
B2.2 Commutative Algebra

Sheet 1 — HT25

Sections 1-5

Section A

1. Let R be a ring. Show that the Jacobson radical of R coincides with the set

{x ∈ R | 1− xy is a unit for all y ∈ R}.

Solution: Suppose that x lies in the Jacobson radical of R. Suppose for contradiction

that 1− xy is not a unit for some y ∈ R. Let m be a maximal ideal containing 1− xy.

We know that xy ∈ m since x ∈ m and thus we conclude that 1 ∈ m, a contradiction.

Suppose now that x ∈ R and that there is a maximal ideal m not containing x. Then

x+m is non-trivial in the field R/m and hence it is a unit; thus, there is a y ∈ R such

that xy +m = 1 +m. In other words, 1− xy ∈ m and so 1− xy is not a unit.
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Section B

2. Let R be a ring.

(a) Show that if P (x) = a0 + a1x+ · · ·+ akx
k ∈ R[x] is a unit of R[x] then a0 is a unit

of R and ai is nilpotent for all i ⩾ 1.

(b) Show that the Jacobson radical and the nilradical of R[x] coincide.

Solution:

(a) Let Q(x) = b0+ · · ·+btx
t ∈ R[x] be an inverse of P (x). Then P (0)Q(0) = a0b0 = 1,

forcing a0 and b0 to be units.

Let p be a prime ideal. Let j ⩾ 0 be the largest integer such that aj ̸∈ p and let

l ⩾ 0 be the largest integer such that bl ̸∈ p. If j > 0 we have ajbl ∈ p (since

P (x)Q(x) = 1), which is not possible because R/p is a domain. Hence j = 0 and

in particular ai ∈ p for all i > 0. Since p was arbitrary, we see that ai lies in the

nilradical of R for all i > 0.

(b) We only have to show that every element of the Jacobson radical ofR[x] is nilpotent.

So let P (x) ∈ a0 + a1x+ · · ·+ akx
k ∈ R[x] be an element of the Jacobson radical.

By Question 1, we know that for any T (x) ∈ R[x], the element 1− P (x)T (x) is a

unit. In particular,

1 + xP (x) = 1 + a0x+ a1x
2 + · · ·+ akx

k+1

is a unit. By (a), the element ai is thus nilpotent for all i ⩾ 0. In particular

a0 + a1x+ · · ·+ akx
k is nilpotent (since the radical of a ring is an ideal).

3. Let R be a ring and let N ⊆ R be its nilradical. Show that the following are equivalent:

(a) R has exactly one prime ideal.

(b) Every element of R is either a unit or is nilpotent.

(c) R/N is a field.

Solution: (a)⇒(b): Let p be the unique prime ideal. Suppose that r ∈ R is not a unit.

Then r is contained in a maximal ideal, which must coincide with p. Since p is the only

prime ideal, the ideal p is the nilradical N of R and hence r is nilpotent.

¬(c)⇒ ¬(b): Suppose that R/N is not a field. Then either R/N is the zero ring or

there is an element x ∈ (R/N)∖ {0}, which is not a unit. If R/N is the zero ring, then

every element of R is nilpotent (and in fact R is the zero ring). If there is an element

Mathematical Institute, University of Oxford

Dawid Kielak: kielak@maths.ox.ac.uk

Page 2 of 5



B2.2 Commutative Algebra: Sheet 1 — HT25

x ∈ (R/N) ∖ {0}, let x1 ∈ R be a preimage of x. Then x1 is not a unit and is not

nilpotent.

¬(a)⇒ ¬(c): If R has more than one prime ideal then R/N has a non-zero prime ideal

(since every prime ideal contains N), and hence is not a field.

4. Let R be a ring and let I ⊆ R be an ideal. Let S = {1 + r | r ∈ I}.

(a) Show that S is a multiplicative set.

(b) Show that the ideal generated by the image of I in RS is contained in the Jacobson

radical of RS.

(c) Prove the following generalisation of Nakayama’s lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M . Then

there exists r ∈ R, such that r − 1 ∈ I and rM = 0.

Solution:

(a) This is clear.

