B2.2 Commutative Algebra
Sheet 2 — HT25

Sections 1-8

Section A

1. Consider the ideals p; = (z,y), p2 = (z,2) and m = (z,y, ) of K[z,y, 2], where K is a
field. Show that p; N py Nm? is a minimal primary decomposition of p; - po. Determine

the isolated and the embedded prime ideals of p; - po.

Solution: For future reference, note that we have

m? = ((z) + () + (2)* = (2%, 9", 2", 2y, w2, 92)

and
pr-pa = ((2) + () ((2) + (2)) = (2%, 22, yz, y2).

We have p; - po C p; N py and we also clearly have p; - p C m? since py,po € m.
Thus we have p; - po C p; N po N m2. Note that p; and p, are prime since the rings
Klz,y,z]/p1 ~ K|[z] and K|z,y,z]/ps ~ Kly] are domains. Note also that m is a
maximal ideal, since K|[z,y, z]/m ~ K is a field. Thus p;, p» and m? are primary (see
after Lemma 6.4 for the latter). The radicals of the ideals py, po and m? are pi, po
and m (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally,
we have p; 2 po Nm? (because 22 ¢ p; but 22 € p, Nm?), po 2 p; N m? (because
y* & py but y? € py Nm?) and m? 2 p; Npy (because v &€ m? but x € po N ps). Hence if
p1 - P2 = pp Npo Nm? then this decomposition is indeed primary and minimal. Thus we

only have to show that p; - ps D p; N py N M.
From the above, we have to show that
(z,9) N (2, 2) N (22, 4%, 2%, 2y, w2, y2) C (22, 22, y2, y2).

This is immediate, since all the ideals we are considering have the property that a
polynomial lies in such an ideal if and only if all of the monomial summands of the

polynomial lie in the ideal.
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Section B

2. Let K be a field. Show that the ideal (2%, xy,y?) C K|x,y] is a primary ideal, which is

not irreducible.

Solution: We first show that (22, zy,y?) is primary. This simply follows from the fact
that (z,y) is maximal ideal and from the fact that (22, zy, y?) = (z,y)? (see after Lemma
6.4).

Now note that (22, zy,y?) = (2?,y) N (z,5?). This is again immediate, since all three

ideals have the same property as in Question 1.

3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a
finite subgroup of the group of automorphisms of T" as a R-algebra. Let T be the fixed
point set of G (ie the subset of T', which is fixed by all the elements of G).

(a) Show that T is integral over T,

(b) Show that T¢ is a subring of T', which contains the image of R and that T¢ is

finitely generated over R.

Solution: It is clear from the definitions that 7'¢ is a subring which contains the image

of R. Let t € T. Then t satisfies the polynomial equation

[I¢—g)=0

geG
The polynomial M;(z) = [[,cq(x — g(t)) has coefficients in T¢, because the coefficients
are symmetric polynomials in the variables ¢(t), and therefore are invariant under G.
Hence t is integral over T¢. Since t was arbitrary, 7 is integral over 7. Since T is also
finitely generated as a T%algebra (because it is finitely generated as an R-algebra), we
thus see that T is finite over T (see after Lemma 8.3). Hence T¢ is finitely generated
over R by the Artin—Tate Theorem.

4. Show that Z is integrally closed and that the integral closure of Z in Q(7) is Z[i].

Solution: We first prove that Z is integrally closed. Let p/q € Q, where p and ¢ are
coprime integers, and let P(x) = 2" +a,_12" '+ -+ag € Z[x] be a monic polynomial.
Suppose that P(p/q) = 0. Then we have

q¢"P(p/q) = p" + an D" q+ an_op" ?¢ + -+ + apq” = 0.
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Since a,_1p" 1q + an_op™ 2¢® + - - + agq” is divisible by ¢ and p” is coprime to ¢, this
implies that ¢ = +1, so p/q € Z.

To prove that the integral closure of Z in Q(¢) is Z[i], note first that ¢ is a root of the

monic polynomial z? + 1 over Z.

So we only have to prove that Z[i] is integrally closed in Q(7) (see Lemma 8.6). Note fur-
thermore that Q(¢) is the fraction field of Z[i]. To see this, write let r 4+t € Q(i), where
r,t € Q (any element of Q(i) can be written in this form because Q(i) ~ Q[x]/(x?+1)).
Let r = p/q and t = u/v. We then have r + it = (vp + uqi)/(vq), which is a fraction
of elements of Z[i], proving our claim. Finally, recall that we know from Rings and
Modules that Z[i] is a Euclidean domain, where the Euclidean function is given by the
norm (the norm of ¢ + id is ¢* + d* if ¢ + id € Z[i]). In particular, Z[i] is a PID and

every ideal in Z[i] is generated by an element of smallest norm.

To prove that Z[i] is integrally closed in Q(7), we may now proceed as for Z. Let
P(x) = 2"+ ap,_12" "+ + ag € Z[i][z]

and let r+it = B/A, be its root where A, B € Z[i]. Since Z[i] is a UFD, we may assume

that A and B do not share any irreducible factors. We can now write as before
A"P(B/A) = B" + a,_ 1B" *A+ a, 2B" 2A% 4+ - + apA" = 0.

