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3 Stochastic differential equations

Stochastic differential equations (SDEs) come up naturally when we attempt to add diffusion into
our models of chemical reactions. They also arise when we wish to approximate the stochastic
dynamics of a CRN in the limit where there are large numbers of molecules, and reactions occur
at high frequency.

3.1 Brownian motion

In order to understand SDEs, we need some basic understanding of Brownian motion. The study
of Brownian motion takes us beyond the scope of this course, so the aim here will be to summarise
key results, and provide some intution.

Brownian motion, which we will denote by {W(t)}t≥0, is a continuous-time stochastic process
which takes values in R (or Rn in the case of n-dimensional Brownian motion). Note that this
is unlike the processes we have looked at so far which take values in subsets of Zn.

As always, we have two ways of thinking about a continuous-time stochastic process: (i) as a
sequence of random variables (on the same probability space); or (ii) in terms of its sample paths.

There are various characterisations of Brownian motion which can all be shown to be equivalent.
We will focus on 1D Brownian motion, as n-dimensional Brownian motion is simply a vector
n independent Brownian motions. In one dimension, Brownian motion can be defined via the
following properties:

1. It takes the value 0 at time 0, i.e., W(0) = 0 almost surely.

2. It has continuous sample paths almost surely. I.e., given our underlying probability space
Ω, associated with each ω ∈ Ω is the function t 7→ Wω(t), and these functions are
continuous with probability 1.

3. W(t) has stationary increments, i.e., W(t + h) −W(s + h) has the same distribution as
W(t) −W(s) for each s, t and h such that all these quantities are defined.

4. W(t) has independent increments, i.e., given any 0 ≤ t1 < t2 ≤ t3 < t4, W(t2) −W(t1)
and W(t4) −W(t3) are independent random variables.

5. W(t) −W(s) is normally distributed with mean 0 and variance t− s for any 0 ≤ s < t.

In fact, the final assumption can be replaced by E[W(1)] = 0 and Var (W(1)) = 1: we do not
need to explicitly specify that increments are normally distributed – rather this comes naturally
from the assumption of stationary, independent increments and continuous paths.

It is a nontrivial fact that there is, indeed, a stochastic process with these properties; and that
these properties uniquely determine the process.
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3.2 SDEs: an informal introduction 41

One astonishing feature of Brownian motion is that sample paths are, almost surely, nowhere
differentiable. This means that if we fix some ω ∈ Ω, then with probability 1 the limit

lim
∆t→0

Wω(t+ ∆t) −Wω(t)

∆t

is undefined for all t.

This extreme “jaggedness” of the paths leads to problems with any limiting process where we
look at Brownian motion over smaller and smaller time-intervals. But this is precisely what we
need to do when we use Brownian motion as a model of diffusion, or of “noise” in some otherwise
deterministic system. Resolving this problem is at the heart of the study of stochastic differential
equations (SDEs).

While individual paths are badly behaved, the fact that increments are independent, stationary,
and normally distributed means that taken collectively paths are well-behaved. It is this fact
which forms the basis of stochastic integration and allows us to define solutions of SDEs.

3.2 SDEs: an informal introduction

Consider the ODE

dx

dt
= f(x, t) . (15)

Here x is an unknown function of t. If we are given the value of x at some time t0, we may hope
for a unique solution, and indeed, you have seen sufficient conditions for existence and uniqueness
in previous courses. We could rewrite (15) as an integral equation

x(t) = x(t0) +

∫ t

t0

f(x(s), s) ds . (16)

Recall that it is the integral form which is the most natural starting point for proofs of existence
and uniqueness of solutions. Note, however, that for (15) to make sense x must be differentiable,
whereas this is not automatic in (16). However, if we assume that x and f are continuous, then
(16) indeed implies that x must be differentiable (by the fundamental theorem of calculus), and
so with these assumptions (15) and (16) are equivalent.

We can also write (15) in the form

dx(t) = f(x(t), t) dt . (17)

We can think of this as a convenient shorthand to indicate that we have not decided whether
to interpret the equation as the differential equation (15) or the integral equation (16)! It is
also a natural starting point for numerical approaches to solving (15). Noting that dx(t) =
x(t+dt)−x(t), and replacing the infinitesimal dt with the small ∆t we have the approximation

x(t+ ∆t) ≃ x(t) + f(x(t), t)∆t ,

which forms the basis of the Euler forward difference approach to solving ODEs numerically. Of
course, the point here is that the error in this approximation is o(∆t), i.e., approaches zero faster
than ∆t as ∆t → 0.
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3.2 SDEs: an informal introduction 42

Let us now consider what happens if we were to add a random “noise” term to (17). Since the
noise is acting over an infinitesimally small time-interval, we expect it to be infinitesimally small
in some sense. Moreover the strength of the noise might depend on the current state of the
system. We would like to write something like

dx(t) = f(x(t), t) dt+ g(x(t), t) dW(t) .