(b) The ideal IS generated by I in RS consists of the elements a/b such that a ∈ I and

b ∈ S. By Q1, we thus only have to show that if a/b is such that a ∈ I and b ∈ S,

then 1− (a/b)(c/d) is a unit for all c ∈ R and d ∈ S. Now 1/b and 1/d are units of

RS, hence we only have to show that bd−ac is a unit for a, b, c, d as in the previous

sentence. Now bd = (1 + b1)(1 + d1) = 1 + b1 + d1 + b1d1 for some b1, d1 ∈ I, and

thus bd − ac = 1 + b1 + d1 + b1d1 − ac. Since b1 + d1 + b1d1 − ac ∈ I we see that

bd− ac = 1 + b1 + d1 + b1d1 − ac ∈ S and hence is a unit of RS.

(c) If IM = M we clearly have ISMS = MS. Hence by (b) and the form of Nakayama’s

lemma proven in the course, we have MS = 0. Now let m1, . . . ,mk be generators

of M . Since M is the kernel of the natural map M → MS (since MS = 0), there is

an element si ∈ S such that simi = 0 for all i. Let s =
∏

i si. Then s annihilates

all the generators mi and hence M . By construction, s− 1 ∈ I.

5. Let R be a ring and let M be a finitely generated R-module. Let ϕ : M → M be

a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an

automorphism. [Hint: use ϕ to construct a structure of R[x]-module on M and use the

previous question.]
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Solution: ViewM as an R[x]-module by setting P (x)·m = P (ϕ)(m). We have (x)M =

M by construction and hence by Q4 (iii), there is a polynomial Q(x) ∈ R[x] such that

Q(x) − 1 ∈ (x) and Q(x)M = 0. Let m0 ∈ ker(ϕ). Then Q(x)(m0) = m0 and hence

m0 = 0. Thus ϕ is injective.

6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an

ideal I is in S if and only if all the elements of I are zero-divisors. Show that S has

maximal elements (for the relation of inclusion) and that every maximal element is a

prime ideal. Show that the set of zero-divisors of R is a union of prime ideals.

Solution: If T is a totally ordered subset of S, then the union of its elements is an

ideal that consists solely of zero-divisors. So every totally ordered subset of T has an

upper bound and thus, by Zorn’s lemma, the ordered set S has maximal elements. Note

that we may refine this reasoning as follows. Let I ∈ S. Consider the subset SI of

S that consists of ideals containing I. By a completely similar reasoning, the subset

SI has maximal elements for the relation of inclusion. We contend that if J ∈ SI is a

maximal element, then it is also maximal in S. Indeed, suppose that J ′ ⊇ J for some

ideal J ′ ∈ S. Then J ′ ∈ SI and hence J ′ = J . Now note that

{ zero-divisors of R} =
⋃

r∈R, r is a zero-div.

(r) ⊆
⋃

r∈R, r is a zero-div.

J(r)

where J(r) is a maximal element of S containing the ideal (r). Since J(r) also consists

of zero-divisors, we conclude that

{ zero-divisors of R} =
⋃

r∈R, r is a zero-div.

J(r).

Hence we only have to prove that the maximal elements of S are prime ideals.

Let J be a maximal element of S. Let x, y ∈ R∖ J and suppose for contradiction that

xy ∈ J . Then we have

((x) + J)((y) + J) ⊆ J.

By maximality of J , there are elements a ∈ (x) + J and b ∈ (y) + J , which are not

zero-divisors. But ab ∈ J and so ab is a zero-divisor, which is contradiction (note that

the set of non-zero-divisors is a multiplicative set). So we must have x ∈ J or y ∈ J , so

J is prime.
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Section C

7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there

are minimal elements in Spec(R).

Solution: Let T be a totally ordered subset of Spec(R) for the relation ⊇. Note that

the maximal elements for the relation ⊇ are the minimal elements for the inclusion

relation (which is ⊆). Let I = ∩p∈T p. Then I is an ideal. We claim that I is prime.

To see this, let x, y ∈ R and suppose for contradiction that x, y ∈ R∖I and that xy ∈ I.

By assumption there are prime ideals px, py ∈ T such that x ̸∈ px and y ̸∈ py. Suppose

without restriction of generality that px ⊇ py (recall that T is totally ordered). We have

xy ∈ py and thus either x or y lies in py. This contradicts the fact that x, y ̸∈ py. The

ideal I thus lies in Spec(R) and it is a lower bound for T . We may thus apply Zorn’s

lemma to conclude that there are minimal elements in Spec(R).
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