, University of Oxford

Radek Erban: erban@maths.ox.ac.uk

Page 5 of 15



B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 3 — HT 2025

2. Consider the system of n = 2 chemical species X1 and X2 which are subject to the

following ℓ = 4 chemical reactions:

X1
k1−→X2 ∅ k2−→X1 X1

k3−→∅ 2X1 +X2
k4−→ 3X1

Let x1(t) and x2(t) be the concentrations of the chemical speciesX1 andX2, respectively.

(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations)

describing the time evolution of x1(t) and x2(t).

(b) Assume the problem has already been non-dimensionalized and choose the values

of dimensionless rate constants as

k1 = µ and k2 = k3 = k4 = 1 ,

where µ > 0 is a single parameter that we will vary.

Show that a supercritical Hopf bifurcation occurs at some parameter value µ = µc,

where you should determine the value of µ = µc at the bifurcation point.

(c) Find an approximation of the amplitude and the period of the limit cycle close to

the bifurcation value µ = µc .

(d) Sketch the phase plane for µ close to µ = µc .

Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have :

dx1

dt
= k2 − (k1 + k3) x1 + k4 x

2
1 x2

dx2

dt
= k1 x1 − k4 x

2
1 x2

(b) Using our values of parameters k1 = µ, k2 = k3 = k4 = 1, we have

dx1

dt
= 1 − (µ+ 1) x1 + x2

1 x2

dx2

dt
= µx1 − x2

1 x2

This system only has one critical point

xc = [1, µ].
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The Jacobian matrix is

Df(x) =

(

2x1x2 − µ− 1 x2
1

µ− 2x1x2 −x2
1

)

,

giving

Df(xc) =

(

µ− 1 1

−µ −1

)

.

The eigenvalues solve the quadratic equation

λ2 + (2− µ)λ+ 1 = 0 ,

which implies

λ± =
µ− 2±

√

µ(µ− 4)

2
.

If µ ∈ (0, 4), then we have two complex conjugate eigenvalues

λ± =
µ− 2

2
± i

√

µ(4− µ)

2
.

The real part is positive for µ > 2 and negative for µ < 2. We have a pair of purely

imaginary eigenvalues at the bifurcation point µ = 2, when

λ± = ± i

and the stability of the critical point xc changes at the bifurcation point µ = 2.

Introducing new variables

x1 = x1 − 1, x2 = x2 − µ , µ =
µ− 2

2
, (2)

the ODE system transforms to

dx1

dt
= (2µ+ 1) x1 + x2 + 2x1 x2 + 2 (µ+ 1) x2

1 + x2
1 x2

dx2

dt
= − 2 (µ+ 1) x1 − x2 − 2x1 x2 − 2 (µ+ 1) x2

1 − x2
1 x2

which can be written in the form

d

dt

(

x1

x2

)

= M(µ)

(

x1

x2

)

+
(

2x1 x2 + 2 (µ+ 1) x2
1 + x2

1 x2

)

(

1

−1

)

, (3)

where matrix M(µ) is

M(µ) =

(

2µ + 1 1

− 2 (µ+ 1) −1

)

Close to the bifurcation point µ = 0, matrix M(µ) has eigenvalues

λ±(µ) = α(µ) ± i ω(µ)
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where

α(µ) = µ and ω(µ) =
√

1− µ2

which implies

α(0) = 0 , ω(0) = 1 , α′(0) = 1 , and ω′(0) = 0 .

Matrix M(0) has eigenvalues λ± = ±i with eigenvectors

v± =

(

−1

2

)

∓ i

(

1

0

)

.

We introduce the change of variables
(

x1

x2

)

=

(

−1 1

2 0

)(

y1

y2

)

with inverse

(

y1

y2

)

=
1

2

(

0 1

2 1

)(

x1

x2

)

. (4)

Using (3) at the bifurcation point µ = 0, we get

d

dt

(

y1

y2

)

=
1

2

(

0 1

2 1

)

d

dt

(

x1

x2

)

=
1

2

(

0 1

2 1

)

M(0)

(

−1 1

2 0

)(

y1

y2

)

+
1

2

(

0 1

2 1

)

(

2x1 x2 + 2x2
1 + x2

1 x2

)

(

1

−1

)

=

(

0 −1

1 0

)(

y1

y2

)

+
(

y22 − y21 + y31 − 2 y21 y2 + y1 y
2
2

)

(

−1

1

)

,

which is in the form

d

dt

(

y1

y2

)

=

(

0 −ω(0)

ω(0) 0

)(

y1

y2

)

+

(

h1(y1, y2)

h2(y1, y2)

)

where

h2(y1, y2) = −h1(y1, y2) = y22 − y21 + y31 − 2 y21 y2 + y1 y
2
2 .