Here, if x(t) takes values in Rn, then g is in general some n×m matrix of functions, and dW(t)
is meant to represent some m-vector of “small”, indendent noise terms. In fact, for very good
reasons connected with the nice way that increments of Brownian motion behave, we often would
like to think of each component of dW as a “small” increment of Brownian motion. (Recall that
Brownian motion is essentially the only stochastic process with continuous paths and stationary,
independent increments.)

There are two issues we need to consider carefully about the last equation. Firstly, as W(t) is
a stochastic process, we now expect x(t) to be a stochastic process with, we hope, some nice
properties like almost surely continuous sample paths. To remind us that the output is now a
stochastic process we can write

dX(t) = f(X(t), t) dt+ g(X(t), t) dW(t) . (18)

This is just a cosmetic change, but an important one, because it reminds us that a “solution”
to an initial value problem is no longer a single function of time, but a stochastic process. But
we still face the difficulty of how to interpret, and solve, (18). We might try dividing by dt and
taking a limit to get

dX(t)

dt
=

X(t+ dt) − X(t)

dt
= f(X(t), t) + g(X(t), t)

“dW(t)”

dt
.

But this is doomed to fail: although the expression above looks like a set of ordinary differential
equations, one for each point ω in our probability space, we have already observed that the
sample paths of Brownian motion are almost surely everywhere non-differentiable, and so for any
fixed ω, dW(t)

dt
is almost surely undefined for every t.

On the other hand, we might still ask: is there a stochastic process X(t) which solves the integral
version of (18), given some initial state? Namely, can we make sense of the following equation?

X(t) = X(t0) +

∫ t

t0

f(X(s), s) ds+

∫ t

t0

g(X(s), s) dW(s) . (19)

The good news is that this can be made to work, provided we are very careful in how we interpret
(19). If we try to interpret it one sample path at a time we run into difficulties with the final
integral in (19) because of the non-differentiability of sample paths of W(t). But the theory of
stochastic integration, in particular in the form developed by Itô, gives us a way of interpreting
such integrals, and solving SDEs such as (18). Thus (18) does have a well-defined meaning, but
we must not believe that the quantity dW(t) truly represents the differential of any quantity in
the usual sense.

We won’t go into any of the details of stochastic integration here, but instead consider the
approximate form of (18):

X(t+ ∆t) − X(t) ≃ f(X(t), t)∆t+ g(X(t), t)∆W(t) , (20)
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3.2 SDEs: an informal introduction 43

where ∆t is small. Note that ∆W(t) = W(t+∆t)−W(t) is just an increment of (m-dimensional)
Brownian motion, so each component is a normally distributed random variable with mean 0 and
variance ∆t. Moreover these components are independent of each other and of X(s) for all s ≤ t.
We may thus replace ∆W(t) in (20) with

√
∆tξ, where ξ is a vector of m independent standard

normal variables, which are also independent of X(t), and write:

X(t+ ∆t) = X(t) + f(X(t), t)∆t+ g(X(t), t)
√
∆tξ , (21)

We can take (21) as the computational definition of the SDE (18). Note that it makes
no sense to subtract X(t) from both sides, divide through by ∆t, and let ∆t ↓ 0. However, we
expect, given some conditions on f and g, that the solutions of (21) converge in some sense to the
“true” solution of the SDE as ∆t ↓ 0. (Making this precise is the subject of stochastic calculus,
and the solution that we converge to is a solution in the Itô sense.) What is important for us is
that when we read (21) – and other equations derived from it below – we should remember that
these are approximations which become, in a precise sense but one we won’t study, exact in the
limit ∆t ↓ 0.

From (21), we can hope to compute approximate sample paths of the process X(t) by choosing
choosing ∆t to be sufficiently small, and sampling from a standard normal distribution at each
time step. This approach is called the Euler-Maruyama method for numerical solution of SDEs.
Moreover, we might hope to compute the evolution of moments of X(t). For example, taking
expectations in (21) gives

E(X(t+ ∆t)) ≃ E(X(t)) + E(f(X(t), t))∆t ,

where the final term disappeared because ξ and X(t) are independent, and E(ξ) = 0. We now
have no problem subtracting E(X(t)) from both sides, dividing by ∆t and letting ∆t ↓ 0 to
recover an ODE for the evolution of E(X(t)), namely,

d

dt
E(X(t)) = E(f(X(t), t)) .

If f was a linear function of X for example, we would recover the original ODE dX(t) =
f(X(t), t) dt for the evolution of X(t) := E(X(t)). In this very special case, the stochastic
component of the SDE (18) contributes nothing to the evolution of the mean.

In a similar vein, if we know the value of X(t) to be x, we can ask for the expectation of X(t+∆t)
a short time later. Taking conditonal expectations in (21), we get

E[X(t+ ∆t) − x |X(t) = x] = f(x, t)∆t+ g(x, t)
√
∆tE[ξ] = f(x, t)∆t . (22)

We expect this equation to become exact in the limit ∆t ↓ 0 in the sense that E[X(t + ∆t) −
x |X(t) = x] = f(x, t)∆t+ o(∆t) .

