B2.2 Commutative Algebra Sheet 1 — HT25 Sections 1-5

Section A

1. Let R be a ring. Show that the Jacobson radical of R coincides with the set

 $\{x \in R \mid 1 - xy \text{ is a unit for all } y \in R\}.$

Solution: Suppose that x lies in the Jacobson radical of R. Suppose for contradiction that 1 - xy is not a unit for some $y \in R$. Let \mathfrak{m} be a maximal ideal containing 1 - xy. We know that $xy \in \mathfrak{m}$ since $x \in \mathfrak{m}$ and thus we conclude that $1 \in \mathfrak{m}$, a contradiction.

Suppose now that $x \in R$ and that there is a maximal ideal \mathfrak{m} not containing x. Then $x + \mathfrak{m}$ is non-trivial in the field R/\mathfrak{m} and hence it is a unit; thus, there is a $y \in R$ such that $xy + \mathfrak{m} = 1 + \mathfrak{m}$. In other words, $1 - xy \in \mathfrak{m}$ and so 1 - xy is not a unit.

Section B

- 2. Let R be a ring.
 - (a) Show that if $P(x) = a_0 + a_1 x + \dots + a_k x^k \in R[x]$ is a unit of R[x] then a_0 is a unit of R and a_i is nilpotent for all $i \ge 1$.
 - (b) Show that the Jacobson radical and the nilradical of R[x] coincide.

Solution:

(a) Let $Q(x) = b_0 + \cdots + b_t x^t \in R[x]$ be an inverse of P(x). Then $P(0)Q(0) = a_0b_0 = 1$, forcing a_0 and b_0 to be units.

Let \mathfrak{p} be a prime ideal. Let $j \ge 0$ be the largest integer such that $a_j \notin \mathfrak{p}$ and let $l \ge 0$ be the largest integer such that $b_l \notin \mathfrak{p}$. If j > 0 we have $a_j b_l \in \mathfrak{p}$ (since P(x)Q(x) = 1), which is not possible because R/\mathfrak{p} is a domain. Hence j = 0 and in particular $a_i \in \mathfrak{p}$ for all i > 0. Since \mathfrak{p} was arbitrary, we see that a_i lies in the nilradical of R for all i > 0.

(b) We only have to show that every element of the Jacobson radical of R[x] is nilpotent. So let $P(x) \in a_0 + a_1x + \cdots + a_kx^k \in R[x]$ be an element of the Jacobson radical. By Question 1, we know that for any $T(x) \in R[x]$, the element 1 - P(x)T(x) is a unit. In particular,

$$1 + xP(x) = 1 + a_0x + a_1x^2 + \dots + a_kx^{k+1}$$

is a unit. By (a), the element a_i is thus nilpotent for all $i \ge 0$. In particular $a_0 + a_1 x + \cdots + a_k x^k$ is nilpotent (since the radical of a ring is an ideal).

- 3. Let R be a ring and let $N \subseteq R$ be its nilradical. Show that the following are equivalent:
 - (a) R has exactly one prime ideal.
 - (b) Every element of R is either a unit or is nilpotent.
 - (c) R/N is a field.

Solution: (a) \Rightarrow (b): Let \mathfrak{p} be the unique prime ideal. Suppose that $r \in R$ is not a unit. Then r is contained in a maximal ideal, which must coincide with \mathfrak{p} . Since \mathfrak{p} is the only prime ideal, the ideal \mathfrak{p} is the nilradical N of R and hence r is nilpotent.

 $\neg(c) \Rightarrow \neg(b)$: Suppose that R/N is not a field. Then either R/N is the zero ring or there is an element $x \in (R/N) \setminus \{0\}$, which is not a unit. If R/N is the zero ring, then every element of R is nilpotent (and in fact R is the zero ring). If there is an element

 $x \in (R/N) \setminus \{0\}$, let $x_1 \in R$ be a preimage of x. Then x_1 is not a unit and is not nilpotent.

 $\neg(a) \Rightarrow \neg(c)$: If R has more than one prime ideal then R/N has a non-zero prime ideal (since every prime ideal contains N), and hence is not a field.

- 4. Let R be a ring and let $I \subseteq R$ be an ideal. Let $S = \{1 + r \mid r \in I\}$.
 - (a) Show that S is a multiplicative set.
 - (b) Show that the ideal generated by the image of I in R_S is contained in the Jacobson radical of R_S .
 - (c) Prove the following generalisation of Nakayama's lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then there exists $r \in R$, such that $r - 1 \in I$ and rM = 0.

