B2.2 Commutative Algebra
Sheet 3 — HT25
Sections 1-10

Section A

1. Let R be a subring of a ring 7. Suppose that 7" is integral over R. Let p be a prime
ideal of R and let qq, g2 be prime ideals of T" such that ¢y N R = g2 N R = p. Show that
if q1 g 2 then qd1 = q2.

Solution: The ring R/p is can be viewed as a subring of 7//q; and by assumption we
have (q2 mod q1) N R/p = (0). We may thus assume without loss of generality that R

and T to be domains and that q; and p are zero ideals.

Now let e € go \ {0} and let P(z) € R[x] be a non-zero monic polynomial such that
P(e) = 0. Since T is a domain, we may assume that the constant coefficient of P(x)
is non-zero (otherwise, replace P(z) by P(z)/x* for a suitable k > 1). But then the
constant term P(0) is a linear combination of positive powers of e (since P(e) = 0), so
P(0) € RNqy = (0). This is a contradiction.
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Section B

2. Let R be a ring. Show that the two following conditions are equivalent:
(a) R is a Jacobson ring.

(b) If p € Spec(R) and R/p contains an element b such that (R/p)[b~!] is a field, then
R/p is a field.

Here we write (R/p)[b~!] for the localisation of R/p at the multiplicative subset 1,b, 5%, . ...

Solution:

(a) = (b): If R is a Jacobson, then so is R/p for any p € Spec(R). Hence (ii) follows

from Lemma 10.2.

—(a) = —(b): Note first that R is a Jacobson ring if and only if any prime ideal of R
is the intersection of the maximal ideals containing it (this is straightforward). Now
suppose that R is not Jacobson. Then there is a prime ideal p of R and an element
e ¢ p such that e is in the Jacobson radical of p. In other words, e +p # p and e + p
lies in the Jacobson radical of R/p.

Now let q be an ideal maximal among the prime ideals of R/p, which do not contain
e+ p. The ideal q exists, since it corresponds to a maximal ideal of (R/p)[(e + p)~!]
by Lemma 5.6, and it is not maximal, since e + p lies in the intersection of all the
maximal ideals of R/p. The ring (R/p)/q has by construction the property that any of

its non-zero prime ideals contains (e + p) + q. In particular, the ring

(R/p)/a)l((e+p)+a)]

is a field, because its only prime ideal is the zero ideal. On other hand, ((R/p)/q) is
not a field, since q is not maximal. Now if we let ¢ : R — R/p be the quotient map, we
have ((R/p)/q) ~ R/q'(q) and thus this contradicts (b).

3. Let k be field and let R be a finitely generated algebra over k. Show that the two
following conditions are equivalent:
(a) Spec(R) is finite.
(b) R is finite over k.

Solution: (a) = (b): Suppose that Spec(R) is finite. By Noether’s normalisation
lemma, there is an injection k[z1, ..., z4] — R, which makes R into a finite k[z1, ..., z4]-
algebra. Since the corresponding map of spectra Spec(R) — Spec(k[zy,...,z4]) is
surjective by the Going-Up Theorem, this implies that Spec(k[z1,...,x4]) is finite. In
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particular, k[zi,..., x4 has only finitely many maximal ideals, say my,...,m;. Since
k[xy,...,z4] is a Jacobson ring, we have N;m; = t((0)) = 0 and so we may deduce
from the Chinese remainder theorem that k[zy,...,z4 ~ ®;R/m;. Since k[zy,..., x4
is a domain, this implies that ¢ = 1. In particular, k[zq,...,z,] is field, which is only

possible if d = 0 (otherwise, x; is a non unit). Hence R is finite over k.

(ii) = (i) : This follows from Proposition 8.12.

4. Let k be an algebraically closed field. Let Pi,..., Py € k[z1,...,x4). Suppose that the

set
(s ya) € K| Py, ya) = 0Vi € {1, d}}
is finite. Show that
Spec(k[z1, ..., xal/(P1,..., Pa))

is finite.

