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Preface

This course will serve as an introduction to optimal transportation theory, its appli-
cation in the analysis of PDE, and its connections to the macroscopic description of
interacting particle systems. The optimal transportation problem started with Gas-
pard Monge in late XVIII century with his seminal work “Mémoire sur la théorie
des déblais et des remblais” and expanded by Leonid Kantorovich with connections
to economics. Brenier’s dynamical formulation of optimal transport in the 80’s-90’s
gave rise to a flurry of applications of optimal mass transportation theory in PDE
theory, geometry, engineering, and lately in data science, that has been increasing in
the last 30 years. This course will cover some of the basic notions of transportation
metrics between probability measures as well as applications in mean-field limits
and PDE as gradient flows or steepest descent in spaces of probability measures.

The main learning outcomes are: Getting familiar with the Monge-Kantorovich
problem and transport distances. Derivation of macroscopic models via the mean-
field limit and their analysis based on stability of transport distances. Dynamic In-
terpretation and Geodesic convexity. A brief introduction to gradient flows and ex-
amples. Prerequisites: A4 Integration. The short option in Calculus of Variation in
Part A and functional analysis courses will ease understanding concepts but not
compulsory.

Regarding textbooks to find basic material I advice to look up the general mono-
graphs in optimal transport theory [22, 19], the book [13] for basic related material
in functional analysis, the lecture notes from summer schools [12, 3, 9], and finally
[15] for the mean-field limit and [21] for nonlinear diffusions. Additional material
can be found related to courses taught at University of Cambridge [20] and at ETH-
Zurich [14]. Further complementary material can also be found in [23, 5, 4, 1].
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Chapter 1
Interacting Particle Systems & PDE

This course is devoted to the analysis of solutions of the following family of Partial
Differential Equations

∂ρ

∂ t
= ∇ · [ρ∇(V +W ∗ρ)]+∆P(ρ), (1.1)

where the unknown ρ(t, ·) is a time-dependent probability measure on Rd (d ≥ 1),
P : [0,∞) → R is an increasing function with P(0) = 0, V : Rd → R is a confine-
ment potential and W : Rd → R is an interaction potential. The symbols ∇ and ∆

denote the gradient and the Laplacian operators and will always be applied to func-
tions, while ∇· stands for the divergence operator, and will always be applied to
vector fields. In the sequel, we identify both the probability measure ρ(t, ·) = ρt
with its Radon-Nikodym density dρt/dx with respect to Lebesgue, and thus, we use
the notation dρt = dρ(t,x) = ρ(t,x)dx unless discussing about general probability
measures. The basic assumptions on P implies that the last term in (1.1) represents
a diffusion term. The interaction potential W is always assumed to be symmetric:
∀z ∈Rd , W (−z) =W (z). Finally, the smoothness on the potentials V and W will be
specified in each particular case.

We will be interested in understanding the well-posednes and the qualitative
properties of solutions to (1.1) given by curves of probability densities, i.e., we are
looking for solutions such that ρ(t, ·) ∈ L1

+(Rd) for all t ≥ 0, and even sometimes
we will work with curves of probability measures. Sometimes in particular models
the measures will not be normalized to unit mass, but we will be assuming that we
look for nonnegative integrable solutions with a fixed given mass.

1.1 Aggregation Equation: Granular Flow Models.

Rapid granular flow models were developed to describe dissipative or inelastic col-
lisions between particles by statistical mechanic approaches. A basic model that

1



2 1 Interacting Particle Systems & PDE

triggered the attention of researchers in kinetic theory at the end of the 90’s on this
type of equations (1.1) with P = 0 can be introduced on the real line. Assume we
have particles on the real line moving freely until they collide, while they loose part
of the relative velocity in each collision. Denoting by v and w the velocities of these
particle before collision, and assuming conservation of the momentum but a loss of
their relative velocity measured by the restitution coefficient 0 ≤ r ≤ 1, we can write
the post-collisional velocities by

v′ =
1
2
(v+w)+

r
2
(v−w); w′ =

1
2
(v+w)− r

2
(v−w). (1.2)

A more suitable form of (1.2) can be obtained by setting the coefficient of restitution
r = 1− 2r̄, where now 0 ≤ r̄ ≤ 1/2 is the dissipation parameter. In terms of r̄, the
dissipative collision reads

v′ = (1− r̄)v+ r̄w; w′ = r̄v+(1− r̄)w. (1.3)

Note that r = 1 corresponds to elastic collisions that in one dimension leads to triv-
ial dynamics, swapping of labels for the particles. An integral equation given the
evolution of the statistical distribution of the velocities of the particles on the line
can be phenomenologically introduced of the form

∂ f
∂ t

+ v
∂ f
∂x

= Qr( f , f ), (1.4)

usually called a Boltzmann type equation, where the unknown is the statistical dis-
tribution f (t,x,v) in position x and velocity v at time t ≥ 0. The right hand side
models the gain and loss of particles with a given velocity v due to collisions with
other particles. The dissipative Boltzmann collision operator Qr( f , f ) is usually de-
fined in its weak form, that is, in how it acts on given test functions ϕ ∈C∞(R)

< ϕ,Qr( f , f )>=
∫
R

∫
R

B(|v−w|) f (v) f (w)
[
ϕ(v′)−ϕ(v)

]
dvdw, (1.5)

with B(z), z ∈ [0,∞), being the collision frequency, i. e., the probability of collision
of two particles may depend on the relative velocity at which they are colliding.
Typical values of the collision frequency are B(z) = |z|γ with γ ≥ −1, being γ = 1
refered as inelastic hard spheres.

Notice that in order for the right hand side in (1.5) to be well defined, f must be-
long to some Lp spaces and satisfy certain moments in v bounded depending on the
growth of the test functions, but we proceed formally in order to understand further
the model. As mentioned earlier, in one–dimension of velocity space an elastic bi-
nary collision particles simply exchange their velocities and the Bolzmann collision
operator for elastic collisions disappears Q1 = 0. By the symmetry of the collision
mechanism (1.3), we can write the collision operator as
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<ϕ,Qr( f , f )>=
1
2

∫
R

∫
R

B(|v−w|) f (v) f (w)
[
ϕ(v′)+ϕ(w′)−ϕ(v)−ϕ(w)

]
dvdw.

(1.6)
Let us now focus on the homogeneous problem, meaning that we assume the

initial data is homogeneous in space and we look for solutions only depending on
the velocity variable in order to understand just the velocity distribution, i.e., f (t,v)
satisfies

∂ f
∂ t

= Qr( f , f ). (1.7)

It is easy to check that the homogeneous Boltzmann equation conserves mass, mo-
mentum and dissipates energy, meaning that

< 1,Qr( f , f )>=< v,Qr( f , f )>= 0

and

< v2,Qr( f , f )>=− (1− r)2

4

∫
R

∫
R

B(|v−w|)(v−w)2 f (v) f (w)dvdw.

These properties mean that solutions to (1.7) should be probability measures con-
serving their mean and dissipating the kinetic energy by multiplying (1.7) by 1, v
and v2 and integrating in v. Due to translational invariance, let us assume that the
mean velocity is zero, i.e., ∫

R
v f (t,v)dv = 0, ∀t ≥ 0. (1.8)

Let us look for simpler models, assuming that the inelasticity is small r ≃ 1 or
equivalentely r̄ ≃ 0, we approximate the Boltzmann collision operator by expanding
in the expression (1.5) to get

ϕ(v′)−ϕ(v)≃ ∂ϕ

∂v
(v)(v′− v) =−r̄(v−w)

∂ϕ

∂v
(v).

Therefore, we can approximate the collision operator Qr( f , f ) by

< ϕ,Qr( f , f )>≃−r̄
∫
R

∫
R

B(|v−w|)(v−w) f (v) f (w)
∂ϕ

∂v
(v)dvdw. (1.9)

The right-hand side of (1.9) is the weak form of a differential operator, thus we can
finally write a one-dimensional simplified granular flow model as

∂ f
∂ t

=
∂

∂v

[
f
(

∂W
∂v

∗ f
)]

, with
∂W
∂v

= vB(|v|), (1.10)

where the factor r̄ is absorbed in the time derivative. Notice that for the typical cases
of collision frequencies, W (v) = |v|γ+2

γ+2 , γ ≥ −1. Therefore, this simplified granular
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flow model corresponds to cases of the general family of PDE (1.1) with V = 0,
P = 0 and convex interaction potentials W .

Intuitively, we should expect concentration in velocity variable as time evolves
due to the inelasticity of the interactions, particles will start to decrease their rela-
tive velocities until eventually reaching rest state. Is this captured by the simplified
model (1.10)? Let us look at the evolution of the variance of the distribution in
velocity variable, that is

d
dt

∫
R
|v|2 f (t,v)dv =−

∫
R

∫
R

B(|v−w|)(v−w)2 f (v) f (w)dvdw

by substituting in (1.9) and symetrizing. In case γ = 0, we can expand the square
and use the conservation of zero mean velocity (1.8) to simplify the right-hand
side. Therefore, denoting the variance of f (t, ·) by x(t), then it follows the ODE
x′(t) ≤ −cx(t), and thus x(t) → 0 as t → ∞ exponentially fast for γ = 0. We con-
clude that the variance is decreasing and converging to 0 as t → ∞. Let us assume
that there is no concentration in finite time, as a consequence as t → ∞ the probabil-
ity densities f (t, ·)⇀ δ0 weakly-∗ as measures as t → ∞. Now the question is how
this concentration in velocity happens for the solutions of (1.10), does it really hap-
pen in finite or infinite time and if so, can we understand the convergence towards
concentration? Is there any typical profile? What is the long-time behavior for other
values of −1 ≤ γ?

1.2 Aggregation-Diffusion: McKean-Vlasov Equations.

Consider a confinement potential V ∈C1, and a particle that moves in this potential
with a large friction such that we can neglect the inertia term. Thus a given particle
Xt follow the ODE system dXt

dt =−∇V (Xt). Let us also assume that we perturb this
motion stochastically by a Brownian noise added to the system of strength σ . There-
fore, the SDE system followed by the particle is given by the Langevin equation

dXt =−∇V (Xt)dt +
√

2σ dBt , (1.11)

where Bt is the standard Brownian motion. Ito’s formula implies that the law ρ(t, ·)
of the random variable Xt satisfies the Fokker-Planck equation

∂ρ

∂ t
= ∇ · (ρ∇V )+σ∆ρ, (1.12)

that is a particular case of the general family of PDE (1.1) with general confinement
potential V , zero interaction W = 0 and linear diffusion P(ρ) = σρ . One can easily
observe that convexity properties of V will play an important role in the long time
dynamics of this equations (1.11) or equivalently (1.12). In fact, let us take two
realizations Xt and Yt , t ≥ 0, of the SDE (1.11), meaning two solutions of (1.11)
with differential initial data but constructed with the same Brownian motion. This
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means that the solutions Xt and Yt are correlated for t > 0 even if we assume them
initially independent. Since they are constructed from the same Brownian motion,
even if separately both trajectories Xt and Yt do not have good regularity, it is not
difficult to deduce from stochastic analysis theory that the difference αt = Xt −Yt is
C1, and it satisfies

dαt

dt
=−(∇V (Xt)−∇V (Yt)), t ≥ 0,

and therefore, we deduce

1
2

d
dt
|αt |2 =−(∇V (Xt)−∇V (Yt)) · (Xt −Yt), t ≥ 0.

Therefore, if the potential V is uniformly convex, there exists λ > 0 such that D2V ≥
λ Id , then 1

2
d
dt |αt |2 ≤ −λ |αt |2, for all t ≥ 0, and thus |αt |2 ≤ |αt |2e−2λ t . Now, take

the initial random variables X0 and Y0 with finite variance, i.e., E[|X0|2] < ∞ and
E[|Y0|2]< ∞, we can compute the expectation of |αt |2 as

E[|Xt −Yt |2]≤ E[|X0 −Y0|2]e−2λ t ≤ 2
(
E[|X0|2 +E[|Y0|2]

)
e−2λ t , t ≥ 0.

Therefore, two solutions of the SDE converge towards each other exponentially fast
in the above sense. It is easy to check by direct inspection that the normalized Gaus-
sian

ρ∞(x) =
1
Z

e−V (x)/σ with Z =
∫
Rd

e−V (x)/σ dx,

is a stationary state of (1.12). By taking Y0 the random variable whose distribution
is given by ρ∞, we have shown that all solutions of the Langevin equation (1.11)
converge in the sense above to the stationary state (1.11). The Gaussian measure
ρ∞ is usually referred as invariant measure in stochastic analysis. We will see how
this convergence translates onto the convergence of solutions ρ(t, ·) of the linear
Fokker-Planck equation (1.12) towards ρ∞ in a suitable sense.

Finally, we can also introduce a pairwise interaction potential W between parti-
cles and introduce a systems of N interacting particles perturbed by Brownian noise
of the form

dX i
t =− 1

N

N

∑
i̸= j

∇W (X i
t −X j

t )dt +
√

2σ dBi
t , (1.13)

where Bi
t , i = 1, . . . ,N, are N independent Brownian motions. Now, it is more dif-

ficult to analyse the correlations between the particles and what is the PDE, if any,
that gives the typical behavior of one of the particles as N → ∞. The answer to this
question is the so-called mean-field limit that allows to identifiy the limiting PDE
that satisfies the law of a particle in the large number of particles limit N → ∞. No-
tice that the interaction potential has the factor 1

N in front in the SDE system (3.9),
which is crucial to identify a sort of mean-field potential created by the particle en-



6 1 Interacting Particle Systems & PDE

semble. It is proven that under certain assumptions on the interaction potential the
limiting PDE is given by the McKean-Vlasov equation

∂ρ

∂ t
= ∇ · [ρ(∇W ∗ρ)]+σ∆ρ. (1.14)

Convexity properties of the interaction potential will give information on the long
time asymptotics of both the SDE system (3.9) and the McKean-Vlasov equation
(1.14). Let us finally remark that McKean-Vlasov equation (1.14) are ubiquitous in
applications in the sciences from sinchronysation to swarming models for collective
behavior in mathematical biology, to opinion formation in social sciences or to self-
assembly alloys and granular flows in material science, and lately they have found
a renewed interest in data science.

1.3 Nonlinear Diffusions.

The most well-known cases of nonlinear diffusions are the homogeneus nonlineari-
ties, P(ρ) = ρm with m> 0. The flow of gas in an d-dimensional porous medium is
described by Darcy’s law, pressure proportional to the density of the gas, leading to

∂u
∂ t

= ∆um, (x ∈ Rd , t > 0), (1.15)

The function u represents the density of the gas in the porous medium and m > 1
is a physical constant. This equation can be thought as a nonlinear heat equation
in which the thermal conductivity is mρm−1, and therefore directly proportional to
the density for m> 1. The porous medium equation degenerates in vacuum, i.e. for
ρ = 0, leading to the interesting phenomena of free boundaries and finite speed of
propagation due to slow diffusion for small values of the density. We refer to [21]
for a comprehensive treatment of this problem. The equation for 0<m< 1 receives
the name of fast diffusion equation since the heat conduction is now inversely pro-
portional to the density, and thus very fast diffusion happens for small values of the
density u.

Equation (1.15) has some important explicit solutions that led to the advance of
functional analysis and techniques for understading long-time behavior of nonlinear
diffusion equations since the 1970’s. There are self-similar solutions generalizing
the role of the heat kernel for the heat equation. Let us remind that the solution to
the Cauchy problem for the heat equation

∂u
∂ t

= σ∆u, (x ∈ Rd , t > 0), (1.16)

with initial data a probability measure ρ0 = µ can be obtained by the Poisson’s
formula ρt = K(t, ·)∗µ donde K(t,x) is the heat kernel given by
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K(t,x) = (4πσt)−
d
2 exp

(
− x2

4σt

)
. (1.17)

The heat kernel can be understood as the solution with initial data given by a Dirac-
delta at the origin, ρ0 = δ0, and it is a self-similar solution of the heat equation.

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

t=0

t=10
−1

t=5⋅ 10
−1

t=20

Fig. 1.1 Evolution of the porous medium equation (1.15) with initial data π

4 cos( π

2 x) for m = 2.

Generalizations of the heat kernel solution for (1.16) can be obtained for (1.15)
by finding the right self-similar change of variables. In fact, if one seeks solutions to
(1.15) with the mass-preserving scaling of the form t−d/α F(xt−1/α), one can check
that the self-similar profile F satisfies the nonlinear equation div(xF +α∇Fm) =
0 by choosing α = d(m− 1) + 2 (this fact is an exercise). This equation can be
analysed to find that a solution is given by

F(ξ ) =
(
C−κ|ξ |2

) 1
m−1
+

with κ = m−1
2mα

and C > 0 is determined uniquely by imposing unit mass for m >
d−2

d due to integrability at ∞, see [21] for details. We will denote these self-similar
solutions by B(t,x) as they were first discovered by G.I. Barenblatt in the 1960’s.

We first notice that these solutions are only weak solutions in the distributional
sense for (1.15) in the porous medium range m > 1, while they are classical solu-
tions in the fast diffusion range 0 < m < 1. In fact, the Barenblatt solutions B(t,x)
are compactly supported on a ball for m > 1, and they only enjoy certain H’́older-
regularity for m> 2 at the edge of the support, Lipschitz for m = 2 at this edge, and
they become more and more regular as m → 1+ at the boundary of the support. In
the fast diffusion range 0<m< 1, they become instantaneously positive and C∞ ev-
erywhere as for the heat kernel, but with algebraic tails as |x|→∞ instead. Moreover
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as in the case of the heat equation, the initial data of these solutions is a Dirac-delta
at the origin in the sense that B(t, ·)⇀ δ0 weakly-∗ as measures as t → 0+ (this fact
is an exercise).

We illustrate in one dimension, Figure 1.1, and in two dimensions, Figure 1.2,
the evolution for the porous medium equation with exponent m = 2 with certain
initial data, and we can observe that solutions become more and more similar to the
Barenblatt profiles modulo translation for large times.
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Fig. 1.2 Evolution for the porous medium equation (1.15) for m = 2.

Instead of working with (1.15) directly, we will analyse the asymptotic decay to-
wards its equilibrium state of solutions to the (nonlinear) Fokker-Planck type equa-
tions

∂ρ

∂ t
= div(xρ +∇ρ

m), (x ∈ Rd , t > 0), (1.18)

that corresponds to the choice of P(ρ) = ρm, with m > 0, and the confinement
potential V (x) = |x|2/2 in the general family of PDE (1.1).

The connection between the porous medium, the heat, and the fast diffusion equa-
tions (1.15) with nonlinear Fokker-Planck equations (1.18) becomes apparent after
the following fundamental observation: there exists a time dependent scaling which
transforms (1.18) into the porous medium, the heat, and the fast diffusion equations
(1.15) while keeping the same initial data. Actually, if u is a solution of (1.15) then
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ρ(t,x) = edtu
(

eαt −1
α

,et x
)

(1.19)

is a solution of (1.18) and vice versa, if ρ is a solution of (1.18), then

u(t,x) = (1+αt)−d/α
ρ

(
1
α

log
(

1+αt
)
,
(

1+αt
)−1/α

x
)

(1.20)

is a solution of (1.15) (these facts are an exercise). We finally remark that a stationary
solution of (1.18) is given by the Barenblatt type formula

ρ∞(x) =
(

C− m−1
2m

|x|2
) 1

m−1

+

(1.21)

for a C> 0 such that ρ∞ has unit mass. In fact, one can check that this is a stationary
solution of (1.18) by noticing that the flux xρ +∇ρm is zero,

xρ∞ +∇ρ
m
∞ = ρ∞

(
m

m−1
∇ρ

m−1
∞ + x

)
= 0.

Notice that the last computation makes sense since ρm−1
∞ is a Lipschitz function.

We point out that ρ∞(x) corresponds to B(t + 1
α
,x) through the change of vari-

ables (1.19)–(1.20). As a conclusion, if we are able to derive any property about
the asymptotic behavior of ρ(t,x) towards ρ∞(x) we can translate it into a result
about the asymptotic behavior of u(t,x) towards the Barenblatt profile B(t,x). More
precisely, showing the exponential decay of the solutions to (1.18) towards the sta-
tionary state ρ∞ translates into algebraic decay towards self-similar profiles of the
porous medium, the heat, and the fast diffusion equations (1.15) via the change of
variables (1.19)–(1.20).

1.4 Nonlinear Aggregation-Diffusion Equations: The
Patlak-Keller-Segel model.

The Patlak-Keller-Segel (PKS) equation is widely used in mathematical biology to
model the collective motion of cells which are attracted by a self-emitted chemi-
cal substance, being the slime mold amoebae Dictyostelium discoideum a prototype
organism for this behaviour. Moreover, the PKS equation has become a paradig-
matic mathematical problem since it shows a concentration-collapse dichotomy: for
masses larger than a critical value solutions aggregate their mass, as Dirac-deltas, in
finite time while solutions exist globally and disperse collapsing down to zero below
this critical mass threshold.

Historically, the first mathematical models in chemotaxis were introduced in
1953 by C. S. Patlak and E. F. Keller and L. A. Segel in 1970 in two dimensions
since they were interested in the chemotactic movement of cells in Petri dishes. The
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basic model in any dimension reads as
∂ρ

∂ t
= ∆ρ −χ∇·[ρ∇c] t > 0 , x ∈ Rd ,

c(t,x) =− 1
dπ

∫
Rd

log |x− y|ρ(t,y)dy , t > 0 , x ∈ Rd ,
(1.22)

Here (t,x) 7→ ρ(t,x) represents the normalized cell density, and (t,x) 7→ c(t,x) is the
concentration of chemo-attractant. The constant χ > 0 is the sensitivity of the bac-
teria to the chemo-attractant. Mathematically, it measures the attractive interaction
force between cells, and hence, the strength of the non-linear coupling. Note that
(1.22) corresponds to the choice P(ρ) = ρ and W (x) = − 1

dπ
log |x| in the general

family of PDE (1.1).
We first remind that a notion of weak solution ρ in the space C0

(
[0,T );L1

+(Rd)
)
,

with fixed T > 0, using the symmetry in x, y for the concentration gradient, can be
introduced to handle even measure solutions. We shall say that ρ is a weak solution
to the system (1.22) if for all test functions ζ ∈C2

b(Rd),

d
dt

∫
Rd

ζ (x)ρ(t,x)dx =
∫
Rd

∆ζ (x)ρ(t,x)dx

− χ

2d π

∫∫
Rd×Rd

[∇ζ (x)−∇ζ (y)] · x− y
|x− y|2 ρ(t,s)ρ(t,y)dxdy (1.23)

in the distributional sense in (0,T ). Here, the Banach space C2
b(Rd) is defined as the

set of C2-functions with bounded second derivatives. Notice that the singularity due
to the derivative of the log-kernel dissappears by symmetrization of the term using
the mean value theorem. Any weak solution in the previous sense with initial data a
probability density function satisfies mass and center of mass conservations, i. e.,∫
Rd

ρ(t,x) dx =
∫
Rd

ρ0(t,x) dx = 1 and
∫
Rd

xρ(t,x) dx =
∫
Rd

xρ0(t,x) dx = 0,

the latter being assumed without loss of generality by translational invariance. In
order to check the behavior of the system, we can check the evolution of the variance
of the distribution as done in the first example of this section. By taking ζ (x) = |x|2
as test function in (1.23), we obtain

d
dt

∫
Rd

|x|2 ρ(t,x)dx = 2d − χ

d π
.

Therefore, if χ > 2d2π , the variance of the distribution ρ(t,x) becomes zero in finite
time. This means that in finite time, there should be a concentration as a Dirac-delta
at the origin contradicting the existence of a weak solution in the sense of (1.23) at
that time.

