
B2.2 Commutative Algebra

Sheet 2 — HT25

Sections 1-8

Section A

1. Consider the ideals p1 = (x, y), p2 = (x, z) and m = (x, y, z) of K[x, y, z], where K is a

field. Show that p1 ∩ p2 ∩m2 is a minimal primary decomposition of p1 · p2. Determine

the isolated and the embedded prime ideals of p1 · p2.

Solution: For future reference, note that we have

m2 = ((x) + (y) + (z))2 = (x2, y2, z2, xy, xz, yz)

and

p1 · p2 = ((x) + (y))((x) + (z)) = (x2, xz, yx, yz).

We have p1 · p2 ⊆ p1 ∩ p2 and we also clearly have p1 · p2 ⊆ m2 since p1, p2 ⊆ m.

Thus we have p1 · p2 ⊆ p1 ∩ p2 ∩ m2. Note that p1 and p2 are prime since the rings

K[x, y, z]/p1 ≃ K[z] and K[x, y, z]/p2 ≃ K[y] are domains. Note also that m is a

maximal ideal, since K[x, y, z]/m ≃ K is a field. Thus p1, p2 and m2 are primary (see

after Lemma 6.4 for the latter). The radicals of the ideals p1, p2 and m2 are p1, p2

and m (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally,

we have p1 ̸⊇ p2 ∩ m2 (because z2 ̸∈ p1 but z2 ∈ p2 ∩ m2), p2 ̸⊇ p1 ∩ m2 (because

y2 ̸∈ p2 but y2 ∈ p1 ∩m2) and m2 ̸⊇ p1 ∩ p2 (because x ̸∈ m2 but x ∈ p2 ∩ p2). Hence if

p1 · p2 = p1 ∩ p2 ∩m2 then this decomposition is indeed primary and minimal. Thus we

only have to show that p1 · p2 ⊇ p1 ∩ p2 ∩m2.

From the above, we have to show that

(x, y) ∩ (x, z) ∩ (x2, y2, z2, xy, xz, yz) ⊆ (x2, xz, yx, yz).

This is immediate, since all the ideals we are considering have the property that a

polynomial lies in such an ideal if and only if all of the monomial summands of the

polynomial lie in the ideal.
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Section B

2. Let K be a field. Show that the ideal (x2, xy, y2) ⊆ K[x, y] is a primary ideal, which is

not irreducible.

Solution: We first show that (x2, xy, y2) is primary. This simply follows from the fact

that (x, y) is maximal ideal and from the fact that (x2, xy, y2) = (x, y)2 (see after Lemma

6.4).

Now note that (x2, xy, y2) = (x2, y) ∩ (x, y2). This is again immediate, since all three

ideals have the same property as in Question 1.

3. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a

finite subgroup of the group of automorphisms of T as a R-algebra. Let TG be the fixed

point set of G (ie the subset of T , which is fixed by all the elements of G).

(a) Show that T is integral over TG.

(b) Show that TG is a subring of T , which contains the image of R and that TG is

finitely generated over R.

Solution: It is clear from the definitions that TG is a subring which contains the image

of R. Let t ∈ T . Then t satisfies the polynomial equation∏
g∈G

(t− g(t)) = 0

The polynomial Mt(x) =
∏

g∈G(x− g(t)) has coefficients in TG, because the coefficients

are symmetric polynomials in the variables g(t), and therefore are invariant under G.

Hence t is integral over TG. Since t was arbitrary, T is integral over TG. Since T is also

finitely generated as a TG-algebra (because it is finitely generated as an R-algebra), we

thus see that T is finite over TG (see after Lemma 8.3). Hence TG is finitely generated

over R by the Artin–Tate Theorem.

4. Show that Z is integrally closed and that the integral closure of Z in Q(i) is Z[i].

Solution: We first prove that Z is integrally closed. Let p/q ∈ Q, where p and q are

coprime integers, and let P (x) = xn+an−1x
n−1+ · · ·+a0 ∈ Z[x] be a monic polynomial.

Suppose that P (p/q) = 0. Then we have

qnP (p/q) = pn + an−1p
n−1q + an−2p

n−2q2 + · · ·+ a0q
n = 0.
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Since an−1p
n−1q + an−2p

n−2q2 + · · ·+ a0q
n is divisible by q and pn is coprime to q, this

implies that q = ±1, so p/q ∈ Z.

To prove that the integral closure of Z in Q(i) is Z[i], note first that i is a root of the

monic polynomial x2 + 1 over Z.

So we only have to prove that Z[i] is integrally closed in Q(i) (see Lemma 8.6). Note fur-

thermore that Q(i) is the fraction field of Z[i]. To see this, write let r+ it ∈ Q(i), where

r, t ∈ Q (any element of Q(i) can be written in this form because Q(i) ≃ Q[x]/(x2+1)).

Let r = p/q and t = u/v. We then have r + it = (vp + uqi)/(vq), which is a fraction

of elements of Z[i], proving our claim. Finally, recall that we know from Rings and

Modules that Z[i] is a Euclidean domain, where the Euclidean function is given by the

norm (the norm of c + id is c2 + d2 if c + id ∈ Z[i]). In particular, Z[i] is a PID and

every ideal in Z[i] is generated by an element of smallest norm.

To prove that Z[i] is integrally closed in Q(i), we may now proceed as for Z. Let

P (x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Z[i][x]

and let r+ it = B/A, be its root where A,B ∈ Z[i]. Since Z[i] is a UFD, we may assume

that A and B do not share any irreducible factors. We can now write as before

AnP (B/A) = Bn + an−1B
n−1A+ an−2B

n−2A2 + · · ·+ a0A
n = 0.