It turns out to be useful also to ask about higher moments of X(t + ∆t) − x conditioned on
X(t) = x. For example, restricting attention to the 1D case, we find that

E[(X(t+ ∆t) − x)2 |X(t) = x] = g(x, t)2 ∆t+ o(∆t) . (23)

Thus the random term in the SDE contributes an O(∆t) term to the evolution of the second
moment, namely the variance, of X. The same holds in higher dimensions.

For n ≥ 3, E[(X(t+∆t) − x)n |X(t) = x] = o(∆t) . We will use all of these observations in the
informal derivation of the Fokker-Planck equation below.
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3.3 The Fokker-Planck equation (forward Kolmogorov equation)

In fact, we can do better than simply writing down ODEs for the evolution of moments of X(t)
where X(t) is the stochastic process which solves (18). We can try to write down a PDE for
the evolution of the pdf of X(t). We will sketch the derivation of this PDE, termed the forward
Kolmogorov equation or the Fokker-Planck equation, but first let’s write it down and do some
examples. Once we understand the meaning of this equation, we will understand why it is also
called the forward Kolmogorov equation, even though it looks very different from (9).

Let p(x, t) denote the probability density function (pdf) of X(t) conditional on X(s) = y at some
time s < t. I.e., p(x, t) dx = P(X(t) ∈ [x, x+dx] |X(s) = y]. Here, and in arguments to follow,
in general dx and [x, x+ dx] refer to a products of infinitesimal intervals, i.e., dx = dx1 · · · dxn,
and [x, x+ dx] = [x1, x1 + dx1]× · · · × [xn, xn + dxn].

In the one-dimensional case we find that p evolves according the equation,

∂

∂t
p(x, t) = −

∂

∂x
[f(x, t)p(x, t)] +

∂2

∂x2
[D(x, t)p(x, t)] , (F-P1)

where D(x, t) := 1
2
g(x, t)2. In n dimensions, recall that f(x, t) is a vector with n components,

and g(x, t) is an n×m matrix. Define the D(x, t) := 1
2
g(x, t)g(x, t)t . Then we have

∂

∂t
p(x, t) = −

n∑
i=1

∂

∂xi
[fi(x, t)p(x, t)] +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)] . (F-P)

We see that the F-P equation defines the evolution of probabilities as we move forward in time,
just as the forward Kolmogorov equation (9) did. The only difference is that this time we are
considering a continuous random variable, and hence evolution of a pdf, rather than a discrete
random variable, and hence a probability mass function.

Before we sketch the derivation of the F-P equation in 1D, let us consider its meaning. It tells
us about the evolution of a probability density function (or more generally a measure) in time.
In other words, if we take some distribution of initial conditions for the SDE (18) and follow
these conditions for some time, the solution of the F-P equation gives us the corresponding
“distribution” at a later time t. Note that we can write the right-hand side of the 1D F-P
equation as

−
∂

∂x

(
f(x, t)p(x, t) −

∂

∂x
[D(x, t)p(x, t)]

)
.

If we denote the quantity in brackets above by Q(x, t), we can interpret it as the probability
flux. The equation then reads

∂

∂t
p(x, t) +

∂

∂x
Q(x, t) = 0 ,

which can be regarded as a conservation equation for the probability density: roughly, the
change in probability in a small region of space is equal to the flux through the boundaries of
this region. The interpretation in higher dimensions is similar. You will have seen the same idea
in derivations of the heat equation which can be regarded as a conservation law for heat.

Let us now consider some basic examples.
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Example 3.1 (F-P equation for a deterministic system). Consider a 1D equation dx =
f(x, t) dt, i.e., g ≡ 0. In this case (18) is a deterministic ODE, and the 1D Fokker-Planck
equation reduces to:

∂p(x, t)

∂t
= −

∂

∂x
[f(x, t)p(x, t)] ,

namely, in brief,

pt + fpx = −fxp .

This first order PDE is easily solved by the method of characteristics, at least in theory. The
equations still make sense: even though the evolution is deterministic, we can choose initial
conditions according to a probability distribution, and ask how this distribution evolves over time,
as the initial conditions are transported by trajectories of the ODE.

Example 3.2 (F-P equation for Brownian motion). Let us again consider the 1D case, this
time in the special case where f ≡ 0 and g ≡ 1. In this case (18) just describes standard
Brownian motion (provided we set the intial value to 0), and the 1D Fokker-Planck equation
reduces to the simplest form of the diffusion equation, namely,

∂p(x, t)

∂t
=

1

2

∂2p(x, t)

∂x2
.

(In fact, a stochastic process which solves (18) in the autonomous case, i.e., where f and g do
not explicitly depend on time and satisfy some mild technical restrictions, is known as an Itô
diffusion.)

If the motion describes the physical evolution of particles in space, then we can set boundary
conditions by considering the conservation relation ∂

∂t
p(x, t)+ ∂

∂x
Q(x, t) = 0. So, for example, if

we have a reflecting boundary at x = 0, this would correspond to the no-flux conditionQ(0, t) = 0

for all t.