Solution:

- (a) This is clear.
- (b) The ideal I_S generated by I in R_S consists of the elements a/b such that $a \in I$ and $b \in S$. By Q1, we thus only have to show that if a/b is such that $a \in I$ and $b \in S$, then 1 (a/b)(c/d) is a unit for all $c \in R$ and $d \in S$. Now 1/b and 1/d are units of R_S , hence we only have to show that bd ac is a unit for a, b, c, d as in the previous sentence. Now $bd = (1 + b_1)(1 + d_1) = 1 + b_1 + d_1 + b_1d_1$ for some $b_1, d_1 \in I$, and thus $bd ac = 1 + b_1 + d_1 + b_1d_1 ac$. Since $b_1 + d_1 + b_1d_1 ac \in I$ we see that $bd ac = 1 + b_1 + d_1 + b_1d_1 ac \in S$ and hence is a unit of R_S .
- (c) If IM = M we clearly have $I_SM_S = M_S$. Hence by (b) and the form of Nakayama's lemma proven in the course, we have $M_S = 0$. Now let m_1, \ldots, m_k be generators of M. Since M is the kernel of the natural map $M \to M_S$ (since $M_S = 0$), there is an element $s_i \in S$ such that $s_im_i = 0$ for all i. Let $s = \prod_i s_i$. Then s annihilates all the generators m_i and hence M. By construction, $s 1 \in I$.
- 5. Let R be a ring and let M be a finitely generated R-module. Let $\phi: M \to M$ be a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an automorphism. [Hint: use ϕ to construct a structure of R[x]-module on M and use the previous question.]

Solution: View M as an R[x]-module by setting $P(x) \cdot m = P(\phi)(m)$. We have (x)M = M by construction and hence by Q4 (iii), there is a polynomial $Q(x) \in R[x]$ such that $Q(x) - 1 \in (x)$ and Q(x)M = 0. Let $m_0 \in \ker(\phi)$. Then $Q(x)(m_0) = m_0$ and hence $m_0 = 0$. Thus ϕ is injective.

6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S if and only if all the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and that every maximal element is a prime ideal. Show that the set of zero-divisors of R is a union of prime ideals.

Solution: If \mathcal{T} is a totally ordered subset of \mathcal{S} , then the union of its elements is an ideal that consists solely of zero-divisors. So every totally ordered subset of \mathcal{T} has an upper bound and thus, by Zorn's lemma, the ordered set \mathcal{S} has maximal elements. Note that we may refine this reasoning as follows. Let $I \in \mathcal{S}$. Consider the subset \mathcal{S}_I of \mathcal{S} that consists of ideals containing I. By a completely similar reasoning, the subset \mathcal{S}_I has maximal elements for the relation of inclusion. We contend that if $J \in \mathcal{S}_I$ is a maximal element, then it is also maximal in \mathcal{S} . Indeed, suppose that $J' \supseteq J$ for some ideal $J' \in \mathcal{S}$. Then $J' \in \mathcal{S}_I$ and hence J' = J. Now note that

$$\{ \text{ zero-divisors of } R \} = \bigcup_{r \in R, r \text{ is a zero-div.}} (r) \subseteq \bigcup_{r \in R, r \text{ is a zero-div.}} J(r)$$

where J(r) is a maximal element of S containing the ideal (r). Since J(r) also consists of zero-divisors, we conclude that

{ zero-divisors of
$$R$$
} = $\bigcup_{r \in R, r \text{ is a zero-div.}} J(r).$

Hence we only have to prove that the maximal elements of \mathcal{S} are prime ideals.

Let J be a maximal element of S. Let $x, y \in R \setminus J$ and suppose for contradiction that $xy \in J$. Then we have

$$((x) + J)((y) + J) \subseteq J.$$

By maximality of J, there are elements $a \in (x) + J$ and $b \in (y) + J$, which are not zero-divisors. But $ab \in J$ and so ab is a zero-divisor, which is contradiction (note that the set of non-zero-divisors is a multiplicative set). So we must have $x \in J$ or $y \in J$, so J is prime.

Section C

7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there are minimal elements in Spec(R).

Solution: Let \mathcal{T} be a totally ordered subset of $\operatorname{Spec}(R)$ for the relation \supseteq . Note that the maximal elements for the relation \supseteq are the minimal elements for the inclusion relation (which is \subseteq). Let $I = \bigcap_{\mathfrak{p} \in \mathcal{T}} \mathfrak{p}$. Then I is an ideal. We claim that I is prime.

To see this, let $x, y \in R$ and suppose for contradiction that $x, y \in R \setminus I$ and that $xy \in I$. By assumption there are prime ideals $\mathfrak{p}_x, \mathfrak{p}_y \in \mathcal{T}$ such that $x \notin \mathfrak{p}_x$ and $y \notin \mathfrak{p}_y$. Suppose without restriction of generality that $\mathfrak{p}_x \supseteq \mathfrak{p}_y$ (recall that \mathcal{T} is totally ordered). We have $xy \in \mathfrak{p}_y$ and thus either x or y lies in \mathfrak{p}_y . This contradicts the fact that $x, y \notin \mathfrak{p}_y$. The ideal I thus lies in Spec(R) and it is a lower bound for \mathcal{T} . We may thus apply Zorn's lemma to conclude that there are minimal elements in Spec(R).