Since an−1B
n−1A+ an−2B

n−2A2 + · · ·+ a0A
n is divisible by A and Bn is coprime to A,

this implies that A is a unit, so B/A ∈ Z[i].

Note that the proof above actually shows that any UFD (Unique Factorisation Domain)

is integrally closed.

5. Let S be a ring and let R ⊆ S be a subring of S. Suppose that R is integrally closed in

S. Let P (x) ∈ R[x] and suppose that P (x) = Q(x)J(x), where Q(x), J(x) ∈ S[x] and

Q(x) and J(x) are monic. Show that Q(x), J(x) ∈ R[x]. Use this to give a new proof

of the fact that if T (x) ∈ Z[x] and T (x) = T1(x)T2(x), where T1(x), T2(x) ∈ Q[x] are

monic polynomials, then T1(x), T2(x) ∈ Z[x].

Solution: We will need the following.

Lemma. Let A be a ring and let U(x) ∈ A[x] be a non zero monic polynomial. Then

there exists a ring B containing A, which is integral over A and such that

U(x) =

deg(U)∏
i=1

(x− bi)
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for some bi ∈ B, where we set
∏deg(U)

i=1 (x− bi) = 1 if deg(U) = 0.

Proof of the lemma. By induction on the degree d = deg(U) of U(x). If d ∈ {0, 1},
there is nothing to prove. So suppose that d > 1 and that the result holds for any

smaller value of d. The ring C = A[y]/(U(y)) is integral over A by Proposition 8.2. The

element y of C satisfies the equation U(y) = 0 by construction. By Euclidean division

(see Preamble), we thus have U(x) = (x − y)Z(x) for some Z(x) ∈ C[x]. Since Z(x)

has degree less than d, we may apply the inductive hypothesis and we obtain a ring B,

which contains C and where Z(x) splits. The polynomial U(x) also splits in B, so we

are done.

We now apply the lemma to Q(x) and J(x) successively and we obtain a ring B, which

contains S, such that B is integral over S and such that

Q(x) =

deg(Q)∏
i=1

(x− bi)

and

J(x) =

deg(J)∏
i=1

(x− ci)

where bi, ci ∈ B. Now we have P (bi) = P (ci) = 0 by construction, so the bi and ci are

actually integral over R. Since the integral closure of R in B is a subring, we conclude

that the coefficients of Q(x) and J(x) are integral over R (and in S, by assumption).

But since R is integrally closed in S, this means that these coefficients lie in R.

Note that we did not actually use the fact that B was integral over S in the proof.

6. Let R be a subring of a ring T and suppose that T is integral over R. Let p be prime ideal

of R and let q be a prime ideal of T . Suppose that q ∩ R = p. Let p1 ⊆ p2 ⊆ · · · ⊆ pk

be primes ideal of R and suppose that p1 = p. Show that there are prime ideals

q1 ⊆ q2 ⊆ · · · ⊆ qk of T such that q1 = q and such that qi∩R = pi for all i ∈ {1, . . . , k}.

Solution: By induction on k, we only need to treat the case k = 2. Consider the

extension of rings R/p ⊆ T/q. This is also an integral extension. Furthermore, there is

a unique prime ideal p′2 in R/p, which corresponds to p2 via the quotient map. By the

Going-up Theorem, there is a prime ideal q′2 in T/q, which is such that q′2 ∩ R/p = p′2.

The prime ideal q2 corresponding to q
′
2 via the quotient map has the required properties.
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7. Let R be a ring. Let S be the set of ideals in R that are not finitely generated; assume

that S ≠ ∅.

(a) Show that S has at least one maximal element.

(b) Let I be maximal element of S (with respect to the relation of inclusion). Show

that I is prime.

(c) Suppose that all the prime ideals of R are finitely generated. Prove that R is

noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Solution:

(a) Zorn’s lemma.

(b) Let x, y ̸∈ I and suppose for contradiction that xy ∈ I. Let Ix = (x) + I and

Iy = (y) + I. Write J = Ix · Iy. By assumption Ix, Iy and hence J are finitely

generated, and we have J ⊂ I. Consider the image I mod J of I in the R/Iy-

module Ix/J . Note that Ix/J is finitely generated as an R/Iy-module since Ix is

finitely generated as an R-module. Note also that the ring R/Iy is noetherian, since

every ideal of R/Iy is the image of either the zero ideal or of an ideal of R strictly

containing I. Hence I mod J is also finitely generated as an R/Iy-module, and

therefore as an R-module. So is J , and the extension of finitely generated modules

is finitely generated, yielding finite generation of I as an R-module. This is exactly

the same as being finitely generated as an ideal; contradiction.

(c) This is immediate now – if S is non-empty, then it has a prime member.
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Section C

8. Let R be a ring. Let S be the set of non-principal ideals in R; assume that S ≠ ∅.
Prove that S admits maximal elements, and that every such element a prime ideal.

Solution: The existence of maximal elements follows from Zorn’s lemma. Let I be one

such. Let x, y ̸∈ I and suppose for contradiction that xy ∈ I. Let Ix = (x) + I. By

assumption, we have Ix = (gx) for some gx ∈ R. Let ϕ : R → Ix be the surjection of

R-modules given by the formula ϕ(r) = rgx. We then have I ⊆ ϕ−1(I).

Suppose first that I = ϕ−1(I). In other words, for all r ∈ R, we have rgx ∈ I if and

only if r ∈ I. This contradicts the fact that ygx ∈ I. So we conclude that I ⊂ ϕ−1(I).

From the definition of I, we then see that ϕ−1(I) is a principal ideal of R, and hence so

is I = ϕ(ϕ−1(I)). This is a contradiction.
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