For example, if we consider a domain [0, 1] with initial pdf uniform on [0, 1/2] and no-flux
boundary conditions at 0 and 1 (i.e., homogeneous Neumann boudary conditions), then by Fourier
series methods, you should check, as an exercise, that we obtain the solution

p(x, t) = 1+
4

π

∞∑
n=0

(−1)n

(2n+ 1)
cos((2n+ 1)πx) exp[−(2n+ 1)2π2t/2]

Note that distribution rapidly approaches the uniform distribution.

Informal derivation of the F-P equation in 1D. We present an informal derivation of the F-P
equation following [Erban and Chapman] and focussing only on the 1D case. All the steps can
be made rigorous, provided some conditions on the coefficient functions f and g are satisfied.
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Let us start by writing p(x, t) in full form, p(x, t |y, s). Next, we write down the corresponding
Chapman-Kolmogorov equation:

p(z, t+ ∆t |y, s) =

∫
R
p(z, t+ ∆t | x, t)p(x, t |y, s) dx .

Note that this equation makes sense as a statement about probabilities if we multiply both sides
by dz and integrate over some set of z-values. In the end we will let ∆t → 0; and so we expect
z to be close to x. It is tempting to Taylor expand p(z, t+ ∆t | x, t) in z− x and this is indeed
what we will do later, when we derive the backward Kolmogorov equation. But in this case this
is not helpful.

Instead, we take a smooth test function ϕ(z) with compact support, multiply and integrate
both sides of the Chapman-Kolmogorov equation.

We get∫
R
p(x, t+ ∆t |y, s)ϕ(x)dx =

∫
R

[∫
R
ϕ(z)p(z, t+ ∆t | x, t) dz

]
p(x, t |y, s) dx . (24)

where we have renamed the dummy variable of integration x instead of z on the left and switched
the order of integration on the right.

Let us now Taylor expand ϕ about z = x and consider the various terms in the inner integral on

the right. Set ϕ(z) = ϕ(x) + (z− x)ϕ ′(x) + (z−x)2

2
ϕ ′′(x) + o((z− x)2). We observe that:∫

R
p(z, t+ ∆t | x, t) dz = 1 .

(Given state x at time t, we must reach some state at time t+ ∆t.) Next, using (22),∫
R
(z− x)p(z, t+ ∆t | x, t) dz = E[X(t+ ∆t) − x |X(t) = x] = f(x, t)∆t+ o(∆t) .

Similarly, using (23),∫
R
(z− x)2p(z, t+ ∆t | x, t) dz = E[(X(t) − x)2 |X(t) = x] = (g(x, t))2∆t+ o(∆t) .

We now return to (24). Subtracting the zeroth order term on the right from both sides, and
dividing through by ∆t gives∫

R
ϕ(x)

p(x, t+ ∆t |y, s) − p(x, t |y, s)

∆t
dx

=

∫
R
[ϕ ′(x)f(x, t) +

1

2
ϕ ′′(x)(g(x, t)2) +

o(∆t)

∆t
]p(x, t |y, s) dx .

ϕ has been chosen to have compact support, so integrating by parts on the RHS (once for the
first term and twice for the second) gives∫

R
ϕ(x)

[
−

∂

∂x
(f(x, t)p(x, t |y, s)) +

∂

∂x2

(
1

2
g(x, t)2 p(x, t |y, s)

)
+

o(∆t)

∆t

]
dx .
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Putting it all together

∫
R
ϕ(x)

[
p(x, t+ ∆t |y, s) − p(x, t |y, s)

∆t

+
∂

∂x
(f(x, t)p(x, t |y, s)) −

∂

∂x2

(
1

2
g(x, t)2 p(x, t |y, s)

)
o(∆t)

∆t

]
dx = 0 .

In the limit ∆t → 0, since ϕ is arbitrary, we get

∂

∂t
p(x, t |y, s) = −

∂

∂x
(f(x, t)p(x, t |y, s)) +

∂

∂x2

(
1

2
g(x, t)2 p(x, t |y, s)

)
which is indeed the 1D F-P equation.

Note that many of the steps in the above derivation are formal – we have frequently exchanged
various limiting operations without stating any assumptions, and each of these steps would require
more justification.

Stationary distributions from the F-P equation. Let us now consider how we can use the
Fokker-Planck equation to find stationary distributions of SDEs in the special case of 1D, and
assuming that the coefficients f and g do not depend on time. In this case, the Fokker-Planck
equation reads

∂

∂t
p(x, t) = −

∂

∂x
[f(x)p(x, t)] +

∂2

∂x2
[D(x)p(x, t)] ,

where D(x) = 1
2
g(x)2. Any stationary pdf, say ps(x), must satisfy the stationary equation

obtained by setting the time-derivative to be zero, namely

0 = −
d

dx
[f(x)ps(x)] +

d2

dx2
[D(x)ps(x)] . (25)

We can integrate once to get

d

dx
[D(x)ps(x)] − f(x)ps(x) = C0 .

