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Random DNNs hidden layer outputs

Norm of hidden layer outputs

The DNN with weight matrices W) and bias vectors b(©) with
Gaussian entries A(0,02) and N(0,02)

RO — WO 0 4 pO) 2D = ¢ (p9), (=0,...,L—1,

has computable map R(p) of how the correlation between two
inputs evolve through the layers. The stability of a point and its
perturbatlon is determlned by
= %5l = o, | Delo/ (Va2
»  lel: locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

> x > 1: small perturbations are unstable with nearby points
become uncorrelated with depth.

https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18")
The “Edge of Chaos Curve” for ¢(-) = tanh(-).
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Figure 1: Order-chaos tramnsition when @é(h) =
tanh(/A). The critical line x = 1 determines the bound-
ary between the two phases. In the chaotic regime

x > 1 and gradients explode while in the ordered
regime x < 1 and we expect gradients to vanish. The
value of g* along this line is shown as a heatmap.

https://arxiv.org/pdf/1802.09979.pdf
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DNN Jacobian

Input-Output map: behaviour of small perturbations

The Jacobian of the feed forward net is given by

9z(b)

92 _ nL-1p@p®
= o = N DWW

where DU) is diagonal with entries Di(ig) = gb’(h,(e)).
Moreover, for the sum of squares loss, the gradient is computed as

5o =D'WNTs,1  and 6, = DWBgrad,u L.
which gives the formula for computing the §; for each layer as

52 = (MZE0W(WO)T) DOgrado .

and the resulting gradient grad,L with entries as

oL . oL
W = (5g+1 . h[ and W = (Sg+]_
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Average singular value
Correlation stability and exploding / vanishing gradient

Insti

In the infinite width limit, the average trace of (DW)T(DW) is the
average of the singular values

x = N2 (Tr((DW) Tow) )

The growth of a perturbation is given by the expected mean
singular value of JT J from one layer to the next which is given by

2
X =02 /(2%)1/2q§' <\/q(*)z> e 7124z

Consider the spectrum of JTJ more fully, in particular how it varies
around its expected value.
https://arxiv.org/pdf/1606.05340. pdf
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Spectrum of the Jacobian pt. 1(Pennington et al. 18")

How to compute the product of DO W)

Computing the spectrum of products of matrices, e.g. for

J =920 = N IDOWO where DY) = ¢/ (hY).

For z € C/R the Stieltjes Transform, G,(z), of a probability distribution
and its inverse are given by

Gy(2) :/]R r(t) dt and p(\)=—7""1 lim Imag(G,(\ + ie)).

z—t e—04

The Stieltjes Transform and moment generating function are related by

M,(z) = zG,(z) — 1 = Y_;2; T, and the S Transform is defined as
S,(z) = N}ff( 7 The S Transform has the property that if p; and p; are
Z P z

freely independent then S,,,, = S,, S, .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18")

Moment generating functions

Hz(L)
ox(0)

The S Transform of JJT with J = =Ny DOW® is then
given by

_ gL <L
Sy =858k

This can be computed through the moments M;r(z) = > 72, 7k,
Mp2(z) = 3232 Bk, where

pg = [(2m) "2/ (\/WZ) W e2l2gy,

In particular: m; = (02 1)t and

my = (0g,u1)* L(py g + L1 =1 = s1).

Importantly, o2 1 = X is the growth factor we observed with the
edge of chaos, requiring x = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’)

Examples of moment generating functions

Mathematical
Institute

Table 1: Properties of Nonlinearities

| o(h) | Mp=(2) | | o2 | 02,
Linear h 1 1 1 L(—s1)
ReLu [R]4 1 2 L(1—sy)

ar e AT 1 1 1 _ — s
Hard Tanh | [h+ 1]y —[h — 1]y — 1 erf(325) | mre = | (a7 = 1—s1)
Erf erf (Y= h) T | VIR | LA —1—s1)

Where Mp2(z) = Y52 L with e = [(2m)7/2¢/ (\/qT ) e /2dz.
Recall that m; = ! is the expected value of the spectrum of JJT;
while the variance of the spectrum of JJT is given by

UiJT =my — m% = L(Mg/,Ll_2 —1—s1), where

for W Gaussian s1=-—1 and for W orthogonal s; = 0.

