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2 CRNs as Markov processes

In order to properly analyse stochastic models of CRNs, we need some theory on continuous-
time Markov chains, which we will abbreviate as CTMCs. Much of this theory takes us well
beyond the scope of this course, so we will only outline the most essential parts of it, and in a
form most suited to the application to CRNs.

Throughout this chapter, we consider a system of m chemical reactions on n species Ay, ..., A,
in a well-mixed compartment so we can ignore spatial dynamics. Let X;(t) be the random variable
denoting the number of molecules of species A; at time t > 0, so that X(t) := (X;(t),..., X, (t))*
is a stochastic process with outputs in (some subset of) ZZ,.

Recall our basic assumption about a well-mixed system: that the intensity of any reaction depends
only on the current state of the system i.e., the current species numbers. We can make this precise
by stipulating that our models of CRNs define time-homogeneous Markov chains. In particular,
the stochastic process X(t):

e has the Markov property: given kK € N, 0 < t) <t < -+ < 1 < o0, A C Z%, and
STy« -y Sk € Z3,, then

P(X(tir1) € AIX(t) = sy .., X(t1) = 51) = P(X(ti1) € AIX(t) = sx);

e is time-homogeneous: given t,u >0, A C Z%, and s € Z%,, then

PX(t+u) e AlX(u) =s) =P(X(t) € AIX(0) =s).

It is also very reasonable, and technically useful, to rule out “instantaneous states”: if the system
is in a state x, then with probability 1 the transition time after which it leaves this state will be
positive (possibly infinite), but not zero. Consequently the paths t — X(t) are right-continuous
step functions, i.e., X(t) = lim,\  X(u). This property is automatic when we consider systems
with only a finite number of distinct reactions. It can also hold for systems with infinitely many
reactions, but then we need to think more carefully about the intensities.

2.1 Transition probabilities

In order to understand the evolution of a CRN, we would like to know the probability of finding
the system in a state x at time t, given that it was in state y at time s <t. Let S C ZZ be the
set of possible states of the system; then we would like to know

P(X(t) =x[X(s) =y).

for all x,y € S and all times 0 < s < t. These probabilities are called transition probabilities.
They can be regarded as the “solution” of a stochastic model of a CRN. By analogy with the
deterministic case, we would hope that knowing the reaction intensities would allow us to calculate
the transition probabilities uniquely. As we might expect, there are some practical and theoretical
difficulties we face trying to work out transition probabilities.
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2.2 Waiting times are exponentially distributed 16

The transition matrix. The Markov assumptions mean that given t > s,
P(X(t) = x| X(s) =y) = P(X(t — s) =x[X(0) =y)
and so, in order to know all transition probabilities, it is sufficient if we can find

pi(y, x) == P(X(t) =x|X(0) = y}.

for all states x,y € S, and times t > 0. Since the state space S is discrete, we can put these
probabilities together into a (possibly infinite) time-dependent matrix, say P;. We will often also
write this transition matrix as P(t). Clearly Py is the identity matrix, denoted I. Moreover,
by a familiar application of the law of total probability, the transition probabilities satisfy the
Chapman-Kolmogorov equations:

pt+u(x>y) - Z pt(x) Z)Pu(l,y) . (5)

z€eS

The Chapman-Kolmogorov equations are equivalent to the semigroup property P,., = PP,
for any t,u > 0.

If we have managed to calculate Py for all t, then given any initial measure, say ¢y, on S, we
can calculate ¢y = ¢oP; which gives us a measure on S at time t. Occasionally it is quite
straightforward to work out Py; but often it can be challenging. We will see that in principle
we can calculate Py by solving a set of differential equations. However, even in cases where we
cannot write down P; we may be able to work out some useful limit such as lim;_,, Ps.

A very special kind of state of a CTMC is an absorbing state. This is a state x such that
Pi(x,x) =1 for some t > 0, and hence for all t > 0.

Example 2.1 (Lotka reactions). Consider the Lotka reactions:
A—2A, B—0, A+B—2B.

With intensities satisfying our basic assumptions (the intensity of a reaction is positive if and
only if there are sufficient molecules of all the species in its reactant complex for it to proceed),
the state (0,0) is an absorbing state: without any molecules of A or B present, none of the
reactions can proceed, i.e., all the intensities must be zero. We thus remain at (0, 0) for all future
time. Systems with absorbing states highlight a fundamental difference between deterministic and
stochastic models: in a stochastic model, random fluctuations may take us to an absorbing state
with positive probability, and after this we are stuck there; this cannot occur in the corresponding
deterministic model.

2.2 Waiting times are exponentially distributed

Let us consider a CRN in some given state. How long do we have to wait until some reaction
“fires” and the state of the system changes? Understanding how to compute this (random) time,
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2.2 Waiting times are exponentially distributed 17

is key both to understanding and to simulating stochastic models. It is remarkable that we can
infer some very specific and useful information from the Markov assumptions alone.

From now on, {X(t)} et will be a right-continuous, time-homogeneous, Markov process taking
values in S C ZZ, and describing the state of a CRN. Given X(0) = x we can define the waiting
time associated with the state x,

T, == inf{t > 0| X(t) # x}.

We may also refer to T, as the first jump time. In the context of CRNs, the random variable
T, associated with each state x, tells us how long we have to wait until the next reaction fires
and takes us to a new state. Our assumption about right-continuity means that T, is positive or
0o. From the Markov properties, we can see that T, has the memoryless property:

P(Ty>t+u) =P(Ty>t+u|T, >t)P(T, >t) =P(T, > uwP(T, > t).

It is well known that memorylessness for a positive continuous random variable implies that it is
exponentially distributed. The proof is left as an exercise.

Exercise 2.2 (Memorylessness implies the exponential distribution). Show that if a pos-
itive, continuous random variable T is memoryless then it has the exponential distribution and
find its parameter. Here “memoryless” means that P(T > a+b) = P(T > a)P(T > b) for
any positive a and b. [Hint: set G(u) = P(T > u) so that G satisfies the functional equation
G(t+u) = G(t)G(u). First work out G for all positive rational inputs, and then complete the
argument for all positive inputs by noting that G is clearly a decreasing function.]

We thus have that T, is either infinite (if x is an absorbing state) or exponentially distributed
with parameter, say, yx > 0. Consequently

P(X(t+At) =x|X(t) =x) =1 —v At +0o(At) as At \,O0.

Memorylessness: probabilities scale linearly with time for small times. The following
properties are equivalent for a memoryless waiting time T. Let A > 0.

1. T has Exp(A) distribution.
2. P(T <At)=AAt+o(At) as At \,0.

In one direction this is obvious as 1 — e ™4t = A At + o(At). In the other direction, let G(t) =
P(T> t). Clearly G(0) = 1. Then, by memorylessness, and our assumption,

G(t + At) = G(t)G(At) = G(t)(1 — AAt + o(At)) .

le.
G(t+ At) — G(t) o(At)
=—G(t)A t
At GA+GY At
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2.2 Waiting times are exponentially distributed 18

Taking the limit At — O gives the ODE
G/(t) = —AG(t) with solution G(t) =e™,

where we have used the initial condition G(0) = 1.

