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DNNs as function approximators
Functions act as classifiers and other machine learning tasks

Classification of inputs x ∈ Rn to c classes denoted by {ei}ci=1, is
modelled by a function H(x) for which H(x) = ei for all x in class
i where ei (`) = 1 for i = ` and 0 otherwise.
Approximation Theory concerns the ability to approximate
functions from a given representation; see Approximation of
Function (C6.3).

Some of the most well studied examples include approximation of a
function f (x) over x ∈ [−1, 1] with some smoothness, say three
times differentiable, by polynomials of degree at most k or
trigonometric exponentials.

Here our focus is on the ability to approximate functions H(x ; θ)
given by a deep network architecture; for x ∈ Rn.
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Expressivity of deep net
What functions can a DNN approximate

What functions can a DNN approximate arbitrarily well? What is
the advantage of depth?

I Network architectures are able to approximate any function
(Cybenko (89’) and Hornik (90’)).

I There are functions which DNNs are able to construct with
polynomially many parameters, that require exponentially
many parameters for a shallow network to represent.
(Telgarsky 15’).

I Deep networks can approximate nonlinear functions on
compact sets to ε uniform accuracy with depth and width
scaling like log(1/ε). (Yarotsky 16’)
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Example of a fully connected DNN:
Two layer fully connected neural net

Repeated affine transformation followed by a nonlinear action:

hi+1 = φi

(
W (i)hi + b(i)

)
for i = 1, . . . ,N − 1

where W (i) ∈ Rni+1×ni and b(i) ∈ Rni+1 and φ(·) is a nonlinear
activation such as ReLU, φ(z) := max(0, z) = z+.
The input is h1, the output is hN , and hi for intermediate
i = 2, ·,N − 1 are referred to as “hidden” layers.
The number of layers N is the depth, N � 1 is called “deep.”

https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/

feedforward.html
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Superposition of sigmoidal functions (Cybenko 89’)
DNNs with sigmoidal activations are dense in Cn([0, 1])

Consider the feedforward network with one hidden layer:

input h1 = x ∈ Rn

hidden layer h2 = φ
(
W (1)h1 + b(1)

)
∈ Rm

output H(x , θ) = αTh2 =
∑m

i=1 αiφ(wT
i x + bi )

with φ(t) ∈ [0, 1], say φ(t) = 1/(1 + e−t).

Theorem (Cybenbko 89’)

Let φ(t) be a continuous monotone function with limt→−∞ φ(t) = 0
and limt→∞ φ(t) = 1, then the set of functions of the form
H(x ; θ) =

∑m
i=1 αiφ(wT

i x + bi ) is dense in Cn([0, 1]).

That is, one (or more) layer fully connected nets are sufficient to
approximate any continuous function, provided m is large enough.
https://link.springer.com/article/10.1007/BF02551274
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Approximation of multilayer feedforward nets (Hornik 90’)
DNNs with continuous bounded activations are dense in Cn([0, 1])

Consider the feedforward network with one hidden layer:
input h1 = x ∈ Rn

hidden layer h2 = φ
(
W (1)h1 + b(1)

)
∈ Rm

output H(x , θ) = αTh2 =
∑m

i=1 αiφ(wT
i x + bi )

with φ(t) ∈ [0, 1] non-constant.

Theorem (Hornik 90’)

Let φ(t) be unbounded then H(x ; θ) =
∑m

i=1 αiφ(wT
i x+bi ) is dense

in Lp(µ) for all finite measures µ and 1 ≤ p <∞. Moreover, if φ(t)
is continuous and bounded, then H(x ; θ) =

∑m
i=1 αiφ(wT

i x + bi ) is
dense in Cn([0, 1]).

