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Abstract

Manifold Mixup is a regularization technique introduced by Verma et al. in
that involves training a neural network on interpolated hidden states. In this paper
we quantify the impact of applying Manifold Mixup deeper into in a network and
the type of problems that the technique works best on. We also propose a method
to dynamically change the strength of the regularization called ConfMix.

1 Introduction

Mixup was introduced by Zhang et al. in [I3] as a data augmentation technique. The idea was
subsequently generalised to Manifold Mixup in [T1]]. The technique has been empirically shown to
shrink the generalisation gap [14] and improve robustness to adversarial examples [6]. In this paper
we primarily consider classification tasks. In short Mixup consists of mixing two data points by a
mixing coefficient A and then training on the resulting data point,

(&4, Us,5) = Mws, ys) + (1 — X) (w5, 95)-
The intuition behind Mixup is that it encourages a smoother transition between predicting different
classes and helps the network to discover the location of the decision boundary. In our preliminary
experiments (figure 1) we found that input Mixup lead to a more pronounced boundary.
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Figure 1: The decision boundary of a 4 layer ReLU network on the spiral dataset.

Our Contributions In this paper we introduce a family of toy datasets used to analyse how the
performance of Manifold Mixup varies with depth and with problem difficulty. We quantify the
difficulty of a classification problem by introducing the Mixup misclassification lower bound. We
also propose a novel method to prescribe the hyper-parameter o (introduced in section 2) called
ConfMix, which uses a partially trained classifier’s confidence to dynamically increase or decrease
the regularizing effect of Mixup. Note that all code used in this paper is 100% original.

Related Work The advent of Mixup has sparked a wave of related data augmentation techniques for
images namely Puzzle Mix [5], CutMix and AugMix [3]. These methods have demonstrated
better empirical performance when working with natural images.

One property of Mixup is that the technique encourages safe interpolation in hidden states. The
classical form of Mixup is not best suited to generative image models, recent works on this issue
include [f7], [8l, {1] and [2]. Most of the work on Mixup is empirical, the most comprehensive review
of the theory is [14].
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2 Preliminaries

2.1 Notation

Consider a K -class classification problem and let X = R? be the input space with ¥ = {1, ..., K}
being the target space. Let D = (X,Y) be the joint distribution of two random variables taking
values in X x ). Furthermore, assume that P(Y = k) = 7, and that X | Y = k ~ X}, where X,
has pdf gi(z).

Let h : X — ) denote a prediction rule and L : Y x ) — R denote a loss function. We use
R(h) = E[L (h(X),Y)] to denote the risk of a decision rule and R (%) to denote the empirical risk
over a dataset D = (z;,;)1; C X x V. Denote the Bayes classifier h* = arg min R(h).

h

2.2 Manifold Mixup

As introduced by Manifold MixupElis a technique used when training deep neural networks.
Consider a neural network h(z) = Fy, (Gi(x)), where G () denotes the activity of the k-th hidden
layer and F}, is the remaining part of the network. We use ~ to denote quantities that have been
mixed. Training h with Manifold Mixup happens as follows,

1. Process two random mini-batches of data (z;,y;), (z;, y;) until reaching the k-th layer.

2. Perform input Mixup, as introduced by [13]] on the intermediate mini-batches
(ék(%ﬂ?y‘),ﬂi,j) = A (Gr(®:),3:) + (1 = A) (Gr(zj),95) -

3. Continue to process the intermediate mini-batch, and perform a parameter update using the
gradient of the loss

L (Fk (ék(rq7m])) »ﬂi,j) ¥

Here ) is called the mixing coefficient and is drawn from a Beta(a, «) distribution where a € (0, 00)
is a hyper-parameter. The value of \ can either be computed on a per-batch or on a per-sample basis.
Note that in the case oz — 0, then standard empirical risk minimisation (ERM) is recovered. The risk
that Manifold Mixup aims to minimise is,

P () = (zH::y) (:I:'E::y') )\NBelE(a,a) L [Fk (ék (w’z)) ,;7] ’ 1)

We state Theorem 1 from and paraphrase Lemma 3.1 from as Result 1.

Theorem 1 Let H be some vector space of dimension dim(1t), and let d € N denote the number of
classes appearing in some dataset D. Let F**, G* be the minimisers of l. If dim(H) > d — 1 then
F* is linear.

Result 1 We can write Ryi(h) = Reru(h) + Ef’zl’RZ—(h) + Ey ((1 - 221 — /\)) where
lim, .0 #(a) = 0 and R; are higher order loss terms depending on Vh and V2h, that vanish
as A — 1.