Evaluating the partial derivatives at the origin 0 = [0, 0], we get

a(0) =
1

16

(

∂3h1

∂y31
+

∂3h1

∂y1∂y22
+

∂3h2

∂y21∂y2
+

∂3h2

∂y32

)

+
1

16ω(0)

[

∂2h1

∂y1∂y2

(

∂2h1

∂y21
+

∂2h1

∂y22

)

− ∂2h2

∂y1∂y2

(

∂2h2

∂y21
+

∂2h2

∂y22

)

− ∂2h1

∂y21

∂2h2

∂y21
+

∂2h1

∂y22

∂2h2

∂y22

]

=
1

16
(− 6 − 2 − 4 + 0) +

1

16ω(0)
[0(2− 2)− 0(−2 + 2)− 2(−2)− 2(2)]

= − 3

4
.

Since a(0) < 0, we have a supercritical Hopf bifurcation at µ = 0, i.e. the original

system has a supercritical Hopf bifurcation at µ = 2.
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(c) The normal form is
dr

dt
= µ r − 3

4
r3 + . . .

dθ

dt
= 1 + . . .

Origin 0 is stable for µ < 0 (i.e. the critical point xc is stable for µ < 2) and

unstable for µ > 0 (i.e. the critical point xc is unstable for µ > 2). A stable limit

cycle is born with amplitude
√

2(µ− 2)

3
and period 2 π at the bifurcation point for µ > 2. The limit cycle can be approxi-

mated by

y21 + y22 =
2(µ− 2)

3
(5)

which, using transformation of variables (2) and (4), corresponds to an ellipse in

x1 and x2 variables, visualized as the black dot-dashed line on the next page.

(d) If µ < 2, then the fixed point xc = [1, µ] is a stable spiral and trajectories approach

this stable critical point as shown below for µ = 1.9, where we plot a trajectory

starting at [1.4, 3] as the green line. Nullclines are visualized as blue lines:

0 1 2 3
0

0.5

1

1.5

2

2.5

3

If µ > 2, then the fixed point xc = [1, µ] is unstable and the system has a limit cycle

as shown on the next page, where we observe that the green trajectory approaches

the red limit cycle. The approximating ellipse (5) is visualized as the black dot-

dashed line. The bifurcation diagram can also be visualized in the µ–x1–x2 space,

as shown on the next page, with (stable) limit cycles included for µ > 2.

Mathematical Institute, University of Oxford

Radek Erban: erban@maths.ox.ac.uk

Page 9 of 15



B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 3 — HT 2025

0 1 2 3
0

0.5

1

1.5

2

2.5

3

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Mathematical Institute, University of Oxford

Radek Erban: erban@maths.ox.ac.uk

Page 10 of 15



B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 3 — HT 2025

3. Consider the second-order ODE describing an ‘asymmetric spring’ in the form

d2x

dt2
= − x + ε x2

(a) Rewrite the ODE as a planar system of autonomous ODEs.

(b) Find and classify all critical points.

(c) Consider the periodic orbit satisfying

x(0) = A,
dx

dt
(0) = 0.

Use the Poincaré-Lindstedt method to find the expansion of the frequency of this

orbit up to [and including] terms of O(ε2).

Solution:

(a) Denoting

y1 = x and y2 =
dx

dt
,

we can rewrite this second order equation as the following planar system of au-

tonomous ODEs

dy1
dt

= y2

dy2
dt

= − y1 + ε y21

(b) The critical points are obtained by solving 0 = − y1 + ε y21 and y2 = 0. We get

yc1 = [0, 0] which exists for all ε ∈ R and yc2 = [ε−1, 0] which exists for ε 6= 0. The

Jacobian matrix is

Df(y) =

(

0 1

−1 + 2 ε y1 0

)

,

giving

Df(yc1) =

(

0 1

−1 0

)

and Df(yc2) =

(

0 1

1 0

)

.