Much of the result includes showing L(φ) =
∫
In
φ(x)dµ(x) = 0 for

φ(x) in the specified class implies µ(x) = 0.
https://www.sciencedirect.com/science/article/pii/089360809190009T
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Representational benefits of depth (Telgarsky 15’)
Two layer ReLU network: sawtooth basis function

Telegarsky (2015) considered a specific construction of a function
from a deep network which requires an shallow network to have
exponential width.
Let φ(x) = ReLU(x) = max(x , 0) and consider the two layer net:

h2(x) = 2φ(x)− 4φ(x − 1/2) =


0 x < 0

2x x ∈ [0, 1/2]
2− 2x x > 1/2

and h3(x) = φ(h2(x)) set to zero the negative portion for x > 1.
https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity

For φ(x) = max(x , 0) let f (x) = h3(x) = φ(2φ(x)− 4φ(x − 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network f k(x) = f (f (· · · (f (x) · · · )) with the property that it is
piecewise linear with change in slope at xi = i2−k for
i = 0, 1, . . . , 2k and moreover takes on the values f k(xi ) = 0 for i
even and f k(xi ) = 1 for i odd.
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity: width vs. depth

In contrast, a two-layer network with the same φ(x) of the form

φ
(∑m

j=1 αjφ(wjx − bj)
)

requires m = 2k to exactly express f k(x).

The deep network can be thought of as having 6k parameters,
whereas the two-layer network requires 3 · 2k + 1 parameters;
exponentially more. https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Classification error rates

Define the function class F (φ;m, `) be the space of functions
composed of ` layer fully connected m width feed forward nets
with nonlinear activation function φ. Let
R(f ) := n−1

∑n
i=1 χ[f (xi ) 6= yi ] count the number of incorrect

labels of the data set {(xi , yi )}ni=1.

Theorem (Telgarsky 15’)

Consider positive integers k, `,m with m ≤ 2(k−3)/`−1, then there
exists a collection of n = 2k points {(xi , yi )}ni=1 with xi ∈ [0, 1] and
yi ∈ {0, 1} such that

min
f ∈F (φ;2,2k)

R(f ) = 0 and min
g∈F (φ;m,`)

R(g) ≥ 1

6
.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate x2 exponentially well

Returning to the saw-tooth function composted of
φ(x) = max(x , 0) let f (x) = h3(x) = φ(2φ(x)− 4φ(x − 1/2)) and
iterate this 2-layer network m times to obtain a 2m-layer network
f m(x) = f (f (· · · (f (x) · · · )) with 6m weights.
Let hm(x) denote the piecewise linear interpolation of h(x) = x2 at
2m+1 equispaced points, then

hm(x) = x −
m∑
s=1

2−2s f s(x)

and maxx∈[0,1]|x2 − hm(x)| = 2−2(m+1). Consequently, x2 can be
approximated on [0, 1] to uniform accuracy ε by a ReLU network
having depth 1

2 log2(1/ε) and 6 weights per pair of layers.
https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate x2 exponentially well: plots 1

Yarotsky (16’) approximation of x2 with ReLU DNN.
https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate x2 exponentially well: plots 2

Telgarsky (15’) and Yarotsky (16’) follow from exponential nature
of composition of the same function, self similarity.
https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate x2 exponentially well: plots

High order approximation can be shown by extending that a DNN
with depth and number of weights proportional to ln(1/ε) can
approximate any quadratic function within ε to polynomials of
arbitrary degree. This follows by noting the relationship

xy =
1

2

(
(x + y)2 − x2 − y2

)
which demonstrates that the ability to square a number allows
general multiplication. For example, letting H(x ; θ) denote a
network approximating x2, then the above relation can be applied
to compute x3 = xH(x) by letting y = H(x). Similarly polynomials
of arbitrary degree can be approximated within ε by a DNN with
depth and number of weights proportional to ln(1/ε).
https://arxiv.org/pdf/1610.01145.pdf
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Representational benefits of depth (Yarotsky 16’)
ReLU nets can approximate Sobolev spaces

The Sobolev norm is similar to that of functions with n − 1
derivatives that are Lipschitz continuous Cn−1([0, 1]d) excluding
sets of measure zero.

‖f ‖W n,∞([0, 1]d) = max|s|≤nesssuppx∈[0,1]d |Ds f (x)|.
Define the unit ball of functions in W n,∞([0, 1]d) as

Fn,d =
{
f ∈W n,∞([0, 1]d) : ‖f ‖W n,∞([0, 1]d) ≤ 1

}
.