This intuition can be made rigorous at certain extent. The Cauchy problem for the
PKS equation (1.22) presents the following dichotomy: either L1-solutions blow-up
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in finite time for the super-critical case χ > 2d2π or rather solutions exist globally
in time and spread in space decaying towards a stationary solution in rescaled vari-
ables as t → ∞ in the sub-critical case χ < 2d2π . The critical case χ = 2d2π is also
fairly well understood leading to infinite time blow-up or convergence to station-
ary states depending on the initial data. We refer to the recent survey [10] and the
references therein for further details and even more general cases with nonlinear
diffusions and general interaction kernels. This example show us that concentration
and diffusion phenomena can coexist for the same type of equations depending on
just one parameter.

1.5 Nonlinear Aggregation-Diffusion Equations: Phase
Transitions in collective behavior models.

The final example arises in collective behavior models for animal swarming. We
refer to the survey [11] for details about the modelling and the mean-field limit from
interacting particle systems of 2nd order leading to the following localized Cucker-
Smale model for aligment for self-propelled particles with noise. Here, f represents
the distribution in both space x and velocity v at time t of individuals, and the model
features a Cucker-Smale term which aligns the velocity of points nearby in space, a
term adding noise in the velocity, and a friction term which relaxes velocities back
to norm one leading to

∂ f
∂ t

+ v ·∇x f = ∇v ·
(
β (|v|2 −1)v f +(v−u f ) f +σ∇v f

)
,

where

u f (t,x) =
∫

K(x,y)v f (t,y,v)dvdy∫
K(x,y) f (t,y,v)dvdy

.

Here K(x,y) is a suitably defined compactly supported localization kernel and β and
σ are respectively the self-propulsion force and noise intensities. If we first look for
the behavior in the spatially homogeneous case, the model reduces to

∂t f = ∇v ·
(
β (|v|2 −1)v f +(v−u f ) f +σ∇v f

)
. (1.24)

where
u f (t) =

∫
Rd

v f (t,v)dv, (1.25)

and where f = f (t,v) is the velocity distribution at time t. This alignment model can
be again recast as the general PDE (1.1) by the changing the notation from f (t,v) to
ρ(t,x) with the choices

P(ρ) = σρ, V (x) = β

(
|x|4
4 − |x|2

2

)
and W (x) = |x|2

2 .
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The interesting phenomena happening in this particular model is that as soon as one
of the potentials, in this case the confinement potential, is not convex, complicated
dynamics can happen. In fact, there is a phase transition between unpolarized and
polarized motion as the noise intensity σ is varied, for a specific range of the values
of β . More precislely, one can analytically prove that, for large noise σ , there is only
one isotropic stationary solution, while for small σ , there is an additional infinite
family of stationary states parameterized by a unit vector on the sphere, referred to
as the polarized equilibria. Moreover the change from one single isotropic stationary
state to infintely many steady states happens at a precise threshold critical value
of σc, depending on β , that is known in dimensions 1 and 2, see Fig. 1.3. These
questions are nowadays of current interest in research.
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Fig. 1.3 Mean speed u of the stationary state as a function of the diffusion parameter σ for several
values of the self-propulsion strength β . There is a continuous bifurcation critical diffusion σc from
the existence of polarized to unpolarized stationary states.



Chapter 2
Optimal Transportation: The metric side

In this chapter, we will do a short primer on the classical optimal transport and their
associated transport distances. Let us start by introducing quickly the basic notation
of the objects we are dealing with, probability mesures.

2.1 Functional Analysis tools: measures and weak convergence.

Let us consider the space of continuous functions with zero limit at infinity C0(Rd),
i.e., f ∈ C0(Rd) if it is continuous and for all ε > 0, there exists R > 0 such that
| f (x)| ≤ ε for |x| ≥R. C0(Rd) is a separable Banach space endowed with the uniform
norm. We recall a basic notion in measure theory

Definition 2.1. A finite signed measure µ on Rd is a map that assigns to every Borel
subset A ⊂ Rd a value µ(A) ∈ R such that

µ (∪i≥1Ai) = ∑
i≥1

µ (Ai) and ∑
i≥1

|µ (Ai) |< ∞

hold for every countable disjoint union Ai∩A j = /0, i ̸= j. The set of all finite signed
measures on Rd will be denoted by M (Rd). It is a Banach space endowed with the
norm

∥µ∥= sup

{
∑
i≥1

|µ (Ai) | : Rd = ∪i≥1Ai with Ai ∩A j = /0, i ̸= j

}
.

Riesz’s representation theorem provides a very useful characterization of the set
of finite signed measures, every element of the dual Banach space X ′ of X =
C0(Rd) can be represented in a unique way by a finite signed measure µ ∈ M (Rd).
The weak-∗ convergence on finite signed measures is then defined based on the dual
pairing (C0(Rd),M (Rd)) and its representation

13
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< µ,ϕ >=
∫
Rd

ϕ(x)dµ(x).

We say that the sequence of measures µn converges weakly-∗ to µ if and only if
< µn,ϕ >→< µ,ϕ > for all ϕ ∈C0(Rd). This will be denoted by µn ⇀ µ weakly-
∗. In short, the dual space to C0(Rd) is by definition the set of locally finite signed
Radon measures in Rd . The set of probability measures P(Rd) is defined as the
subset of nonnegative finite signed measures such that µ(Rd) = 1.

Let us denote by L the Lebesgue measure on Rd . When a probability measure
µ ∈ P(Rd) is absolutely continous with respect to the Lebesgue measure, that is
it has at least the same zero measures sets, denoted by µ ÎL , then the measure µ

has a density ρ ∈ L1
+(Rd), meaning that by the Radon-Nikodym theorem, it can be

represented by the density ρ , i. e.

< µ,ϕ >=
∫
Rd

ϕ(x)dµ(x) =
∫
Rd

ϕ(x)ρ(x)dx.

We will use in these set of notes the notation of measure and its associated density in-
distinctively unless there is confusion. To finish these measure theory preliminaries,
let us introduce another notion of convergence by duality for probability measures.
We say that the sequence of measures µn narrow or weakly converges to µ if and
only if < µn,ϕ >→< µ,ϕ > for all ϕ ∈Cb(Rd) or in other words that the measures
convergences in the duality with Cb(Rd). This will also be denoted abusing the no-
tation by µn ⇀ µ . We point out that the dual of Cb(Rd) can also be characterized in
terms of certain set of measures larger than M (Rd) but it is a weird space, see [22,
Section 1.3] for further details.

Finally, let us remind few Functional Analysis results on the compactness of
subsets of measures. Given a dual pair of Banach spaces (X ,X ′) and its associated
duality < ·, · >, Banach-Alaoglu’s theorem asserts that any bounded set in X ′ is
precompact in the weak-∗ topology. In practice, this implies that any sequence of
probability measures has a weakly-∗ subsequence towards a nonnegative measure
not necessarily being a probability measure. In order for the weak-∗ limit to be a
probability measure, we need an additional property.

Definition 2.2. A sequence µn in P(Rd) is said to be tight if for every ε > 0, there
exists R > 0 such that µn(Rd \BR) ≤ ε for every n, where BR is the euclidean ball
of radius R centered at the origin.

We refer to [7] for futher details on duality pairings and weak topologies.
Prokhorov’s Theorem gives a characterization of weakly-∗ precompact subsets

of probability measures.

Theorem 2.1. (Prokhorov) Every tight sequence µn in P(Rd) has a weakly or nar-
rowly convergent subsequence to a limiting probability measure. Conversely, every
weakly converging sequence of probability measures µn ⇀ µ is tight.

In order to explain better the classical optimal transportation problem, we need
some further definitions.
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Definition 2.3. Let µ and ν be in P(Rd) the space of probability measure in Rd ,
and T be a measurable map Rd → Rd . We say that T transports µ onto ν , ν is the
push-forward or the image measure of µ through T , and we denote it by ν = T #µ ,
if for any measurable set B ⊂ Rd , ν(B) = µ(T−1(B)).

In fact, the previous definition of pushforward is equivalent to∫
Rd
(ζ ◦T )(x)dµ(x) =

∫
Rd

ζ (y)dν(y) ∀ζ ∈ Cb(Rd) . (2.1)

Actually, the change of variables formula (2.1) is true for all ζ ∈ L1(Rd). We leave
this as a warm-up in integration, measure theory and dominated/monotone conver-
gence theorems (this fact is an exercise). The image measure through a map T can
also be directly connected to basic probability theory. In fact, a random variable X
with law µ is by definition a measurable map X : (S ,A ,P) −→ L from a proba-
bility space of reference (S ,A ,P) onto the Lebesgue space L such that the image
measures through X of P is µ , i.e. X#P = µ .

2.2 A brief introduction to optimal transport

Let us first introduce intuitively the optimal transportation problem. Let us assume
that the probability measure µ represents the density of frozen fish-and-chips sup-
pliers in the United Kingdom while the probability measure ν represents the density
of pubs (it is a good approximation to assume that at least the measure ν has parts
which are absolutely continuous with respect to Lebesgue and atomic parts, think
about the London area or the Costwolds while the first measure µ might be con-
centrated in coastal areas in the Southwest of England and Scotland). Assume that
the market is in equilibrium, meaning supply=demand, so all the produced frozen
fish-and-chips are consumed by the pubs. The question we want to solve is how to
find a way of transporting all the product from the suppliers at each specified loca-
tion x to the the consumers at locations y optimally. The optimality here has to be
specified and it should include an estimate of the cost needed for the transportation.
The union of frozen fish-and-chips suppliers is overseeing the whole operation of
transportation, thus they would like to know how to transport all the frozen fish-
and-chips from the suppliers to the consumers minimizing the overall cost of this
task. Let us represent by c(x,y) the cost of sending a unit of the product from sup-
plier location x ∈ Rd to consumer location y ∈ Rd , i.e., we define a cost function
c : Rd ×Rd 7→ [0,∞).

The transportation problem was mathematically set up for the first time by Gas-
pard Monge, a French mathematician and engineer in the late 1700’s in his essay
“Mémoire sur la théorie des déblais et remblais” in 1781. His transportation prob-
lem was very much related to French army’s operations and less to fish-and-chips
distribution though. He posed the problem in the following way, from all possible
ways of transporting the goods from location x to location y, can we find the optimal
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one minimizing the total incurred cost? More precisely and in modern mathemati-
cal terms, given two probability measures µ and ν , can we find an optimal map T
transporting µ onto ν , ν = T #µ , minimizing the total cost given by∫

Rd
c(x,T (x))dµ(x)?

This classical problem from Calculus of Variation, sketched in Figure 2.1, is the

Fig. 2.1 Monge trasnportation problem between two probability measures µ0 and µ1. Figure taken
from Wikipedia.

so-called Monge transportation problem, that is to find, if possible, the solution to
the following minimization problem:

IM := inf
T

{∫
Rd

c(x,T (x)dµ(x) : ν = T #µ

}
.

He posed this question with the cost given by the distance between the locations
c(x,y) = |x− y|. It is very easy to see that this problem does not have a solution
for general probability measures. In fact, the set of maps pushing one probabil-
ity measure µ onto ν might be even empty making the classical Monge problem
trivially impossible. Take µ = δx0 and ν = 1

2 δx0 +
1
2 δx1 with x0 ̸= x1 where δx0 is

the Dirac delta measure at x0. Then ν({x1}) = 1
2 but either µ(T−1({x1})) = 1 or

µ(T−1({x1})) = 0 depending if T (x0) = x1 or not. Thus, there is no map pushing
forward µ onto ν .

The issue here is that in the classical Monge transportation problem choosing
transportation maps is not a good idea. It is a better idea “to split the mass”, this
is even more advantageous economically. In fact, Leonyd Kantorovich in 1942 re-
alized that a better way to pose the transportation problems lies in the basic idea
that for each producer it will be generically more economic to split its production
among several consumers that sending all its production to a unique location. He
introduced the concept of transportation or transference plan, that is a probability
measure Π(x,y) on the product space Rd ×Rd with marginals µ and ν . The basic
meaning of Π(x,y) is the number of units of production at location x sent to location
y while using fully the total number of produced units by the supplier located at x
and fulfilling the total number of units demanded by the consumer located at y. The
mathematical statement of the last sentence is translated in the fact that the marginal
measures of Π must be µ and ν respectively. Let us denote by Γ (µ,ν) the set of
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all transference plans, that is, the set of joint probability measures on Rd ×Rd with
marginals µ and ν , i.e.,∫∫

Rd×Rd
ϕ(x)dΠ(x,y) =

∫
Rd

ϕ(x)dµ(x)

and ∫∫
Rd×Rd

ϕ(y)dΠ(x,y) =
∫
Rd

ϕ(y)dν(y)

for all ϕ ∈Cb(Rd). Allowing splitting of the mass, Kantorovich proposed a relaxed
variational problem that avoids the problems of the Monge transportation problem:
find among all possible transference plans Π ∈ Γ (µ,ν) an optimal one minimizing
the total cost ∫

Rd×Rd
c(x,y)dΠ(x,y) .

More precisely, the relaxed Monge-Kantorovich transportation problem consists in
finding, if possible, the solutions to the minimization problem:

IK := inf
Π∈Γ (µ,ν)

{∫
Rd×Rd

c(x,y)dΠ(x,y)
}
.

Let us remark that the product measure µ ×ν always belongs to Γ (µ,ν), and thus
Γ (µ,ν) ̸= /0. Proving that the infimum in the Kantorovich formulation of the trans-
portation problem is achieved, and thus there is a minimum, is the main objective of
the next section. Kantorovich received the Nobel Prize in Economics in 1975 ”for
his contributions to the theory of optimum allocation of resources.”

In fact, let us check that the Kantorovich formulation is really a relaxed varia-
tional problem of the Monge transportation problem. Given any measurable map
T transporting µ onto ν , ν = T #µ , let us define the transference plan ΠT =
(1Rd ×T )#µ as the element in P(Rd ×Rd) such that∫

Rd×Rd
ψ(x,y)dΠT (x,y) =

∫
Rd

ψ(x,T (x))dµ(x)

for all ψ ∈ Cb(Rd ×Rd). It is easy to check that ΠT ∈ Γ (µ,ν), and thus IK ≤ IM .
Conversely, if there is an optimal transference plan of the form ΠTo for certain To
for the Kantorovich problem, then To is an optimal map for the Monge problem.
Sufficient conditions for this to happen will be discussed in Chapter 4. For the time
being, let us just say that for the quadratic cost c(x,y) = |x − y|2 and whenever
ν ÎL , then there is an optimal map achieving the infimum in the Monge and the
Kantorovich transportation problems.

The beauty and strength of the Monge and Kantorovich problems is that they
allowed for natural interpolation between probability measures. Assume that an op-
timal map To for the Monge problem exists between µ and ν . We can define the
curves of measures
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µt = (1− t)µ + tTo#µ = ((1− t)1Rd + tTo)#µ ,

for 0 ≤ t ≤ 1. Then, we can use µt as a morphing between the two probability mea-
sures, see Figure 2.2 for an example of this construction between two characteristic
sets suitably normalized.

Interpolation measure between the Pac-Man and the Ghost probability measures

Fig. 2.2 Computation of a interpolation measure by the Monge-Kantorovich problem with
quadratic cost between Pac-Man and the Ghost characteristic sets suitably normalized.

We refer to the link

https://figshare.com/projects/Primal_dual_methods_for_Wasserstein_gradient_flows/59474

to see the video for this simulation.

2.3 The Kantorovich Formulation and Duality. The Brenier
Theorem.

Classical calculus of variations deals with the problem of finding the extrema of
functionals I : X 7→ R∪{+∞} defined on a given metric space X of functions and
possibly considered over a nonempty subset K ⊂ X . The main goal is to find mini-
mizers of such functionals, that is, functions f ∈K such that I[ f ]≤ I[g] for all g∈K.
Even in situations where variations of the possible minimizer lead to necessary con-
ditions for f to be satisfied, the so-called Euler-Lagrange conditions, it is important
to know apriori if minimizers exist for the functional I. The first necessary assump-
tion on I is that the functional I must be bounded below, if not there is nothing to be
proven, this means that
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I∗ := inf
f
{I[ f ] : f ∈ K ⊂ X}>−∞.

This shows the existence of a minimizing sequence, that is, a sequence fn ∈ K such
that I[ fn] → I∗. Notice that it is not even clear that if there is f ∈ X achieving the
infimum, then f does belong to K. The direct method of the calculus of variations
is an adapted version for general metric spaces of the classical Weierstrass criterion
for the existence of extremal points of continuous functions in compact sets in fi-
nite dimensions. It can be summarized as “compactness + semi-continuity” leads to
existence of nontrivial minimization problems.

Definition 2.4. A functional I : X 7→ R∪{+∞} on a metric space X is said to be
lower semi-continuous (l.s.c), if for every sequence fn ∈ X such that fn → f , we
have I[ f ]≤ liminfn I[ fn].

Theorem 2.2 (Direct Method of Calculus of Variations). A lower semi-continuous
functional I : X 7→ R∪{+∞} defined on a metric space X achieves its infimum in
any compact subset K ⊂X where I is bounded from below, that is, there exists fo ∈K
such that I[ fo] = min{I[ f ] : f ∈ K}.

Proof. Since I is bounded below in K, there exists a minimizing sequence in K, that
is, a sequence fn ∈ K such that I[ fn]→ I∗ with I∗ = inf f {I[ f ] : f ∈ K ⊂ X}>−∞.
Since K is a compact subset of X , then fn has a convergent subsequence to a limiting
function fo ∈ K. Without loss of generality, we can assume that the minimizing
sequence is convergent to fo ∈ K with I[ fo]≥ I∗ by its definition. By virtue of lower
semi-continuity we deduce that I[ fo]≤ liminfn I[ fn] = I∗, and therefore the infimum
of the functional in K is achieved at fo, I∗ = I[ fo], and actually the infimum is a
minimum. ⊓⊔

A direct application of the previous theorem leads to the existence of optimal
transference plans.

Theorem 2.3 (Existence of optimal transference plans). Assume that the cost
function c : Rd ×Rd 7→ [0,∞) is lower semi-continuous. Given two probability mea-
sures µ and ν , then there exists an optimal transference plan, that is, there exists
a Πo ∈ Γ (µ,ν) achieving the infimum in the Kantorovich formulation of optimal
transport

I∗ :=
∫
Rd×Rd

c(x,y)dΠo(x,y) = min
Π∈Γ (µ,ν)

{∫
Rd×Rd

c(x,y)dΠ(x,y)
}
.

Proof. Since µ and ν are probability measures, then for any ε > 0 there exists R> 0
such that

µ(Rd \BR)≤ ε and ν(Rd \BR)≤ ε ,

and thus

Π((Rd ×Rd)\ (BR ×BR))≤ Π(Rd × (Rd \BR))+Π((Rd \BR)×Rd)

= µ(Rd \BR)+ν(Rd \BR)≤ 2ε ,
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for all Π ∈Γ (µ,ν). Hence the set of transference plans Γ (µ,ν) is tight in P(Rd ×
Rd). By Prokhorov’s theorem, the closure of the set of transference plans in the
weak topology is compact. By definition of the convergence in the weak or narrow
topology, it is easy to check that the set of transference plans Γ (µ,ν) is closed.
Therefore, we consider the functional

I[Π ] =
∫
Rd×Rd

c(x,y)dΠ(x,y)

defined on the compact set of all transference plans Π ∈ Γ (µ,ν), w.r.t. the weak
topology of measures. On the other hand, since c is a l.s.c. bounded from below
function in Rd ×Rd , it can be approximated by an increasing sequence of continuous
and bounded functions cn in Rd ×Rd (this statement is an exercise). Monotone
convergence theorem implies that

In[Π ] =
∫
Rd×Rd

cn(x,y)dΠ(x,y)↗ I[Π ]

for all Π ∈Γ (µ,ν). Notice that since cn is continuous and bounded, the functionals
In are trivially continuous in the weak topology. Moreover, I[Π ] = supn In[Π ], and
thus I is l.s.c in the weak topology as a supremum of continuous functionals in the
weak topology (this statement is an exercise). We now have all the ingredients to
repeat the same argument of the direct method of the calculus of Variations The-
orem 2.2, but with the weak topology instead of the metric topology to obtain the
announced result. ⊓⊔

Notice that if we use that the set of probability measures P(Rd) endowed with
the weak topology is metrizable, the previous result can be considered a direct ap-
plication of Theorem 2.2.

The previous theorem gives a rough answer to the existence of optimal transfer-
ence plans but much more can be obtained by realizing that the Kantorovich refor-
mulation of the transportation problem is a linear optimization problem under con-
vex constraints, given by linear equalities or inequalities. Therefore, this is the place
in which convex analysis and duality in optimization plays an important role. Kan-
torovich realized this and he introduced duality together with an economic interpre-
tation of the dual variables as shadow prices. The idea is to include the constraints on
the marginals as Lagrange multipliers rewriting the minimization problem with con-
straints as an inf−sup optimization problem without constraints. More precisely, let
us express the constraint Π ∈ Γ (µ,ν) as follows: if Π ∈ M+(Rd ×Rd), then take
two functions ϕ,ψ ∈Cb(Rd), acting as Lagrange multipliers, to have

R =

{
0 if Π ∈ Γ (µ,ν)

+∞ otherwise
,

with R defined by
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R := sup
ϕ,ψ∈Cb(Rd)

{∫
Rd

ϕ(x)dµ(x)+
∫
Rd

ψ(y)dν(y)−
∫
Rd×Rd

(ϕ(x)+ψ(y))dΠ(x,y)
}
.

Hence, we can remove the constraint on Π if we add the quantity R to I[Π ], since
if the constraint is satisfied we are not adding anything and if not the infinity values
will be avoided by the minimization. Therefore the Kantorovich problem is equiva-
lent to the following inf−sup problem: finding Π ∈ M+(Rd ×Rd) such that

inf
Π

sup
ϕ,ψ

{∫
Rd

ϕ(x)dµ(x)+
∫
Rd

ψ(y)dν(y)+
∫
Rd×Rd

(c(x,y)−ϕ(x)−ψ(y))dΠ(x,y)
}
.

Notice that we have also relaxed the mass constraint on Π too.
Assume now that the inf and sup can be exchanged, that is, the inf−sup problem

is equivalent to the sup− inf problem. This is not always possible, the main tool in
finite dimensional convex analysis is called the Rockafellar theorem. The more gen-
eral Fenchel-Rockafellar duality theorem is needed in order to show this rigorously,
this is outside the scope of this course, we refer to [22, 19] for further information.
The exchange of infimum and supremum is true for the Kantorovich reformulation
of the transportation problem under the assumption of a l.s.c. cost function c. Now,
coming back to the sup− inf problem written as

sup
ϕ,ψ

{∫
Rd

ϕ dµ +
∫
Rd

ψ dν + inf
Π

(∫
Rd×Rd

(c(x,y)−ϕ(x)−ψ(y))dΠ(x,y)
)}

,

we again notice that the infimum problem can be written as a constraint on the pair
of functions (ϕ,ψ) by realizing that

S =

{
0 if ϕ(x)+ψ(y)≤ c(x,y) on Rd ×Rd

−∞ otherwise
,

with

S := inf
Π

(∫
Rd×Rd

(c(x,y)−ϕ(x)−ψ(y))dΠ(x,y)
)
,

(this statement is an exercise). Therefore, the sup− inf can be rewritten as an opti-
mization problem with constraints:

J∗ := sup
ϕ,ψ∈Cb(Rd)

{∫
Rd

ϕ dµ +
∫
Rd

ψ dν : ϕ(x)+ψ(y))≤ c(x,y)
}
.