C0 can be interpreted as the steady state probability flux, which in many circumstances we may
assume to be zero. Setting C0 = 0, and further assuming that D(x) ̸= 0, we can now use the

integrating factor exp
[∫x

0

f(y)
D(y)

dy
]
, and integrate again to obtain

ps(x) =
C

D(x)
exp

[∫ x

0

f(y)

D(y)
dy

]
, (26)

Here, the constant of integration, C, can be obtained by observing that
∫
R ps(x) dx = 1. In

this special case, the F-P equation allows us to calculate explicitly the stationary distribution,
presuming, of course, that such a distribution exists and is unique.
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3.4 The chemical Langevin equation and chemical Fokker-Planck equa-
tion

[At this point you may want to look back to Section 2.7 on the reaction counting process.]

We start with (6) for the evolution of a general stochastic CRN, namely

X(t) = X(0) + ΓN(t) .

Recall that Nj(t) counts how many times the jth reaction has fired by time t. Recall that over
a small time-period ∆t we have:

X(t+ ∆t) − X(t) ≃ ζ1Y1(v1(X(t))∆t) + · · ·+ ζmYm(vm(X(t))∆t) ,

where ζj is the reaction vector of the jth reaction, vj(·) is the intensity of the jth reaction, and
Yj are independent unit Poisson processes. In our discussion of τ-leaping, we already noted that
it may make sense to hold intensities constant over the time-step ∆t.

Although we know that X(t) is actually an integer-valued random variable, the form of the above
equation tempts us to consider the increment X(t + ∆t) − X(t) in terms of a derivative. This
would amount, effectively, to “interpolating” between integer values of the components of X. To
proceed, let us make the following assumptions:

1. Each vj(X(t)) is approximately constant over the time-interval ∆t.

2. Under the first assumption, Yj(vj(X(t))∆t) counts, approximately, the number of times
the jth reaction occurs in time ∆t. We now assume that vj(X(t))∆t is large enough that
we can approximate the Poisson distribution Yj(vj(X(t))∆t) by normal the distribution
Nj(vj(X(t))∆t, vj(X(t))∆t). Here Nj are (independent) normal random variables with
mean and variance both equal to vj(X(t))∆t (a justification of this approximation, using
the central limit theorem, is left as an exercise).

3. Now let Nj(0, 1) be independent standard normal variables, so that

Nj(vj(X(t))∆t, vj(X(t))∆t) = vj(X(t))∆t+
√

vj(X(t))∆t Nj(0, 1) .

Replacing each Yj(vj(X(t))∆t) with this normal approximating random variable gives

X(t+∆t)−X(t) ≃
m∑
j=1

ζjYj(vj(X(t))∆t) ≃
m∑
j=1

ζj

[
vj(X(t))∆t+

√
vj(X(t))∆t Nj(0, 1)

]

4. We can regard
√
∆t Nj(0, 1) as an increment of Brownian motion, and formally write, in

the limit,

dX(t) := X(t+ dt) − X(t) =

m∑
j=1

ζj

[
vj(X(t)) dt+

√
vj(X(t)) dWj

]
. (27)

The stochastic differential equation (27) is called the Chemical Langevin Equation.
Note that it looks exactly like the deterministic equation for the evolution, with “noise
terms” added on. There is one independent noise term associated with each reaction,
corresponding to uncertainty in the number of times this reaction will fire in a given time
interval.
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5. We could rewrite (27) tidily in vector notation as follows

dX(t) = Γ v(X(t)) dt+ ΓD(
√

v(X(t))) dW ,

where Γ is the stoichiometric matrix, W is a vector of m independent Brownian motions,
and D(

√
v(X(t))) is a diagonal m × m matrix whose (j, j)th entry is

√
vj(X(t)). This

makes it clear that the chemical Fokker-Planck equation is an SDE with drift and diffusion
terms, and both are easily written down for any given CRN.

6. We can now write down the Fokker-Planck equation corresponding to the chemical Langevin
equation

∂

∂t
p(x, t) = −

n∑
i=1

∂

∂xi
[fi(x, t)p(x, t)] +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)] ,

where

• fi is the ith component of Γ v(x(t)), i.e., fi(x, t) =
∑m

j=1 Γijvj(x(t)), and

• Dij(x, t) =
1
2

∑m
k=1 ΓikΓjkvk(x(t)).

Exercise 3.3 (Normal approximation to the Poisson distribution). Consider a Poisson ran-
dom variable X with parameter λ and a normal random variable Y with mean and variance λ.
Show, with the help of the central limit theorem, that for large λ

P(X = n) ≃ P(n−
1

2
≤ Y ≤ n+

1

2
) .

[Note that a Poisson random variable with parameter λ has the same distribution as the sum of
N independent Poisson random variables, each with parameter λ/N.]

Example 3.4 (Chemical Langevin equation and chemical F-P equation). Let us consider the
production-degradation system

0
k1−→ A , A

k2−→ 0 .

