
B2.2 Commutative Algebra

Sheet 3 — HT25

Sections 1-10

Section A

1. Let R be a subring of a ring T . Suppose that T is integral over R. Let p be a prime

ideal of R and let q1, q2 be prime ideals of T such that q1 ∩R = q2 ∩R = p. Show that

if q1 ⊆ q2 then q1 = q2.

Solution: The ring R/p is can be viewed as a subring of T/q1 and by assumption we

have (q2 mod q1) ∩ R/p = (0). We may thus assume without loss of generality that R

and T to be domains and that q1 and p are zero ideals.

Now let e ∈ q2 ∖ {0} and let P (x) ∈ R[x] be a non-zero monic polynomial such that

P (e) = 0. Since T is a domain, we may assume that the constant coefficient of P (x)

is non-zero (otherwise, replace P (x) by P (x)/xk for a suitable k ⩾ 1). But then the

constant term P (0) is a linear combination of positive powers of e (since P (e) = 0), so

P (0) ∈ R ∩ q2 = (0). This is a contradiction.
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Section B

2. Let R be a ring. Show that the two following conditions are equivalent:

(a) R is a Jacobson ring.

(b) If p ∈ Spec(R) and R/p contains an element b such that (R/p)[b−1] is a field, then

R/p is a field.

Here we write (R/p)[b−1] for the localisation ofR/p at the multiplicative subset 1, b, b2, . . . .

Solution:

(a) ⇒ (b): If R is a Jacobson, then so is R/p for any p ∈ Spec(R). Hence (ii) follows

from Lemma 10.2.

¬(a) ⇒ ¬(b): Note first that R is a Jacobson ring if and only if any prime ideal of R

is the intersection of the maximal ideals containing it (this is straightforward). Now

suppose that R is not Jacobson. Then there is a prime ideal p of R and an element

e ̸∈ p such that e is in the Jacobson radical of p. In other words, e + p ̸= p and e + p

lies in the Jacobson radical of R/p.

Now let q be an ideal maximal among the prime ideals of R/p, which do not contain

e + p. The ideal q exists, since it corresponds to a maximal ideal of (R/p)[(e + p)−1]

by Lemma 5.6, and it is not maximal, since e + p lies in the intersection of all the

maximal ideals of R/p. The ring (R/p)/q has by construction the property that any of

its non-zero prime ideals contains (e+ p) + q. In particular, the ring

((R/p)/q)[((e+ p) + q)−1]

is a field, because its only prime ideal is the zero ideal. On other hand, ((R/p)/q) is

not a field, since q is not maximal. Now if we let q : R → R/p be the quotient map, we

have ((R/p)/q) ≃ R/q−1(q) and thus this contradicts (b).

3. Let k be field and let R be a finitely generated algebra over k. Show that the two

following conditions are equivalent:

(a) Spec(R) is finite.

(b) R is finite over k.

Solution: (a) ⇒ (b): Suppose that Spec(R) is finite. By Noether’s normalisation

lemma, there is an injection k[x1, . . . , xd] → R, which makes R into a finite k[x1, . . . , xd]-

algebra. Since the corresponding map of spectra Spec(R) → Spec(k[x1, . . . , xd]) is

surjective by the Going-Up Theorem, this implies that Spec(k[x1, . . . , xd]) is finite. In
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particular, k[x1, . . . , xd] has only finitely many maximal ideals, say m1, . . . ,mt. Since

k[x1, . . . , xd] is a Jacobson ring, we have ∩imi = r((0)) = 0 and so we may deduce

from the Chinese remainder theorem that k[x1, . . . , xd] ≃ ⊕iR/mi. Since k[x1, . . . , xd]

is a domain, this implies that t = 1. In particular, k[x1, . . . , xd] is field, which is only

possible if d = 0 (otherwise, x1 is a non unit). Hence R is finite over k.

(ii) ⇒ (i) : This follows from Proposition 8.12.

4. Let k be an algebraically closed field. Let P1, . . . , Pd ∈ k[x1, . . . , xd]. Suppose that the

set

{(y1, . . . , yd) ∈ kd |Pi(y1, . . . , yd) = 0 ∀i ∈ {1, . . . , d}}

is finite. Show that

Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

is finite.