Linear ¢(-): ¢* = Uwq + ab, has fixed point (o, 05) = (1,0).
ReLU ¢(-): ¢* = 302,g* + 02, has fixed point (0w, op) = (V2,0).
Hard Tanh and Erf have curves as fixed points x(ow, 0p).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations ¢'(z) (Pennington et al. 18")
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Figure 3: Distribution of ¢’(h) for different nonlinearities. The top row shows the nonlinearity, ¢(h), along with
the Gaussian distribution of pre-activations h for four different choices of the variance, ¢*. The bottom row gives
the induced distribution of ¢/(h). We see that for ReLU the d bution is independent of ¢*. This implies that
there is no stable limiting distribution for the spectrum of JJ By contrast for the other nonlinearities the
distribution is a relatively strong function of ¢*.

https://arxiv.org/pdf/1802.09979.pdf
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Controlling the variance of the Jacobian spectra (Murray et al. ]

Symmetric with prescribed linear region around the origin

Institute

Definition (scaled-bounded activations)
We refer to the set of activation functions ¢ : R — R which satisfy
the following properties as scaled-bounded activations.

1. Continuous.

2. Odd, meaning that ¢(z) = —¢(—2z) for all z € R.

3. Linear around the origin and bounded: in particular there
exists a, k € Rsq such that ¢(z) = kz for all z € [—a, a] and
¢(z) < ak for all z € R.

4. Twice differentiable at all points z € R\D, where D C R is a
finite set. Furthermore |¢'(z)| < k for all z € R\D.

https://arxiv.org/abs/2105.07741
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Correlation map and variance convergence (Murray et al. 21")

Increasing the linear region drives the Jacobian spectra to 1

Institute

Let ¢ be a scaled-bounded activation, af, > 0, xy1 =

02E[¢'(vVq*Z)?] = 1 where g* > 0 is a fixed point of V. Let
inputs x satisfy ||x||3 = g*.
Then as y := ag/a2 — 0, both

max,efo, 11| Ro.q- (0) = pl; [u2/1f = 1] = 0,

with rates available in Murray 21'.

Note that this is independent of details of ¢(-) outside its linear
region [—a, a]. Best performance is observed with a ~ 3, or
preferably a decreasing from about 5 to 2 during training.
https://arxiv.org/abs/2105.07741
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Training very DNNs with Shtanh (Murray et al. 21")

Improved accuracy with dynamic linearity decay

Mathematical
Institute

Test accuracy of a trained very deep feed forward net on CIFAR-10.
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https://arxiv

(b) Shtanh with orthogonal initialisation

.org/abs/2105.07741
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Distribution of Jacobian spectra (Pennington et al. 18")

Observed universality of spectra based on ¢(+)
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Figure 4: Two limiting universality classes of Jacobian spectra. Hard Tanh and Shifted ReLU fall into one class,
characterized by Bernoulli-distributed ¢’ (h)?, while Erf and Smoothed ReLU fall into a second class, characterized
by a smooth distribution for ¢(h)?. The black curves are theoretical predictions for the limiting distributions
with variance o = 1/4. The colored lines are emprical spectra of finite-depth width-1000 orthogonal neural
networks. The empirical spectra converge to the limiting distributions in all cases. The rate of convergence is
similar for Hard-Tanh and Shifted ReLU, whereas it is significantly different for Erf and Smoothed Relu, which
converge to the same limiting distribution along distinct trajectories. In all cases, the solid colored lines go from
shallow L = 2 networks (red) to deep networks (purple). In all cases but Erf the deepest networks have L = 128.
For Erf, the dashed lines show solutions to for very large depth up to L = 8192.

https://arxiv.org/pdf/1802.09979.pdf
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Summary of random DNN initialisation

Dependence between oy, op, ¢()

>

Poole et al. 16" showed pre-activation output is well modelled
as Gaussian with variance g* determined by o, op, &().
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by x where y = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

Pennington et al 18" showed more generally how to compute
the moments for the Jacobian spectra, where xy = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.

https://arxiv.org/pdf/1802.09979.pdf
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Further associated reading 1 of 2

Related results Mathematical
matic

» Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

» Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

» Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2

Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

Mathematical

Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

Specifics for random RelLU nets

https://arxiv.org/pdf/1801.03744.pdf
https://arxiv.org/pdf/1803.01719.pdf
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