We have

ζ1 = 1, ζ2 = −1, v1 = k1 V, v2 = k2 a .

where V is the system volume, and we now write a for the number of molecules of A considered
as a real variable. The corresponding chemical Langevin equation is

da =
(
1 −1

) ( k1 V

k2 a

)
dt+

(
1 −1

)( √
k1 V 0

0
√
k2 a

)(
dW1

dW2

)
.

= (k1 V − k2 a) dt+
√

k1 V dW1 −
√

k2 a dW2
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3.4 The chemical Langevin equation and chemical Fokker-Planck equation 50

Figure 1: Stationary distribution for the reaction network 0
k1−→ A , A

k2−→ 0, for two values of
the reactor volume V . The exact distribution from the chemical master equation as a histogram,
along with the pdf computed numerically using the chemical Fokker-Planck equation as above.
Even for a small reactor volume, i.e., for relatively small numbers of molecules, the PDF derived
from the chemical Fokker-Planck equation matches the exact distribution well.

In this case, we have the drift k1 V − k2 a and the diffusion k1 V+k2 a
2

, giving the F-P equation

∂

∂t
p(a, t) = −

∂

∂a
((k1 V − k2 a)p(a, t)) +

∂2

∂a2

(
k1 V + k2 a

2
p(a, t)

)
.

We saw earlier how to find stationary distributions from the F-P equation: in this case we get
the stationary pdf:

ps(a) =
C

D(a)
exp

[∫a

0

f(y)

D(y)
dy

]
,

where f(a) = k1 V − k2 a and D(a) = k1 V+k2 a
2

and C is the normalisation constant

C =

(∫
R

1

D(a)
exp

[∫a

0

f(y)

D(y)
dy

]
da

)−1

We can exactly compute ps(a) upto normalisation, and compute the normalisation constant
numerically (you should try this as an exercise). A comparison between the PDF estimated using
the chemical Fokker-Planck equation, and the exact PDF for two choices of parameter values
is shown in Figure 1. In this case, even when molecule numbers are quite small, the stationary
distribution calculated using the chemical Fokker-Planck equation, matches the true distribution
quite well.
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3.5 The backward Kolmogorov equation (BKE) 51

3.5 The backward Kolmogorov equation (BKE)

The Fokker-Planck equation tells us how the probability density function p(x, t |y, s) associated
with an SDE evolves given some initial state y at some initial time s. Suppose, instead, that we
are interested in some given final state(s), and allow the initial state to vary. Such a problem
is called a “final value problem” rather than initial value problem. We can write down the
corresponding PDE in much the same way as we did the F-P equation – in fact, the derivation
is somewhat easier. We only present a sketch of the derivation in 1D, but the principle in higher
dimensions is similar. Several steps are formal and strictly require further justification.

As before, we start with the Chapman-Kolmogorov equation, this time in the following form

p(x, t |y, s− ∆s) =

∫
R
p(x, t | z, s)p(z, s |y, s− ∆s) dz . (28)

We are interested in letting ∆s → 0, in which case, we expect z → y. Now we do not need to
integrate against a test function – instead, we can simply Taylor expand p(x, t | z, s) about the
point z = y to get

p(x, t | z, s) = p(x, t |y, s) + (z−y)
∂p

∂y
(x, t |y, s) +

(z− y)2

2

∂2p

∂y2
(x, t |y, s) + o((z−y)2) .

If we now substitute for p(x, t | z, s) in (28), the first term in the Taylor expansion gives rise to
a term of the form

p(x, t |y, s)

∫
R
p(z, s |y, s− ∆s) dz = p(x, t |y, s) ,

where the integral is equal to 1 from the law of total probability. The next term gives

∂p

∂y
(x, t |y, s)

∫
R
(z− y)p(z, s |y, s− ∆s) dz =

∂p

∂y
(x, t |y, s) f(y, s)∆s+ o(∆s) .

The equality follows from (22) because the integral can be interpreted as E(X(s)−y |X(s−∆s) =
y]. Similarly, the third term gives

1

2

∂2p

∂y2
(x, t |y, s)

∫
R
(z− y)2 p(z, s |y, s− ∆s) dz =

∂2p

∂y2
(x, t |y, s)

g(y, s)2

2
∆s+ o(∆s) .

This follows from (23) and the interpretation of
∫
R(z − y)2 p(z, s |y, s − ∆s) dz as E((X(s) −

y)2 |X(s− ∆s) = y]. Putting this all together, we get

p(x, t |y, s−∆s) = p(x, t |y, s)+
∂p

∂y
(x, t |y, s) f(y, s)∆s+

∂2p

∂y2
(x, t |y, s)

g(y, s)2

2
∆s+o(∆s) .