Theorem (Yarotsky 16’)

For any d , n and ε ∈ (0, 1), there is a ReLU network with depth
at most c(1 + ln(1/ε)) and at most cε−d/n(1 + log(1/ε)) weights
(width O(ε−d/n)), for c a function of d , n, that can approximate
any function from Fd ,n within absolute error ε.
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Representational benefits of depth (Yarotsky 16’)
Sketch of the proof 1 of 3: localization

Localize an arbitrary function in Rd into (N + 1)d local continuous
regions using local (compactly supported) functions φm(x) which
sum to 1. E.g. let

with ψ(x) =


1 |x | < 1

2− |x | 1 ≤ |x | ≤ 2

0 |x | > 2

and note that
∑N

m=0 ψ (3N(xk −m/N)) = 1 for xk ∈ [0, 1].
Multiplying f (·) by each shift ψ (3N(xk −m/N)) for m = 0, · · · ,N
localizes the xk variable over and can be done via a
one-dimensional convolutional layer with one filter that doesn’t
require trainable parameters. This can then be repeated over d
times to localize each of the d variables into (N + 1)d partitions.
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Representational benefits of depth (Yarotsky 16’)
Sketch of the proof 2 of 3

Taylor series of f (·) about {(xk −m/N)}Nm=0 to degree n in each
dimension xk k = 1, . . . , d is

Pk,n(f )(x) :=
n∑

s=0

∂s f (x)

s!∂xk
(xk −m/N)s

and the composite over all dimensions is
Pn(f )(x) := Πd

k=1Pk,n(f )(x).
The resulting error approximating f (x) about {(xk −m/N)}Nm=0 is
bounded by at most 2d local terms (as any location x interacts
with at most 2 local dilated φ(3N(xk −m/N) with each term
bounded using the standard Taylor series truncation bound

dn

n!Nn
max|s|≤nesssuppx∈[0,1]d |Ds f (x)|.

Deep Learning has exponential expresivity with depth. 17



Representational benefits of depth (Yarotsky 16’)
Sketch of the proof 3 of 3: combining terms

Treating ‖f ‖W n,∞([0, 1]d) := max|s|≤nesssuppx∈[0,1]d |Ds f (x)| as
bounded independent of n (not really true) gives a total bound on
the local error of 2ddn/Nnn! which is bounded by ε if

N ≥
(
n!ε/2ddn

)−1/n
.

It then remain to construct a network that can approximate the
local Taylor series with the claimed width and depth. The partition
has dn(N + 1)d terms of the form φm(x)(x −m/N)n, each of
which can be approximated efficiently using the aforementioned
ReLU networks using order log(2ddn/ε) depth for a total of
dn(N + 1)d log(2ddn/ε) weights.

Recalling the number of partitions N ≥
(
n!ε/2ddn

)−1/n
and

Stirling’s Inequality that n! ∼ (n/e)n
√

2πn, gives the claimed
depth and width.
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Representational benefits of depth (Yarotsky 16’)
Near optimality

I Yarotsky’s result shows a neural network with ReLU activation
can approximate any n-smooth function in d−dimensions
using at most order ε−d/n(1 + log(1/ε)) trainable parameters.
https://arxiv.org/pdf/1610.01145.pdf

I DeVore et al. proved the minimal number of trainable
parameters for any method is of order ε−d/n,
https://link.springer.com/article/10.1007/BF01171759

I Boulle et al. consider nonlinear activations that are rational
functions of the form of a cubic over a quadratic, giving
ε−d/n(1 + log log((1/ε))) parameters.
https://arxiv.org/abs/2004.01902

I Goverse et al. used two nonlinear activations (e.g. ReLU and
x2) to achieve optimal order ε−d/n

https://arxiv.org/abs/2301.13091
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Optimal function approximation ability of deep networks
DNNs can achieve optimal rates for function classes

There is a growing literature on the ability to express high
dimensional data using deep networks, to name a few:

I Approximation space for univariate functions; Daubechies,
DeVore, Foucart, Hanin, and Petrova (19’)
https://arxiv.org/pdf/1905.02199.pdf

I That neural networks achieve the same approximation rate as
methods such as wavelets, ridgelets, curvelets, shearlets,
α−molecules; Bölcskei, Grohs, Kutyniok, and Petersen (18’)
https://www.mins.ee.ethz.ch/pubs/files/deep-approx-18.pdf

The exponential complexity generated by depth allows these
remarkable approximation rates. Note however, one needs to be
able to train the network parameters to achieve these rates.
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