This the the so-called dual optimization problem to the Kantorovich problem. It is
easy to observe that J∗ ≤ I∗ just by integrating the constraint ϕ(x)+ψ(y))≤ c(x,y)
against the measure Π(x,y), and thus J∗ < +∞. In order to cope with probability
measures in the whole space Rd , we need to further relax the dual optimization
problem by considering
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J∗ := sup
(ϕ,ψ)∈Φc

J[ϕ,ψ] , with J[ϕ,ψ] :=
∫
Rd

ϕ dµ +
∫
Rd

ψ dν

and

Φc :=
{
(ϕ,ψ) ∈ L1(dµ)×L1(dν) : ϕ(x)+ψ(y)≤ c(x,y)a.e.-µ(x) and a.e.-ν(y)

}
.

It is not difficult to check that J∗ ≤ I∗ still holds for this relaxed problem (this state-
ment is an exercise). Let us now state the duality theorem in full generality whose
proof is outside the scope of this basic course, see [22, 19] for details.

Theorem 2.4. Given two probability measures µ,ν ∈ P(Rd), and a lower semi-
continuous cost function c : Rd ×Rd 7→ [0,∞), then there is no duality gap J∗ = I∗.

Let us know focus on the particular but important case of the euclidean cost
function c(x,y) = 1

2 |x− y|2 and show the existence of maximizers to the dual opti-
mization problem. We first introcuce some basic concepts of convex analysis. Given
a function f : Rd 7→ R∪{+∞}, we say that it is proper if f is not identically +∞.
Given a proper function, we define its Legendre-Fenchel transform f ∗ as

f ∗(y) = sup
x∈Rd

(x · y− f (x)) for all y ∈ Rd .

Notice that the Legendre-Fenchel transform of 1
p |x|p is 1

q |x|q with 1
p +

1
q = 1, 1 <

p< ∞. Similarly, given a function ϕ : Rd 7→R∪{−∞}, we say that it is proper if ϕ

is not identically −∞ and its c-transform is defined as

ϕ
c(y) = inf

x∈Rd
( 1

2 |x− y|2 −ϕ(x)) for all y ∈ Rd .

We define c-concave functions as functions that are the c-transform of some func-
tion.

Let us remark that since f ∗ is defined as the supremum of affine functions on
y then f ∗ is a convex function. It is important to notice that the Legendre-Fenchel
transform f ∗ induces a duality between l.s.c. proper convex functions. More pre-
cisely, one can prove that a proper function is convex and l.s.c. if and only if there
exists g proper function with f = g∗, in which case f ∗∗ = f . It is a classical result
in convex analysis that convex functions are locally Lipschitz and a.e. differentiable
in the interior of the set where they are finite. We refer to [18] as a good source of
convex analysis results, a summary can be found in [22, Chapter 2] and [19, Section
1.6].

It is easy to check by definition that for a proper function ϕ : Rd 7→ R∪{−∞},
then

1
2 |y|2 −ϕ

c(y) =
( 1

2 |x|2 −ϕ(x)
)∗
. (2.2)

Notice we infer that 1
2 |y|2 −ϕc(y) is convex for a c-concave function f = ϕc. In

particular, this implies that if f is continuous and concave then f cc = f . In fact, this
last result is more general: f cc = f characterizes the set of c-concave functions, see
[19].
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With these notions at hand, let us check that in order to solve the dual optimiza-
tion problem, we can restrict ourselves to pairs of c-concave functions. Let us also
denote by P2(Rd) the set of probability measures with bounded second moment,
i.e.,

P2(Rd) :=
{

µ ∈ P(Rd) :
∫
Rd

|x|2 dµ(x)< ∞

}
.

Given two probability measures µ,ν ∈ P(Rd), let us denote by M the quantity

M :=
∫
Rd

|x|2 dµ(x)+
∫
Rd

|x|2 dν(x).

Lemma 2.1. Given two probability measures µ,ν ∈P(Rd), then for any a∈R and
any (ϕ,ψ) ∈ Φc, one can change the values of (ϕ,ψ) on a zero measure set a.e.-µ
in x and a.e.-ν in y such that ϕ(x)+ψ(y) ≤ c(x,y) for all x,y ∈ Rd . Moreover, for
the new pair, denoted the same for simplicity, we have J[ϕcc −a,ϕc +a] ≥ J[ϕ,ψ]
and ϕcc(x)+ϕc(y)≤ c(x,y) for all x,y ∈ Rd .

Furthermore, if there exists (Cx,CY ) ∈ L1(dµ)×L1(dν) such that ϕcc ≤Cx and
ϕc ≤CY and J[ϕ,ψ]>−∞, then (ϕcc −a,ϕc +a) ∈ Φc.

Proof. Since J[ϕcc −a,ϕc +a] = J[ϕcc,ϕc] for all a ∈R, we are reduced to show it
for a = 0. Since the value of

J[ϕ,ψ] :=
∫
Rd

ϕ dµ +
∫
Rd

ψ dν

does not change by changing the values of (ϕ,ψ) on a zero measure set with respect
to µ×ν , then we can set (ϕ,ψ)= (−∞,−∞) whenever the inequality ϕ(x)+ψ(y)≤
c(x,y) is not satisfied. Therefore, we can assume the inequality ϕ(x)+ψ(y)≤ c(x,y)
for all x,y ∈ Rd . Let us remark that by definition of the c-transform we get

ϕ
c(y) = inf

x∈Rd
( 1

2 |x− y|2 −ϕ(x))≥ ψ(y)

since ϕ(x)+ψ(y)≤ c(x,y) for all x,y ∈ Rd , and thus ϕc(y)≥ ψ(y) for all y ∈ Rd .
Similarly, one can prove that

ϕ
cc(x) = inf

y∈Rd
sup
z∈Rd

( 1
2 |x− y|2 − 1

2 |y− z|2 +ϕ(z))≥ ϕ(x)

by choosing z = x. By definition we have

ϕ
cc(x)+ϕ

c(y) = inf
z∈Rd

( 1
2 |x− z|2 −ϕ

c(z)+ϕ
c(y))≤ c(x,y),

where the last inequality holds by choosing z = y. For the furthermore part of the
lemma, one only needs to show the integrability statement: (ϕcc,ϕc) ∈ L1(dµ)×
L1(dν). Note that by assumption
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Rd
(Cx −ϕ

cc)dµ +
∫
Rd
(Cy −ϕ

c)dν ≤ M̃− J[ϕ,ψ]

with M̃ given by

M̃ =
∫
Rd

Cx dµ +
∫
Rd

Cy dν .

Since Cx −ϕcc ≥ 0 and Cy −ϕc ≥ 0, then it follows that Cx −ϕcc ∈ L1(dµ) and
Cy − ϕc ∈ L1(dν), and thus by the assumption (Cx,CY ) ∈ L1(dµ)× L1(dν), we
obtain (ϕcc,ϕc) ∈ L1(dµ)×L1(dν) as desired. ⊓⊔

We now get an upperbound on maximizing sequences.

Lemma 2.2. Given two probability measures µ,ν ∈ P2(Rd), then there exists a
maximizing sequence (ϕk,ψk) ∈ Φc for the dual optimization problem, that is,
J[ϕk,ψk]↗ J∗ such that ϕk(x)+ψk(y) ≤ c(x,y), ϕk(x) ≤ |x|2 and ψk(y) ≤ |y|2 for
all x,y ∈ Rd and k ∈ N.

Proof. Notice that 0 = J[0,0]≤ J∗ ≤ I∗ ≤ M since 1
2 |x−y|2 ≤ |x|2+ |y|2. Therefore,

there exists a maximizing sequence composed by proper functions (ϕk,ψk) ∈ Φc.
Using the first part of Lemma 2.1, we can assume without loss of generality that
ϕk(x)+ψk(y)≤ c(x,y) for all x,y ∈ Rd and all k ∈ Rd . We define the sequence

ak = inf
y∈Rd

(|y|2 −ϕ
c
k (y)) .

Let us first show that ak ∈ R. Since (ϕk,ψk) ∈ Φc, then ϕk(x) ≤ c(x,y)−ψk(y) for
all y ∈ Rd . Since ψk is a proper function, there exists bo (possibly depending on k),
such that ϕk(x)≤ c(x,yo)+bo. Then

ϕ
c
k (yo) = inf

x∈Rd
( 1

2 |x− yo|2 −ϕk(x))≥−bo ,

and thus ak ≤ |yo|2 −ϕc
k (yo)≤ |yo|2 +bo <+∞. Similarly, we also have

|y|2−ϕ
c
k (y)= sup

x∈Rd
(|y|2− 1

2 |x−y|2+ϕk(x))≥ sup
x∈Rd

(−|x|2+ϕk(x))≥−|xo|2+ϕk(xo)

for any xo ∈Rd and for all y ∈Rd , where again we used 1
2 |x−y|2 ≤ |x|2+ |y|2. Since

ϕk is proper, then we have ak ≥−|xo|2+ϕk(xo)>−∞ for some xo ∈Rd . With this at
hand, the new pair (ϕ̃k, ψ̃k) := (ϕcc

k −ak,ϕ
c
k +ak) is well defined and due to Lemma

2.1 it satisfies J[ϕ̃k, ψ̃k]≥ J[ϕk,ψk] and ϕ̃k(x)+ ψ̃k(y)≤ c(x,y)a.e. w.r.t. µ ×ν .
Therefore, we only need to show the integrability (ϕ̃k, ψ̃k) ∈ L1(dµ)×L1(dν) to

deduce that (ϕ̃k, ψ̃k)∈Φc by the last part of Lemma 2.1 and finish the proof. Clearly
by definition of ak, we get ψ̃k(y) = ϕc

k (y)+ ak ≤ |y|2. By definition of ϕcc
k (x), we

deduce

ϕ̃k(x)−|x|2 = inf
y∈Rd

( 1
2 |x− y|2 −ϕ

c
k (y)−ak −|x|2)≤ inf

y∈Rd
(|y|2 −ϕ

c
k (y)−ak) = 0

due to 1
2 |x− y|2 ≤ |x|2 + |y|2 again. ⊓⊔
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We finally can arrive to show the existence of maximizers for the dual optimiza-
tion problem.

Theorem 2.5. Given two probability measures µ,ν ∈ P2(Rd), then there exists
(ϕo,ψo) ∈ Φc such that J∗ = J[ϕo,ψo], and thus

J[ϕo,ψo] = J∗ = max
(ϕ,ψ)∈Φc

J[ϕ,ψ] .

Furthermore, it can be chosen such that (ϕo,ψo) = (ηcc
o ,η

c
o) with ηo ∈ L1(dµ) and

satisfying the inequalities ϕo(x)+ψo(y)≤ c(x,y), ϕo(x)≤ |x|2 and ψo(y)≤ |y|2 for
all x,y ∈ Rd .

Proof. Notice again that 0 = J[0,0] ≤ J∗ ≤ I∗ ≤ M by the assumption, there-
fore using Lemma 2.2 we have a maximing sequence (ϕk,ψk) ∈ Φc satisfying
J[ϕk,ψk]↗ J∗ such that ϕk(x)+ψk(y) ≤ c(x,y), ϕk(x) ≤ |x|2 and ψk(y) ≤ |y|2 for
all x,y ∈ Rd and k ∈ N. Take l ∈ N and we define the cut-off sequence of functions
(ϕ

(l)
k ,ψ

(l)
k ) as

ϕ
(l)
k (x) = max{ϕk(x)−|x|2,−l}+ |x|2

ψ
(l)
k (y) = max{ψk(y)−|y|2,−l}+ |y|2 .

It is easy to check that both sequences are decreasing in l ∈N converging as l →∞ at
all points to the original pair (ϕk,ψk), that is, ϕk ≤ ϕ

(l+1)
k ≤ ϕ

(l)
k and ψk ≤ ψ

(l+1)
k ≤

ψ
(l)
k with ϕ

(l)
k → ϕk and ψ

(l)
k → ψk as l → ∞. Moreover, −l ≤ ϕ

(l)
k (x)−|x|2 ≤ 0 and

−l ≤ ψ
(l)
k (y)−|y|2 ≤ 0 for all x,y ∈ Rd and k, l ∈ N. Moreover, one can also check

that

ϕ
(l)
k (x)+ψ

(l)
k (y)≤ max{ϕk(x)+ψk(y)−|x|2 −|y|2,−l}+ |x|2 + |y|2

≤ max{c(x,y)−|x|2 −|y|2,−l}+ |x|2 + |y|2 , (2.3)

for all x,y ∈ Rd and k, l ∈ N.
For each fixed l ∈ N, the sequence ϕ

(l)
k (x)− |x|2 is bounded in L∞(Rd), and

therefore bounded in Lp(dµ), 1≤ p ≤∞ since the Lp(dµ)-norms are monotone in p
for a probability measure µ . Without loss of generality, we can assume the existence
of ϕ(l)(x)−|x|2 ∈ L2(dµ) such that ϕ

(l)
k (x)−|x|2 ⇀ϕ(l)(x)−|x|2 weakly in L2(dµ).

Since |x|2 ∈ L1(dµ), then ϕ(l) ∈ L1(dµ), since L2(dµ)⊂ L1(dµ) and |x|2 ∈ L1(dµ).
Moreover, since L∞(dµ)⊂ L2(dµ), then we can use 1 as a test function for the weak
convergence ϕ

(l)
k (x)−|x|2 ⇀ ϕ(l)(x)−|x|2 to get∫

Rd
ϕ
(l)(x)dµ(x) = lim

k→∞

∫
Rd

ϕ
(l)
k (x)dµ(x) . (2.4)

By a diagonalization argument and after extraction of subsequences, we can assume
that the above arguments apply for the same subsequence k for all l ∈ N. Since the
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weak convergence preserves the ordering, we conclude that the limiting sequence
ϕ(l) ∈ L1(dµ) satisfies ϕ(l+1) ≤ ϕ(l) ≤ |x|2 with |x|2 ∈ L1(dµ). Let us denote by ϕo
the pointwise limit of the sequence ϕ(l), then the monotone convergence theorem
implies that the pointwise limits of ϕo satisfies∫

Rd
ϕo(x)dµ(x) = lim

l→∞

∫
Rd

ϕ
(l)(x)dµ(x) . (2.5)

An analogous procedure can be done with the sequence ψ
(l)
k (x), to define the limit-

ing function ψo.
The pair (ϕo,ψo) is the our candidate maximiser. We need to show that (ϕo,ψo)∈

Φc. We first observe that

J∗ = lim
k→∞

J[ϕk,ψk]≤ lim
k→∞

J[ϕ(l)
k ,ψ

(l)
k ] = J[ϕ(l),ψ(l)]

since ϕk ≤ ϕ
(l)
k , ψk ≤ ψ

(l)
k , and (2.4). Then,

J∗ ≤ lim
l→∞

J[ϕ(l),ψ(l)] = J[ϕo,ψo]

due to (2.5). Hence, if (ϕo,ψo) ∈ Φc then (ϕo,ψo) maximises J[ϕ,ψ] and is a so-
lution to the dual optimization problem. By taking the limit k → ∞ and then l → ∞

in (2.3), we get ϕo(x)+ψo(y) ≤ c(x,y) for all x,y ∈ Rd . Notice here that we use
that weak limits preserve ordering. Moreover, since ϕ(l) ≤ |x|2 and ψ(l) ≤ |x|2 then
ϕo(x)≤ |x|2 and ψo(y)≤ |y|2 for all x,y ∈ Rd . Finally, integrability follows from

0≤
∫
Rd
(|x|2−ϕo(x))dµ(x)+

∫
Rd
(|y|2−ψo(y))dν(y)≤−J[ϕo,ψo]+M ≤−J∗+M ,

where we used ϕo(x)+ψo(y) ≤ c(x,y) in the first inequality, and then since |x|2 −
ϕo ≥ 0 and |x|2 −ψo ≥ 0, both integrals are finite and thus, |x|2 −ϕo(x) ∈ L1(dµ)
and |y|2−ψo(y)∈ L1(dν). Hence, ϕo(x)∈ L1(dµ) and ψo(y)∈ L1(dν) since µ,ν ∈
P2(Rd) finalizing the proof of the claim (ϕo,ψo) ∈ Φc. A further application of the
double c-transform trick in Lemma 2.1 shows the additional statement in the form
of the obtained maximizer (this statement is an exercise). ⊓⊔

The pair of functions (ϕo,ψo) achieving the maximum are called Kantorovich
potentials for the dual optimization problem, and they can be assumed to be c-
concave functions without loss of generality. In fact, given a maximizer of the dual
optimization problem (ϕo,ψo), it is not difficult to show that it is equal µ and ν-a.e.
respectively to c-concave Kantorovich potentials. We now take advantage further of
their definitions as c-transforms of a given η ∈ L1(dµ). We insisted to do all the pre-
vious computations with c-concave functions to show that this proof has the poten-
tial to be generalizable to a family of costs functions much larger than the quadratic
cost. Let us check that the Kantorovich c-concave potentials are in fact more regular
than simply integrable functions taking advantage of its particular form.
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Corollary 2.1. Any c-concave Kantorovich potentials for the dual optimization
problem are locally Lipschitz in the interior of the set where they are finite. Fur-
thermore, the Kantorovich potentials can be chosen of the form (ϕo,ϕ

c
o) with ϕo

c-concave and satisfying the inequalities ϕo(x)+ϕc
o(y) ≤ c(x,y), ϕo(x) ≤ |x|2 and

ϕc
o(y)≤ |y|2 for all x,y ∈ Rd .

Proof. Since (ϕo,ψo) = (ηcc
o ,η

c
o) with ηo ∈ L1(dµ), then each Kantorovich poten-

tial is the c-transform of some ηo ∈ L1(dµ). Since 1
2 |y|2 −ϕc(y) is convex for a

c-concave function ϕ due to (2.2), and convex functions are locally Lipschitz con-
tinuous and a.e. differentiable in the interior of the set wherever they are finite, we
obtain the same property for ϕ . A further application of the double c-transform trick
in Lemma 2.1 shows the additional statement in the form of the obtained maximizer
(this statement is an exercise) using that for c-concave functions f cc = f . ⊓⊔

The previous corollary asserts that c-concave Kantorovich potentials are a.e. dif-
ferentiable with respect to the Lebesgue measure in the interior of the set wherever
they are finite. In fact, from the duality Theorem 2.4 and the existence of minimiz-
ers and maximizers of the primal and the dual optimization problems in Theorems
2.3 and 2.5, we deduce that given Πo optimal transference plan and a ϕo concave
Kantorovich potential, then

J∗ = I∗ =
∫
Rd×Rd

c(x,y)dΠo(x,y) =
∫
Rd

ϕo(x)dµ(x)+
∫
Rd

ϕ
c
o(y)dν(x)

=
∫
Rd×Rd

(ϕo(x)+ϕ
c
o(y))dΠo(x,y).

Since ϕo(x)+ϕc
o(y)≤ c(x,y) for all x,y ∈ Rd from Theorem 2.5 and Corollary 2.1,

then one expects ϕo(x)+ϕc
o(y) = c(x,y) Πo-a.e. Let us define the support of the

measure Πo as:

Definition 2.5. The support of a measure µ ∈ P(Rd) is defined as the smallest
closed set in which µ is not zero, i.e.

spt(µ) :=
⋂
{A : A is closed and µ(Rd \A) = 0}

= {x ∈ Rd : µ(Br)> 0 for all r > 0} .

Therefore, one can prove that ϕo(x)+ϕc
o(y) = c(x,y) on spt(Πo). A full proof

of this fact needs the Knott-Smith optimality criteria using that ϕo is c-concave
that we refer to [22]. Now, given (xo,yo) ∈ spt(Πo) and using the definition of
the c-transform ϕc

o(yo), the function x 7→ ϕo(x)− c(x,yo) achieves its minimum
at x = xo. Assuming the Kantorovich potential is differentiable at xo, we deduce
that ∇ϕo(xo) = xo − yo. This implies that yo is uniquely determined in terms of
xo if the Kantorovich potential ϕo is differentiable at xo by yo = xo −∇ϕo(xo) for
(xo,yo)∈ spt(Πo). Since ϕo ∈ L1(dµ) and J∗ ∈R, then ϕ0 is finite µ-a.e. Since con-
vex functions are differentiable a.e. on the closure of set of points where they are
finite (this is a consequence of Alexandrov’s theorem, an advanced result in con-
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vex analysis, see [23]) and if we further assume that µ ÎL , then the Kantorovich
potential is µ-a.e. differentiable.

Therefore, if the measure µ ∈ P2(Rd) is absolutely continuous, then the Kan-
torovich potential is µ-a.e. differentiable and its gradient is defined uniquely µ-a.e.
by the relation yo = xo−∇ϕo(xo). Therefore, we have shown that any optimal trans-
ference plan in the Kantorovich reformulation of the optimal transport problem with
quadratic cost can be characterized as Πo = (1Rd ×T )#µ with T (x) = x−∇ϕo(x),
and therefore the optimal transference plan is unique µ-a.e. since it only depends on
the values of ∇ϕo µ-a.e.

To make the last statements completely rigorous, one can use disintegration of
measures that in the case of probability measures Π ∈ Γ (µ,ν) reads as: given Π ∈
Γ (µ,ν) and any test function ζ ∈Cb(Rd ×Rd), we can find a unique µ-a.e. defined
family of probabilty measures µx ∈P(Rd), x ∈Rd , supported inside {x}×Rd such
that ∫

Rd×Rd
ζ (x,y)dΠ(x,y) =

∫
Rd

∫
Rd

ζ (x,y)dµx(y)dµ(x).

This is also the precise definition of conditional law in probability theory. If X is a
random variable with law µ and Y is a random variable with law ν , Π ∈ Γ (µ,ν)
represents the law of a coupling (X ,Y ) between X and Y . Then, µx represents the law
of the conditional probability of the random variable Y subject to knowing X = x.
With the disintegration of measures at hand, see [4] for a proof, we have previously
shown that by disintegrating the measure Πo with respect to µ then µx = δy=T (x)
since T (x) is the only point on the support of Πo for x µ-a.e. The above consider-
ations can now be stated as the following result which is due to Yann Brenier in a
more general form.

Theorem 2.6. [Monge finally meets Kantorovich] Given two probability measures
µ,ν ∈ P2(Rd) with µ ÎL , then there exists an unique optimal transference plan
for the quadratic cost of the form Πo = (1Rd ×T )#µ ∈ Γ (µ,ν) achieving the infi-
mum in the Kantorovich formulation of optimal transport∫

Rd
|x−T (x))|2 dµ(x) = min

Π∈Γ (µ,ν)

{∫
Rd×Rd

|x− y|2 dΠ(x,y)
}
.

Moreover, this map is given by T (x) = x−∇ϕo(x) defined uniquely µ-a.e. where
ϕo(x) is a c-concave

The previous theorem finally connects the Monge transportation problem to the
Kantorovich reformulation by showing the the infimum on the Monge problem is
achieved and coincides with the minimum of the Kantorovich reformulation for the
quadratic cost if µ ÎL . Notice also that the optimal transport map can be chosen
as T = ∇Ψ with Ψ a convex function by taking Ψ = 1

2 |x|2 −ϕo(x). The uniqueness
part can be restated as if T is a transport map satisfying ν = T #µ and T = ∇Ψ

µ-a.e. with Ψ a convex function, then T is the unique optimal transport map and∫
Rd

|x−∇Ψ(x))|2 dµ(x) = min
Π∈Γ (µ,ν)

{∫
Rd×Rd

|x− y|2 dΠ(x,y)
}
.
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The uniqueness part is not proven here and we refer to the literature. All the results
presented for the quadratic cost can be similarly generalized to costs functions of the
form c(x,y) = h(x− y) with h strictly convex. For instance, h(s) = |s|p, 1 < p < ∞.
We refer to [22, 23, 19].