Subtracting p(x, t |y, s) from both sides, dividing through by ∆s and letting ∆s → 0 we get the
backward Kolmogorov equation in 1D:

−
∂p

∂s
(x, t |y, s) = f(y, s)

∂p

∂y
(x, t |y, s) +

g(y, s)2

2

∂2p

∂y2
(x, t |y, s) . (29)

Similar arguments in higher dimensions lead to

−
∂p

∂s
(x, t |y, s) =

n∑
i=1

fi(y, s)
∂p(x, t |y, s)

∂yi

+

n∑
i=1

n∑
j=1

Dij(y, s)
∂2p(x, t |y, s)

∂yi ∂yj

, (30)

where, as before, D = 1
2
ggt.
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3.5 The backward Kolmogorov equation (BKE) 52

3.5.1 First passage times

The BKE is particularly useful when we want to know how long we will have to wait for some
event to occur. Let us consider an SDE of the form (18), but where we now assume that the
coefficients f and g do not explicitly depend on time, i.e.,

dX(t) = f(X(t)) dt+ g(X(t)) dW(t) . (31)

Given some open subset A of the state-space, and some initial state y ∈ A, we can use the BKE
to find out about the first time that trajectories hit the boundary of A. We will refer to this
random time as the first passage time from A (even though a trajectory hitting the boundary
could immediately return to A). For any y ∈ A, we thus define the first passage time from A as

TA(y) := inf
t≥0

(t : X(t) ̸∈ A |X(0) = y) .

To compute TA(y), first define pA(x, t |y, 0) via:

pA(x, t |y, 0) dx = P(X(t) ∈ [x, x+ dx], X(u) ∈ A for all u ∈ [0, t) |X(0) = y) ,

Thus pA(x, t |y, 0) is the probability density that we reach x at time t having started at y at
time 0 and having remained in A throughout [0, t).

Note that we have the boundary conditions pA(x, t |y, s) = 0 for x ̸∈ A or y ̸∈ A (and all s and
t), corresponding to the fact that if either initial or final state is outside A, then the probability
in question is 0. By examining the derivation of the BKE, we can confirm that pA satisfies the
BKE (30), which, in this case, reads

∂pA(x, t |y, 0)

∂t
=

n∑
i=1

fi(y)
∂pA(x, t |y, 0)

∂yi

+

n∑
i=1

n∑
j=1

Dij(y)
∂2pA(x, t |y, 0)

∂yi ∂yj

. (32)

(To write the equation in this form, we have noted that pA(x, t |y, 0) = pA(x, 0 |y,−t) as we

have assumed that f and g do not explicitly depend on t; and further noted that −∂pA(x,0 |y,−t)
∂t

=
∂pA(x,t |y,0)

∂t
.)

Now define

h(y, t) := P(TA(y) > t) =

∫
x∈A

pA(x, t |y, 0) dx .

The equation simply tells us that if we have not at any point exited A in the interval [0, t], then
we have remained in A and reached some point x ∈ A at time t. Clearly h(y, 0) = 1 for all
y ∈ A, and h(y, t) = 0 for all t if y ̸∈ A. We will also usually make the assumption that
h(y,∞) := limt→∞ h(y, t) = 0 for all y, i.e., given any fixed y ∈ A, with probability 1 we exit
A in finite time. (Note that this does not imply that the mean first passage time must be finite
as we shall see in an example below.)

Integrating (32) w.r.t. x over A we get a PDE satisfied by h, namely,

∂h(y, t)

∂t
=

n∑
i=1

fi(y)
∂h(y, t)

∂yi

+

n∑
i=1

n∑
j=1

Dij(y)
∂2h(y, t)

∂yi ∂yj

. (33)
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3.5 The backward Kolmogorov equation (BKE) 53

Consider now the expected (i.e., mean) first passage time τ(y), given initial state y. We have:

τ(y) := E(TA(y)) =
∫∞
0

P(TA(y) > t) dt =

∫∞
0

h(y, t) dt .

Integrating (33) w.r.t. t over [0,∞) we get for the evolution of the mean first passage time τ(y),
the PDE

−1 =

n∑
i=1

fi(y)
∂τ(y)

∂yi

+

n∑
i=1

n∑
j=1

Dij(y)
∂2τ(y)

∂yi ∂yj

, (34)

where on the left we have noted that h(y,∞) − h(y, 0) = −1. This is known as the Andronov-
Vitt-Pontryagin formula. To solve this equation, we need to impose some boundary conditions.
First, we expect that τ(y) = 0 if y ∈ ∂A. If the domain is unbounded, then we may also need
to impose further boundary conditions in order to obtain τ.

In 1-D (34) becomes

−1 = f(y)
∂τ(y)

∂y
+D(y)

∂2τ(y)

∂y2
, (35)

where D(y) = g(y)2

2
. Multiplying by the integrating factor 1

D(y)
exp

[∫y

0
f(s)/D(s) ds

]
gives

d

dy

[
exp

[∫y

0

f(s)/D(s) ds

]
dτ

dy

]
= −

1

D(y)
exp

[∫y

0

f(s)/D(s) ds

]
.

Note that the right hand side is, up to a sign and the normalisation constant, the stationary
distribution ps(y) given in (26).

If, for example, we are interested in a region A := (−∞, xu) for some xu, then we have the
boundary condition τ(xu) = 0, and we impose the condition that dτ

dy
(−∞) = 0, i.e., the de-

terministic dynamics dominates far from xu and the mean first passage time from A becomes
insensitive to the precise value of y. Then we may integrate the last equation over (−∞, y) and
rearrange to get

dτ

dy
= −

1

ps(y)D(y)

∫y

−∞ ps(x) dx .