Thus very general assumptions lead us to the conclusion that given any initial state, the waiting
time until the state of the system changes (i.e., the first reaction fires) is exponentially distributed.
We should bear in mind the special case that it may be infinite, if the current state of the system
is an absorbing state.

The waiting parameter as a reaction intensity. Recall that given a CRN in some state x,
we defined the intensity v;(x) of a reaction, by saying that the probability the reaction occurs in
time [t, t 4+ At) should be vj(x)At +0(At) as At N\, 0. We thus see that if we have only a single
reaction in a CRN, then the parameter vy, of the exponentially-distributed waiting time until the
next event is precisely the intensity of this reaction, namely v;(x).

Next, in a system with several reactions we would like to know which reaction will fire first, and
how we can relate the parameter y, to the reaction intensities.

Waiting times for each reaction. Suppose we could “switch off” all but one reaction in the
system, say the jth reaction, and assume that the current state x of the system is such that the
jth reaction can proceed, i.e., its intensity at x is positive. Then, by the argument in Exercise 2.2,
the waiting time until the reaction fires would be exponentially distributed with parameter v;(x),
its intensity. We thus have:

1. the waiting time before some reaction occurs is exponentially distributed with parameter
Y; and

2. if we had only the jth reaction reaction, the waiting time until it occurs would be exponen-
tially distributed with parameter v;(x).

We need to check that these claims are consistent and find the relationship between the parame-
ters vj(x) and y,. Given current state x, we can think of each reaction as having its own random
alarm clock: e.g., reaction j has an alarm clock set to go off at some exponentially distributed
random time with parameter v;(x) (the intensity of the reaction). All of the clocks associated
with the different reactions are independent. Of course, when any alarm clock goes off, the state
of the system changes, and the intensities change, and the parameters for all the alarm clocks
change.

To find the relationship between <y, and vj(x), we merely need to observe that the minimum of
a set of independent exponentially distributed random variables with parameters Aj,..., A, is
exponentially distributed with parameter A; + --- + A;;;. We can also then find the probability
that the jth reaction is the first to fire. This leads us to a very important exercise:

Exercise 2.3 (Important exercise: independent waiting times). Let Ty,... T, be a set of
independent, exponentially distributed, random variables with parameters A,... A, (We can
think of these as waiting times for a set of m reactions given some current state of a CRN.)
Show that:
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2.3 The Gillespie algorithm 19

1. T := miny{T;} is an exponentially distributed random variable with parameter Z;L Aj;
2. The probability that the minimum T is achieved by Ti is Ai/(3_Z; Ay).

3. Let K be the random variable defined by T = T (i.e., the Kth reaction is the first to fire).
Note that, by the previous part, K is defined with probability 1. Show that T and K are
independent. Interpret this result intuitively.

Remark 2.4 (Countably infinite reactions). The result of Exercise 2.3 can be extended to the
case of infinitely many random times provided the parameters are summable, namely Y °; A; <
00.

The observations in Exercise 2.3 mean that the parameter y, for the distribution of the waiting
time before some reaction fires is just equal to Z]”; Vj(x), the sum of the reaction intensities.
The exercise also tells us that the probability that the first reaction to fire is the jth reaction is the
ratio v (x)/Z}L Vj(x). These observations are key to understanding the Gillespie algorithm,
which we will present shortly.

A naive simulation algorithm. Before we come to this Gillespie algorithm, it is useful to
consider the following “naive” approach to simulating a system of chemical reactions, based on
our observations so far. We have seen that given a CRN with m reactions, currently in state
X, the probability that some reaction occurs in a time At is vy, At + o(At) as At \, 0, where
Yx = Z]“;] vj(x). If we choose the time-step At small enough, so that y, At < 1, then we can,
at each time-step, just ask the “yes-no" question: “Did some reaction occur during At?" by
choosing a random number uniformly distributed on [0, 1] and checking if its value is < y, At.
If yes, then some reaction fired, and otherwise it didn't. We can then decide which reaction fired
according to the probabilities vj(x)/vx, e.g., in order to choose which reaction fired, we divide
[0, 1] into m subintervals of lengths vj(x)/yx (j = 1,...,m) and see where a random number
uniformly distributed on [0, 1] lands. Of course, this approach would be approximate, and its
accuracy clearly depends on the step-size At, as we have ignored the o(At) term. We will shortly
see a better approach; but it is nevertheless useful to bear this naive algorithm in mind: we will
see similar ideas at several points.

2.3 The Gillespie algorithm

We are ready to discuss the most important algorithm for the stochastic simulation of CRNs: the
so-called Gillespie algorithm.

Suppose that our reaction network is currently in state x and the corresponding reaction intensities
are vi(x)y...,vim(x). Consequently the waiting times, say Ty,..., T, for the m reactions are a
set of independent exponentially distributed random variables with parameters v{(x),..., v (x),
whose minimum, say T, is exponentially distributed with parameter v;(x) + - - - + vy, (x) (Exer-
cise 2.3). Moreover (Exercise 2.3 again), the minimum is almost surely achieved by a unique Tk,
and P(K = k) = vk(x)/(zj";] vj(x)). And, crucially (Exercise 2.3 again!), the random variable
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2.4 The jump chain: irreducibility, recurrence, and transience 20

T which tells us the firing time, and the random variable K which tells us which reaction fires
first, are independent.

With these observations, we can then simulate the system as follows:

1. Sample from an exponential distribution with parameter vi(x) + --- + v, (x) to get the
time T of the next reaction;

2. Choose which reaction fires according to the probabilities vk(x)/(zj“;] vj(x)). le., if the
random variable K tells us the next reaction to occur, then P(K = k) = vk(x)/(zjnl1 vi(x));

3. Attime T, update the species numbers x — x4+ (g, recalculate intensities v(x) +— v(x+(x),
and return to step 1.

This is the Gillespie algorithm. Note that the Gillespie algorithm is exact: unlike in the naive
algorithm presented above, we make no approximations, and our ability to generate exact sample
paths is limited only by the precision of the machine we are working on (including our ability to
sample from distributions). Of course, our model itself may not be perfect, but that is another
matter.

2.4 The jump chain: irreducibility, recurrence, and transience

Let x,y € S be states of a CRN with y # x. Consider the probability that given current state x,
the next state of the system will be y. If k reactions ji,...,jx take us from state x to state vy,
e, y=x+¢G, fori=1,...,k (recall: (; is the reaction vector of reaction j), then the “jump”
probability from state x to y is P(x,y) == (vj, (x) + - - - +v;, (x))/ D%, vi(x). If, for some fixed
state x, P(x,y) = O for all y # x, then x is an absorbing state and we set P(x,x) = 1. We can
put these jump probabilities P(x,y) into a matrix, say ﬁ to define a discrete-time Markov chain,
termed the jump chain of the system, with transition matrix P= (P(x,y)).

