B2.2 Commutative Algebra
Sheet 1 — HT25

Sections 1-5

Section A

1. Let R be a ring. Show that the Jacobson radical of R coincides with the set

{r € R|1—xyis a unit for all y € R}.

Solution: Suppose that z lies in the Jacobson radical of R. Suppose for contradiction
that 1 — zy is not a unit for some y € R. Let m be a maximal ideal containing 1 — xy.

We know that xy € m since x € m and thus we conclude that 1 € m, a contradiction.

Suppose now that x € R and that there is a maximal ideal m not containing x. Then
x + m is non-trivial in the field R/m and hence it is a unit; thus, there is a y € R such

that zy +m =1+ m. In other words, 1 —xy € m and so 1 — xy is not a unit.
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Section B

2. Let R be a ring.

(a) Show that if P(x) = ag+ a1z + - - - + apx® € R[z] is a unit of R[z] then aq is a unit
of R and a; is nilpotent for all ¢ > 1.

(b) Show that the Jacobson radical and the nilradical of R[z] coincide.

Solution:

(a) Let Q(x) = byp+---+ba' € R[x] be an inverse of P(x). Then P(0)Q(0) = agby = 1,
forcing ag and by to be units.
Let p be a prime ideal. Let j > 0 be the largest integer such that a; € p and let
[ > 0 be the largest integer such that b, € p. If j > 0 we have a;b, € p (since
P(z)Q(z) = 1), which is not possible because R/p is a domain. Hence j = 0 and
in particular a; € p for all ¢+ > 0. Since p was arbitrary, we see that a; lies in the

nilradical of R for all 7 > 0.

(b) We only have to show that every element of the Jacobson radical of R[z] is nilpotent.
So let P(z) € ag + arx + - - - + apz® € R[x] be an element of the Jacobson radical.
By Question 1, we know that for any T'(z) € R[x], the element 1 — P(z)T'(z) is a

unit. In particular,
1+ 2P(x) =1+ apw + ay2® + - + apa™™

is a unit. By (a), the element a; is thus nilpotent for all ¢ > 0. In particular

ap + a1 + - - - + apx® is nilpotent (since the radical of a ring is an ideal).

3. Let R be aring and let N C R be its nilradical. Show that the following are equivalent:
(a) R has exactly one prime ideal.

(b) Every element of R is either a unit or is nilpotent.

(c) R/N is a field.

Solution: (a)=(b): Let p be the unique prime ideal. Suppose that r € R is not a unit.
Then r is contained in a maximal ideal, which must coincide with p. Since p is the only

prime ideal, the ideal p is the nilradical N of R and hence r is nilpotent.

—(c)= —(b): Suppose that R/N is not a field. Then either R/N is the zero ring or
there is an element « € (R/N) ~ {0}, which is not a unit. If R/N is the zero ring, then

every element of R is nilpotent (and in fact R is the zero ring). If there is an element

Mathematical Institute, University of Oxford Page 2 of 5
Dawid Kielak: kielak@maths.ox.ac.uk



B2.2 Commutative Algebra: Sheet 1 — HT25

r € (R/N) ~ {0}, let 1 € R be a preimage of x. Then x; is not a unit and is not

nilpotent.

—(a)= —(c): If R has more than one prime ideal then R/N has a non-zero prime ideal

(since every prime ideal contains V), and hence is not a field.

4. Let R be aring and let I C R be an ideal. Let S ={1+r |r e I}.
(a) Show that S is a multiplicative set.

(b) Show that the ideal generated by the image of I in Rg is contained in the Jacobson

radical of Rg.

(c) Prove the following generalisation of Nakayama’s lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then
there exists r € R, such thatr —1 € I and rM = 0.

Solution:

(a) This is clear.