The eigenvalues are λ± = ± i at yc1 and λ± = ±1 at yc2. Consequently, yc1 is a

center and yc2 is a saddle whenever it exists.

(c) We transform the time variable as τ = ω(ε) t where 2π/ω(ε) is the period of the

periodic solution. We obtain

ω2(ε)
d2x

dτ 2
= − x + ε x2 (6)
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where we denote the solution by x(τ ; ε). We have x(τ + 2π; ε) = x(τ ; ε) and, by

translating time if necessary, we also have

dx

dτ
(0; ε) = 0 and x(0; ε) = A ,

where A is the amplitude. We expand

x(τ ; ε) = x0(τ) + ε x1(τ) + ε2 x2(τ) + . . . and ω(ε) = ω0 + ε ω1 + ε2 ω2 + . . .

Substituting into (6) and equating coefficients of ε0 gives

ω2
0

d2x0

dτ 2
= − x0 with x0(τ + 2π) = x0(τ) .

Thus ω0 = 1 and

x0(τ) = A cos(τ) .

Equating coefficients of ε1 gives

ω2
0

d2x1

dτ 2
+ 2ω0 ω1

d2x0

dτ 2
= − x1 + x2

0 with x1(τ + 2π) = x1(τ) .

Substituting ω0 = 1 and x0(τ) = A cos(τ), we get

d2x1

dτ 2
+ x1 = 2ω1 A cos(τ) + A2 cos2(τ) = 2ω1 A cos(τ) +

A2

2
(1 + cos(2τ)) .

Eliminating the secular term gives ω1 = 0. Solving the resulting equation, we get

x1(τ) = c1 cos(τ) + c2 sin(τ) +
A2

2
− A2

6
cos(2τ) . (7)

Using the initial conditions, we get c1 = −A2/3 and c2 = 0. Consequently, we have

x(τ ; ε) = A cos(τ) + ε

(

A2

2
− A2

3
cos(τ)− A2

6
cos(2τ)

)

+O(ε2).

Equating coefficients of ε2 gives

ω2
0

d2x2

dτ 2
+ 2ω0 ω1

d2x1

dτ 2
+ (2ω0 ω2 + ω2

1)
d2x0

dτ 2
= − x2 + 2x0 x1 .

Substituting ω0 = 1, ω1 = 0, x0(τ) = A cos(τ) and equation (7) for x1(τ), we get

d2x2

dτ 2
+ x2 = 2ω2 A cos(τ) + 2A cos(τ)

(

A2

2
− A2

3
cos(τ)− A2

6
cos(2τ)

)

=

(

2ω2 A +
5A3

6

)

cos(τ) − A3

6
(2 + 2 cos(2τ) + cos(3τ)) .

Eliminating the secular term gives

2ω2 A +
5A3

6
= 0

which implies

ω2 = −5A2

12
.

Thus, we conclude that

ω = 1− 5 ε2A2

12
+O

(

ε3
)

.
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Section C: Problem 7

7. In our lectures, we defined Sharkovsky’s ordering:

3 ⊲ 5 ⊲ 7 ⊲ . . . ⊲ 2× 3 ⊲ 2× 5 ⊲ . . . ⊲ 22 × 3 ⊲ 22 × 5 ⊲ . . . ⊲ 23 × 3 ⊲ 23 × 5 ⊲ . . .

. . . ⊲ 2n × 3 ⊲ 2n × 5 ⊲ . . . ⊲ 2n ⊲ 2n−1 ⊲ 23 ⊲ 22 ⊲ 2 ⊲ 1

and we stated Sharkovsky’s Theorem:

Let Ω = [a, b] ⊂ R be an interval and F : Ω → Ω be continuous.

If F has a point of period n, then it has points of period k for all k ∈ N with n ⊲ k.

We did not prove this theorem in our lectures. In this question, you are asked to prove

some special cases of Sharkovsky’s Theorem and also some special cases of its converse,

which states that for every n ∈ N, there exists a continuous map F : Ω → Ω that has a

point of period n but no cycles of period k for any k appearing before n in Sharkovsky’s

ordering.