Thus, associated with a continuous-time CRN model is a discrete-time Markov chain, the jump
chain, which tells us which states we can move directly to from the current state; and with what
probabilities. The jump chain does not tell us anything about how fast or slowly these transitions
might occur; nevertheless, many important properties of a continuous-time model can be inferred
from properties of the jump chain.

Communicating classes. As in the case of discrete-time Markov chains, we can say that
two states x and y communicate if it is possible to go from x to y via a sequence of jumps
(reactions); and also back again from y to x via a sequence of jumps. As usual, we can divide the
states into communicating classes. Clearly we can identify the communicating classes from
the jump chain alone. Moreover, we can also define communicating classes to be closed or not
in the usual way, again from examination of the jump chain alone.

Irreducibility. As in the discrete-time case, a CTMC is irreducible if for every pair of states x, y,
there exists t > 0 s.t. pi(x,y) > 0, in other words, all states belong to a single communicating
class. However, now we have an important difference between continuous-time and discrete-time
chains: if pi(x,y) > 0 for some t > 0, then pi(x,y) > O for all t > 0. We can see this as
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2.4 The jump chain: irreducibility, recurrence, and transience 21

follows. If pi(x,y) > O for some t > O there must be a finite sequence of states connecting x
and y, say X = Xq, X1, ..., Xn = Y, and there must exist (tx) such that py, (xx_1, xx) > O for
k =1,...n. But, waiting times are exponentially distributed; and so, for each k and any r > 0,
Pt/ (X1, X)) > 0. The claim follows.

Thus, if a continuous-time chain is irreducible then all entries of each transition matrix P, (t > 0)
are strictly positive. Consequently, there is no analogue of periodicity in continuous-time Markov
chains.

A rather trivial, but useful, observation is that a system with an absorbing state cannot be
irreducible (assuming that it has more than one state).

Example 2.5 (Lotka reactions: the chain is not irreducible). Consider again a stochastic
model of the Lotka reactions which we saw in Example 2.1:

A—2A, B—0, A+B—2B.

We may take the state space to be ZZZO. Recall that (0,0) is an absorbing state of the system
and thus the system is not irreducible. It is not hard to see that the only closed communicating
class of the system is the absorbing state {(0,0)}.

In fact we can divide Z2, into four regions: the absorbing state (0, 0); states of the form (n,0)
with n > 0 (each such state is an open class); states of the form (0,n) with n > 0 (each such
state is an open class); and the remaining states of the form (n, m) with n > 0, m > 0 which
together form an open class.

Based on this we can guess that given any initial condition, with finite probability we will end up
on one of the axes (i.e., in a state of the form (0,n) or (n,0)). We will explore this example
further in an exercise.

Chains where all communicating classes are closed. Another observation is that if the state
space of a CRN model consists of a set of closed communicating classes, then if we know the
initial state we may restrict attention to exactly one of these; and thus assume the CRN gives
rise to an irreducible chain (see, e.g., Example 1.13). Thus a CRN where all the communicating
classes are closed is as good as an irreducible one in practice.

Recurrence and transience. Just as in the discrete-time case a state x of a CTMC is recurrent
if, given X(0) = x, with probability one, we can find a sequence of times t, — oo such that
X(ty) = x for each ty. Clearly an absorbing state is recurrent. A CTMC is recurrent if all its
states are recurrent. A state which is not recurrent is transient. For example, in a CRN with
the single reaction A — 2A, the state with one molecule of A is clearly transient.

Just as irreducibility can be inferred by looking at the jump chain, the same holds for recurrence
and transience. From the equivalent discrete-time result, recurrence and transience are class
properties: either every state in a communicating class is recurrent; or every state in the class
is transient. The claim that we can simply look at the jump chain to decide on recurrence and
transience is almost obvious; but the possibility of explosion, discussed in Section 2.6, slightly
complicates the proof, and so we do not present the proof.
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2.5 Mass action kinetics 22

2.5 Mass action kinetics

So far, we have not considered how we might choose the reaction intensities in a stochastic model
of a CRN. Our most basic assumption is that the intensity of a reaction is positive provided there
are sufficient molecules of all the species in the reactant complex of a reaction for the reaction
to proceed; and zero otherwise. We might expect a little more: that the intensity of a given
reaction should increase if there are more ways for the molecules in its reactant complex to meet
in the right combinations.

One common choice of reaction intensities satisfying this natural requirement is given by stochas-
tic mass action kinetics. It is easiest to introduce by example.

Example 2.6 (Mass action kinetics for a bimolecular reactant complex). Consider a reac-
tion with reactant complex

A+B.

This reaction occurs with some nonzero probability when a molecule of A “meets” a molecule of
B. Let us write na for the number of molecules of A, and ng for the number of molecules of B
at some moment in time. The mass action assumption is that the probability of a molecule of A
meeting a molecule of B is proportional to the number of (A, B) pairs we can choose from ny
molecules of A and ng molecules of B, namely nang. We would thus set the intensity to be

Xnang,

where the constant « is the stochastic mass action rate constant of the reaction. Note
that if the reaction is unfolding in a chamber of volume V, we would also expect the rate to
decrease as V increases (provided molecule numbers are held constant), reducing the likelihood
of a molecule of A meeting one of B; thus we expect « to have an inverse relationship with the
compartment volume V.

We can extract the key features of the previous example to define stochastic mass action kinetics.

Definition 2.7 (Stochastic mass action kinetics). The intensity of a reaction is proportional
to the number of available combinations of the molecules in its reactant complex. The constant
of proportionality is the stochastic mass action rate constant of the reaction. Further, this
rate constant is proportional to V=%, where V is the compartment volume, and k is the order of
the reaction.

For example:

1. For a zeroth order reaction, i.e., where the reactant complex is 0, the rate is just a constant,
say «, which is proportional to V. We could think of the production of some species from
a "hidden species” whose number scales positively with V.

2. For a first order reaction with, say, reactant complex A, we would expect the rate to be
anya, where « is independent of V.
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2.5 Mass action kinetics 23

3. For a second order reaction with reaction complex A + B we expect the rate to be of
the form aanasng, where o depends inversely on V. If the reactant complex were 2A,
we would expect the rate to have the form acn(na — 1)/2 where again we expect « to
depend inversely on V.

The principle for higher order reactions is similar: we count the number of ways we can create the
reactant complex out of available molecules, and multiply by a rate constant which we expect to
be proportional to V', where k is the order of the reaction, and V is the compartment volume.

2.5.1 Relating stochastic and deterministic mass action kinetics

Often we are given are determinstic mass action rate constants, and we want to infer the mass
action intensities from these. How do we do this? Let us start again with an example.