2.4 Transport distances between measures: properties.

The goal of this section is to introduce transport distances based on the optimal
transport introduced in the previous section. Let us take simple cases first. Assume
that µ,ν ∈ P2(Rd) are just two Dirac Deltas at two different points µ = δxo and
ν = δx1 with xo,x1 ∈Rd and xo ̸= x1. Then, it is easy to see that the norm introduced
in the set of finite signed measures is ∥δxo − δx1∥ = 2 no matter how close the two
points are. Notice that in fact the norm introduced in Definition 2.1 is just the total
variation norm between measures. It is clearly not a good distance if we think about
how close or how far are δxo , δx1 in terms of the distance between the points where
they are concentrated on. Now, let us take any Π ∈ Γ (δxo ,δx1). It is clear that the
only possible transference plan is the product measure δxo ×δx1 , for instance using
the disintegration of measures theorem. Therefore, any map that sends xo onto x1
is an optimal map for the optimal mass transportation problem for any l.s.c. cost
function c(x,y) and therefore the optimal cost is c(x0,x1). A desirable property of
the cost function satisfied by all the basic costs c(x,y) = |x− y|p, 1 ≤ p < ∞, is
that the cost is continuous and has zero value for x = y. Thus we could consider
the value of the cost transporting δxo onto δx1 as a measure of the distance between
the probability measures δxo and δx1 . Moreover, it is a measure that is continuous as
xo → x1. These ideas lead to the following definition.

Definition 2.6. The Wasserstein distance between µ and ν , dp, 1 ≤ p < ∞ can be
defined by

dp
p(µ,ν) = inf

Π∈Γ (µ,ν)

{∫
Rd×Rd

|x− y|p dΠ(x,y)
}
,

i.e., by the p-th root of the value of the optimum in the Kantorovich reformulation
of the mass transport problem with cost c(x,y) = |x− y|p, 1 ≤ p< ∞.

Notice that the Wasserstein distance dp is finite for any measures µ,ν ∈Pp(Rd),
being

Pp(Rd) :=
{

µ ∈ P(Rd) :
∫
Rd

|x|p dµ(x)< ∞

}
,

1 ≤ p < ∞. The classical Monge-Kantorovich problem was posed for the case of
the Euclidean distance, p = 1, and it is usually refered as the Monge-Kantorovich
distance. Another name in the engineering and applied mathematical sciences used
is the earth movers distance alluding to the origin of the Monge problem. The name
Wasserstein was used due to classical papers popularizing the use of d2 in Partial
Differential Equations, and it has kept that name for the last 20+ years. However,
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historically attributing to Wasserstein the name of this distance is not wrong but
not completely fair either. Many people call the distances dp as transport distances
too. More information about other appearances in the literature of these transport
distances can be read in the summer school notes in [12].

From a probabilistic point of view, the Wasserstein distance dp can be alterna-
tively defined as

dp
p(µ,ν) = inf

(X ,Y )∈Γ̃

E [|X −Y |p] , (2.6)

where Γ̃ is the set of all possible couplings of random variables (X ,Y ) with laws µ

and ν respectively, i.e., X ,Y : (S ,A ,P) −→ L measurable maps from a prob-
ability space of reference (S ,A ,P) onto the Lebesgue space L and (X ,Y ) :
(S ,A ,P) −→ L × L such that the laws or image measures are X#P = µ ,
Y #P = ν , and (X ,Y )#P = Π with Π ∈ Γ (µ,ν).

In order to prove the triangle inequality, we need some preliminary results.

Lemma 2.3. [Gluing lemma] Given probability measures µ,ν ,ω ∈ P(Rd), Π1 ∈
Γ (µ,ν) and Π2 ∈Γ (ν ,ω), there exists a measure γ ∈P(R3d) such that P12#γ =Π1
and P23#γ = Π2 being P12 and P23 the projections maps into the first and the last
two variables respectively, i.e., P12(x,y,z) = (x,y) and P23(x,y,z) = (y,z) for all
x,y,z ∈ Rd .

Proof. By the disintegration of measures, we can write

Π1(A×B) =
∫

B
ν

1
y (A)dν(y) and Π2(B×C) =

∫
B

ν
2
y (C)dν(y)

for some family of probability measures ν i
y, i1,2, and any Borel sets A,B,C in Rd .

We define γ ∈ P(R3d) given by

γ(A×B×C) =
∫

B
ν

1
y (A)ν

2
y (C)dν(y) .

It is easy to check that γ(A×B×Rd) = Π1(A×B) and γ(Rd ×B×C) = Π2(B×C)
as desired.

Proposition 2.1. The distance dp is a metric on Pp(Rd).

Proof. Since the cost c(x,y) = |x− y|p is nonnegative and symetric, it is easy to
see that the optimal value is nonnegative and that the distance is symmetric on its
arguments dp

p(µ,ν) = dp
p(ν ,µ). For the last statement, notice that Π ∈ Γ (µ,ν) if

and only if S#Π ∈ Γ (ν ,µ) with S : Rd ×Rd 7→ Rd ×Rd given by S(x,y) = (y,x).
Now, if µ = ν , we can take Π(x,y) = δx(y)µ(x) ∈ Γ (µ,ν) to obtain that

0 ≤ dp
p(µ,µ)≤

∫
Rd×Rd

|x− y|p dΠ(x,y) = 0

since x = y Π -a.e. Now, if dp
p(µ,µ) = 0 then there exists Π(x,y) ∈ Γ (µ,ν) such

that x = y Π -a.e. Hence, for any test function ζ ∈Cb(Rd), we have
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Rd

ζ (x)dµ(x) =
∫
Rd×Rd

ζ (x)dΠ(x,y) =
∫
Rd×Rd

ζ (y)dΠ(x,y) =
∫
Rd

ζ (y)dν(y) ,

and thus µ = ν by the Riesz representation theorem. The only remaining property
to show is the triangular inequality. Let µ,ν ,ω ∈ P(Rd), Π1 ∈ Γ (µ,ν) and Π2 ∈
Γ (ν ,ω) optimal transference plans by Theorem 2.3. Lemma 2.3 implies there exists
a measure γ ∈P(R3d) such that P12#γ =Π1 and P23#γ =Π2. We define Π3 =P13#γ

being P13(x,y,z) = (x,z) for all x,y,z ∈ Rd . One can check that Π3 ∈ Γ (µ,ω) (this
statement is an exercise). Using the definition of the distance dp, the definition of γ ,
the triangle inequality, the Minkowski inequality for Lp spaces, and the optimality
of Π1 and Π2, we obtain

dp(µ,ω)≤
(∫

Rd×Rd
|x− z|p dΠ3(x,y)

) 1
p

=

(∫
Rd×Rd×Rd

|x− z|p dγ(x,y,z)
) 1

p

≤
(∫

Rd×Rd×Rd
(|x− y|+ |y− z|)p dγ(x,y,z)

) 1
p

≤
(∫

Rd×Rd×Rd
|x− y|p dγ(x,y,z)

) 1
p

+

(∫
Rd×Rd×Rd

|y− z|p dγ(x,y,z)
) 1

p

=

(∫
Rd×Rd

|x− y|p dΠ1(x,y)
) 1

p

+

(∫
Rd×Rd

|y− z|p dΠ2(y,z)
) 1

p

= dp(µ,ν)+dp(ν ,ω) ,

as desired. ⊓⊔

Finally, let us remark that the sequence of metrics dp(µ,ν) is nondecreasing in
p, 1 ≤ p<∞. This is a simple consequence of the Hölder’s inequality for Lp-spaces.
This allows to define a quantity that we call the ∞-Wasserstein distance as

d∞(µ,ν) := lim
p↗∞

dp(µ,ν).

This is at least a metric on the set of compactly supported probability measures. We
will not discuss much more on this interesting transport distance and refer to the
literature for more details. By the monotone property of the distances dp, we deduce
that for compactly supported probability measures, the topology induced by dp gets
finer as p increases.

Notice also that if µ,ν ∈ P(Rd) are both supported on a ball B̄R then

dp(µ,ν)≤ (2R)(p−1)/pd1(µ,ν)
1/p . (2.7)

This is due to the fact that for any Π ∈Γ (µ,ν) we have Π(Rd ×(Rd \B̄R))= ν(Rd \
B̄R) = 0 and Π((Rd \ B̄R)×Rd) = µ(Rd \ B̄R) = 0. Thus, we deduce Π((Rd ×Rd)\
(B̄R×B̄R))= 0, and therefore, spt(Π)⊂ B̄R×B̄R. Take now the optimal transference
plan Πo ∈ Γ (µ,ν) for the distance d1, then
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dp
p(µ,ν)≤

∫
Rd×Rd

|x− y|p dΠo(x,y) =
∫

B̄R×B̄R

|x− y|p dΠo(x,y)

≤ (2R)(p−1)
∫

B̄R×B̄R

|x− y|dΠo(x,y) = (2R)(p−1)d1(µ,ν) ,

leading to the desired inequality.
Let us focus now in understading the notion of convergence in transport metrics

dp. We will denote by Lip(Rd) the set of Lipschitz functions on Rd and by W 1,∞(Rd)
the set of bounded and Lipschitz functions on Rd .

Corollary 2.2 (Convergence of averages with dp). Given probability measures
µ,ν ∈ Pp(Rd) and ϕ ∈ Lip(Rd) with Lipschitz constant L, then we have∣∣∣∣∫Rd

ϕ(x)dµ(x)−
∫
Rd

ϕ(x)dν(x)
∣∣∣∣≤ Ldp(µ,ν).

Proof. Since dp(µ,ν) is nondecreasing in p, we can reduce to show the statement
for d1. Let Πo(x,y) an optimal plan between µ,ν ∈ P1 for d1. Then∫

Rd×Rd
|x− y|dΠo(x,y) = d1(µ,ν),

and we can write∫
Rd

ϕ(x)dµ(x)−
∫
Rd

ϕ(x)dν(x) =
∫
Rd×Rd

(ϕ(x)−ϕ(y))dΠo(x,y).

Using that ϕ is Lipschitz with constant L and estimating, we get∣∣∣∣∫Rd
ϕ(x)dµ(x)−

∫
Rd

ϕ(x)dν(x)
∣∣∣∣≤ ∫

Rd×Rd
|ϕ(x)−ϕ(y)|dΠo(x,y)

≤ L
∫
Rd×Rd

|x− y|dΠo(x,y)≤ Ld1(µ,ν)

giving the assertion. ⊓⊔

In the noticeable case of the Monge-Kantorovich distance d1, the previous corol-
lary is a characterization by duality. More precisely, as a consequence of Fenchel-
Rockafellar’s duality principle, one can deduce the Kantorovich-Rubinstein theorem
[22, Theorem 1.14] giving that

d1(µ,ν)=sup
{∣∣∣∣∫Rd

ϕ(x)d(µ −ν)(x)
∣∣∣∣,ϕ ∈ Lip(Rd),∥ϕ∥Lip(Rd) ≤ 1

}
. (2.8)

Another classical distance between measures , not necessarily probabilty measures,
is the so-called Bounded Lipschitz (BL) distance, that is defined as

∥µ −ν∥BL=sup
{∣∣∣∣∫Rd

ϕ(x)d(µ −ν)(x)
∣∣∣∣,ϕ ∈W 1,∞(Rd),∥ϕ∥W 1,∞(Rd) ≤ 1

}
,
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that is, the dual W 1,∞(Rd)-norm. The convergence in BL-distance is equivalent to
weak convergence of measures by the Pormanteau theorem. We will see next that
the topology in d1 is finer than the topology induced by the BL-distance in Rd .
However, we start by showing that on compact sets of Rd the convergence in any
transport distance is also equivalent to weak convergence of measures.

Proposition 2.2. Given a sequence of probability measures µn ∈ Pp(Rd) and µ ∈
Pp(Rd) supported on some euclidean ball B̄R. Then dp(µn,µ) → 0 if and only if
µn converges weakly to µ .

Proof. We first notice that due to (2.7) and that d1(µn,µ) ≤ dp(µn,µ), we are re-
duced to show the result for d1. The charaterization (2.8) implies directly that if
d1(µn,µ) → 0 then µn converges weakly to µ . Here, we can use the Pormanteau
theorem, a result that can be seen in basic courses of probability, or an argument
by density to go from Lipschitz to bounded continuous functions. Conversely, let us
take the subsequence µnk such that

limsup
n→∞

d1(µn,µ) = lim
k→∞

d1(µnk ,µ) .

By the characterization (2.8), we have the existence of a sequence of 1-Lispschitz
functions ϕk such that

d1(µnk ,µ)≤
∫
Rd

ϕk(x)d(µnk −µ)(x)+
1
k
=

∫
B̄R

(ϕk(x)−ϕk(0))d(µnk −µ)(x)+
1
k
,

since µn ∈ Pp(Rd) and µ ∈ Pp(Rd) supported on B̄R. The sequence of functions
ϕ̃k(x) := ϕk(x)− ϕk(0) is now 1-Lipschitz and bounded defined on B̄R, then by
Ascolı́-Arzelá theorem, there exists a further subsequence, that we denote with the
same index, converging uniformly to a 1-Lispchitz function ϕ̃ . Hence, we conclude
that

limsup
n→∞

d1(µn,µ)≤ limsup
k→∞

∫
B̄R

ϕ̃k(x)d(µnk −µ)(x)

≤ limsup
k→∞

∫
B̄R

(ϕ̃k(x)− ϕ̃(x))dµnk(x)+ limsup
k→∞

∫
B̄R

ϕ̃(x)d(µnk −µ)(x)

− limsup
k→∞

∫
B̄R

(ϕ̃k(x)− ϕ̃(x))dµ(x)

≤ 2limsup
k→∞

∥ϕ̃k(x)−ϕ(x)∥L∞(B̄R)
+ limsup

k→∞

∫
B̄R

ϕ̃(x)d(µnk −µ)(x) = 0 ,

where we used in the last line the weak convergence of µn towards µ , and thus
d1(µn,µ)→ 0 as n → ∞. ⊓⊔

Now, we come back to the whole space to study the notion of dp convergence.

Theorem 2.7. Given a sequence of probability measures µn ∈ Pp(Rd) and µ ∈
Pp(Rd). Then dp(µn,µ)→ 0 if and only if µn converges weakly to µ and
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Rd

|x|p dµn(x)→
∫
Rd

|x|p dµ(x) as n → ∞.

Proof. The necessary implication is a consequence of Corollary 2.2 together with
the triangle inequality. In fact, observing that∫

Rd
|x|p dµn(x) = dp

p(µn,δ0) and
∫
Rd

|x|p dµ(x) = dp
p(µ,δ0) ,

we get by the triangle inequality for dp that

|dp(µn,δ0)−dp(µ,δ0)| ≤ dp(µn,µ)→ 0

as n → ∞.
Conversely, let us truncate the p-th moment by defining φR(x) = min(|x|,R)p

which is continuous and bounded. Therefore, by weak convergence of the sequence
µn towards µ and the convergence of the p-th moments, we get∫

Rd
(|x|p −φR(x))dµn(x)→

∫
Rd
(|x|p −φR(x))dµ(x) as n → ∞.

Now, we can take R large enough such that∫
Rd
(|x|p −φR(x))dµ(x) =

∫
|x|>R

(|x|p −Rp)dµ(x)≤
∫
|x|>R

|x|p dµ(x)≤ ε

2
,

for a given fixed ε > 0, since µ ∈ Pp(Rd). Therefore, for n large enough, we also
have ∫

Rd
(|x|p −φR(x))dµn(x)≤ ε .

For 0 < b < a and p ≥ 1, it is easy to check that ap + bp ≤ (a+ b)p. We can infer
that for |x|> R then (|x|−R)p ≤ |x|p −Rp = |x|p −φR(x). So for n large enough∫

|x|>R
(|x|−R)p dµn(x)≤ ε and

∫
|x|>R

(|x|−R)p dµ(x)≤ ε .

Let us consider the euclidean projection onto the ball B̄R denoted by PR, this map
is continuous, leaves invariant B̄R and otherwise |x−PR(x)| = |x| −R. Hence, we
deduce that

dp
p(µ,PR#µ)≤

∫
Rd

|x−PR(x)|p dµ(x) =
∫
|x|>R

(|x|−R)p dµ(x)≤ ε ,

and analogously dp
p(µn,PR#µn) ≤ ε . Since µn ⇀ µ weakly, it is easy to check that

PR#µn ⇀ PR#µ weakly, and thus using the characterization of the convergence for
measures supported in BR in Proposition 2.2, we get dp(PR#µn,PR#µ)→ 0 as n→∞.
We conclude by estimating using the triangle inequality as follows:
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dp(µn,µ)≤ dp(µn,PR#µn)+dp(PR#µn,PR#µ)+dp(µ,PR#µ)

≤ 2ε
1/p +dp(PR#µn,PR#µ) ,

for n large enough. Taking the limit n → ∞, we get

limsup
n→∞

dp(µn,µ)≤ 2ε
1/p

and then, taking the limit ε → 0, we finally obtain dp(µn,µ) → 0 as n → ∞ as
desired. ⊓⊔

We end this section by making a summary of the main properties of the dp dis-
tances.

Proposition 2.3 (dp-properties). The space (Pp(Rd),dp) is a complete metric
space, 1 ≤ p< ∞. Moreover, the following properties of the distance dp hold:

i) Optimal transference plan: The infimum in the definition of the distance dp is
achieved at a joint probability measure Πo called an optimal transference plan
satisfying:

dp
p(µ,ν) =

∫∫
Rd×Rd

|x− y|2 dΠo(x,y).

ii) Convergence of measures: Given µn and µ in Pp(Rd), 1≤ p<∞, the following
assertions are equivalent:

a) dp(µn,µ) tends to 0 as n goes to infinity.
b) µn tends to µ weakly and∫

Rd
|x|p dµn(x)→

∫
Rd

|x|p dµ(x) as n →+∞.

iii) Lower semicontinuity: dp is weakly-* lower semicontinuous in each argument,
1 ≤ p< ∞.

iv) Moments as distances: If µ ∈ Pp(Rd), then

dp
p(µ,δa) =

∫
Rd

|x−a|p dµ(x) ,

for all a ∈ Rd .
v) Convexity: Given f1, f2, g1 and g2 in Pp(Rd) and α in [0,1], then

dp
p(α f1 +(1−α) f2,αg1 +(1−α)g2)≤ αdp

p( f1,g1)+(1−α)dp
p( f2,g2).

As a simple consequence, given f ,g and h in Pp(Rd), then

dp(h∗ f ,h∗g)≤ dp( f ,g)

where ∗ stands for the convolution of measures in Rd .
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vi) Additivity with respect to convolution of d2: Given f1, f2, g1 and g2 in P2(Rd)
with equal mean values, then

d2
2( f1 ∗ f2,g1 ∗g2)≤ d2

2( f1,g1)+d2
2( f2,g2).

Proof. Most of the properties have been shown except Property iii) and the last two.
Properties iii) and v) are left to the reader (these statements are exercises). Notice
here that the convolution between measures is defined as usual by duality on test
functions, meaning f ∗g for f ,g ∈P(Rd) is defined as the measure f ∗g ∈P(Rd)
such that∫

Rd
ζ (x)d( f ∗g)(x) =

∫
Rd

∫
Rd

ζ (x+ y)d f (x)dg(y) ∀ζ ∈ Cb(Rd) .

Property vi) is a direct consequence of the definition of d2 in terms of random vari-
ables. Let (X1,Y1), (X2,Y2) be two independent pairs of random variables, and let fi
(resp. gi) be the laws of Xi (resp. Yi) i = 1,2. Suppose moreover that Xi and Yi have
the same mean value, namely E[Xi] = E[Yi] i = 1,2. If the pairs (X1,Y1), (X2,Y2)
realize the optimal transference plans, then for i = 1,2

d2
2( fi,gi) = E

[
|Xi −Yi|2

]
.

Notice that the law of the random variable X1 +X2 is given by f1 ∗ f2 since X1 and
X2 are independent (this statement is an exercise), then

d2
2( f1 ∗ f2,g1 ∗g2)≤ E

[
|(X1 +X2)− (Y1 +Y2)|2

]
= E

[
|X1 −Y1|2

]
+E

[
|X2 −Y2|2

]
+2E [(X1 −Y1) · (X2 −Y2)]

= d2
2( f1,g1)+d2

2( f2,g2)

In fact, the term E [(X1 −Y1) · (X2 −Y2)] is equal to zero due to the independence of
the pairs, and to the equality of the mean values. ⊓⊔

2.5 One-dimensional Wasserstein metric

Given a probability measure in one dimension, µ ∈ P(R), we define as usual its
distribution function F : R 7→ [0,1] as

F(x) =
∫ x

−∞

dµ(x) = µ((−∞,x]) .

Notice that the definite integral is just a notation here made precise by the second
equality. With this definition, F is a monotone nondecreasing right-continuous func-
tion with F(−∞) = 0 and F(+∞) = 1, in fact it is a càdlàg function. In principle, F
does not have an inverse since it can have plateaus, but we can define its generalized
inverse or pseudo-inverse function X : [0,1] 7→ R∪{±∞} as follows:
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X(η) = inf
x∈R

{x ∈ R : F(x)≥ η}

for all η ∈ [0,1]. The infimum is a minimum as soon as the set is not empty (oth-
erwise is +∞) and bounded from below (otherwise it is −∞), thanks to the right
continuity of F . Note that X(η)≤ x ⇐⇒ η ≤ F(x) or equivalently X(η)> x ⇐⇒
η > F(x). By definition X(η) is a nondecreasing function and F(X(η)) ≥ η and
X(F(x)) ≤ x. If F is increasing and continuous then F(X(η)) = η . We remind the
reader some basic properties about monotone funcitions that we will use below. A
monotone function can have only a countable number of discontinuities and they are
jump discontinuities if they exist. Moreover, the set of possible discontinuities has
zero Lebesgue measure. In our case, this implies that both F and X have a countable
number of jump discontinuities and plateaus, note that a plateau for F is a jump
discontinuity for X and viceversa, and both sets are of zero Lebesgue measure.

Proposition 2.4. Given µ ∈ P(R), and X the pseudo-inverse of its distribution
function F, then X#L = µ . Moreover, given µ,ν ∈ P(R), and X and Y their cor-
responding pseudo-inverses with distribution functions F and G, then the measure
γm := (X,Y)#L belongs to the admissible set Γ (µ,ν) and γm((−∞,a]×(−∞,b]) =
min(F(a),G(b)). Furthermore, if µ ∈ P(R) is atomless, then F#µ = L , and as a
consequence, for every l ∈ [0,1], the set {x ∈ R : F(x) = l} is µ-negligible.

Proof. Let us clarify that by L we mean the Lebesgue measure on the interval of
definition of the pseudo-inverses [0,1]. We first realize that

L ({η ∈ [0,1] : X(η)≤ x}) = L ({η ∈ [0,1] : η ≤ F(x)}) = F(x) ,

which implies that X#L and µ coincide by definition on the intervals (−∞,x] for all
x ∈R. Then the two measures X#L = µ , since this family of intervals generate the
whole Borel σ -algebra on the real line. We proceed similarly to prove the second
one by computing

γm((−∞,a]× (−∞,b]) = L ({η ∈ [0,1] : X(η)≤ a and Y(η)≤ b})
= L ({η ∈ [0,1] : η ≤ F(a) and η ≤ G(b)})
= min(F(a),G(b)) .

Since µ is atomless then F is a continuous function. Hence, for all a ∈ (0,1) the set
F−1((−∞,a]) = (−∞,xa] with F(xa)= a. Hence, µ(F−1([0,a])) =F(xa)= a giving
the first part of the last statement. The second part is by contradiction, otherwise if
one of these sets of the form {x ∈ R : F(x) = l} has µ positive measure, then this
will mean that the Lebesgue measure should have an atom at l by the first part of
the last statement.