(a) Give an example of interval Ω = [a, b] ⊂ R and a continuous function F : Ω → Ω

which has a point of period 5, but no points of period 3.

(b) Give an example of interval Ω = [a, b] ⊂ R and a continuous function F : Ω → Ω

which has a point of period 7, but no points of period 5.

(c) Assume that the continuous function F : Ω → Ω has a point of period 3.

Show that the map F has a fixed point.

(d) Assume that the continuous function F : Ω → Ω has a point of period 3.

Show that the map F has a point of period 2.

(e) Assume that the continuous function F : Ω → Ω has a point of period 3.

Show that the map F has a point of period 4.

Solution:

(a) Consider Ω = [0, 4] and function F : Ω → Ω defined by

F (x) =































2 + 2x for x ∈ [0, 1] ;

5− x for x ∈ [1, 2] ;

7− 2x for x ∈ [2, 3] ;

4− x for x ∈ [3, 4] .
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Then F : [0, 4] → [0, 4] is a continuous function, which has five points of period 5

which form the 5-cycle
{

0, 1, 2, 3, 4
}

.

The following figure includes plots of F (x), F (3)(x) and F (5)(x) illustrating that the

only fixed point of F (x) and F (3)(x) is xc = 7/3, i.e. F has no points of period 3,

but it has points of period 5.

To prove that xc = 7/3 is the only fixed point of F (3)(x), we could first exclude

intervals [0, 1], [1, 2] and [3, 4] by showing that F (3)[0, 1] = [1, 4], F (3)[1, 2] = [2, 4]

and F (3)[3, 4] = [1, 3], i.e any fixed point of F (3)(x) must be in interval [2, 3] and

F (3)(x) is decreasing in this interval, so there is only one fixed point xc = 7/3.

(b) Consider Ω = [0, 6] and function F : Ω → Ω defined by

F (x) =































3 + 3x for x ∈ [0, 1] ;

7− x for x ∈ [1, 3] ;

10− 2x for x ∈ [3, 4] ;

6− x for x ∈ [4, 6] .

Then F : [0, 6] → [0, 6] is a continuous function, which has seven points of period 7

which form the 7-cycle
{

0, 1, 2, 3, 4, 5, 6
}

.
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B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 3 — HT 2025

The following figure includes plots of F (x), F (5)(x) and F (7)(x) illustrating that the

only fixed point of F (x) and F (5)(x) is xc = 10/3, i.e. F has no points of period 5,

but it has points of period 7.

(c) Consider that the 3-cycle is {a, b, c} with F (a) = b, F (b) = c and F (c) = a. Then it

is sufficient to investigate the case a < b < c (and other cases follow by symmetry).

Define intervals Ω1 = [a, b] and Ω2 = [b, c]. Then we have

Ω2 ⊂ F (Ω1) and Ω1 ∪ Ω2 ⊂ F (Ω2) . (8)

In particular, Ω2 ⊂ F (Ω2) and F has a fixed point in subinterval Ω2.

(d) Using (8), we get Ω1 ⊂ F (Ω2). Therefore, there exists interval Ω0 ⊂ Ω2 such that

Ω1 = F (Ω0). Using (8), we have Ω0 ⊂ Ω2 ⊂ F (Ω1) = F (F (Ω0)) = F (2)(Ω0).

Therefore, F (2) has a fixed point in Ω0, which is a point of period 2 of map F .

(e) Using (8), we get the existence of interval Ω0 ⊂ Ω2 such that Ω1 = F (Ω0) as in

part (d). Moreover, there exists interval Ω3 ⊂ Ω2 such that Ω0 = F (Ω3) and there

exists interval Ω4 ⊂ Ω2 such that Ω3 = F (Ω4). Then

Ω1 = F (Ω0) = F (F (Ω3)) = F (F (F (Ω4))) = F (3)(Ω4).

Using (8), we have Ω4 ⊂ Ω2 ⊂ F (Ω1) = F (4)(Ω4). Therefore there exists a fixed

point of F (4) in Ω4, which is a point of period 4 of map F .
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