Example 2.8 (Relating stochastic and deterministic mass action rate constants). Con-
sider a reaction with reactant complex 2A proceeding in a chamber with volume V. Let n, be
the number of molecules of A. In the derministic case, we can interpret the concentration of
A as number of molecules per unit volume, i.e. ny/V. Let the deterministic mass action rate
constant be k so that the deterministic rate is kn% /V2. This is a rate of change of concentra-
tion; so the corresponding rate of change of number of molecules (regarded as a real variable!)
would be knzA/V. On the other hand, let the stochastic mass action rate constant be «, so the
mass action intensity is o (na — 1)/2. For large na, we may assume that ny(ny — 1) ~nj;
then comparing kn? /V (deterministic rate) to an(na —1)/(2V) (stochastic intensity), we get
o ~ 2k/V. We thus get the stochastic mass action intensity in terms of the deterministic rate
constant k to be kna(na —1)/V.

With the above example in mind, it becomes easy to write down intensities in terms of deter-
ministic mass action rate constants. The general rule is that a reaction with reactant complex
oAy + - 4 oA, with |af := ), & and deterministic mass action rate constant k, has
stochastic mass action intensity
k (Aq)! (A2)! (An)!
VI (A — o)l (Ag — o)t (Ap— o)l

where Ay is the number of molecules of species Ay.

It is important to remember that for reactions of order 2 or more, the correspondence only holds
approximately, becoming more accurate for large numbers of molecules.

Exercise 2.9. Write down the deterministic and stochastic mass action rates for a reaction with
reactant complex

A+2B

and hence relate the deterministic and stochastic rate constants.
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2.6 Explosion (blow-up)

Before we can go further, we need to consider a feature of CTMCs which cannot occur in the
discrete-time case: “blow-up” or explosion. Just as for deterministic ODE models, we cannot
assume that given a stochastic model of a CRN, and an initial condition, we can determine the
state of the system for all time: it is possible that with positive probability some species numbers
approach co at some finite time, say T.,. Note that T, termed the explosion time, is a random
time. If P(Ty < 00| X(0) = x) > 0, then we say that the initial state x is explosive. A model
with some explosive states will be called explosive.

The situation for explosive models is even more dramatic than in the case of ODEs with blow-up.
In the ODE case, for any given initial condition, there is a finite time interval over which the
solution exists. On the other hand, in a stochastic model with an explosive initial state, there
is a nonzero probability of explosion by any time t > 0, however small. This follows from the
remarks on irreducibility in Section 2.4 above.

When we have an explosive system, the evolution after the explosion time, say T, is not uniquely
determined by the evolution prior to T,,; we can set the system to behave in many different
ways consistent with the memoryless assumption after explosion — for example we could choose
it to return to zero. However, most natural is to stop our process at the explosion time T, and
formally set the state of the system to be “co” after that time. In other words, we add a new
absorbing state to the system which we call co. In this way, the transition matrices P(t) can be
defined for all time. This is the assumption we will make from now on.

Explosion is a general feature of continuous-time Markov processes, and is unavoidable in CRN
models. Luckily, there are some general theorems to help us determine whether it happens or not
for a given process. Here we will take an informal approach and check directly whether or not
blow-up happens in particular CRN models.

Example 2.10 (Blow-up). Consider the following two CRNs. Both are examples of birth pro-
cesses. In both cases n is the number of molecules of the species A, and k > 0 is a constant.

1. Consider the CRN
A —2A

with one or more initial molecules of A and intensity kn (i.e., mass action kinetics with
rate constant k). Here kn can be regarded as a "birth rate”. We can think of this as
a model of a bacterial colony, where bacteria reproduce by splitting into two (and none
ever die). Although n — oo with probability 1 as time increases, this CRN model is not
explosive. This can be proved using some theory (which is straightforward, but we will not
present) from the fact that

o -l B
nk
n=1

2. Consider the CRN

2A — 3A
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2.7 The reaction counting process 25

with two or more initial molecules of A and (mass action) intensity kn(n — 1) for some
constant k > 0. We can think of this as a model of a colony where, with positive probability,
whenever two individuals meet they produce a third (and none ever die). This model is
explosive, which can be proven from the fact that

> 1
;kn(n—ﬂ < -

Thus given any T > 0, there is a positive probability that the state of the system will be
oo at time T.

Note that if a model is non-explosive, then for any t > O the entries in each row of P(t) must
sum to 1 by the law of total probability. On the other hand, if a state is explosive, then the
entries in the corresponding row of P(t) sum to less than 1 for any t > 0. However, if we add
in a new state oo as above, the entries in each row of the expanded matrix, say P(t) (with one
extra row and column corresponding to the state co), still sum to one.

Clearly, if a state is explosive, then it cannot be recurrent: with nonzero probability, we have
explosion by any time t > 0, and so the probability of returning eventually to our initial state
must be less than 1.

2.7 The reaction counting process

Up to now, we have been interested in the the stochastic process {X(t)};>o where the ith com-
ponent of X(t) is the number of molecules of the ith chemical species at time t. But it is useful
also to consider another stochastic process which counts how many times each reaction has fired
by time t.

Let N(t) be a stochastic process whose ith component, N;(t), counts how many times the ith
reaction has fired up to time t. A process such as N;(t) which takes only nonnegative integer
values and can only increase in steps of size 1 is called a counting process; and so N(t) is a
vector of counting processes taking values in ZT, (recall: we are assuming there are m reactions
in the CRN). -

If we consider the vector N(t) of counting processes, then we can write down for the evolution of
X(t) an equation which is entirely analogous to the deterministic evolution equation (2), namely:

X(t) = X(0) + 'N(t), (6)

where T is the stoichiometric matrix of the system. In order to see the contribution from each
reaction, it is helpful to write (6) out in full:

X(t) = X(0) + Ni(t)¢r + No(t)Ga + - -+ + N (t) G

where we recall that ; is the reaction vector of the jth reaction, namely, the jth column of T".
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2.7 The reaction counting process 26

An easy observation is that the discussion of conservation laws in the deterministic case remains
valid in the stochastic case: if p is any vector in kerl™, then p*X(t) is in fact constant at the
value p*X(0). Moreover, if there exists a vector p € kerl™ whose components are all strictly
positive, then in fact the state space of the CRN is finite, being a bounded subset of ZZ, (see
Exercise 1.10). -

What can we say about the reaction-counting process N(t)? If the reaction intensities were not
dependent on the state of the system, then the N;(t) would be independent Poisson processes
with some fixed rates. (This is the case for zeroth order reactions with mass action kinetics.)
However, whenever any reaction fires the molecule numbers change and, potentially, some or all
of the rates associated with these Poisson processes need to be updated. Thus, we can think of
N(t) as a vector of Poisson-like processes, but with variable rates v;(x), which depend on the
state of the system.