Since a,_1B" 'A+ a,_oB"2A% + - - 4+ agA" is divisible by A and B" is coprime to A,
this implies that A is a unit, so B/A € Z]i].

Note that the proof above actually shows that any UFD (Unique Factorisation Domain)

is integrally closed.

5. Let S be a ring and let R C S be a subring of S. Suppose that R is integrally closed in
S. Let P(x) € R[z] and suppose that P(z) = Q(z)J(x), where Q(z), J(x) € S[z] and
Q(x) and J(x) are monic. Show that Q(x), J(z) € R[z]. Use this to give a new proof
of the fact that if T'(z) € Z[z] and T'(z) = Ti(z)T2(x), where T (x), Th(z) € Q[z] are
monic polynomials, then 7' (x), Tz(z) € Zx].

Solution: We will need the following.

Lemma. Let A be a ring and let U(z) € A[z] be a non zero monic polynomial. Then

there exists a ring B containing A, which is integral over A and such that

deg(U)

Ur)= [] (@—b)

=1
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for some b; € B, where we set H?iglw)(:v —b;) =1if deg(U) = 0.

Proof of the lemma. By induction on the degree d = deg(U) of U(x). If d € {0,1},
there is nothing to prove. So suppose that d > 1 and that the result holds for any
smaller value of d. The ring C' = A[y]/(U(y)) is integral over A by Proposition 8.2. The
element y of C' satisfies the equation U(y) = 0 by construction. By Euclidean division
(see Preamble), we thus have U(x) = (x — y)Z(x) for some Z(x) € C[z]. Since Z(x)
has degree less than d, we may apply the inductive hypothesis and we obtain a ring B,
which contains C' and where Z(z) splits. The polynomial U(z) also splits in B, so we

are done. O

We now apply the lemma to Q(z) and J(z) successively and we obtain a ring B, which

contains S, such that B is integral over S and such that

deg(Q)

Q)= [T @—v)

=1

and
deg(J)

Ja)= ][] (- a)

i=1
where b;,¢; € B. Now we have P(b;) = P(¢;) = 0 by construction, so the b; and ¢; are
actually integral over R. Since the integral closure of R in B is a subring, we conclude
that the coefficients of Q(z) and J(x) are integral over R (and in S, by assumption).

But since R is integrally closed in .S, this means that these coefficients lie in R.

Note that we did not actually use the fact that B was integral over S in the proof.

6. Let R be a subring of a ring 7" and suppose that 7' is integral over R. Let p be prime ideal
of R and let q be a prime ideal of 7. Suppose that N R =p. Let p; C ps C - C py
be primes ideal of R and suppose that p; = p. Show that there are prime ideals
q1 € go C -+ C qg of T such that q; = q and such that ;"R =p, foralli € {1,... k}.

Solution: By induction on k, we only need to treat the case £ = 2. Consider the
extension of rings R/p C T'/q. This is also an integral extension. Furthermore, there is
a unique prime ideal p, in R/p, which corresponds to po via the quotient map. By the
Going-up Theorem, there is a prime ideal q5 in 7'/q, which is such that g, N R/p = pi,.

The prime ideal g5 corresponding to ¢/, via the quotient map has the required properties.
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7. Let R be a ring. Let § be the set of ideals in R that are not finitely generated; assume
that S # 0.

(a) Show that S has at least one maximal element.

(b) Let I be maximal element of S (with respect to the relation of inclusion). Show

that [ is prime.

(c) Suppose that all the prime ideals of R are finitely generated. Prove that R is

noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Solution:

(a) Zorn’s lemma.

(b) Let z,y ¢ I and suppose for contradiction that xy € I. Let I, = (x) + I and
I, = (y) + 1. Write J = I, - I,. By assumption I,, [, and hence J are finitely
generated, and we have J C I. Consider the image I mod J of I in the R/I,-
module [, /.J. Note that I,/J is finitely generated as an R/I,-module since I, is
finitely generated as an R-module. Note also that the ring R/, is noetherian, since
every ideal of R/I, is the image of either the zero ideal or of an ideal of R strictly
containing /. Hence I mod J is also finitely generated as an R/I,-module, and
therefore as an R-module. So is J, and the extension of finitely generated modules
is finitely generated, yielding finite generation of I as an R-module. This is exactly

the same as being finitely generated as an ideal; contradiction.

(c¢) This is immediate now — if S is non-empty, then it has a prime member.
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Section C

8. Let R be a ring. Let S be the set of non-principal ideals in R; assume that S # ().

Prove that § admits maximal elements, and that every such element a prime ideal.

Solution: The existence of maximal elements follows from Zorn’s lemma. Let [ be one
such. Let x,y ¢ I and suppose for contradiction that xy € I. Let I, = (z) + [. By
assumption, we have I, = (g,) for some g, € R. Let ¢: R — I, be the surjection of
R-modules given by the formula ¢(r) = rg,. We then have I C ¢~(I).

Suppose first that I = ¢~1(I). In other words, for all r € R, we have rg, € I if and
only if r € I. This contradicts the fact that yg, € I. So we conclude that I C ¢~*(I).
From the definition of I, we then see that ¢~!(I) is a principal ideal of R, and hence so
is I = ¢(¢~*(I)). This is a contradiction.
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