Integrating again from y to xu (and noting that τ(xu) = 0) gives

τ(y) =

∫ xu

y

1

ps(z)D(z)

∫ z

−∞ ps(x) dx dz . (36)

Observe that we do not require the stationary distribution ps(x) to be normalised in order to use
it in this formula.

If a stationary distribution does not exist, we may still be able to calculate the mean FPT directly
from equation (35) by choosing appropriate boundary conditions.

B5.1 Additional Notes (version of February 28, 2025)
Corrections and comments to Murad Banaji

Murad Banaji
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Example 3.5 (First passage time (FPT) of 1D Brownian motion). In this case, the SDE
in question is

dX =
√
2D dW ,

where D > 0 is the diffusion coefficient. We know there is no stationary distribution, but we can
compute the mean first passage time directly. The mean first passage time from some region
satisfies (35) which, in this case, reads

−1 = D
d2τ(y)

dy2
.

Suppose that we are interested in an interval [0, b], and y := X(0) ∈ (0, b). Then we have the
boundary conditions τ(0) = τ(b) = 0, and we easily find by integration that for y ∈ (0, b),
τ(y) = 1

2D
y(b− y). For example, Brownian motion beginning at y = 1

2
takes, on average, time

1
8D

to exit the interval [0, 1]. If we let b → ∞ then notice that τ(y) → ∞ for any y ∈ (0,∞),
i.e., even though Brownian motion is recurrent in 1D, the expected first passage time from the
positive half-line is infinite. (Can you remember an analogous result for a symmetric random walk
in 1D?)

In fact, in this case, we can go further, and compute h(y, t) and thus the full distribution of first
passage times. The BKE satisfied by h simply reads

∂h

∂t
= D

∂2h

∂y2
,

which is the standard diffusion equation. We can use techniques familiar from FSPDE (revise
these!) to solve with h(y, 0) = 1 for y ∈ (0, b), and h(0, t) = h(b, t) = 0 for all t ≥ 0 to get

h(y, t) =

∞∑
n=1

ane
−λ2nDt sin(λny) ,

where λn = nπ/b and an are the coefficients in the Fourier sine series for the constant function
1 on [0, b], namely an = 2

nπ
(1− (−1)n). If we use this to calculate the mean FPT, we get

τ(y) =

∫∞
0

h(y, t) dt =
∞∑
n=1

2b2(1− (−1)n)

n3π3D
sin(λny) ,

which is consistent with our earlier calculation as the right hand side is precisely the Fourier sine
series for 1

2D
y(b− y). [Check all these details!]

Example 3.6 (1D Brownian motion with one reflecting boundary). Let us repeat the
analysis in the previous example, but this time with the boundary at y = 0 being reflecting. As
before, the mean FPT τ(y) satisfies

−1 = D
d2τ(y)

dy2
,
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3.5 The backward Kolmogorov equation (BKE) 55

where now τy(0) = τ(b) = 0. (Note that we expect the FPT to reach a local maximum at the
reflecting boundary, resulting in the first boundary condition.) We find that τ(y) = 1

2D
(b2−y2).

Solving the diffusion equation for h(y, t) with h(y, 0) = 1 for y ∈ (0, b), and hy(0, t) =
h(b, t) = 0 for all t ≥ 0 now gives

h(y, t) =

∞∑
n=0

ane
−λ2nDt cos(λny) , where λn :=

(n+ 1/2)π

b
, an =

2(−1)n

(n+ 1/2)π
.

Integrating gives

τ(y) =

∫∞
0

h(y, t) dt =
∞∑
n=0

2b2(−1)n

(n+ 1/2)3π3D
cos(λny) ,

which is, indeed, equal to the expression we previously calculated for τ(y).

Example 3.7 (Mean first passage time: example in Section 3.6 of Erban and Chapman).
We consider the SDE:

dX = f(X) dt+ g(X) dW ,

where f(x) = −k1x
3 + k2x

2 − k3x + k4 and g(X(t)) = k5 . The conditions which led us to
Equation 36 are satisfied in this case, so we get

τ(y) =

∫ xu

y

1

ps(z)D(z)

∫ z

−∞ ps(x) dx dz .

where D(z) =
k25
2
. We can compute the stationary distribution, which is, up to normalisation,

ps(y) =
2

k2
5

exp

[
2

k2
5

∫y

0

(−k1s
3 + k2s

2 − k3s+ k4) ds

]
=

2

k2
5

exp

[
−3k1y

4 + 4k2y
3 − 6k3y

2 + 12k4y

6k2
5

]

and then use it to compute τ(y) for any y by evaluating the integral

τ(y) =

∫ xu

y

1

exp
[
−3k1z4+4k2z3−6k3z2+12k4z

6k25

] ∫ z

−∞
2

k2
5

exp

[
−3k1x

4 + 4k2x
3 − 6k3x

2 + 12k4x

6k2
5

]
dx dz .

numerically.
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