Note that if Y(t) is a unit Poisson process, then a Poisson process with rate A can be written
Y(At). So, how is Nj(t) distributed, namely, how many times does reaction j occur during the
time interval [0, t]? Assuming the CRN is not explosive, with probability 1 we can partition the
interval [0,t] into 0 =t < t; < --- <t, =t such that X(t) is constant on each [ty, t,,1). Note
that both the times t, and the total number of jumps r are random variables Then associated
with each trajectory is an average intensity of the jth reaction, namely P Ov](X(tk))(tk+1 —

t) =1 fo v;j(X(s)) ds), and N;(t) can be identified with the Poisson process with (random) rate
tfov] X(s)) ds, namely,

N;(t) = Y(JO vi(X(s))ds) .

Thus N;(t) is indeed Poisson-distributed; but with parameter ¢ fovj (X(s)) ds which depends on

the history of the process. This perspective is quite useful: J"Ov] X(s))ds can be interpreted
as a rescaled time; and now we can think of the counting processes Nj(t) as a set of ordinary,
independent, Poisson processes, evaluated at the (random) times T;(t) := f i(X(s)) ds.

It may be helpful to visualise this change of perspective in terms of our alarm clocks associated
with each reaction. As before we have a set of m independent Poisson processes Yj, each with its
own clock. Before we had random alarms with different parameters for the alarms, but now the
alarms all have the same parameter, but the clocks run at different speeds. So, at a particular
“universal” time, we have reached different times in each counting process. Moreover, the speeds
of the clocks are updated every time an alarm goes off. (Indeed some of the clocks can stop if,
for example, one of the species in the corresponding reactant complex runs out.)

Writing out the solution (6) in full we now have
t t

X(t) = X(0) + cm(J vi(X(s))ds) + -+ cmvm(J v (X(s))ds) . ()

0 0
We have thus found a way of writing the stochastic evolution of a CRN in terms of a set of
independent Poisson-like processes; and in a form which looks, formally, very similar to the
deterministic solution (3).

Although our presentation has been heuristic, this approach can be made precise. We will see
later that the representation in terms of Poisson-like processes is the natural starting point for
writing down the Chemical Langevin equation and the Chemical Fokker-Planck equation.
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2.8 The generator matrix for a CRN 27

2.7.1 t-leaping

While the Gillespie algorithm is exact, (7) also suggests another, more approximate, approach to
simulating a stochastic CRN, termed tau-leaping. If we have many reactions in a network, and
large numbers of molecules, then we may not wish to track every reaction occurrence. Instead,
we might fix a small time-interval, say At, and hope to estimate how many times each reaction
occurs during this time.

Let us suppose the system is currently in state x. At this moment, the jth reaction can be
regarded as a Poisson process with rate vj(x). Of course, this is only true until some reaction
occurs; but let us pretend it is true over the whole time interval At. Then, we expect the jth
reaction to occur m; times over this interval, where n; is Poisson distributed with parameter
vj(x) At. And similarly for all the other reactions: hence, at the end of the time-interval, we
would expect the system to be in the new state

m
X+ mG,
j=1

obtained by taking the current state and allowing each of the m reactions to occur n; times. For
each j, we choose n; from (independent) Poisson distributions with parameters v;(x) At.

We can now update the state of the system, and continue again. Of course, we have to be
careful not to allow reactions to fire in such a way that some species numbers become negative.
Indeed, if some species numbers are small, then the approximation is almost certainly a bad one!
Moreover, the outcome can only be approximate, because the rates were not truly constant over
the interval At. In particular, we expect this approximation to be better if

e At is small, and

e the species numbers are large enough that the fractional changes in intensities each time a
reaction fires are small.

Despite not being exact, T-leaping can be useful for simulating large systems where the usual
Gillespie algorithm can become prohibitively slow. It is also conceptually helpful when we write
down the chemical Langevin and Fokker-Planck equations after we have discussed stochastic
differential equations (SDEs).

2.8 The generator matrix for a CRN

We now return to the question of how to compute transition probabilities, and thus the evolution
of a stochastic CRN model. Given such a model, we will first define a matrix Q = (q(x,y)),
termed the the generator matrix of the CRN; and we will then try to understand how Q arises
and how it can be used. We will also refer to this matrix, informally, as the Q-matrix of the
CRN.

As usual, let us suppose that the CRN has m reactions and that the jth reaction has reaction
vector (5. Let us suppose that at some particular time, the system is in state x. We have seen
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2.8 The generator matrix for a CRN 28

that waiting times for each reaction are independent and exponentially distributed; and so, the
probability that the jth reaction occurs in a time interval At is vj(x)At + o(At). Moreover,
the waiting times for reactions to fire are independent random variables. Define vioi(x,y) =
st.t.g:ercj Vj(x), i.e., Vot (x,Y) is the total intensity of all reactions which take us from state x
to state y. Then, as At \, 0, we have, for the transition probabilities

Par(x,y) = viot(x,y) At+0(At) (j=T1,...m) and Palx,x) =1 vj(x)At+o0(At).
j=1

with all other transition probabilities being o(At). Since P(0) =1, the identity matrix, we quite
naturally define Q as the (right) derivative of P at 0, namely,

orim 1o P(At) =1
Q=PO= A

(8)
Thus we have, for x # vy, q(x,Yy) = viet(X,y); and q(x,x) = —Z]TL vi(x) = —Z;L q(x,x +
;). Thus each row of Q has at most m nonzero off-diagonal entries, corresponding to each of
the reactions firing. And the diagonal entry is set by ensuring that sum of all entries in a row
is zero. Of course, it is possible that some of the vj(x) will be zero, or different reactions have
the same reaction vector, in which case the corresponding row(s) of Q will have fewer than m
nonzero off-diagonal entries.

Remark 2.11 (Generator matrices for CTMCs). We remark that the right differentiability
of P(t) at O, and hence the existence of the limit in (8), follows from very general theory on
continuous time Markov chains with right-continuous paths, and is not specific to CRN models.
Thus all such chains are associated with a generator matrix Q.

The transition matrix for the jump chain from the Q-matrix. For a CRN, calculating
the Q-matrix is simply a matter of knowing the intensities associated with each state. Thus
the relative sizes of off-diagonal entries in the Q-matrix tells us about the relative probabilities
of different reactions firing. For example, if x is not an absorbing state, then given state x the
probability that the first reaction to fire is reaction j is just

vl qhox+ Q)
o) T —alon)

Thus, to get the transition matrix P of the jump chain of a CRN from the Q-matrix is simple.

e Given an absorbing state x, we simply set the corresponding diagonal entry ﬁ(x,x) =1,
and P(x,y) = 0 for all y # x.

e Given a state x which is not absorbing, we set ﬁ(x,x) =0 and ﬁ(x,y) = % fory # x.