Solution: From Corollaries 9.5 and 9.3, we deduce that r((P1, . . . , Pd)) is the intersec-

tion of finitely many maximal ideals of k[x1, . . . , xd], say m1, . . . ,mt. From the Chinese

remainder theorem, we deduce that

k[x1, . . . , xd]/r((P1, . . . , Pd)) ≃
∏
i

k[x1, . . . , xd]/mi ≃
∏
i

k.

In particular, Spec(k[x1, . . . , xd]/r((P1, . . . , Pd))) is finite. Now we have

Spec(k[x1, . . . , xd]/r((P1, . . . , Pd))) ≃ Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

so the conclusion follows.

5. Let R be a ring and let R0 be the prime ring of R (see the preamble of the notes for

the definition). Suppose that R is a finitely generated R0-algebra. Suppose also that R

is a field. Prove that R is a finite field.

Solution: Since R0 is contained in a field, it is a domain and so R0 is either a finite

field or it is isomorphic to Z. Suppose first that R0 is a finite field. Then R is a finite

field extension of a finite field by the weak Nullstellensatz and hence R is a finite field.

Now suppose that R ≃ Z. A finitely generated Z-algebra is simply a finitely gener-

ated abelian group; all subgroups of such groups are again finitely generated, and so

such groups cannot contain Q. But R contains the fraction field Q of Z. This is a

contradiction.
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6. Let k be a field and let m be a maximal ideal of k[x1, . . . , xd]. Show that there are poly-

nomials P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd) such that m = (P1, . . . , Pd).

Solution: By induction on d ⩾ 1. If d = 1 then this follows from the fact that k[x1] is

a PID. We suppose that the statement holds for d−1. Let K = k[x1, . . . , xd]/m. By the

weak Nullstellensatz, this is a finite field extension of k. Let ϕ : k[x1, . . . , xd] → K be

the natural surjective homomorphism of k-algebras. Let L = ϕ(k[x1, . . . , xd−1]). This is

a domain and by Lemma 8.9, L is a field, since it contains k and is contained inside an

integral extension of k. Let ψ : k[x1, . . . , xd−1] → L be the surjective homomorphism of

k-algebras arising by restricting ϕ. The map ψ induces a surjective homomorphism of

k-algebras

Ψ: k[x1, . . . , xd] ≃ (k[x1, . . . , xd−1])[xd] → L[xd]

and there is a surjective homomorphism of L-algebras

Λ: L[xd] → K

that sends xd to ϕ(xd). By construction, we have ϕ = Λ ◦ Ψ. In particular, we

have m = Ψ−1(Λ−1(0)). Since L[xd] is a PID and ϕ(xd) is algebraic over k, we have

Λ−1(0) = (P (xd)) for some non zero polynomial P (xd) ∈ L[xd]. Now let Pd(x1, . . . , xd) ∈
(k[x1, . . . , xd−1])[xd] be a preimage by Ψ of P (xd).

We claim that m = (ker(Ψ), Pd). To see this, note that Ψ((ker(Ψ), Pd)) = (P (xd)) and

so we have (ker(Ψ), Pd) ⊆ m. On the other hand, if e ∈ m then Ψ(e) ∈ (P (xd)) and

thus there is an element e′ ∈ (Pd) such that Ψ(e) = Ψ(e′) (since Ψ is surjective). In

particular, we have e− e′ ∈ ker(Ψ), so that e ∈ (ker(Ψ), Pd).

Now by the inductive assumption, ker(Ψ) is generated by polynomials

P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd−1(x1, . . . , xd−1)

and so m is generated by P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd).
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Section C

7. Let R be a domain. Show that R[x] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field

of R[x] is K(x) = (K[x])(K[x] ∖ {1})−1. Let Q(x) ∈ K(x) and suppose that Q(x) is

integral over R[x]. Suppose for a contradiction that Q(x) ̸∈ R[x], and take Q(x) of

smallest possible degree. Clearly Q(x) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4,

sheet 2, that K[x] is integrally closed, since it is a PID. So we deduce that Q(x) ∈ K[x].

Now let

Qn + Pn−1Q
n−1 + · · ·+ P0 = 0

be a non trivial integral equation for Q with Pi ∈ R[x] for all n. Evaluating at x = 0

shows that the constant term of Q(x) is integral over R, and hence lies in R. Since

the integral closure of R[x] is a ring, we may subtract the constant term, and assume

that the constant term of Q is zero. But then we can also divide by a power of x, and

decrease the degree of Q. Contradiction.
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