The mass transference plan γm is called the monotone mass transference plan.

Proposition 2.5. Given µ,ν ∈ P(R). Assume that µ ∈ P(R) is atomless, and X
and Y their corresponding pseudo-inverses with distribution functions F and G,
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then there exists a unique µ-a.e. defined nondecreasing map Tm : R 7→ R such that
ν = Tm#µ given by Tm = Y◦F.

Proof. Notice that the map Tm = Y ◦F is well defined with values on R as soon
as F(x) ∈ (0,1). Since the sets {x ∈ R : F(x) = 0} and {x ∈ R : F(x) = 1} are µ-
negligible, then Tm = Y◦F is well defined µ-a.e. The fact that Tm is nondecreasing
is obvious by composition of nondecreasing function. Using Proposition 2.4, we
have that Y#L = ν and F#µ = L since µ is atomless, and thus ν = Tm#µ by the
definition of push-forward.

Let us know prove the uniqueness part. Consider any monotone nondecreas-
ing map T such that ν = T #µ . From the monotonicity, we deduce that (−∞,x] ⊂
T−1((−∞,T (x)]). Thus, we have

F(x) = µ((−∞,x])≤ µ(T−1((−∞,T (x)])) = ν((−∞,T (x)]) = G(T (x)) ,

and thus by definition of pseudo-inverse T (x)≥ Y(F(x)). Assume that the inequal-
ity is strict now, there there exists εo > 0 such that G(T (x)− ε) ≥ F(x) for every
ε ∈ (0,εo). By monotonicity again, we have T−1((−∞,T (x)− ε]) ⊂ (−∞,x] and
then, G(T (x)−ε)≤ F(x). Thus, we get that G(T (x)−ε) = F(x) for all ε ∈ (0,εo).
Then F(x) is the value that G(x) takes on an interval that is constant. We know that
the set of plateaus on G is countable, so then it is the set of possible values that F
takes on those intervals. The last statement in Proposition 2.4 says that each of these
sets is negligible µ-a.e. and thus it is the case for a countable union of them. There-
fore the set of points x such that T (x) > Y(F(x)) is µ negligible, and thus T = Tm
µ-a.e. ⊓⊔

The first main result of this section characterizes the monotone plan and map
between two one dimensional probability measures.

Proposition 2.6. Let γ ∈ Γ (µ,ν) be a transport plan between the probability mea-
sures µ,ν ∈ P(R). Assume that it satisfies the property

(x,y),(x′,y′) ∈ spt(γ) and x< x′ =⇒ y ≤ y′ ,

then γ = γm. In particular, there is a unique γ satisfying the previous property.

Proof. We just need to prove that

γ((−∞,a]× (−∞,b]) = min(F(a),G(b))

according to Proposition 2.4. Consider the sets A = (−∞,a]× (b,+∞) and B =
(a,+∞)× (−∞,b]. By assumption it is not possible to have both γ(A) > 0 and
γ(B)> 0, otherwise we contradict the assumption. Since these two sets have empty
intersection with (−∞,a]× (−∞,b] and at least, one of them has zero γ measure,
then

γ((−∞,a]× (−∞,b]) = min(γ((−∞,a]× (−∞,b]∪A),γ((−∞,a]× (−∞,b]∪B)).
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It is easy to see that γ((−∞,a]×(−∞,b]∪A)= γ((−∞,a]×R)=F(a). Analogously
for γ((−∞,a]× (−∞,b]∪B) = G(b), obtaining the desired result. ⊓⊔

The previous result allows to find the solution to the transportation problem in
one dimension and leads to a more general concept that characterizes optimal trans-
port in higher dimensions, the concept of cyclical monotone sets. We just finish this
section by stating the theorem without a proof that we refer to [22, 19].

Theorem 2.8. Given two probability measures µ,ν ∈ P(R), h : R 7→ [0,∞) a
strictly convex function, and the cost function of the form c(x,y) = h(x−y). Assume
that the Kantorovich problem associate to the cost c among these two measures is
finite, i.e.

I∗ := min
Π∈Γ (µ,ν)

{∫
R×R

c(x,y)dΠ(x,y)
}
<+∞ .

Then the infimum is achieved uniquely by γm. If µ ∈ P(R) is atomless, this optimal
plan is induced by the map Tm. Moreover, if we assume plain convexity for h then
γm is an optimal transport plan but the uniqueness is not guaranteed. Finally, in all
cases the optimal cost can be expressed as

I∗ =
∫ 1

0
h(X(η)−Y(η))dη ,

where X and Y are the pseudoinverses of µ,ν ∈ P(R).

Note that the previous theorem implies that the Wasserstein distance dp, 1 ≤ p ≤
∞, between two one dimensional probability measures is given by the Lp-norm of
the difference of their corresponding pseudoinverses functions. In particular, for the
Monge-Kantorovich distance, we have

d1(µ,ν) =
∫ 1

0
|X(η)−Y(η)|dη =

∫
R
|F(x)−G(x)|dx ,

(this last equality is an exercise).
Finally, let us see how to connect again to some of the PDE models we saw in

the first chapter. Consider the one dimensional PDE

∂ρ

∂ t
=

∂

∂x

(
ρV ′) , (2.9)

with V a C2 confinement potential such that V is uniformly convex, V ′(x)≥ λ > 0,
with global minimum at zero. Let us consider smooth positive probability measure
solutions of (2.9), and let us denote by F(t,x) the distribution function associated
to the solution ρ(t,x) of (2.9), and X(t,η) its pseudo inverse. By the definition of
pseudo-inverse function we have

F(t,X(t,η)) = η . (2.10)

Differentiating (2.10) with respect to η gives
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∂F
∂x

∣∣∣
x=X

∂X
∂η

= 1, (2.11)

and twice gives
∂ρ

∂x

∣∣∣
x=X

(
∂X
∂η

)2
+ρ(t,X)

∂ 2X
∂η2 = 1. (2.12)

Differentiating (2.10) with respect to t gives

∂F
∂ t

∣∣∣
x=X

+
∂F
∂x

∣∣∣
x=X

∂X
∂ t

= 0 (2.13)

Then we collect from (2.11)-(2.12) that

∂F
∂ t

∣∣∣
x=X

=
∫ X

−∞

∂ρ

∂ t
(t,x)dx =

∫ X

−∞

∂

∂x

(
ρV ′) dx =

[
ρ(t,x)V ′(x)

]
x=X =V ′(X)ρ(t,X) ,

which, in light of (2.13), leads us to the following evolution problem

Xt =−V ′(X), η ∈ (0,1), t > 0, (2.14)

Therefore, we can deduce that if ρ1 and ρ2 are two such solutions of (2.9) and if
their corresponding pseudoinverses are X1 and X2, then

1
2

d
dt

∫ 1

0
(X1(t,η)−X2(t,η))2 dη =

−
∫ 1

0
(X1(t,η)−X2(t,η))(V ′(X1(t,η))−V ′(X2(t,η)))dη .

If the confinement potential V is uniformly convex, then V ′′(x) ≥ λ > 0 and using
Theorem 2.8, we get

d
dt

d2
2(ρ1(t),ρ2(t))≤−2λd2

2(ρ1(t),ρ2(t)) ,

for all t ≥ 0. Gronwall’s lemma implies that

d2
2(ρ1(t),ρ2(t))≤ e−2λ td2

2(ρ1(0),ρ2(0)).

Therefore, for a uniformly convex confinement potential, the flow of the PDE (2.9)
is a contraction in the d2 metric. Let us finally point out that X = 0 is a solution
of (2.14) that corresponds to a Dirac Delta at the minimum of the potential V in
original variables. In fact, one can show that δ0 is a stationary solution to (2.9) (this
statement is left as a simple exercise). Therefore, by taking the stationary solution
δ0 as one of the solutions, then d2

2(ρ(t),δ0) ≤ e−2λ td2
2(ρ(0),δ0) for all solutions

of (2.9). So, solutions of (2.9) concentrate in infinite time to the Delta Dirac at the
origin. We again see that the convexity of the potential is essential to discuss the
long time asymptotics of (2.9).
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We leave as an exercise to compute the equation satisfied by the pseudoinverse
of the solutions of the linear Fokker-Planck equation (1.12) in one dimension and to
draw conclusions about the asymptotic behavior.

We finish this section by pointing out that this approach can be turned into an
effective numerical method to compute solutions of PDEs in one dimension of the
general form (1.1). We showcase this in Figures 2.3 and 2.4, where we show the
evolution of the pseudoinverse function associated to the solution of the PKS model
(1.22) in one dimension in sub- and supercritical cases. We see how the numerical
method is able to capture the diffusion of the solution in the subcritical case and the
concentration in the supercritical case leading to a Dirac Delta forming in finite time
according to the numerical simulations.

corresponding to a compact supported density n0, we numerically solve the PKS
equation on the time interval [0, 400] with χ = π. Figures 4.1 and 4.2 show the
evolution of the solution both for the density (Fig. 4.2) and its inverse distribution
function (Fig. 4.1).
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Figure 4.1. Inverse cumulative distri-
bution function for χ = π. Note that the
initial data seems to be flat relatively to the
very large scale on the V−axis, as opposed
to Figure 4.5.
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Figure 4.2. Cell density n as time
evolves, obtained from its inverse cumu-
lative distribution function. Accordingly
to Figure 4.1, the space scale is also
very large, and therefore the density seems
highly concentrated at t = 0.

Observe in Figure 4.1 that the branches of the inverse cumulative function V
goes eventually to ±∞. This is expected because the support of the cell density
spreads as time goes on, and therefore the distribution tails are wider. Remind that
in the sub-critical regime, the diffusion process dominates. The scheme captures
well the collapse down to zero of the cell density and the spreading of the solution.
Interestingly, this scheme handles easily with moving density’s support (note that
finite speed of propagation is a numerical artifact) whereas the reference domain [0, 1]
is fixed because we deal with probability densities (mass is conserved).
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Figure 4.3. L2-norm’s evolution for
the cell density n, in a log− log scale. The
decay appears to be polynomial.
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Figure 4.4. Evolution of the entropy
S [n] showing slow decay.

Moreover, the spreading towards zero seems to be polynomial from Figure 4.3
showing the evolution of the L2-norm of the cell density in log-log scale. The entropy
decay is plotted in Figure 4.4.
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Fig. 2.3 Solution of the equation for the pseudoinverse associated to the PKS (1.22) in one dimen-
sion in a subcritical case.
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Figure 4.15. Cumulative distribution
function V for χ > χc. The solution blows-
up exhibiting a plateau in finite time.
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Figure 4.16. Cell density n. We ob-
serve blow-up in finite time.

because it is entirely determined by the ratio χc/χ. However this does not provide any
new insight of what happens after blow-up, and it is known from theoretical works
that the behavior highly depends upon the regularization procedure [41, 42].
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Figure 4.17. Wasserstein distance to
the Dirac mass at zero δ0. Blow-up occurs
previously, and part of the mass has not
yet reached zero at this time.
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Figure 4.18. The variation of the en-
tropy S [n] seems to blow-up.

Interestingly, numerics are able to track the blow-up phenomenon quite precisely,
without mesh refinement. Indeed, if the space step is even uniform, the number of
space points at the density level adapt to the highly concentrated (blow-up) regions,
corresponding to plateaus (compare Figure 4.15 and Figure 4.16). This is the coun-
terpart of the ’moving support’ observed in Section 4.2.1.

4.3.2. Two symmetric peaks: case χ = 3 π. Given the compactly supported
initial data,

V i
0 =

exp [10 (wi − 0.5)]− 1

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in original variables on the time interval [0, 1.3]
with χ = 3 π.

24

Fig. 2.4 Solution of the equation for the pseudoinverse associated to the PKS (1.22) in one dimen-
sion in a supercritical case.





Chapter 3
Mean Field Limit & Couplings

We start this chapter by studying in detail a linear continuity equation resulting
from eliminating the nonlinearities in (1.1). We will focus on stability estimates for
this linear equation in transport distances. We will see in the rest of this chapter
how to take advantage of these estimates to derive the mean-field limit for nonlocal
interaction potentials and then in next chapter we will use convexity properties of
the potentials to discuss detailed properties of the gradient flows.

3.1 Measures sliding down a convex potential

Let us consider the particular case of (1.1) with W = 0 and U = 0, that is the linear
continuity equation

∂ρ

∂ t
= ∇ · (ρ∇V ) , (3.1)

for the evolution of a probability density in a velocity field given by u = −∇V
where V : Rd −→ R is a C2 function with bounded second derivatives on Rd such
that D2V (x) ≥ λ Id for λ > 0. We can assume without loss of generality that this
function has a unique global minimum at zero whose value is zero by changing
variables in x and adding a constant to the potential V if necessary. The first step
we want to do is to give a sense to unique weak solutions to (3.1) with initial data
a probability measure. In fact we will be looking for solutions to (3.1) as curves in
ρ ∈C([0,T ],Pp(Rd) continuous with the topology induced by dp making Pp(Rd)
a complete metric space, 1≤ p<∞. We say that ρ ∈C([0,T ],Pp(Rd)) is a solution
to (1.1) with initial data µ ∈ Pp(Rd) if for any ψ ∈C∞

o ([0,∞)×Rd) we have∫ T

0

∫
Rd

∂ψ

∂ t
dρ(t)dt+

∫
Rd

ψ(0)dµ

=
∫ T

0

∫
Rd
(∇ψ ·∇V )dρ(t)dt +

∫
Rd

ψ(T )dρ(T ).

(3.2)

43
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Let us define Φs,t(x) to be the general solution of the finite dimensional gradient
flow 

dr
dτ

= u(r) =−∇V (r) in s< τ < t,

r(s) = x ∈ Rd .

Notice that due to the assumptions on V , the velocity field u is globally Lispchitz
with constant L > 0 and the solutions exists globally since the velocity field has
linear growth |u(x)| ≤C(1+ |x|), and thus the Cauchy-Lispchitz theory tells me that
Φs,t(x) are a family of diffeomorphisms from Rd onto itself. Let us call the flow
map associated to the finite dimensional gradient flow to the particular case of s = 0
that we denoted by Φt(x). Moreover, due to the linear growth of u, then the flow
map has linear growth in x, meaning for all T > 0, there exists C(T )> 0 such that

Φt(x)≤C(T )(1+ |x|), 0 ≤ t ≤ T, x ∈ Rd .

Let us use a duality argument to find that solutions to (3.1) are unique and their
explicit solution by the method of characteristics. In fact, let us consider the Cauchy
problem 

∂ψ

∂ t
− (∇V ·∇ψ) =

∂ψ

∂ t
+(u ·∇ψ) = 0 in t < T,x ∈ Rd

ψ(T,x) = ϕ(x) ∈C∞
o (Rd),

that has a unique classical solution given by ψ(t,x) = ϕ(Φt,T (x)) by the method of
characteristics. By linearity of (3.1), we are reduced to show that the unique solution
to (3.2) with initial data µ = 0 is the zero solution. Assume that µ = 0 in (3.2) and
take as test function ψ(t,x) = ϕ(Φt,T (x)) in (3.2), then we deduce that∫

Rd
ψ(T,x)dρ(T )(x) =

∫
Rd

ϕ(x)dρ(T )(x) = 0,

for all ϕ(x) ∈ C∞
o (Rd), and thus ρ(T ) = 0. Thus, the solution to (3.2) is unique.

Moreover, by direct inspection we can check that ρ(t) = Φt#µ is a weak solution to
(3.2) for all T > 0. Actually, we can obtain by Definition 2.3 of push foward that∫ T

0

∫
Rd

[
∂ψ

∂ t
− (∇ψ ·∇V )

]
dρ(t)dt =

∫ T

0

∫
Rd

[
∂ψ

∂ t
− (∇ψ ·∇V )

]
(t,Φt(x))dµ(x)dt

=
∫ T

0

∫
Rd

d
dt

[ψ(t,Φt(x))] dµ(x)dt

=
∫
Rd

[ψ(T,ΦT (x))−ψ(0,x)] dµ(x)

=
∫
Rd

ψ(T,x)dρ(T )(x)−
∫
Rd

ψ(0,x)dµ(x) .
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It is an exercise to show that ρ(t) = Φt#µ ∈ C([0,T ],Pp(Rd)) if µ ∈ Pp(Rd).
Therefore, ρ(t) = Φt#µ is the unique weak solution to (3.2) in C([0,T ],Pp(Rd))
with initial data µ ∈ Pp(Rd).

Let us now see that we can obtain stability in d1 for weak solutions to (3.1).
Since the velocity field u(x) =−∇V (x) is globally Lispchitz with constant L> 0, it
is straightforward to show that the flow map Φt is also Lipschitz with constant eLt .
Actually by the definition of flow map, we have

Φt(x)−Φt(y) = x− y−
∫ t

0
[∇V (Φs(x))−∇V (Φs(y))] ds,

so we can estimate it as

|Φt(x)−Φt(y)| ≤ |x− y|+L
∫ t

0
|Φs(x)−Φs(y)|ds.

Gronwall’s Lemma implies the claim that Φt is Lipschitz with constant eLt . Given
ϕ ∈ Lip(Rd) with ∥ϕ∥Lip(Rd) ≤ 1, we get∫

Rd
ϕ(x)d(Φt#µ1 −Φt#µ2)(x) =

∫
Rd

ϕ(Φt(x))d(µ1 −µ2)(x)

=
∫
Rd
(ϕ(Φt(x))−ϕ(Φt(y)))dΠo(x,y) ,

where Πo ∈ Γ (µ1,µ2) is an optimal plan for the d1 distance. Estimating we infer
that∣∣∣∣∫Rd

ϕ(x)d(Φt#µ1 −Φt#µ2)(x)
∣∣∣∣≤ eLt

∫
Rd

|x− y|dΠo(x,y) = eLtd1(µ1,µ2) .

Now, we use the characterization of the Monge-Kantorovich distance by Rubinstein-
Kantorovich duality (2.8), to deduce that

d1(Φt#µ1,Φt#µ2)≤ eLtd1(µ1,µ2) ,

showing the well-posedness of solutions ρ(t) = Φt#µ ∈ C([0,T ],P1(Rd)) in d1.
Much more can be obtained by studying carefully the evolution of transport dis-
tances between two solutions. Let us check that we have been very rough in the
previous estimates in d1 in this particular case of measures sliding down a convex
potential.

Notice that if µ = δx0 , the unique weak solutions to (3.1) is ρ(t) = δx0(t) where
x0(t) is the solution to the finite dimensional gradient flow

dx0

dt
=−∇V (x0(t)) in t > 0

x0(0) = x0 ∈ Rd
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Observe also that ρ∞ = δ0 is a stationary solution since 0 is the unique minimum of
the potential V . It seems intuitive that the uniform convexity of V controls the rate
of convergence towards the equilibrium ρ∞ for all weak solutions of (3.1). It is easy
to check that given two solutions x1(t) and x2(t) of dr

dτ
=−∇V (r), we have

d2(δx1(t),δx2(t))≤ e−λ td2(δx1(0),δx2(0)).

This is left as an exercise. This shows that all Dirac Delta (particle) solutions to
(3.1) converge exponentially fast to the steady state ρ∞ = δ0. It is possible to prove
a convergence much more general than this for general initial data in P2(Rd).

Theorem 3.1 (Asymptotic Behavior W = U = 0). Given V ∈ C2(Rd) such that
D2V (x)≥ λ I in Rd with λ > 0 and |D2V (x)| ≤C with global minimum at 0. Given
any two weak solutions ρ1(t) and ρ2(t) of (3.1) in C([0,T ],P2(Rd)), we have

d2(ρ1(t),ρ2(t))≤ e−λ td2(ρ1(0),ρ2(0)),

and as a consequence,

d2(ρ1(t),ρ∞) = d2(ρ1(t),δ0)≤ e−λ td2(ρ1(0),δ0).

Proof. Let us take Πo the optimal transference plan between ρ1(0) and ρ2(0) for
the d2 distance. Let us consider the two solutions ρ1(t) and ρ2(t) given by ρ1(t) =
Φt#ρ1(0) and ρ2(t) = Φt#ρ2(0). Define Πt = (Φt ×Φt)#Πo, it is clear that Πt ∈
Γ (ρ1(t),ρ2(t)), then

d2
2(ρ1(t),ρ2(t))≤

∫
Rd×Rd

|x− y|2 dΠt(x,y) =
∫
Rd×Rd

|Φt(x)−Φt(y)|2 dΠo(x,y).

(3.3)
We claim that

d
dt

∣∣∣∣
0+

d2
2(ρ1(t),ρ2(t))/2 ≤−

∫
Rd×Rd

(x− y) · (∇V (x)−∇V (y))dΠo(x,y) .

For this it suffices to justify the exchange of the integral and the time derivative on
the right hand side, since we can substract

d2
2(ρ1(0),ρ2(0)) =

∫
Rd×Rd

|x− y|2 dΠo(x,y)

in each side of (3.3), divide by t and take the limit as t → 0+. Notice that

∣∣∣∣ d
dt
|Φt(x)−Φt(y)|2

∣∣∣∣= 2|(Φt(x)−Φt(y)) · (∇V (Φt(x))−∇V (Φt(y)))|

≤C|Φt(x)−Φt(y)|2
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by the assumptions on V . Using the flow map equation, it is also easy to check that
|Φt(x)| ≤C(T )|x| for 0 ≤ t ≤ T , and thus

|(Φt(x)−Φt(y)) · (∇V (Φt(x))−∇V (Φt(y)))| ≤C(|x|+ |y|)2 .

Therefore, we can apply dominated convergence to show that

d
dt

∣∣∣∣
0+

∫
Rd×Rd

|Φt(x)−Φt(y)|2 dΠo(x,y)=−
∫
Rd×Rd

(x−y)·(∇V (x)−∇V (y))dΠo(x,y) .

Finally, using the uniform convexity of V we get

d
dt

∣∣∣∣
0+

d2
2(ρ1(t),ρ2(t))≤

∫
Rd×Rd

d
dt

∣∣∣∣
0+
|Φt(x)−Φt(y)|2 dΠo(x,y)

=−2λ

∫
Rd×Rd

|x− y|2 dΠo(x,y) =−2λd2
2(ρ1(0),ρ2(0)).

Since this inequality derived at time 0 can be done at any arbitrary time to ≥ 0, we
obtain

d+

dt
d2

2(ρ1(t),ρ2(t))≤−2λ d2
2(ρ1(t),ρ2(t))

for all t ≥ 0. Integrating in time, we deduce the first statement. The last part is an
immediate consequence of choosing one of the solutions as the stationary solution
ρ∞ = δ0.

In summary, we have proven that for weak solutions of the (3.1), we obtain a
strict contraction in d2. Moreover, we have obtained a kind of semiflow in time in
the metric space P2(Rd) for solutions of the PDE (3.1) leading to the exponential
convergence towards the unique steady state ρ∞. Moreover, we could have obtained
the existence of this unique steady state as the unique fixed point of this semiflows
since they are strict contractions. We will now focus on this chapter in taking advan-
tage of the rough estimate of stability in d1 obtained above in nonlinear situations,
and we will come back to the more refined estimates using the detailed structure of
the equation in the last chapter about gradient flows.

3.2 Dobrushin approach: existence, stability, and derivation of
the Aggregation Equation.

Let us assume in this section that W ∈ C2(Rd) with bounded second derivatives is
an interaction potential for the aggregation equation

∂ρ

∂ t
= ∇ · [ρ(∇W ∗ρ)] . (3.4)
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that corresponds to (1.1) with U = 0 and V = 0. We want to show the well-posedness
of solutions to (3.4) in C([0,T ],P1(Rd)) with initial data µ ∈ P1(Rd). In order to
do this, we will proceed by a fixed point argument to get the existence and unique-
ness of solutions to (3.4) as a first step.