Example 2.12 (Q matrix and jump chain of a CRN with finite state space). [corrected.]
Consider the CRN with four reactions

12 12

A-5Brc, B+Cc-HA B SO ¢ 5B,
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2.9 The forward Kolmogorov and backward equations 29

Let us assume that all the reactions occur in a cell of volume V = 1 and have deterministic
mass action rate constants as shown. There is a strictly positive vector in ker I'*, where T is
the stoichiometric matrix (check this!), and so, given any initial state, this CRN has finite state
space.

Suppose we initially have one molecule of A. The system then has four states it can reach from
this initial state:

{{A}, {B,C}, {B,B}, {C,C}},

(or, as vectors, (1,0,0),(0,1,1),(0,2,0) and (0,0,2).) The Q-matrix and transition matrix of
the corresponding jump-chain are:

11 0 o0 01 0 0
|1 21202 = (12 0 14 173
Q=1 o 1 21 o ™M P=1 61 0 o
0 1 0 01 0 0

Note that the chain is irreducible and recurrent because the corresponding jump-chain is.

We will return to this example below.

2.9 The forward Kolmogorov and backward equations

Recall that for discrete-time Markov chains we can calculate n-step transition probabilities from
one-step transition probabilities. We can thus think of the one-step transition matrix as generating
all the possible transitions. We expect something similar to occur in continuous time: we hope
to be able to infer P(t) for any given t from the generator Q.

We will show how to derive two systems of ODEs satisfied by the transition probabilities in the
case of a finite state space. But in fact the systems are valid in the infinite case too.

Recall that the semigroup property implies that P(t + At) = P(t)P(At). In the case that the
state space S is finite, we can subtract P(t) from both sides, divide through by At, and take the
limit At X\, 0 to get

P'(t) = P(t)Q, or in components m pt X, Y) Zpt X,z yY) . (9)

z€eS

This is called the the forward Kolmogorov equation. Similarly, if we start by writing P(t +
At) = P(At)P(t) and carry out a similar procedure, we obtain the equation

d
P’(t) = QP(t), or in components s —pi(x,y) Z q(x, z)p(z,y), (10)

z€S

which is the backward Kolmogorov equation. Thus the transition matrices P(t) satisfy the
two differential equations (9) and (10). Moreover, still assuming a finite state space, it is easy
to find the unique solution to these two equations with initial condition P(0) = I, namely

P(t) =exp(tQ) =1 +tQ + t°Q%/2 + - --
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2.9 The forward Kolmogorov and backward equations 30

Thus in the case of a finite state space we can, in theory, always solve to find the transition
matrices. From this, we can infer the long-term evolution of any distribution on the state space.
Let us see this by example.

Example 2.13 (The transition matrix from the Kolmogorov equations). [corrected.| Con-
sider again the CRN in Example 2.12, namely,

12 12

A-B+C, B+C-A B-S5C C-5B,
giving
-1 1 0 0
T =212 12
Q=1 o 1 21 o
0 1 0 —I

We can confirm that Q has eigenvalues —3,—1,—1,0 and corresponding matrix of eigenvectors

0

1 1

-2 0 1

E= 0 1
-2 1

With D = diag{—3,—1,—1, 0}, we calculate

e t+2e 3t 44 —det44 —3Zetqe3t42 —3Zet4e3t42
1 —4e 3t 44 8e 3t +4 —2e 3t 42 —2e 3t 42
12| —6et+2e3t+4 —4e 344 9et4eSt42 3Zet4edt42
—6et+2e 3t 4+4 et 4 —3et4eSBt42 9et4eSty2

e =EePE =

We see that as t — oo, any initial probability distribution on the states {{A}, {B,C}, {B, B}, {C, C}}
approaches (1/3,1/3,1/6,1/6). In other words, in the long run, the system spends 1/3 of the
time in the state with one molecule of A, 1/3 of the time in the state with one molecule of B and
one of C, 1/6 of the time in the state with two molecules of B, and 1/6 of the time in the state
with two molecules of C. If we increase the rate constant of the reaction A — B+C to 2 (while
keeping all other rate constants as before) you should find that any initial probability distribution
on the states now approaches (1/5,2/5,1/5,1/5) as t — oo. Check this as an exercise.

The Kolmogorov equations for a countably infinite state space. In the case of a countably
infinite state space, the derivations above of the forward and backward equations do not work. We
assumed that a sum of o(At) terms is again an o(At) term; this assumption is not automatically
justified in the case of an infinite sum. We have to think more carefully about interchanging
limiting operations. However, using more involved arguments, we can indeed show that under
the assumptions we have made, P(t) satisfies the forward and backward equations, which are
now infinite systems of coupled first order ODEs.

The meaning of “forward” and “backward”. When we write P(t + At) = P(t)P(At), we
consider the evolution first in a step of size t, and then in a step of size At. l.e., we perturb the
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system a little bit at the end of our time-interval to see how probabilities change. When we write
P(t+ At) = P(At)P(t), the time-step At occurs at the start of the time-interval of interest. We
can think of this as perturbing a little bit at the start. We will see more clearly later that forward
equations correspond to initial value problems: we fix the initial state and see how probabilities
evolve forward in time. Meanwhile backward equations correspond to “final value problems™”: we
have some target final state and want to find a probability distribution on initial states which
lead us to this state after a time t.

The Kolmogorov equations for an uncountable state space. Later on, when we study
stochastic differerntial equations (SDEs), we will meet the Kolmogorov equations in the case
of an uncountable state space, where they become partial differential equations describing the
evolution of probability density functions, rather than systems of ODEs describing the evolution
of probability mass functions. The forward Kolmogorov equation is, in this case, often called the
Fokker-Planck equation.

2.10 Stationary measures and distributions

A function which assigns a nonnegative number to each element of the state space of the CRN
is a measure on the state space. Transition matrices tell us how measures evolve. Given a
continuous-time Markov chain with state space S and transition matrices P(t), and an initial
measure ¢y on S, after time t we have the measure ¢ = $oP(t) on the state space. This is
just a statement of the law of total probability.

If we are able to normalise a measure on S (i.e., if it has finite total mass), then we can define
a distribution on S, namely a measure with total mass 1. If P(t) are the transition matrices of
a non-explosive Markov chain, and ¢ is some initial distribution, then ¢; = ¢yP(t) again has
total mass 1, and can be regarded as the probability distribution on the states of the chain given
the initial distribution ¢,.

Definition 2.14 (Stationary/invariant measure for a CRN). A measure ¢ for a CRN with
transition matrices P(t) is stationary (or invariant) if

¢ = ¢P(t) (11)

for all t > 0.

Note that there is no reason in general for a CRN to have a stationary measure.

Example 2.15. Consider the CRN
0— A

with mass action kinetics and rate constant k. In this case, it is clear that the transition matrix
P(t) is upper triangular with nonzero diagonal elements, and so (11) can have no nonzero solution.

We have the following important result for stationary measures of irreducible and recurrent chains:
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Theorem 2.16. Suppose that a CRN model is irreducible and recurrent: then it has a unique
invariant measure up to scalar multiples. Moreover, this measure is the unique (nonnegative)
element of ker Q' up to scalar multiples.