Solution: From Corollaries 9.5 and 9.3, we deduce that t((P, ..., P;)) is the intersec-
tion of finitely many maximal ideals of k[xy, ..., z4], say my,..., m;. From the Chinese

remainder theorem, we deduce that
Kov,ozd fe(Pry o PY) = [ Kl vl fms = [

In particular, Spec(k[z1, ..., z4]/t((Pi,..., Py))) is finite. Now we have

Spec(k[xy, ..., xq]/t((P1,. .., Py))) =~ Spec(k[zy,...,zq|/(PL,..., Py))

so the conclusion follows.

5. Let R be a ring and let Ry be the prime ring of R (see the preamble of the notes for
the definition). Suppose that R is a finitely generated Ry-algebra. Suppose also that R
is a field. Prove that R is a finite field.

Solution: Since R, is contained in a field, it is a domain and so Ry is either a finite
field or it is isomorphic to Z. Suppose first that Ry is a finite field. Then R is a finite
field extension of a finite field by the weak Nullstellensatz and hence R is a finite field.

Now suppose that R ~ Z. A finitely generated Z-algebra is simply a finitely gener-
ated abelian group; all subgroups of such groups are again finitely generated, and so
such groups cannot contain Q. But R contains the fraction field Q of Z. This is a

contradiction.

Mathematical Institute, University of Oxford Page 3 of 5
Dawid Kielak: kielak@maths.ox.ac.uk



B2.2 Commutative Algebra: Sheet 3 — HT25

6. Let k be a field and let m be a maximal ideal of k[z1, ..., z4]. Show that there are poly-

nomials Pi(x1), Py(x1,%2), Ps(x1, X2, x3), ..., Py(z1,...,24) such that m = (P, ..., Py).

Solution: By induction on d > 1. If d = 1 then this follows from the fact that k[x;] is
a PID. We suppose that the statement holds for d —1. Let K = k[z1,...,z4)/m. By the
weak Nullstellensatz, this is a finite field extension of k. Let ¢: k[xq,..., 24 — K be
the natural surjective homomorphism of k-algebras. Let L = ¢(k[xy,...,24-1]). This is
a domain and by Lemma 8.9, L is a field, since it contains k£ and is contained inside an
integral extension of k. Let ¢: k[z1,...,24-1] — L be the surjective homomorphism of
k-algebras arising by restricting ¢. The map 1 induces a surjective homomorphism of
k-algebras
U: klxy, ..., xq = (k[z1, ... 24 1]))[zd] = L]xg)

and there is a surjective homomorphism of L-algebras
A L[iﬂd] — K

that sends z4 to ¢(z4). By construction, we have ¢ = A o W. In particular, we
have m = U=1(A71(0)). Since L[zy] is a PID and ¢(x,) is algebraic over k, we have
A71(0) = (P(z4)) for some non zero polynomial P(z4) € Llxs]. Now let Py(x1,...,14) €
(k[z1,...,24-1])[z4] be a preimage by ¥ of P(z4).

We claim that m = (ker(¥), P;). To see this, note that ¥((ker(V), P;)) = (P(z4)) and
so we have (ker(V), P;) € m. On the other hand, if e € m then ¥(e) € (P(x4)) and
thus there is an element € € (P,) such that ¥(e) = W(¢') (since ¥ is surjective). In

particular, we have e — ¢’ € ker(¥), so that e € (ker(V), Py).

Now by the inductive assumption, ker(W¥) is generated by polynomials
Pi(x1), Pa(z1,22), Ps(1, 29, 23), .., Py1 (21, .., Ta1)

and so m is generated by Py (1), Py(x1,x2), Ps(21, 29, 23), ..., Py(x1, ..., 24).
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Section C

7. Let R be a domain. Show that R[z] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field
of Rlz] is K(z) = (K[z])(K[x] ~ {1})7!. Let Q(x) € K(z) and suppose that Q(z) is
integral over R[z]. Suppose for a contradiction that Q(z) ¢ R[z]|, and take Q(x) of

smallest possible degree. Clearly Q(x) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4,
sheet 2, that K[z] is integrally closed, since it is a PID. So we deduce that Q(z) € K|z].

Now let
Q"+ Pa@Q 4+ P =0

be a non trivial integral equation for @ with P, € R[z] for all n. Evaluating at = 0
shows that the constant term of Q(z) is integral over R, and hence lies in R. Since
the integral closure of R[z] is a ring, we may subtract the constant term, and assume
that the constant term of @) is zero. But then we can also divide by a power of z, and

decrease the degree of (). Contradiction.
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