Given ρ ∈C([0,T ],P1(Rd)), we define the associated velocity field u(ρ)(t,x) =
−∇W ∗ ρ . By the assumptions on W , we have that there exists C > 0 such that
|∇W (x)| ≤ C(1+ |x|) and ∇W is globally Lipschitz with Lipschitz constant L > 0.
As a consequence, we have that the associated velocity field u(ρ)(t,x) =−∇W ∗ρ

satisfies

|u(ρ)(t,x)| ≤C
∫
Rd
(1+ |x− y|)dρ(t)(y)≤CM(ρ)(1+ |x|) ,

for all 0 ≤ t ≤ T and x ∈ Rd with

M(ρ) := max
0≤t≤T

∫
Rd

|x|dρ(t)(x) .

Moreover, the velocity field is also globally Lispchitz since

|u(ρ)(t,x)−u(ρ)(t,y)| ≤
∫
Rd

|∇W (x− z)−∇W (y− z)|dρ(t)(z)≤ L|x− y|

for all 0 ≤ t ≤ T and x,y ∈ Rd . Moreover, it is continuous in time since

|u(ρ)(t,x)−u(ρ)(s,x)| ≤
∣∣∣∣∫Rd

∇W (x− y)d(ρ(t)−ρ(s))(y)
∣∣∣∣≤ Ld1(ρ(t),ρ(s)) ,

since ∇W (x−y) is Lipschitz in y with constant L and the d1 characterization in (2.8).
Since u(ρ) satisfies the linear growth condition and is globally Lispchitz in x and
continuous in t, we can apply the Cauchy-Lispchitz theory to have a well defined
flow map associated to u(ρ)(t,x) satisfying

dr
dτ

= u(ρ)(τ,r) =−(∇W ∗ρ(τ))(τ,r) in 0< τ < t,

r(0) = x ∈ Rd .

We denote the flow map by Φt(ρ). The following lemma summarizes properties of
this flow map.

Lemma 3.1. Given ρ ∈ C([0,T ],P1(Rd)) and their associated velocity field u(ρ)
and flow map Φt(ρ), then the following properties hold:

i) Linear growth of the flow map: for all T > 0, there is constant C(T )> 0 depend-
ing only on M(ρ) and T such that

|Φt(ρ)(x)| ≤C(T )(1+ |x|)

for all 0 ≤ t ≤ T and x ∈ Rd .
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ii) Lipschitz in x:
|Φt(ρ)(x)−Φt(ρ)(y)| ≤ eLt |x− y|

for all t ≥ 0 and x,y ∈ Rd .
iii) Continuity in t: for all T > 0, there is constant C(T )> 0 depending only on M(ρ)

and T such that

|Φt(ρ)(x)−Φs(ρ)(x)| ≤C(T )(1+ |x|)|t − s|

for all 0 ≤ t,s ≤ T and x ∈ Rd .

Proof. The flow map satisfies

Φt(ρ)(x) = x+
∫ t

0
u(s,Φs(ρ)(x))ds

for all 0 ≤ t ≤ T and x ∈Rd . The first statement uses the linear growth of u to show

|Φt(ρ)(x)| ≤ |x|+
∫ t

0
|u(s,Φs(ρ)(x))|ds ≤ |x|+C(T )

∫ t

0
(1+ |Φs(ρ)(x)|)ds .

A direct application of Gronwall’s lemma implies the claim. Estimating again from
the flow map equation, we get

|Φt(ρ)(x)−Φt(ρ)(y)| ≤ |x− y|+
∫ t

0
|u(s,Φs(ρ)(x))−u(s,Φs(ρ)(y))|ds

≤ |x− y|+L
∫ t

0
|Φs(ρ)(x)−Φs(ρ)(y)|ds

due to the Lispchitz property of u(ρ). Thus, another direct application of Gronwall’s
lemma leads to the second claim. The last claim follows a similar proof as the first
one using the estimate on the linear growth of u(ρ) and Φt(ρ). ⊓⊔

We now need an estimate between two different flow maps from two given curves
in C([0,T ],P1(Rd)). We will endow the space C([0,T ],P1(Rd)) with the metric

D1,T (ρ1,ρ2) := max
0≤t≤T

d1(ρ1(t),ρ2(t))

that makes it a complete metric space for all T > 0.

Lemma 3.2. Given ρi ∈C([0,T ],P1(Rd)), and their associated velocity field ui =
u(ρi) and flow map Φ i

t = Φt(ρi), then

|Φ1
t (x)−Φ

2
t (x)| ≤ L

∫ t

0
eL(t−s)d1(ρ1(s),ρ2(s))ds ,

for all 0 ≤ t ≤ T and x ∈ Rd , and as a consequence

d1(Φ
1
t #µ,Φ2

t #µ)≤ (eLt −1)D1,T (ρ1,ρ2)
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for all 0 ≤ t ≤ T and for any µ ∈ P1(Rd).

Proof. The flow map associated to each velocity field ui satisfies

Φ
i
t (ρ)(x) = x+

∫ t

0
ui(s,Φ i

s(x))ds

for all 0 ≤ t ≤ T and x ∈ Rd , i = 1,2. Taking the difference and estimating we get

|Φ1
t (x)−Φ

2
t (x)| ≤

∫ t

0
|u1(s,Φ1

s (x))−u2(s,Φ2
s (x))|ds

≤
∫ t

0
|u1(s,Φ1

s (x))−u1(s,Φ2
s (x))|ds

+
∫ t

0
|u1(s,Φ2

s (x))−u2(s,Φ2
s (x))|ds

≤ L
∫ t

0
|Φ1

s (x)−Φ
2
s (x)|ds+

∫ t

0
|u1(s,Φ2

s (x))−u2(s,Φ2
s (x))|ds

due to the Lipschitz property of u(ρ). We now proceed with the last term similarly
to the continuity in time of u(ρ) above. Let us denote by z = Φ2

s (x), then

|u1(s,z)−u2(s,z)| ≤
∣∣∣∣∫Rd

∇W (z− y)d(ρ1(s)−ρ2(s))(y)
∣∣∣∣≤ Ld1(ρ1(s),ρ2(s)) ,

since ∇W (z−y) is Lipschitz in y with constant L and the d1 characterization in (2.8).
Collecting terms we have obtained

|Φ1
t (x)−Φ

2
t (x)| ≤ L

∫ t

0
|Φ1

s (x)−Φ
2
s (x)|ds+L

∫ t

0
d1(ρ1(s),ρ2(s))ds

for all 0 ≤ t ≤ T and x ∈ Rd . An application of Gronwall’s lemma leads to the
claim (this is an exercise in the problem sheet). We now take the transference plan
(Φ1

t ×Φ2
t )#µ ∈ Γ (Φ1

t #µ,Φ2
t #µ) as candidate transference plan to estimate

d1(Φ
1
t #µ,Φ2

t #µ)≤
∫
Rd

|Φ1
t (x)−Φ

2
t (x)|dµ(x)≤ L

∫ t

0
eL(t−s)d1(ρ1(s),ρ2(s))ds ,

having used the first claim in the last inequality. The second statement is a direct
consequence of taking the maximum outside in the last integral. ⊓⊔

With these ingredients, we can put together a Banach fixed point argument fol-
lowing a similar strategy to the Picard’s theorem in the Cauchy-Lipschitz theory.

Theorem 3.2. Given W ∈ C2(Rd) with bounded second derivatives, there exists a
unique global in time weak solution ρ in C([0,∞),P1(Rd)) to the aggregation equa-
tion (3.4) with initial data µ ∈ P1(Rd).

Proof. Let us consider T > 0 to be chosen later and the complete metric space
X =C([0,T ],P1(Rd)) endowed with the distance D1,T . Define the map F : X −→X
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defined by F(ρ) = Φt(ρ)#µ with Φt(ρ) being the flow map associated to u(ρ). By
repeating the same arguments as in Section 3.1, one can check that ρ̃ = F(ρ) is the
unique weak solution in X to the linear problem

∂ ρ̃

∂ t
+∇ · [ρ̃u(ρ)] = 0 , (3.5)

with initial data µ ∈ P1(Rd) (this last statement is left as an exercise). To show
existence and local uniqueness of solution to (3.4), we are reduced to show the
existence and uniqueness of a fixed point of the map F . Notice that by Lemma 3.2,
the map F satisfies

D1,T (F(ρ1),F(ρ2))≤ (eLT −1)D1,T (ρ1,ρ2)

and therefore by choosing T small enough depending only on L, we have that F is a
strict contraction in X . By the Banach fixed point Theorem, we deduce the existence
of a unique fixed point of F , and therefore of unique local solution of (3.4). Since
the time of existence of this unique local solution only depends on the Lipschitz
constant L, we can extend the solution recursively in a unique way for all times, as
usually done in the Picard’s theorem for ODEs. Details are left to be filled as an
exercise. ⊓⊔

Let us now prove a result that is due to Dobrushin about stability of solutions
leading to well-posedness for solutions to (3.4) in P1(Rd).

Theorem 3.3 (Dobrushin Stability Estimate). Given W ∈ C2(Rd) with bounded
second derivatives. Let us consider two solutions ρi, i = 1,2, in C([0,∞),P1(Rd))
to the aggregation equation (3.4), then

d1(ρ1(t),ρ2(t))≤ e2Ltd1(ρ1(0),ρ2(0)) (3.6)

for all t ≥ 0.

Proof. To simplify notation, let us denote by µ and ν the initial data ρ1(0) and
ρ2(0) respectively, and by Φ i

t = Φt(ρi) the flow maps of both solutions, i = 1,2. We
can use Lemma 3.2 to estimate

d1(ρ1(t),ρ2(t)) = d1(Φ
1
t #µ,Φ2

t #ν)≤ d1(Φ
1
t #µ,Φ2

t #µ)+d1(Φ
2
t #µ,Φ2

t #ν)

≤
∫
Rd

|Φ1
t (x)−Φ

2
t (x)|dµ(x)+d1(Φ

2
t #µ,Φ2

t #ν)

≤ L
∫ t

0
eL(t−s)d1(ρ1(s),ρ2(s))ds+d1(Φ

2
t #µ,Φ2

t #ν)

for all t ≥ 0.
Given Πo ∈ Γ (µ,ν) optimal for the d1 distance, we define the probability mea-

sure (Φ2
t ×Φ2

t )#Πo. It is easy to check that (Φ2
t ×Φ2

t )#Πo ∈ Γ (Φ2
t #µ,Φ2

t #ν), and
thus
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d1(Φ
2
t #µ,Φ2

t #ν)≤
∫
Rd

∫
Rd

|Φ2
t (x)−Φ

2
t (y)|Πo(x,y)| ≤ eLtd1(µ,ν)

for all t ≥ 0, due to Lemma 3.1.
Collecting terms, we deduce that x(t) = e−Lt d1(ρ1(t),ρ2(t)) satisfies

x(t)≤ d1(µ,ν)+L
∫ t

0
x(s)ds ,

for all t ≥ 0. Gronwall’s Lemma implies the claim. ⊓⊔

Now that we have obtained the Dobrushin stability estimate in (3.6), we obtain
as a simple consequence the uniqueness and continuous dependence of global weak
solutions in C([0,∞),P1(Rd)) to (3.4) with respect to initial data in P1(Rd). Let
us now discuss a different viewpoint on the aggregation equation. Let us start with
N interacting particles in Rd following the system of ODEs

dX i
t

dt
=− 1

N

N

∑
i̸= j

∇W (X i
t −X j

t ) , (3.7)

with initial data X i
o, i = 1, . . . ,N. Since W ∈ C2(Rd) with bounded second deriva-

tives, the system of ODEs (3.7) has a unique globally defined solution. Associated
to this global solution, we can define the empirical measure

µ
N(t) =

1
N

N

∑
i=1

δX i
t
.

Let us define the velocity field associated to µN as uN(t,x) = u(µN)(t,x) =−(∇W ∗
µN(t))(x). By direct inspection, one can check that dX i

t
dt = uN(t,X i

t ), i = 1, . . . ,N,
since W is symmetric implies that ∇W (0) = 0. Moreover, if the associated flow
maps are denoted by ΦN

t = Φt(µ
N), then X i

t = ΦN
t (X i

o), i = 1, . . . ,N. It is left as an
exercise to check that µN ∈C([0,∞),P1(Rd)) is the unique weak solution to (3.4)
with initial data µN(0). We have just proved the following result.

Corollary 3.1 (Empirical measures). Given W ∈ C2(Rd) with bounded second
derivatives and any initial data of the form

µ
N(0) =

1
N

N

∑
i=1

δX i
o
.

with X i
o, i = 1, . . . ,N. Then the unique weak solution in C([0,∞),P1(Rd)) to (3.4)

with initial data in µN(0) is given by

µ
N(t) =

1
N

N

∑
i=1

δX i
t
,
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where X i
t , i = 1, . . . ,N, is the unique solution to (3.7) with initial data X i

o, i =
1, . . . ,N.

For our equation (3.4), the empirical measures are weak solutions to the equa-
tion (3.4) with “particles “ initial data for all N. Using now the Dobrushin stability
estimate (3.6), we can reinterpret this estimate as a proof of derivation of the PDE
(3.4) from the particle dynamics (3.7). This is precisely the question of mean-field
limit problem: given the dynamics of particles specified by the system (3.7), can we
identify the limit as N → ∞ of their empirical measures as the probability measure
ρ of finding particles at a particular location x at time t? If so, can we identify the
law giving the evolution of ρ? In other words, can we identify ρ as the solution of
a PDE? If this is possible, it is said that the PDE obtained is the mean-field PDE
associated to the dynamical system (3.7). The name of mean-field comes from the
intuition that in this scaling limit, with respect to N, particles in (3.4) feel a mean
velocity field associated to many particles in the limit N → ∞.

Corollary 3.2 (Mean Field Limit). Given W ∈C2(Rd) with bounded second deriva-
tives and take a sequence of empirical measures initially of the form

µ
N(0) =

1
N

N

∑
i=1

δX i
o
.

with X i
o, i = 1, . . . ,N, such that d1(µ

N(0),µ) → 0 as N → ∞ with µ ∈ P1(Rd).
Define the sequence of empirical measures µN(t) by

µ
N(t) =

1
N

N

∑
i=1

δX i
t
,

where X i
t , i = 1, . . . ,N, is the unique solution to (3.7) with initial data X i

o, i =
1, . . . ,N. Then d1(µ

N(t),ρ(t)) → 0, for all t > 0, as N → ∞ with ρ being char-
acterized as the unique weak solution in C([0,∞),P1(Rd)) to (3.4) with initial data
in µ .

Proof. This result is a direct application of the Dobrushin estimate in Theorem 3.3
for the solutions given by the empirical measure µN(t) and the solution with initial
data µ ∈ P1(Rd) given by Theorem (3.2). Actually, (3.6) implies

d1(µ
N(t),ρ(t))≤ e2Ltd1(µ

N(0),ρ(0)) = e2Ltd1(µ
N(0),µ) . (3.8)

Since the right-hand side of (3.8) converges to 0 as N → ∞ by assumption, the left-
hand side does so too finishing the proof. ⊓⊔
Remark 3.1. In order to have a full proof of the mean-field derivation, one needs to
show that the set of empirical measures is dense on P1(Rd) that one can find in [15,
Subsection 1.4.4].

These Dobrushin stability estimates can be generalized to the case of SDEs. In
fact, given the Langevin equations
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dX i
t =− 1

N

N

∑
i̸= j

∇W (X i
t −X j

t )dt +
√

2σ dBi
t , (3.9)

where Bi
t , i = 1, . . . ,N, are N independent Brownian motions. Now, it is more diffi-

cult to analyse the correlations between the particles and what is the PDE, if any, that
gives the typical behavior of one of the particles as N →∞. In fact, one can define the
empirical measures associated to the Langevin system (3.9) but they are no longer
solutions of a PDE in Rd . They are random variables in the set of probability mea-
sures. However, an approach by stability estimates is possible when W ∈ C2(Rd)
with bounded second derivatives. Sznitmann introduced in [8] the so-called cou-
pling method based on stability estimates to be able to derive the mean-field limit
for (3.9). He showed that the mean-field limit of (3.9) is characterized by the solu-
tion of the McKean-Vlasov equation (1.14) that we recall here:

∂ρ

∂ t
= ∇ · [ρ(∇W ∗ρ)]+σ∆ρ.

The details of the proof can be found in [8] for the interested reader that we do not
pursue here due to lack of time.

3.3 Boltzmann Equation in the Maxwellian approximation:
Tanaka Theorem.

Let us model the evolution of the statistical ensemble in velocity of a system of
point particles colliding inelastically and assumed homogeneous in space. The mi-
croscopic dynamics can be described with the following hypotheses:

1. The particles interact via binary collisions. More precisely, the gas is rarefied
enough so that collisions between 3 or more particles can be neglected.

2. These binary collisions are localized in space and time. In particular, all the parti-
cles are considered as point particles, even if they describe macroscopic objects.

3. Collisions preserve mass and momentum, but dissipate a fraction 1− e of the
kinetic energy in the impact direction, where the inelasticity parameter e ∈ [0,1]
is called restitution coefficient:

v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− e2

2
|(v− v∗) ·ω|2 ≤ 0,

(3.10)

with ω ∈ Sd−1 being the impact direction.

Remark 3.2. Taking e = 1 in both (3.11) and (3.12) yields the classical energy-
conservative elastic collision dynamics, as illustrated in Fig. 3.1. Notice the pos-
sible confusion of notation between the restitution coefficient e and the number
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ω

v

v∗

v′
∗

v′

Fig. 3.1 Geometry of the inelastic collision in the physical space (green is elastic, red is inelastic).

e. I decided to keep it as it is since this is the standard notation in books about
granular materials and inelastic Boltzmann equations. To make it clear in the
statements in this section, I will use a different notation for the exponential func-
tion.

Using these conservations, one has the following two possible parametrizations
(see also Fig. 3.2) of the post-collisional velocities, as a function of the pre-
collisional ones:

• The ω-representation or reflection map, given for ω ∈ Sd−1 by

v′ = v− 1+ e
2

((v− v∗) ·ω)ω,

v′∗ = v∗+
1+ e

2
((v− v∗) ·ω)ω. (3.11)

• The σ -representation or swapping map, given for σ ∈ Sd−1 by

v′ =
v+ v∗

2
+

1− e
4

(v− v∗)+
1+ e

4
|v− v∗|σ ,

v′∗ =
v+ v∗

2
− 1− e

4
(v− v∗)−

1+ e
4

|v− v∗|σ . (3.12)

The geometry of collisions is more complex than the classical elastic collisions
case. Indeed, fixing v,v∗ ∈ R3, denote by

Ω± :=
v+ v∗

2
± 1− e

4
(v∗− v), O :=

v+ v∗
2

=
v′+ v′∗

2
.

Then if u := v− v∗ is the relative velocity, one has

|Ω−− v′|= |Ω+− v′∗|=
1+ e

4
|u|,

namely v′ ∈ S (Ω−, |u|(1+ e)/4) and v′∗ ∈ S (Ω+, |u|(1+ e)/4), where S (x,r) is
the sphere centered in x and of radius r (see also Fig. 3.2).
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bv b v∗b
O

b
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b
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b

v′
∗

b
v′

b v′
∗

θ
σ

h

ω

Fig. 3.2 Geometry of the inelastic collision in the phase space (dashed lines represent the elastic
case).

Using the microscopic hypotheses (1–2–3), one can define an inelastic collision
operator Qe( f , f ) acting on a probability density of particles f (t,v) in its weak form
as ∫

Rd
Qe( f , f )(v)ψ(v)dv =

∫
R3

∫
R3

∫
S2

B f∗ f
(
ψ

′−ψ
)

dσ dvdv∗, (3.13)

where the collision kernel is typically of the form B(|u|,cosθ) = Φ(|u|)b(cosθ),
and θ is the angle between σ and u. The Maxwell simplification in the modelling is
to assume that the collision frequency of particles is just constant. We will assume
in the rest of this section that B = 1. We here follow the notation f = f (v), f∗ =
f (v∗), f ′ = f (v′), and f ′∗ = f (v′∗) for simplicity. In the Maxwellian approximation,
the inelastic collision operator Qe( f , f ) simplies to Qe( f , f ) = Q+

e ( f , f )− f with
Q+

e ( f , f ) defined by duality as the probability measure satisfying∫
R3

Q+
e ( f , f )(v)ψ(v)dv =

∫
R3

∫
R3

∫
S2

f∗ f ψ
′ dσ dvdv∗. (3.14)

Notice that this definition makes sense for any probability measure f . We are inter-
ested in properties of the solutions to the homogeneous Boltzmann equation in the
Maxwellian approximation given by
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∂ f
∂ t

= Qe( f , f ) = Q+
e ( f , f )− f . (3.15)

The basic properties of solutions to (3.15) are conservation of mass and mean ve-
locity and disipation of the kinetic energy.

In this section, we will analyse the behavior of solutions to (3.15) as curves of
probability measures in velocity space. Observe though that we will use the notation
as if they were densities as it is customary in kinetic equations. We wil not attempt
to develop a full well-posedness theory of solutions in these notes but let us focus in
understanding the main properties of the gain part of the collision operator that one
can use to build the theory of well-posedness and to study the long-time asymptotic
properties of the solutions.

Let us first reinterpret the gain operator: given a probability measure f on R3, the
gain operator is the probability measure Q+

e ( f , f ) defined by

(ϕ,Q+
e ( f , f )) =

∫
R3

∫
R3

f (v) f (v∗)(ϕ,Uv,v∗)dvdv∗

where Uv,v∗ is the uniform probability distribution on the sphere S (Ω−, |u|(1+ e)/4).
In probabilistic terms, the gain operator is defined as an expectation:

Q+
e ( f , f ) = E [UV,V∗ ]

where V and V∗ are independent random variables with law f .

Theorem 3.4 (Contraction of Q+
e ( f , f ) in d2). Given f and g in P2(R3) with

equal mean velocity, then

d2(Q+
e ( f , f ),Q+

e (g,g))≤
√

3+ e2

4
d2( f ,g).

Proof. The main steps of the proof can be summarized as follows: Let us take two
independent pairs of random variables (V,X) and (W,Y ) such that V and W have
law f and X and Y have law g.

Step 1.- Convexity of d2
2 in Theorem 2.3 implies

d2
2(Q

+
e ( f , f ),Q+

e (g,g)) = d2
2(E [UV,W ] ,E [UX ,Y ])≤ E

[
d2

2(UV,W ,UX ,Y )
]
. (3.16)

Here, the independency of the pairs of random variables has been used.
Step 2.- The d2

2 distance between the uniform distributions on the sphere with
center O and radius r, UO,r, and on the sphere with center O′ and radius r′, UO′,r′ ,
in R3 is bounded by |O′−O|2 +(r′− r)2.

This is an estimate over the euclidean cost of transporting one sphere onto the
other made by explicitly constructing a transport map T , UO′,r′ = T #UO,r. Then,
the transport plan ΠT = (1Rd ×T )#UO,r given by∫∫

R3×R3
η(v,w)dΠT (v,w) =

∫
R3

η(v,T (v))dUO,r(v)
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for all test functions η(v,w), is used in the definition of d2 to conclude

d2
2(UO,r,UO′,r′)≤

∫
R3

|v−T (v)|2 dUO,r(v). (3.17)

Precisely, we define the map T : R3 −→ R3 transporting the sphere of center O and
radius r > 0 onto the sphere with center O′ ̸= O and radius r′ > r in the following
way: consider the point Ω ∈ R3 given by

Ω = O− r
r′− r

(O′−O).