We won't prove this theorem, but note that it follows by examining the corresponding jump chain,
and using results on invariant measures for irreducible, recurrent, discrete-time Markov chains.

In the case of a finite state space, the claim in Theorem 2.16 that invariant measures correspond
to elements of ker Q° follows by differentiating both sides of (11) and using the backward equation
to get

0= ¢P'(t) = $QP(t)

for all t > 0. Since limg\ o P(t) = P(0) = I, we must have

0=¢Q.

Similarly, if ¢ satisfies 0 = $Q, then multiplying on the right by P(t), and again using the
backward equation gives

0= BQP(t) = P'(1) = (BP(1),

implying that ¢P(t) is a constant. Since P(0) = I we recover ¢ = $pP(t). We need a more
elaborate proof in the case of an infinite state space as we cannot automatically justify exchanging
infinite summation and differentiation, but the result still holds.

Thus stationary measures for irreducible and recurrent chains correspond precisely to elements in
ker Q°.

Remark 2.17 (detailed balance). Note that the stationarity condition 0 = ¢ Q can be written

0=0Q =) dW)aly,x) =) (dy)a(y,x) — b(x)a(x,y)).
y Y#x

A sufficient condition for stationarity of a measure is thus if the detailed balance condition:
d(y)qly,x) = d(x)q(x,y) forall x,y €S

is satisfied.

Example 2.18 (The invariant distribution for a simple reversible reaction). Consider the
following production /degratdation system with mass action kinetics and both rate constants equal
to 1:

0=A.

We will write down the stationary distribution for this CRN. When there are n molecules of A,
then the intensity of the forward reaction is 1, and if n > 1, the intensity of the reverse reaction
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is n, giving the Q-matrix:

1 1 0 0 0
1 =2 1 0 o0
0 2 -3 1 0
Q=1 0o 0 3 —4 1
0 0 0 4 —5

Solving these recursively in terms of ¢(0), we get

1 1
d):(b(o) <]> 1) Z) 5) )

and we can easily prove by induction that the nth term is % Normalising, we get that ¢(0) = e,
so p(n) =e'/nl.

Exercise 2.19 (The invariant distribution for a simple reversible reaction). Consider again
the production-degration system with stochastic mass action kinetics, forward rate constant equal
to k; and reverse rate constant equal to k;:

05 A, A 0.

Write down the Q-matrix for this system, and by examining ker Q' find the unique invariant
distribution ¢ for this CRN. [You should obtain a Poisson distribution, with parameter to be
determined.]

Exercise 2.20 (A stationary measure, but no stationary distribution). Consider the follow-
ing CRN with mass action kinetics:

0—-A, A—0, A—2A.

e Show that, with all rate constants set to 1, the system admits a stationary measure, but
no stationary distribution.

e Now assume that the first and third (production) reactions have rate constants 1, while
the second reaction (degradation) has rate constant 2. In this case, does the system admit
a stationary measure? Does it admit a stationary distribution?
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2.11 The chemical master equation

Recall that given any initial probability distribution, say &g, and the transition matrices P(t), we
can calculate the probability of finding the system in each state at time t simply as ¢, = dP(t).
Differentiating and applying the forward equation gives

Q. (12)

Let us conS|der each component of this equation: for each state x from the state space S, we
write py(t) for P(X(t) =x) (i.e., di(x)), to get:

dp" =) py(t)Q Z vi(x — G)paqy (1) —vi(X)pe(t))  (x €S). (13)
j=1

yes

In writing the second equality, we have abused notation a little: it is possible that x — (; does
not belong to the state-space S, e.g. if it has some negative components, in which case we take
Vj(x — §)px—¢;(t) = 0. The system of ODEs (13), is termed the chemical master equation
(or CME for short). It is simply the forward equation written out component by component.

Note that since we have assumed a finite number m of chemical reactions, each ODE in the
CME has only finitely many terms. In fact, we have two kinds of contributions to the probability
of finding the system in state x at time t: positive terms corresponding to arrival into state x via
the firing of a single reaction; and negative terms corresponding to leaving state x via reactions
which take us away from state x. Note that the negative terms can be aggregated into a single

term —p, (£) ™, v (x).

Example 2.21 (Writing down the CME of a simple CRN). Consider the following system
of reactions, with mass action kinetics, and all rate constants set to 1.

0—A, A—0 A—2A.

We will write down the CME for this system. Let p,(t) be the probability that there are n
molecules of A at time t. The three “reaction vectors” are, in this case, just the scalars (; =
1,0, = —1 and (3 = 1 respecitively. The mass action rates are vi(n) =1, v;(n) =n (n > 1)
and v3(n) =n (n > 1). We thus have,

dpo
P polt t
It Polt) +pi(t),

and, forn > 1,

3
% = Z Vi(M — §)pnq; () —vj(n)pn(t))
Pr1(t) = pa(t) + (M + Dprp(t) —npalt) + (N — 1)pna(t) —npa(t)

= npn(t) — (2n+ 1)pa(t) + (M + Dpaa(t).

In an earlier exercise (Exercise 2.20), we computed a stationary measure for this system and
observed that it admits no stationary distribution. We can find the same measure by setting
%"T“ = 0 for each n and solving the resulting recurrence relations. But note that in this case we
can no longer regard the quantities p,,(t) as probabilities.
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Example 2.22 (A model of enzyme kinetics). Consider the following CRN which represents
a model of enzyme kinetics with inflow and outflow of the enzyme and main substrate:

S+E=C=P+E S=0=E.

This model has four species {S, E, C, P} which we take in this order, and eight reactions. The
stoichiometric matrix can be checked to have rank 4 (check this!) and so there are no conservation
laws. The state space consists of all of Z%,. With mass action kinetics and any rate constants,
the system has a unique stationary distribution. This time, however, it is not easy to find this
distribution directly and we need to call on additional theory to prove its existence and find its
form.

For simplicity we set all the rate constants to be 1, and the reactor volume to be 1. Let
x = (s,m,¢,p) € Z“ZO denote the vector of species numbers of the four species involved. Then

et

Olx):= sinlc!p!’

x € Z%,
is a stationary distribution of the system. Seeing that this is a product of four independent
Poisson distributions with parameter 1, allows us to confirm that ZXGZ% d(x) = 1. We can

check that the distribution is stationary by appealing directly to the CME (13). We find that
each reversible pair of reactions contributes a pair of terms summing to zero in %Pt—x. For example
the pair S+ E = C contribute the terms

e *(c—sn) e *(sn—c)
sin!c!p! sin!c!p!
to %’t—x, and these clearly add up to zero.