(b) The ideal I generated by I in Rg consists of the elements a/b such that a € I and
b e S. By Q1, we thus only have to show that if a/b is such that a € I and b € S,
then 1 — (a/b)(¢/d) is a unit for all c € R and d € S. Now 1/b and 1/d are units of
Rg, hence we only have to show that bd — ac is a unit for a, b, ¢, d as in the previous
sentence. Now bd = (14 b1)(1 4+ dy) = 1+ by + dy + bydy for some by,dy € I, and
thus bd — ac = 1 + by + dy + bidy — ac. Since by + dy + bid; — ac € I we see that
bd —ac=1+ by +dy + bdy —ac € S and hence is a unit of Rg.

(¢) If IM = M we clearly have IsMg = Mg. Hence by (b) and the form of Nakayama’s
lemma proven in the course, we have Mg = 0. Now let mq,...,my be generators
of M. Since M is the kernel of the natural map M — Mg (since Mg = 0), there is
an element s; € S such that s;m; = 0 for all . Let s = [[, s;,. Then s annihilates

all the generators m; and hence M. By construction, s — 1 € I.

5. Let R be a ring and let M be a finitely generated R-module. Let ¢: M — M be
a surjective homomorphism of R-modules. Prove that ¢ is injective, and is thus an
automorphism. [Hint: use ¢ to construct a structure of R[z]-module on M and use the

previous question.]
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Solution: View M as an R|x]-module by setting P(x)-m = P(¢)(m). We have (z)M =
M by construction and hence by Q4 (iii), there is a polynomial Q(x) € R[x] such that
Q(x) —1 € (z) and Q(x)M = 0. Let mg € ker(¢). Then Q(x)(my) = mo and hence

mo = 0. Thus ¢ is injective.

6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an
ideal I is in § if and only if all the elements of I are zero-divisors. Show that S has
maximal elements (for the relation of inclusion) and that every maximal element is a

prime ideal. Show that the set of zero-divisors of R is a union of prime ideals.

Solution: If 7 is a totally ordered subset of S, then the union of its elements is an
ideal that consists solely of zero-divisors. So every totally ordered subset of 7 has an
upper bound and thus, by Zorn’s lemma, the ordered set S has maximal elements. Note
that we may refine this reasoning as follows. Let I € §. Consider the subset S; of
S that consists of ideals containing /. By a completely similar reasoning, the subset
S; has maximal elements for the relation of inclusion. We contend that if J € &7 is a
maximal element, then it is also maximal in S. Indeed, suppose that J' O J for some
ideal J' € S. Then J' € S; and hence J' = J. Now note that

{ zero-divisors of R} = U (r) C U J(r)
reR, r is a zero-div. reR, r is a zero-div.
where J(r) is a maximal element of S containing the ideal (r). Since J(r) also consists

of zero-divisors, we conclude that

{ zero-divisors of R} = U J(r).

re€R, r is a zero-div.
Hence we only have to prove that the maximal elements of S are prime ideals.

Let J be a maximal element of S. Let z,y € R~ J and suppose for contradiction that
xy € J. Then we have
(@) + J)((y) +J) € J.

By maximality of J, there are elements a € (x) + J and b € (y) + J, which are not
zero-divisors. But ab € J and so ab is a zero-divisor, which is contradiction (note that
the set of non-zero-divisors is a multiplicative set). So we must have x € J or y € J, so

J is prime.
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Section C

7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there

are minimal elements in Spec(R).

Solution: Let 7 be a totally ordered subset of Spec(R) for the relation D. Note that
the maximal elements for the relation O are the minimal elements for the inclusion

relation (which is C). Let I = Nperp. Then [ is an ideal. We claim that [ is prime.

To see this, let x,y € R and suppose for contradiction that x,y € R~ I and that zy € I.
By assumption there are prime ideals p,,p, € 7 such that x € p, and y &€ p,. Suppose
without restriction of generality that p, O p, (recall that 7 is totally ordered). We have
xy € p, and thus either z or y lies in p,. This contradicts the fact that xz,y ¢ p,. The
ideal I thus lies in Spec(R) and it is a lower bound for 7. We may thus apply Zorn’s

lemma to conclude that there are minimal elements in Spec(R).
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