Then we let T be the dilation with factor r′
r centered at Ω , that is, we let T (v) =

Ω + r′
r (v−Ω). The other cases, O′ = O or r′ = r, are done by simple translations

or dilations. We show in Figure 3.3 a sketch of the construction of the map T in the
case of non-interior spheres.

O O’

r’

r

Ω

v

T(v)

Fig. 3.3 Scheme of the transport map between spheres.

Inserting this definition of the map T in (3.17), we deduce

d2
2(UO,r,UO′,r′)≤

(
r′− r

r

)2 ∫
R3

|v−Ω |2 dUO,r(v)

that can be computed explicitly, giving

d2
2(UO,r,UO′,r′)≤ |O′−O|2 +(r′− r)2

and finishing the proof.
Step 3.- We now estimate the right-hand side of (3.16) by using the formulas of

the center Ω− and radii of the spheres given above to deduce

d2
2(Q

+
e ( f , f ),Q+

e (g,g))≤
5−2e+ e2

8
E
[
|V −X |2

]
+
(1+ e)2

8
E
[
|W −Y |2

]
+

1− e2

4
E [(V −X) · (W −Y )]

where the Cauchy-Schwartz inequality has been used.
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Step 4.- Finally, we take both pairs (V,X) and (W,Y ) as independent pairs of
variables with each of them being an optimal couple for the d2( f ,g) to obtain

d2
2(Q

+
e ( f , f ),Q+

e (g,g))≤
3+ e2

4
d2

2( f ,g)+
1− e2

4
E [(V −X) · (W −Y )]

=
3+ e2

4
d2

2( f ,g) ,

due to independency and having equal mean velocity. ⊓⊔

As a consequence, one can deduce the following property for solutions of the
Boltzmann equation in the maxwellian approximation (3.15). We assume here the
existence and uniqueness of solutions to (3.15) as continuous curves in P2(R3)
that can be obtained similarly to the previous section based on the estimates on the
contraction of d2 in the previous theorem (this is left as an exercise for e ∈ [0,1)).
Since the mean velocity of solutions to (3.15) is conserved, we can assume without
loss of generality that solutions have zero mean velocity.

Theorem 3.5 (Contraction in d2). If f1 and f2 are two solutions to (3.15) with
respective initial data f 0

1 and f 0
2 in P2(R3) and zero mean velocity, then

d2( f1(t), f2(t))≤ exp(−αt)d2( f 0
1 , f 0

2 )

for all t ≥ 0 with α = 1−e2

8 .

Proof. Duhamel’s formula for (3.15) reads as

fi(t) = exp(−t) f 0
i +

∫ t

0
exp(−(t − s))Q+

e ( fi(s), fi(s))ds, i = 1,2.

As before, the convexity of the squared Wasserstein distance in Theorem 2.3 and
the contraction of the gain operator in Theorem 3.4 imply

d2
2( f1(t), f2(t))≤ exp(−t)d2

2( f 0
1 , f 0

2 )

+
∫ t

0
exp(−(t − s))d2

2
(
Q+

e ( f1(s), f1(s)),Q+
e ( f2(s), f2(s))

)
ds

≤ exp(−t)d2
2( f 0

1 , f 0
2 )+

3+ e2

4

∫ t

0
exp(−(t − s))d2

2( f1(s), f2(s))ds.

Gronwall’s lemma concludes the proof. ⊓⊔

Notice that Theorem 3.5 does not give a strict contraction for the classical Boltz-
mann equation for Maxwell molecules when e = 1. However, one can improve this
result by studying the cases of equality in the contraction estimate showing that in
fact one converges in d2 to the Maxwellian equilibria in d2. This together with the
non strict contraction is called the Tanaka theorem for the Boltzmann equation.





Chapter 4
An introduction to Gradient Flows

This chapter is devoted to a brief and partly informal introduction to gradient flows
in the space of probability measures. The objective is to illustrate by means of the
most basic examples the main ideas of this approach. This is complemented by
formal computations for developing some of the intuitions for applications of this
theory in many areas of modelling from biological problems to problems in big data
or social sciences.

4.1 Brenier’s Theorem and Dynamic Interpretation of optimal
transport.

Let us consider u(t,x) a bounded smooth vector field in Rd meaning that u is
bounded and globally Lispchitz in x and continuous in t, we can apply the Cauchy-
Lispchitz theory to have a well defined flow map associated to u(t,x) satisfying

dr
ds

= u(s,r) in 0 ≤ s ≤ 1,

r(0) = x ∈ Rd .

We denote the flow map by Φt . Reproducing the proof in the first section of
Chapter 3, one can show that given ρ0 ∈ P2(Rd), the unique weak solution in
C([0,1],P2(Rd)) of the continuity equation

∂sρ +∇ · (ρu) = 0 in (0,1)×Rd (4.1)

is given by ρ(s) = Φs#ρ0 ∈C([0,1],P2(Rd)). Given a pair of a curve of probability
measures and a velocity field (ρ,u) satisfying the continuity equation (4.1) in the
distributional sense, we can define its action as

61
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A [ρ,u] :=
∫ 1

0

∫
Rd

|u(s,x)|2 dρ(s)(x)ds .

The following remarkable formula is due to Benamou and Brenier giving an alter-
native characterization of the d2 distance in terms of the path joining two probability
measures through the continuity equation (4.1) with the minimal kinetic energy.

Theorem 4.1. Given probability measures µ,ν ∈ P2(Rd), then

d2
2(µ,ν) = inf

(ρ,u)

{
A [ρ,u] : (ρ,u) satisfying (4.1) and ρ0 = µ and ρ1 = ν

}
holds.

Proof. We give a formal proof since a full proof goes beyond the scope of this in-
troductory course. Given an admissible pair (ρ,u) of a curve in C([0,1],P2(Rd))
and a smooth velocity field satisfying (4.1), ρ0 = µ , and ρ1 = ν , we discussed above
that the curve can be expressed in terms of the flow map as ρ(s) = Φs#ρ0. In partic-
ular, Φ1 is a transport map from µ to ν . By definition of push-forward and Holder’s
inequality we obtain

A [ρ,u] =
∫ 1

0

∫
Rd

|u(s,x)|2 dρ(s)(x)ds =
∫ 1

0

∫
Rd

|u(s,Φs(x))|2 dρ0(x)ds

=
∫ 1

0

∫
Rd

∣∣∣∣dΦs(x)
ds

∣∣∣∣2 dρ0(x)ds =
∫
Rd

∫ 1

0

∣∣∣∣dΦs(x)
ds

∣∣∣∣2 dsdρ0(x)

≥
∫
Rd

∣∣∣∣∫ 1

0

dΦs(x)
ds

ds
∣∣∣∣2 dρ0(x) =

∫
Rd

|Φ1(x)− x|2 dρ0(x)≥ d2
2(µ,ν) .

Hence, d2
2(µ,ν) is less or equal than the infimum in the statement.

To show equality, assume that the target measure µ ÎL , then we can use Bre-
nier’s Theorem 2.6 to have a well defined transport map leading to the optimal
cost for d2

2(µ,ν), i.e., ν = T #µ and the optimal transference plan is of the form
Πo = (1Rd ×T )#µ ∈Γ (µ,ν). Then, define Ts(x) = (1− s)x+ sT (x) and choose the
velocity field such that dTs(x)

ds = u(s,Ts(x)). Then, one can easily checked that all the
above inequalities become identities, and thus the infimum is achieved. We leave as
an exercise to show that u(s,x) is well defined by proving that Ts(x) in invertible and
Lispchitz for 0 ≤ s< 1 using that T = ∇ϕ with ϕ convex. ⊓⊔

This dynamic interpretation of the transport distance has been crucial both from
the theoretical and numerical viewpoints. It has led to connections to fluid mechan-
ics and to computational transport tools based on optimization methods and numer-
ical approximation of PDEs. It is also crucial to interpret the family of general PDE
(1.1) as gradient flows as we will see in the last section. It was a key element for
an interpretation of the tangent to a curve of probability measures as introduced by
Otto in the seminal work [17] and the nowadays known as Otto’s calculus. We do
not have time to cover this aspect of the theory.
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4.2 McCann’s Displacement Convexity: Internal, Interaction
and Confinement Energies.

We will start by constructing geodesics between probabilty measures with general
transport distances dp, 1 ≤ p< ∞.

Lemma 4.1. [Geodesics] Given probability measures µ,ν ∈ Pp(Rd), 1 ≤ p < ∞.
Given Π ∈ Γ (µ,ν) an optimal plan for dp(µ,ν), define µt = Tt#Π with the map
Tt : Rd ×Rd −→ Rd given by Tt(x,y) = (1− t)x+ ty. Then, µt is a constant speed
dp geodesic curve joining µ to ν , that is,

dp(µs,µt) = |t − s|dp(µ0,µ1) = |t − s|dp(µ,ν) for all 0 ≤ s ≤ t ≤ 1 .

Proof. Since Π ∈ Γ (µ,ν), it is obvious that µ0 = µ and µ1 = ν . Moreover, taking
the plan Πs,t = (Ts,Tt)#Π ∈ Γ (µs,µt), we get

dp
p(µs,µt)≤

∫
Rd×Rd

|x− y|p dΠs,t(x,y)

=
∫
Rd×Rd

|Ts(x)−Tt(y)|p dΠ(x,y) = |t − s|pdp
p(µ,ν).

If we use this estimate now on the intervals [0,s], [s, t] and [t,1], we get

dp(µ,µs)+dp(µs,µt)+dp(µt ,ν)≤ (s+ t − s+1− t)dp(µ,ν) = dp(µ,ν) .

Notice that the reverse inequality is always true due to the triangular inequality since
dp is a metric, then all the inequalities in between must be equalities, and thus the
claim of the Lemma is true. ⊓⊔

Notice that any optimal coupling for dp(µ,ν) generates a constant speed geodesic
joining the measures. In case the optimal transference plan is given by an opti-
mal map as in Brenier’s Theorem 2.6, i.e., the optimal transference plan is of the
form Πo = (1Rd ×T )#µ ∈ Γ (µ,ν), then the geodesic is given by µt = Tt#µ with
Tt(x) = (1− t)x+ tT (x) and ν = T #µ . In other words, the geodesic is obtained by
pushing-forward the density through the linear interpolant of the identity map and
the optimal transport map T between the measures µ and ν . Remember we already
discussed an application of these interpolants between measures in “image process-
ing” in Figure 2.2.

Let us finally remark that all geodesics in dp for 1< p< ∞ can be characterized
by the optimal couplings using Lemma 4.1. More precisely, if µt is a geodesic in dp
between µ,ν ∈ Pp(Rd), 1 ≤ p < ∞, then there exists an optimal transference plan
Π for dp(µ,ν) such that µt = Tt#Π . A proof can be seen in [19, Chapter 5].

We have already seen that convexity properties of functionals are very important
to understand the dynamics of PDEs of the form (1.1) in various particular cases.
Based on the geodesics in transport distances, we can now introduce a notion of
convexity that plays an important role in the understanding of gradient flows in
probability measures as we will see in the next section.
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Definition 4.1 (Displacement Convexity). We say that a functional F : P2(Rd)−→
R∪ {+∞} is d2-convex or displacement convex, if the one dimensional function
F [µt ] is convex in t ∈ [0,1] for all d2 geodesics µt joining any two measures
µ,ν ∈ P2(Rd), that is,

F [µt ]≤ (1− t)F [µ0]+ tF [µ1]

for all d2 geodesics µt .

Assume that U : [0,∞) → R is a C([0,∞),R) ∩C2((0,∞),R) function with
U(0) = 0, V : Rd → R is a bounded below confinement potential and W : Rd → R
is a bounded below interaction potential as defined in Chapter 1. Associated to the
PDE (1.1), we define the following functionals: internal, confinement, and interac-
tion energy U ,V ,W : P2(Rd)−→ R∪{+∞}, as

U (ρ) =
∫
Rd

U(ρ)dx , (4.2)

if µ ÎL with density ρ and U =+∞ otherwise,

V [µ] =
∫
Rd

V (x)dµ(x) , (4.3)

and
W [ρ] =

1
2

∫
Rd×Rd

W (x− y)dµ(x)dµ(y). (4.4)

Lemma 4.2 (Convexity of confinement and interaction energies). If V : Rd → R
is convex then the confinement energy V is d2-convex. If W : Rd →R is convex then
the confinement energy W is d2-convex. Morever, if V is strictly convex then V is
strictly d2-convex., and if W is strictly convex then W is strictly d2-convex unless
the geodesic joining the measures is a translation of a given measure.

Proof. Given probability measures µ,ν ∈P2(Rd), any d2-geodesic joining them is
of the form µt =Tt#Π with Π ∈Γ (µ,ν) an optimal plan for d2(µ,ν). We can now
compute the values of the confinement and interaction energies on the geodesic to
get

V [µt ] =
∫
Rd

V (x)dµt(x) =
∫
Rd×Rd

V ((1− t)x+ ty)dΠ(x,y)

and

W [µt ] =
1
2

∫
Rd×Rd

W (x− y)dµt(x)dµt(y)

=
1
2

∫
Rd×Rd

∫
Rd×Rd

W ((1− t)(x− y)+ t(z−w))dΠ(x,z)dΠ(y,w) .

Using the convexity of V and W in the integrands above implies immediately the
first statements of the lemma. The strictly convex claims are an exercise. ⊓⊔
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We now focus on the internal energy. Since the internal energy is infinite unless
the measure is absolutely continuous with respect to the Lebesgue measure, we
can reduce to the case of a geodesic joining two absolutely continuous measures
µ,ν ∈P2(Rd) with respect to Lebesgue, otherwise there is nothing to prove. In this
case, we can use Brenier’s Theorem 2.6 to write ν =∇ϕ#µ with ϕ a convex function
and the geodesic as µt = Tt#µ with Tt(x) = (1− t)x+ t∇ϕ(x). Let us denote by
ρt(x) the density of the measure µt with respect to Lebesgue. If the convex function
ϕ were C2 and the map ∇ϕ a diffeomorphism, we could use change of variables to
write the internal energy as

U [µt ] =
∫
Rd

U(ρt(x))dx =
∫

ρt>0

U(ρt(x))
ρt(x)

ρt(x)dx

=
∫

ρ0>0

U((ρt ◦Tt)(x))
(ρt ◦Tt)(x)

ρ0(x)dx =
∫

ρ0>0
U
(

ρ0(x)
det∇Tt(x)

)
det∇Tt(x)dx

=
∫
Rd

U
(

ρ0(x)
det((1− t)Id + tD2ϕ(x))

)
det((1− t)Id + tD2

ϕ(x))dx .

In these identities, we formally used the change of variables formula in the push-
forward as Exercise 5 in Problem Sheet 1. Now, convex analysis again comes to
help us. Since ϕ is a convex function, it is differentiable almost everywhere and it
has distributional second derivatives in the Aleksandrov sense with a hessian matrix
D2ϕ that is a symmetric and nonnegative measure. Moreover, the previous change of
variables formula makes sense, we refer to [22, Chapter 4] for further details. Using
the notation D(x, t) = det((1− t)Id + tD2ϕ(x))1/d , we have finally shown that

U [µt ] =
∫
Rd

U
(

ρ0(x)
D(x, t)d

)
D(x, t)d dx.

We leave as an exercise to show the following lemma.

Lemma 4.3. Let Λ be a nonnegative symmetric matrix and v(t) = det((1− t)Id +
tΛ)1/d . Then v is concave on t ∈ [0,1] and strictly concave unless Λ = λ Id .

Applying this to D(x, t), we deduce that D(x, t) is concave in t for all x ∈ Rd .
Moreover, defining G(x,s) = sdU(ρ0(x)s−d) for s > 0, we can write the internal
energy of the geodesic as

U [µt ] =
∫
Rd

G(x,D(x, t))dx.

Assume that the function g(s) = sdU(s−d), s> 0, is convex and nonincreasing, then
it is left as an exercise to show that the map t −→ G(x,D(x, t)) is a convex function
in t for all x ∈ Rd , and thus the internal energy of the geodesic is convex in t. We
have shown the so-called McCann’s condition for displacement convexity of the
internal energy.
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Theorem 4.2. [McCann’s condition] Assume U : [0,∞) → R is a C([0,∞),R) ∩
C2((0,∞),R) function with U(0) = 0 such that sdU(s−d), s> 0, is convex and non-
increasing, then the internal energy U is d2-convex.

Particular important choices of internal energies satisfying the McCann’s con-
dition are the Boltzmann entropy with U(s) = s log(s) and the power-law case
U(s) = sm for all m ≥ 1− 1

d , m ̸= 1. We leave as an exercise to check that U satisfies
the McCann’s condition if and only if P(s) ≥ 0 and (1− 1

d )P(s) ≤ sP′(s) for all
s> 0 with P defined from U by sU ′′(s) = P′(s) and P(0) = 0.

We will now learn how to obtain these conditions from the dynamic interpretation
seen in the previous section in a formal way by computing optimality conditions.
Given µ,ν ∈P2(Rd), we first obtain the optimality condition for the geodesic equa-
tions in the fluid dynamical formulation of the d2 distance by the Benamou-Brenier
formula in Theorem 4.1. We insert the continuity equation

∂sρ +∇ · (ρu) = 0 in (0,1)×Rd (4.5)

inside the minimization problem as a Lagrange multiplier in its weak form using a
test function ψ ∈C∞

o ([0,1]×Rd). As a result, we get the unconstrained minimization
problem

1
2

d2
2(µ,ν) = inf

(ρ,u)
sup

ψ

{∫ 1

0

∫
Rd

1
2
|us(x)|2ρs(x) dxds

−
∫ 1

0

∫
Rd

[ρs(x)∂sψ(s,x)+ρs(x)(us(x) ·∇ψ(s,x))] dxds

+
∫
Rd

ψ(1,x)dρ1(x)−
∫
Rd

ψ(0,x)dρ0(x)
}
.

The factor 1/2 is for convenience for the computations below. Applying a formal
minimax principle, swapping infimum and supremum, and thus taking first an infi-
mum with respect to u we obtain the optimality condition u=∇ψ, and the following
formal characterization of the distance

1
2

d2
2(µ,ν) = sup

ψ

inf
ρ

{
− 1

2

∫ 1

0

∫
Rd

|∇ψ|2ρ dxds−
∫ 1

0

∫
Rd

ρ∂sψ dxds

+
∫
Rd

ψ(1,x)dρ1(x)−
∫
Rd

ψ(0,x)dρ0(x)
}
,

which provides the further optimality condition

∂sψ +
1
2
|∇ψ|2 = 0. (4.6)

We thus end up with a coupled system of differential equations in (0,1)×Rd as
optimality conditions for the geodesic curves in the dynamic formulation
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∂sρ +∇ · (ρ∇ψ) = 0,

∂sψ +
1
2
|∇ψ|2 = 0,

(4.7)

together with the boundary conditions ρ0 = µ and ρ1 = ν . Let us now use the for-
mal equations (4.7) for the geodesics associated to the distance d2 to compute the
conditions under which the internal energy functional is displacement convex. As-
suming (ρs,ψs) is a smooth solution of (4.7), which decays sufficiently at infinity,
we proceed by integration by parts to obtain the following formulas:

d
ds

U [ρ] =−
∫
Rd

P(ρ)∆ψ dx,

with P defined by P′(r) = rU ′′(r) and P(0) = 0. Furthermore, one can further com-
pute to obtain

d2

ds2 U [ρ] =
∫
Rd
(P′(ρ)ρ −P(ρ))(∆ψ)2 dx

+
∫
Rd

P(ρ)(−∇ψ ·∇∆ψ +
1
2

∆ |∇ψ|2) dx.

The Bochner formula implies that

−∇ψ ·∇∆ψ +
1
2

∆ |∇ψ|2 = |D2
ψ|2 = trace

[
(D2

ψ)2]
≥ 1

d
(∆ψ)2 =

1
d

[
trace(D2

ψ)
]2
,

the last inequality using the fact that D2ψ is a symmetric matrix. Assuming that
P(ρ)≥ 0, we can estimate it as

d2

ds2 U [ρ]≥
∫
Rd
(P′(ρ)ρ − (1−1/d)P(ρ))(∆ψ)2 dx.

Therefore, under the displacement McCann’s condition, P(s)≥ 0 and (1− 1
d )P(s)≤

sP′(s) for all s > 0 with P defined from U by sU ′′(s) = P′(s) and P(0) = 0, the
functional U is convex along the geodesics of the distance d2 based on these formal
computations. This is a very useful procedure to guess the convexity properties of
functionals. Let us do a similar computation for the confinement energy V . The
formulas of the first and second derivatives along geodesics satisfying (4.7) are

d
ds

V [ρ] =
∫
Rd

ρ∇V ·∇ψ dx,

and
d2

ds2 V [ρ] =
∫
Rd

ρ (D2V ∇ψ) ·∇ψ dx .
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Again, we observe that if V is convex, D2V ≥ 0 and we have displacement convexity
of V . Moreover, this computation shows that if V is 2-uniform convex, i.e., D2V ≥
λ Id for λ > 0, then

d2

ds2 V [ρ]≥ λ

∫
Rd

ρ |∇ψ|2 dx = λd2
2(µ,ν) .

This leads to a definition of 2-uniform displacement convexity for functionals in
probability measures. We leave as exercise to use the same procedure for analysing
the convexity of the interaction energies W .

In fact, this approach can be generalized to find formal optimality conditions
for many different variants of transport distances defined by the dynamical formu-
lation introduced in Theorem 4.1. Examples of these variants are nonlinear con-
tinuity equations with different mobility functions, nonlocal mobilities, fractional
diffusions, the Landau equation in plasma physics, the relativistic heat equation and
many other partial differential equations can be connected in this way to variants of
these transport distances.

4.3 Gradient Flows: the differential viewpoint.

Before attempting to construct an abstract argument in a context fraught with perils
of nonsmoothness, infinite dimensions, and degenerate convexity, it is instructive to
recall basic ideas about gradient flows. The setting will be so simple that not only
are the results well-known, they could all be deduced by a good sophomore calculus
student. Fix E ∈C2(Rd) and consider solutions of the ordinary differential equation

dxt

dt
=−∇E(xt) (4.8)

corresponding to steepest descent or gradient flow on the energy (entropy) landscape
determined by E. Solutions satisfy

d
dt

E(xt) =−|∇E(xt)|2 , (4.9)

and thus the energy decays along the curves xt solutions to (4.8). Moreover, the
energy E is a strict Liapunov functional in the sense that d

dt E(xt) = 0 if and only if
xt is a critical point of E.

Lemma 4.4 (Bounding contraction / expansion rates). Fix λ ∈ R. If E ∈C2(Rd)
satisfies D2E(x)≥ λ Id throughout Rd , and the curves xt and t ∈ [0,∞)−→ yt ∈ Rd

both solve the differential equation (4.8), then |xt − yt | ≤ e−λ t |x0 − y0|.

Proof. Set f (t) = |xt − yt |2/2. Then
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f ′(t) =−< xt − yt ,∇E(xt)−∇E(yt)>

=−< xt − yt ,
∫ 1

0
D2E[(1− s)xt + syt ] (yt − xt)ds>≤−2λ f (t)

∫ 1

0
ds.

Gronwall’s inequality (integration) implies the desired result: f (t)≤ e−2λ t f (0). ⊓⊔

Corollary 4.1 (Contraction in a convex valley). Taking λ = 0 in the preceding
proposition implies |xt − yt | is monotone nonincreasing as a function of t ∈ [0,∞).

