
8. More ordinal arithmetic

In this handout, I will assume the Axiom of Choice. In particular, I will assume that
a countable union of countable sets is countable.

8.1. Failures of continuity on the left
According to the definitions of the operations of ordinal arithmetic, the values of α+β,

α.β and αβ increase smoothly as β increases. However they do not increase smoothly as
α increases. Instead they move by a series of jerks. For instance, if n < ω and (for the
sake of non-triviality) n ≥ 2, then n + ω, n.ω and nω all take the same value, namely ω.
However, when we reach ω itself, the value of the sum jumps suddenly to ω + ω = ω.2,
the value of the product lurches upward to ω.ω = ω2, and the value of the exponential
jumps even further to ωω = sup

(

ω, ω2, ω3, . . .
)

. (Ordinal exponentiation is not defined in
the lectures; finding a suitable definition is left as a problem on the problem sheets.)

In fact, ω exhibits the worst kind of asymmetry in the operations of ordinal arithmetic.
The operator α 7→ ω + α is very well-behaved, being one-to-one, strictly increasing, well-
behaved at limits, etc. By contrast, α + ω is ω itself if α < ω; and then of course ω + ω is
different.

And ω is not alone. One can prove that β has the same property—that is, for all
α < β, α + β = β—if and only if β = ωδ for some δ. And ordinals of the form ωδ are not
hard to come by.

8.2. Cantor Normal Form
The asymmetry of ordinal arithmetic is further exemplified by a rather nice standard

form for expressing ordinals derived by Cantor himself. The theorem is that for any ordinal
α, there exists a unique finite sequence δ0 > δ1 > · · · > δk−1, and a corresponding sequence
n0, n1, . . . , nk−1 of non-zero natural numbers such that

α = ωδ0n0 + ωδ1n1 + · · · + ωδk−1nk−1.

It would be tempting to say that the powers of ω form a basis. Tempting but, of course,
wrong, since ordinal addition is not commutative, so the ordinals are definitely not a vector
space. (And the natural numbers are not a field either.)

Cantor published explicit rules for adding and multiplying expressions of this form.
Perhaps I can leave them as exercises for the reader. As an example,

(ωω.2 + ω5.12 + ω3.4 + ω2 + ω.70) + (ω3.5 + ω.8 + 1.11) = ωω.2 + ω5.12 + ω3.9 + ω.8 + 1.11.

Notice how the terms ω2 and ω.70 have been absorbed by the following term in ω3.

8.3. Fixed points in ordinal arithmetic
We have already seen how ordinals of the form ωδ are fixed points for addition on the

right, in the sense that if α < ωδ, then α + ωδ = ωδ.
What would the corresponding result be for multiplication?
Suppose that β > ω has the property that for all non-zero α < β, α.β = β.
For a start, β = ω.β; it follows that β is a limit ordinal (since, looking at the Cantor

Normal Form, an ordinal is a limit if and only if it is of the form ω.ζ for some ζ).
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Writing β = ω.ζ, we obtain β = ω.β = ω.ω.ζ; so β is a multiple on the right of ω2.
In fact we can go further than this, and say that β must be a multiple of ωω. And in

fact ωω is an ordinal of the sort we are looking for. In general, β = α.β for all non-zero

α < β if and only if β can be expressed in the form ωωδ

for some δ.
Let us now try to find fixed points for exponentiation.
Here we run into a problem. It is not that these ordinals do not exist: they do. The

problem is how to write them down.
For, suppose ǫ > ω has the property that for all α such that 1 < α < ǫ, ǫ = αǫ.
Then in particular, ǫ = ωǫ; so

ǫ = ωǫ = ωωǫ

= ωωω
ǫ

= · · ·

So how can we write it down? In particular, what is the smallest such ordinal?
The answer is that the methods we have for generating new ordinals by addition,

multiplication and exponentiation, have run out of steam. We need new notation. Accord-
ingly, ordinals ǫ having the property that ǫ = ωǫ are known as ǫ numbers, and the first
one, which is the supremum of the sequence ω, ωω, ωωω

, . . . is known as ǫ0. It is possible
to prove that an ordinal β is an ǫ number if and only if for all α < β such that α > 1,
αβ = β. The next ǫ-number after ǫ0 is known as ǫ1, the next after that as ǫ2, and so on.

8.4. The problem of naming ordinals
This raises a problem: how can we describe a given ordinal α? Can we find a way

to describe it in terms of smaller ordinals by using, for instance, addition, multiplication,
exponentiation, the operation γ 7→ ǫγ , and so on?

The answer, in general, is no. Every principle of nomenclature of this sort that we
can come up with will fail at some point, and will indeed fail at a countable ordinal. On
the assumption that the human race will only ever do countably much set theory, there
will thus be a countable ordinal that will never get a name in the history of the universe.

Let us see why.
One thing that the operators we have used to name large ordinals, such as α 7→ ωα

and α 7→ ǫα, have in common, is that they have a property known (for some reason) as
normality: α 7→ θα is normal if and only if

1. For all α, θα < θα+ , and
2. For all limits λ, θλ = supα<λ θα.

Given any such operator, it is not too hard to prove that α ≤ θα for all α. Now let α

be any ordinal, and consider the sequence

α, θα, θθα
, θθθα

, . . .

By the Axiom of Replacement, there is a set containing these ordinals as its elements, and
that set then has a supremum λ. And by normality of the operator, λ = θλ.

Thus, in particular, there exists an ordinal λ such that ǫ = ǫλ. So, obviously, there
does not exist an ordinal α < λ such that ǫ = ǫα; this ordinal cannot be described using
the operator α 7→ ǫα and ordinals smaller than itself.
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Worse, if we make the additional assumption that whenever α is countable, θα is
countable also, then we obtain a fixed point λ = θλ which is countable.

So, we can obtain monsters like the first ordinal λ such that λ = ǫλ, and this is still

a countable ordinal.
Set theorists have evolved various ways of naming countable ordinals, some of which

refer explicitly to how difficult they are to describe. But it is still the case that immediately
below the first uncountable ordinal ω1, there is an interval about which we know relatively
little. Indeed, it’s not hard to come up with questions about countable ordinals which the
Axioms of Set Theory are not powerful enough to answer one way or the other.

8.5. Further reading
There’s a great deal more about ordinal arithmetic in Wac law Sierpiński’s book Car-

dinal and Ordinal Numbers (PWN, 1958).
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