Exercise 2.23. Confirm the details in Example 2.22. You do not need to calculate every term in
the CME; but make sure you can correctly write down terms in the CME for, say the first pair of
reactions S+ E = C, and check that they are as given and add up to zero.
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2.12 Evolution of the mean and moments

We can use the CME (13) to write down an equation for the evolution of the mean EX(t). We
multiply (13) through by x;, and sum over all states x € S:

D Ex(1) = D x i D D (xvilx = §Ipag (1) —xav(x)py(t)

dt
x€eS j=1 xe$

= > D> (i Gy)v()pa(t) — xavy (x)p (1)

j=1 x€S§

= Z CyElv; (X(1))] .
j=1

To go from the first to the second line, we reindex the first part of the sum, bearing in mind that
it is over all states of the system. l.e., we define the new (dummy) variable y := x — G, and
then rename it as x. We have assumed as usual that any reasonable intensity functions prevent
X; from becoming negative; also, we have chosen to write the ith element of reaction vector (;
as (j; as this corresponds to the (i,j)th element of the stoichiometric matrix of the system. In
vector notation, and calling the stoichiometric matrix I', we could thus write,

%]EX(J() =TE[W(X(t))]. (14)
Note the formal similarity between (14) and the deterministic system (1), namely x = T'v(x). In
fact, if all components of v, the vector of intensities, are linear or constant functions of X, then
Ev(X(t))] = v(E[X(t)]) and we get exactly the same equation as in the deterministic case: i.e.,
the mean evolves according to the usual deterministic equation. But otherwise this is not, in
general, the case, as the following example illustrates:

Example 2.24 (Evolution of the mean of a simple CRN). Consider the CRN

2A -0, 0—A,

with mass action kinetics. Letting n denote the number of molecules of A, and fixing the reactor
volume at 1, the intensity of 2A — 0 is vi := kin(n — 1) (so Ev; = k¢(E[n? — En)), while
that of 0 — A is v, :=k; (so Ev; = k;). Here kg and k; are the deterministic mass action rate
constants of the reactions. Using (14) we find, for the evolution of the mean

d
a]En =%k, — 2k; (E[n*] —En).

The corresponding deterministic equation is % = k, — 2k a?, where a denotes the concentration
of A. Only if En?] — En = (En)?, i.e., the variance of n is equal to its expectation, do we get
an equation formally identical to the deterministic equation; and we have no reason to expect

that to hold in this case (it doesn't).

More importantly, note the main difficulty: the evolution of [En depends on EMm2]. In fact, if we
continue and write down an ODE for the evolution of E[n?] (try it!) we find that it depends on
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E[M?3], and so forth. Thus we are back in the situation of an infinite system of coupled ODEs for
the evolution of the moments.

This example appears in Section 1.4 of [Erban and Chapman] and we will see below how to
partially solve this problem for this network and find the moments of the steady state distribution
for this CRN.

In the same way that we can start with the chemical master equation and use it to write down a
differential equation for the evolution of the mean [EX(t), we can do the same thing with higher
moments of the random variables X(t). In fact, we can do this for all moments at once, via the
probability generating function.

2.12.1 Evolution of the probability generating function

Recall that the probability generating function (PGF) of a random variable Y taking non-negative
integer values is defined as

= i s"P(Y =n).
n=0

The function G has radius of convergence at least 1 and G(1) and G(—1) are always well
defined. Moreover, moments of the distribution of Y (assuming they exist) are easily computed
as derivatives of G at 1; e.g., E[Y] = G’(1), and E[Y?] = G"(1) + G/(1).

In the case of a CRN involving only one species, if we take X(t) to be the number of molecules
of this species, at time t, we get the PGF for X(t)

=Y S"PX(t)=n) =) s"pa(t)
n=0 n=0

Differentiating with respect to time and using the chemical master equation gives

o0

65 = Y Py Z S (M = g, (8) — ™y (n)pa(0))

n=0 n=0

= Z Z TH-C)VJ (t) _ San(n)pn(t))

n j=1

C,_] Zs vi(n

i
S

[
Ma*

j=1

We can use this expression to write down a PDE for the evolution of the PGF, as we can see in
the next example.
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Example 2.25 (A PDE for the evolution of the probability generating function). We
consider again the CRN which appeared in Example 2.24, namely,

2A -0, 0—A,

with n. denoting the number of molecules of A, and intensities vi(n) := k;n(n—1) and v,(n) :=
ka (we may consider kq,k, as deterministic rate constants, and we set the reactor volume to be
1). Note that in this case we have the reaction "vectors” (; = —2, (; = 1. Applying the formula
above, the PGF G(s,t) := )~ s™pn(t) now evolves according to

o

%G(s,t) = ((s72 = D)s"km(n— Dpa(t) + (s — 1)s™kapa(t)) .

n=0

On the other hand

o az o
) =) ns"pa(t), S5G(s,t)=3 nn—1)s"pa(t)
n=0 n=0

Comparing expressions we see that G(s,t) satisfies the second-order linear PDE

0G 0°G
— =¥k (1= 2)a > +ka(s —1)G.

a consequence, assuming the existence of a stationary distribution ¢, the stationary PGF,
(s) =D nys™d(n), must satisfy

d2G ~ , d2G koA
152 +ka(s —1)G, or, equivalently, e o0 +s)G

As
G

OZk](]—S)

We need two boundary conditions in order to solve this equation: one is simply that (AS(]) =
> 2y d(n) =1; the second is that G(—]) = 0. With these boundary conditions, we can find the
solution to this second order, linear, ODE in terms of Bessel functions and compute the mean and
variance of the stationary distribution from its PGF (see Section 1.4 in [Erban and Chapman]).
We find that, as predicted in Example 2.24, the steady state mean differs (although only slightly)
from the mean predicted by the deterministic equation.

Remark on the multivariate case. In the case of a CRN involving n species we can use the

multivariate PGF Gx(s1,...,8,) = E[s}'s)>---sX"]. We can abbreviate s]'s5?---sXn as sX

and write the PGF as Gx(s) = E[sX]. We can write down an equation for its evolution similarly
to the 1D case, using the chemical master equation:

m

%Gx(s t) = ZZ dp" ZZ $ Vi (x — j)px—g; (1) — $™vj (x)px (1))
= Z Z (895 (x)px (1) — s*vj(x)px(t))
x j=1
= D (s9=1)) sv(x)p(t)

=1
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Here the first summation on each line is over all states of the system. As before, we can hope
to write down a PDE for the evolution of the PGF in this case and, in theory, use this to make
claims about evolution of the distribution.

Exercise 2.26 (Writing down a PDE for the evolution of a multivariate PGF). Write down
a PDE for the evolution of the multivariate PGF of the CRN:

k k k

045 A—-2B—=0.
You may assume that the rate constants are deterministic, and the reactor volume is 1. It
simplifies notation to write n := n,, m := ng, so that G(si,s2,t) = E[s]s}*]. You should

obtain the PDE:

Gt =ki(s1 —1)G + ka(s2 — s1)Gs, + k3(1 —s2)Gs, .
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