Proof. Obviously |xt −yt | ≤ |x0−y0|. Since the equation is autonomous, time trans-
lation invariance implies |xT+t − yT+t | ≤ |xT − yT | for all t,T ≥ 0. ⊓⊔

If λ > 0, more can be achieved. The convexity of E is said to be 2-uniform,
and we have shown that the solution map x0 ∈ Rd −→ Xt(x0) = xt of the initial
value problem (4.8) defines a uniform contraction on Rd for each t > 0. The C2

smoothness of E ensures that the solution map is well-defined locally in space and
time; the map is globally defined for all future times since xt is constrained to lie
in the level set {x | E(x) ≤ E(x0)}, whose compactness follows from the coerciv-
ity of E(x) ≥ E(x0)+ < ∇E(x0),x − x0 > +λ |x − x0|2/2. Since Rd is complete,
the contraction mapping principle dictates that this map has a unique fixed point
Xt(x∞) = x∞ ∈ Rd , and each solution curve xt = Xt(x0) must converge to x∞ in
the long time limit t → ∞. The quantity estimated is the decay rate of the slope
|∇E(xt)| → 0, that we can call the information.

Lemma 4.5 (Entropy production and information decay rate). Let E ∈ C2(Rd)
satisfy D2E(x) ≥ λ Id > 0 throughout Rd . Then any solution t ∈ [0,∞) −→ xt ∈ Rd

of (4.8) satisfies |∇E(xt)| ≤ e−λ t |∇E(x0)|.

Proof. Let f (t) := |∇E(xt)|2/2. Then

f ′(t) =< ∇E(xt),D2E(xt) ẋt >=−< ∇E(xt),D2E(xt)∇E(xt)>≤−2λ f (t),

and Gronwall’s inequality proves the desired estimate: f (t)≤ e−2λ t f (0). ⊓⊔

While the conclusions of these two lemmas are not immediately comparable,
the following consequence (4.10) of 2-uniform convexity relates them. It shows
that information dominates the altitude or relative entropy E(x)−E(x∞), which in
turn dominates horizontal distance squared. Thus in its limited range of validity —
λ > 0 and yt := x∞ — and apart from constants, Proposition 4.5 trumps Proposi-
tion 4.4. On the other hand, (4.11) also shows that if information remains bounded,
then convergence in the weakest sense, namely of distance (unsquared), also implies
convergence in the stronger sense of relative entropy.

Lemma 4.6 (Manifestations of 2-uniform convexity). Let 0 ≤ f ∈ C2(R) satisfy
f (0) = 0 and f ′′(s)> λ > 0 for all s ∈ R. Then λ s2 ≤ 2 f (s)≤ λ−1| f ′(s)|2 and

f (s)≤ s f ′(s)−λ s2/2.
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Proof. Let g(s) := f (s)−λ s2/2. Taking two derivatives shows g(s) is convex, so
its critical point at the origin must be a minimum: g(s)≥ g(0) = 0. This proves the
first inequality.

Since f (s)≥ 0 is strictly convex, its minimum f (0) = 0 is its only critical point.
Defining h(s) := | f ′(s)|2/2−λ f (s), we see h′(s)= f ′(s)( f ′′(s)−λ ) can vanish only
where f ′(s) does — namely, at zero. Since h′′(0) = f ′′(0)( f ′′(0)−λ )+0 f ′′′(0) >
0, the unique critical point of h(s) is a strict local minimum; it must be a global
minimum since the absence of other critical points ensures that monotonicity of h(s)
changes only at zero. Thus h(s)≥ h(0) = 0, which establishes the second inequality.

Finally, let e(s) = s f ′(s)− λ s2/2 − f (s). Then e′(s) = s( f ′′(s)− λ ) vanishes
only when s = 0. A second derivative e′′(0) = f ′′(0)− λ > 0 shows this unique
critical point of e(s) to be a strict local minimum, hence a global minimum as above:
e(s)≥ e(0) = 0 to complete the proof of the lemma. ⊓⊔

Corollary 4.2 (Cartoon Log Sobolev, Talagrand, and HWI inequalities). Sup-
pose E(x∞)≤ E(x) ∈C2(Rd) and D2E(x)≥ λ Id > 0 for all x ∈ Rd . Then

λ

2
|x− x∞|2 ≤ E(x)−E(x∞) ≤

1
2λ

|∇E(x)|2 (4.10)

and E(x)−E(x∞) ≤ |x− x∞||∇E(x)|−λ |x− x∞|2/2. (4.11)

As a consequence, any solution t ∈ [0,∞) −→ xt ∈ Rd of (4.8) satisfies E(xt)−
E(x∞)≤ e−2λ t(E(x0)−E(x∞)).

Proof. The conclusions of the lemma continue to hold under the relaxed hypothesis
f (s) ≥ λ , as is easily seen by replacing λ with λ − 1/n and taking a limit n → ∞.
Given x ∈Rd , the function f (s) := E(x∞ + s x−x∞

|x−x∞| )−E(x∞) satisfies the hypothesis
f ′′(s) ≥ λ . Setting s = |x− x∞| in the conclusion of the lemma, Cauchy-Schwarz
yields the desired inequalities (4.10–4.11). Notice that (4.10) together with (4.9)
and Gronwall’s lemma leads to the exponential decay of the relative energy. ⊓⊔

These intuitions can be applied to particular cases of the general PDE equation
(1.1). In particular, let us consider the case of the linear Fokker-Planck equation
(1.12) with W = 0, P(ρ) = σρ and V such that D2V (x)≥ λ Id with λ > 0, that is,

∂ρ

∂ t
= ∇ · (ρ∇V )+σ∆ρ, (4.12)

We already proved in Section 1.2 that

d2(ρ1(t),ρ2(t))≤ e−λ td2(ρ1(0),ρ2(0))

for any two solutions of (4.12) based on the definition of d2 in terms of random
variables. However, the deeper reason is that this equation has a “gradient flow”
structure in the following sense. Defining the total free energy of the system as

F [ρ] = σ

∫
Rd

ρ logρ dx+
∫
Rd

V (x)ρ dx , (4.13)
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we can compute formal variations of the functional around a density ρ ∈ L1
+(Rd) by

taking perturbations in the set

S := {v̄ ∈ L1(Rd)with zero mean such that ρ + ε v̄ ≥ 0 for ε > 0 small enough} .

By doing so and assuming the necessary conditions to apply the dominated conver-
gence theorem, we obtain

lim
ε→0

F [ρ + ε v̄]−F [ρ]

ε
=

∫
Rd

δF

δρ
(ρ)v̄ dx

with δF
δρ

(ρ) := σ log(ρ)+V . Therefore, the linear Fokker-Planck equation can be
written as 

∂sρ +∇ · (ρu) = 0 in (0,∞)×Rd

u =−∇
δF

δρ

, (4.14)

where we eliminated the dependence of the variation of F in ρ to ease the notation,
we will do so in the sequel when there is no confusion. The free energy (4.13) is a
Liapunov functional for (4.12) since

d
dt

F [ρ] =−I[ρ] :=−
∫
Rd

∣∣∣∣∇δF

δρ

∣∣∣∣2 ρ(x)dx , (4.15)

at least by formal integration by parts. Notice that this identity resembles the decay
of the energy E in the finite dimensional case, and thus the right hand side should
be dissipated by the squared norm of the gradient of the energy if this were a real
gradient flow. Here, we observe the connection to the dynamical interpretation of the
squared Wassertein distance d2 in Theorem 4.1. The right hand side is the opossite
of the kinetic energy associated to the vector field −∇

δF
δρ

. As mentioned in the
previous section, this is the starting point for a much deeper connection formally
introduced by Otto in [17]. The resemblance of the linear Fokker-Planck equation
(4.12) to the case of 2-uniform gradient flows in finite dimensions goes further. As
we showed in Section 1.2, the function

ρ∞(x) =
1
Z

e−V (x)/σ with Z =
∫
Rd

e−V (x)/σ dx,

is a steady state of (4.12). Notice that δF
δρ

(ρ∞) = σ log(ρ∞)+V is constant. There-
fore, we can define the relative free energy as F (ρ|ρ∞) = F [ρ]−F [ρ∞] that sat-
isfies

F [ρ|ρ∞] = σ

∫
Rd

η logη ρ∞ dx ,

with η = ρ/ρ∞. A simple application of Jensen’s inequality with respect to the
Gaussian measure ρ∞ using that x logx is convex gives
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F [ρ]−F [ρ∞]≥ σ

(∫
Rd

η ρ∞ dx
)

log
(∫

Rd
η ρ∞ dx

)
= 0

and the equality holds if and only if η = 1. Therefore, the Gaussian ρ∞ is the global
minimum of the functional F [ρ]. Moreover, due to the results of the previous sec-
tion, the free energy functional F [ρ] is 2-uniform d2 displacement convex since
it is the sum of a displacement convex functional with a 2-uniform displacement
functional. So, we are in the best of the worlds, a uniforly convex functional with a
global minimum but in the displacement sense in the Wasserstein metric space.

A very detailed theory for gradient flows for 2-uniform displacement convex
functionals has been developed [4, 23, 3]. The theory of 2-uniform d2 gradient flows
applies and it leads to the following conclusions for the linear Fokker-Planck equa-
tion. One can show the following functional inequalities known as the Log-Sobolev,
the Talagrand, and the HWI inequalities:

F [ρ|ρ∞]≤
1

2λ
I[ρ] , (4.16)

d2(ρ,ρ∞)≤
√

2
λ

F [ρ|ρ∞] , (4.17)

and

F [ρ|ρ∞]≤ d2(ρ,ρ∞)
√

I[ρ]− λ

2
d2

2(ρ,ρ∞). (4.18)

The name of HWI for (4.18) comes from the H-theorem of the Boltzmann entropy,
W for Wasserstein distance, and I for the Fisher information functional I[ρ] as
coined by C. Villani. All of them are manifestations of the uniform convexity in
this infinite dimensional setting and they correspond to the results in Corollary 4.2
in disguise. These inequalities imply directly a convergence rate towards the steady
state ρ∞ in relative entropy and d2 sense. Just make use of (4.16) in (4.15) to deduce
that

d
dt

F [ρ|ρ∞] =−I[ρ]≤−2λF [ρ|ρ∞]

giving by Gronwall’s Lemma the exponential decay F [ρ|ρ∞] ≤ e−2λ tF [ρ0|ρ∞],
and then Talagrand’s inequality (4.17) to deduce the exponential decay of d2(ρ,ρ∞).
However, the 2-uniform displacement convexity of F [ρ] implies a further conse-
quence, the uniform contraction in d2 for solutions of (4.12) as proven in Section
1.2. This is a general property for this type of gradient flows [4, 23]. Finally, notice
that the general family of PDEs (1.1) introduced in the first chapter of this course
can be written formally in the form of a gradient flow as in (4.14) with the free en-
ergy given by F [ρ] = U [ρ]+V [ρ]+W [ρ] for a suitable function U related to to
P, we leave this as an exercise.
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4.4 Gradient Flows: the metric viewpoint

Let us come back to the case of gradient flows in Rd . Given E ∈C2(Rd), we consider
the gradient flow dxt

dt =−∇E(xt) for which solutions satisfy (4.9)

d
dt

E(xt) =−|∇E(xt)|2 .

The previous formula encodes important ingredients for gradient flows. We observe
the enery decays the fastest at each point xt of the trajectory, since the energy decays
the fastest in the direction −∇E(xt) at xt . To even being able to write this we need
the notion of gradient of a function. The theory of gradient flows can be generalized
to Hilbert spaces [6]. However, when we want to generalize this theory to the case of
metric spaces we do not have this notion of gradient defined properly. Even more our
velocity fields might not be even C1 as we saw in the case of the Barenblatt solution
to the porous medium equation in Chapter 1. Therefore, a different generalization
of gradient flows is needed. A classical way to construct solutions to the gradient
flow (4.8) is by discretizing in time via the implicit Euler scheme: given a time step
∆ t and an approximation to the solution at time tk = k∆ t, we find the approximation
at time tk+1 by solving

xk+1 = xk −∆ t∇E(xk+1) .

It is easy to see that this identitiy is nothing else than the critical point condition for
the following functional

Ek(x) =
1

2∆ t
|x− xk|2 +E(x) ,

that is, xk+1 is a critical point of the function Ek. Therefore, a natural way to con-
struct xk+1 is by looking for a global minimizer of the energy Ek. Assume now that
E is a convex function in Rd , then the critical point is equivalent to

xk+1 = arg min
x∈Rd

{
1

2∆ t
|x− xk|2 +E(x)

}
since Ek is uniformly convex for all ∆ t > 0 and all k. The previous variational char-
acterization of the implicit Euler scheme for gradient flows of convex functions
is useful in two ways: the smoothness of E is only needed to characterize critical
points and it encodes again the steepest descent primary property of gradient flows.
As mentioned before, the smoothness assumption E in C1 is very strong, so let us
take a function E : Rd −→ R∪ {∞} such that is convex and lower semicontinu-
ous. Associated to a convex function, we can define its subdifferential as the set of
directions determining all supporting hyperplanes, that is

∂E(x) :=
{

y ∈ Rd : E(z)≥ E(x)+< y,z− x> for all z ∈ Rd
}
.
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Recall that absolutely continuous functions on an interval are a.e. differentiable with
respect to Lebesgue. Now we have the ingredients to generalize the notion of gradi-
ent flow solution.

Definition 4.2. An absolutely continuous curve x : [0,∞) −→ R is a gradient flow
solution with initial data x(0) for the convex and lower semicontinuous energy func-
tional E : Rd −→ R∪{∞} if

−dx
dt

∈ ∂E(x(t)) for a.e. t > 0 .

It is not difficult to generalize the variational characterization of the implicit Euler
scheme to this setting. This is left as an exercise, that is, if

−xk+1 − xk

∆ t
∈ ∂E(xk+1)

then

xk+1 = arg min
x∈Rd

{
1

2∆ t
|x− xk|2 +E(x)

}
.

This is an equivalence with the right notion of subdifferential. This formulation can
be easily generalized to Hilbert spaces and it is easy to show that the variational
scheme above is well defined, i.e., it has a minimum for all k and ∆ t. The dificulty
lies in showing the convergence as ∆ t → 0 to a solution in the sense of Definition
4.2. We refer to [6, 3] for more details. Let us do a classical example in Hilbert
spaces, take H = L2(Rd) and define the energy functional

E [u] :=


1
2

∫
Rd

|∇u|2 dx if u ∈ H1(Rd)

+∞ otherwise
. (4.19)

It is convex in the classical sense and lower semicontinuous by standard results
of weak convergence. We claim that ∂E (x) ̸= /0 if and only if ∆u ∈ L2(Rd), and
in that case ∂E (x) = {−∆u}. Assume p ∈ ∂E (x), that is, p ∈ L2(Rd) such that
E (v) ≥ E (u)+ < p,v− u >2 with an obvious notation for the L2-scalar product.
Take v = u+ εw with w ∈ H1(Rd), then this inequality leads to

1
2

∫
Rd

|∇u+ ε∇w|2 dx− 1
2

∫
Rd

|∇u|2 dx ≥ ε

∫
Rd

p(x)w(x)dx .

Rearranging the terms and taking ε → 0, we get∫
Rd

∇u ·∇wdx ≥
∫
Rd

p(x)w(x)dx ,

for all w ∈ H1(Rd). Taking −w in the previous inequality, we conclude that∫
Rd

∇u ·∇wdx =
∫
Rd

p(x)w(x)dx ,
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for all w ∈ H1(Rd), and thus by definition ∆u ∈ L2(Rd) and −∆u = p. We leave the
converse argument as exercise. Therefore, we can properly say that the heat equa-
tion is the gradient flow of the Dirichlet energy (4.19) with respect to the L2 scalar
product. One can actually show that the heat equation is the limit of the implicit Eu-
ler scheme defining a piecewise continuous interpolants in time for the L2-functions
constructively obtained by the interative variational scheme

uk+1 = arg min
x∈L2(Rd)

{
1

2∆ t
∥u−uk∥2

L2(Rd)
+E (x)

}
,

and showing their convergence to the heat equation as ∆ t → 0. This approach was
introduced by Jordan, Kiderlehrer and Otto [16] to derive the linear Fokker-Planck
equation (4.12) as the steepest descent of the free energy (4.13) in the Wasserstein
d2 sense. More precisely, they showed that by defining a sequence of measures iter-
atively by

ρk+1 = arg min
ρ∈P2(Rd)

{
1

2∆ t
d2

2(ρ,ρk)+F [ρ]

}
for any fixed ∆ t > 0 and any k ∈ N starting with a given measure ρ0 ∈ P2(Rd),
then a suitable interpolant in time of these measures leads to a curve of measures
ρ∆ t converging to the unique solution of (4.12) with initial data ρ0 ∈ P2(Rd) as
∆ t → 0. We do not have time to cover this proof in this course, but let us at least
show that the variational scheme is well defined in a simpler setting. Let us consider
Ω a bounded smooth domain of Rd , and let us take as energy functional just the
Boltzmann entropy functional, that is,

E [ρ] =
∫

Ω

ρ logρ dx .

The formal d2-gradient flow of E is the heat equation in Ω with Neumann boundary
conditions. Let us finally show that the variational scheme

ρk+1 = arg min
ρ∈P2(Ω)

{
1

2∆ t
d2

2(ρ,ρk)+E [ρ]

}
= arg min

ρ∈P2(Ω)

{
1

2∆ t
d2

2(ρ,ρk)+
∫

Ω

ρ logρ dx
}

is well defined for any fixed ∆ t > 0 starting from ρ0 ∈ P(Ω).

Lemma 4.7. Given ∆ t > 0, for any k ∈ N the functional

Ek[ρ] :=
1

2∆ t
d2

2(ρ,ρk)+E [ρ]

has a minimum in P(Ω) for a given ρk ∈ P(Ω).

Proof. Taking a suitably normalized Gaussian as ρ and since x logx ≥−1, it is clear
that the functional Ek has a finite infimum in P(Ω). Take a minimizing sequence
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ρn ∈ P(Ω) that is

1
2∆ t

d2
2(ρn,ρk)+E [ρn]→ I := inf

ρ∈P2(Ω)

{
1

2∆ t
d2

2(ρ,ρk)+E [ρ]

}
.

Using again x logx ≥−1 and that Ω is bounded, we deduce that the sequence∫
Ω

ρn log+ ρn dx ≤C

for n ∈ N, where log+(x) = max(0, log(x)). Given M ∈ N, denote by ρn ∧M :=
min(ρn,M). The sequence of cut-off functions ρn∧M is bounded in L∞(Ω), thus by
Banach-Alaoglu theorem, it is weakly-* compact in L∞(Ω) for each given M ∈ N.
By a standard diagonal argument, we can extract a subsequence, denoted with the
same index to simplify the notation, such that ρn ∧M ⇀ ρM weakly-∗ in L∞(Ω) for
all M ∈ N. Define ρ̄ = supM ρM . Notice that ρn ∧M ≤ ρn ∧ (M + 1), and therefore
their weak-∗ limits are also ordered, so ρM is an increasing sequence in M a.e.
x ∈ Rd . By monotone convergence theorem, we deduce that∫

Ω

ρM dx →
∫

Ω

ρ̄ dx ≤ ∞ .

Furthermore, since ρn ∧ M ⇀ ρM weakly-∗ in L∞(Ω), we have the convergence
testing against L1(Ω) functions, in particular against the constant 1 so∫

Ω

ρn ∧M dx →
∫

Ω

ρM dx ,

as n → ∞, and since ρn ∈ P2(Ω), then ρM is bounded in L1(Ω), and in particular
ρ̄ ∈ L1(Ω) and

∥ρM − ρ̄∥L1(Ω) → 0

as M → ∞. Furthermore, we can estimate

∥ρn −ρn ∧M∥L1(Ω) =
∫

Ω

(ρn −ρn ∧M)dx =
∫

ρn≥M
(ρn −M)dx ≤

∫
ρn≥M

ρn dx

≤ 1
log(M)

∫
ρn≥M

ρn log(ρn)dx ≤ C
log(M)

,

for M ≥ 2, and thus the right hand side goes to 0 as M →∞. Our claim is that ρn ⇀ ρ̄

weakly in L1(Ω). Take a test function ϕ ∈ L∞(Ω), then we can estimate∣∣∣∣∫
Ω

ρnϕ dx−
∫

Ω

ρ̄ϕ dx
∣∣∣∣≤∥ϕ∥L∞(Ω)∥ρn −ρn ∧M∥L1(Ω)+∥ϕ∥L∞(Ω)∥ρM − ρ̄∥L1(Ω)

+

∣∣∣∣∫
Ω

ρMϕ dx−
∫

Ω

ρn ∧Mϕ dx
∣∣∣∣ .
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We take the limit as M → ∞ and n → ∞ in that order on the right hand side since the
first two terms can be made small by taking M large uniformly in n, and the last one
can be made small by taking n large enough afterwards. Therefore, ρn ⇀ ρ̄ weakly
in L1(Ω) as claimed. Let us also show that ρ̄ ∈ P(Ω). Take the set Nε := {x ∈ Ω :
dist(x,∂Ω)≤ ε}. It is obvious that |Nε | ≤Cε and∫

Nε

ρn dx ≤
∫

Nε∩{ρn≤R}
ρn dx+

∫
Nε∩{ρn≥R}

ρn dx

≤CRε +
1

log(R)

∫
Nε∩{ρn≥R}

ρn log(ρn)dx ≤CRε +
C

log(R)

for all R> 0, taking R = ε| log(ε)| leads to∫
Ω\Nε

ρn dx ≥ 1− C
| log(ε)| and thus,

∫
Ω\Nε

ρ̄ dx ≥ 1− C
| log(ε)|

due to ρn ⇀ ρ̄ weakly in L1(Ω). Letting now ε → 0, we conclude that ρ̄ ∈ P(Ω)
and that ρn converges weakly to ρ̄ in P(Ω). Due to the property iii) in Proposition
2.3, proven in exercise 6 in Problem sheet 2, we conclude that

d2
2(ρ̄,ρk)≤ liminf

n→∞
d2

2(ρn,ρk) .

Let us know work with the Boltzmann entropy functional to show that it is lower
semicontinuous too. Note that for each s> 0, we have

s log(s)≥ s(w+1)− ew for all w ∈ R

with equality for w = log(s). Hence, given any continuous function ϕ in Ω̄ , we have

liminf
n→∞

∫
Ω

ρn logρn dx ≥ liminf
n→∞

∫
Ω

(
ρn(x)(ϕ(x)+1)− eϕ(x)

)
dx

=
∫

Ω

(
ρ̄(x)(ϕ(x)+1)− eϕ(x)

)
dx .

Since this is is true for all continuous and bounded functions ϕ , one can take the
supremum in the right hand side. One can prove that this supremum is given by E [ρ̄]
by approximating log ρ̄ by continuous functions. This result of lower semicontinuity
of the entropy is much more general and it can be seen in [2]. Putting together the
previous results, we get that

I = liminf
n→∞

1
2∆ t

d2
2(ρn,ρk)+E [ρn]≥

1
2∆ t

d2
2(ρ̄,ρk)+E [ρ̄] ,

and thus the infimum of Ek is a minimum achieved at ρ̄ . ⊓⊔

As we discussed earlier, a suitable interpolation of the variational scheme ob-
tained in the previous result leads in the limit ∆ t → 0 to a solution of the heat equa-
tion with Neumann boundary conditions. This can been seen in [22, 4, 3, 14] and it
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has been extended to a very general class of equations of the form (1.1) under cer-
tain conditions on the potentials V and W and the nonlinearity U . This is certainly
an area of active research still nowadays branching in many different directions in
terms of other metrics involved, applications in differential geometry, in stochas-
tic analysis, mathematical finance, machine learning and many other corresponding
evolution PDEs that be cast in this framework.
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Calculus of variations, PDEs, and modeling.

20. M. Thorpe. Introduction to optimal transport. Notes of Course at University of Cambridge.
2018.

21. J. L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Claren-
don Press, Oxford University Press, Oxford, 2007. Mathematical theory.

22. C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

23. C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
2009. Old and new.