Result 1 shows that Mixup is equivalent to ERM with regularization terms, and that the strength
of this regularization is controlled by A (and hence «), as the R; terms regularize the derivatives
of h this explains why training under Mixup often leads to a smoother transition between classes.
Theorem 1 suggests that we should not seek to minimise (1)) in practice, else we could use simpler
linear models. These results inform how we view Mixup and implement it programmatically. We do
not optimize over all possible convex combinations of data points but instead on convex combinations
of randomly sampled mini-batches, as discussed above.

'We use the terms Mixup and Manifold Mixup largely interchangeably throughout.



3 Analysis of Mixup with depth

In this section we seek to explore two phenomena

1. Inlight of Theorem 1, how does a model behave when Mixup is applied at different depths?
2. Can we understand which types of classification problems Mixup performs best on?

3.1 Toy datasets

To this end we first introduce a novel family of toy datasets, inspired by [10] section 8. We chose to
analyse datasets of this nature as we can analytically compute the Bayes classifier and ({131, [
already have comprehensive studies of (Manifold) Mixup on benchmark datasets. In-line with the
notation above, we consider classification problems where the class distributions are given by a
mixture distribution,

N
X [ Y =k ~ X} with pdfgk(fl?) = Zwl ¢(/j*1)27) )
=1

where >~ w; = 1 and ¢ denotes the pdf of a multivariate normal distribution. In our experiments we
chose w; = % and ¥; = o2 I for all i, where o is a shared standard deviation. We sampled p;, o
from uniform distributions over a fixed range. Changing N and o allows us to control the difficulty
and complexity of the classification problem in question.

The key insight is that having the Bayes classifier h* allows us to look at the excess risk R(h) —R(h*)
of a prediction rule h. The excess risk is more meaningful to analyse as we consider problems of
varying difficulty in our subsequent experiments.
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Figure 2: An example of one particular toy dataset with 3 classes and IV = 5 (per class).

3.2 Mixup misclassification bound

In light of figure 2, we can see that performing input Mixup between data points z;,z;, would
be beneficial as a decision boundary lies on the line segment between x; and x;. On the other
hand, input Mixup between data points z; and x would be detrimental as along this line segment
Jix = (1,0,0) # (0,0, 1) and so would encourage the classifier to misclassify points from class 2.

To quantify this effect we introduce a lower bound for the Mixup risk, which we shall call the
Mixup misclassification lower bound (MMLB). Writing Dpix = D X D x Beta(a, ), to mean the
independent joint distribution. Starting from (1) with & = 0 we have,

U
T, A

K
Ruix(h*) =D mf E  [L(h*(F), k)] := Riow (Dix) - @)
k=1

In our computations of the MMLB we took oo = 1 and 7, = 715 $0 that Ry (Dmix) can be computed
explicitly as a five dimensional integral that only depends on the class distributions X.



Remark. Analytic computation of the expectation in (2) is expensive, in practice we take a large
number of samples to estimate this quantity.

3.3 Experimental details

We analysed 400 realisations of our toy datasets D = (z,9;)123°, 100 for each K € {2,3,4,5},
each with 1000 training samples. We trained a 4-layer ReLU(2, 512,512, 512, K') network for 20
epochs with a batch size of 50, with a new random (but fixed for each type of training) initialization
per dataset.

We either performed no Mixup (baseline) or Manifold Mixup on layer k (with k£ = 0 corresponding
to input Mixup). We found that a width of 512 was expressive enough to capture the more complex
decision boundaries that emerge for large K.

We performed Mixup on a per sample basis (One value of A per pair of randomly chosen inputs). We
implemented Mixup in the form of a custom data generator, used to generate a shuffle order and A
and then a Mixup layer with different behaviour during training and inference. This approach was
chosen as it allows for Mixup to be performed on non-sequential models and multiple layers at the
same time, whereas existing implementations do not [9]. To be in line with [I1]] we used a = 0.5.

3.4 Experimental results

In our experiments we found that performance (under the 0-1 loss) improved as Mixup was applied
deeper into the network. This aligns with Theorem 1, as the last layer of the network is either a
softmax or a sigmoid layer which has linear decision boundaries.

We found that (3" 72) Riow (Pmix) (Which we call the normalised MMLB) is strongly correlated
with R(Rh*), which is to be expected but suggests that the core difficulty of a classification problem
can be estimated by understanding how convex the class distributions are. Figure 3 suggests that
applying Mixup on the deeper layers has the most impact, and offers a greater absolute performance
improvement as the normalised MMLB increases. The decision boundaries under each technique are
qualitatively different, though it is hard to draw any conclusions from these (omitted) figures.

Excess Risk vs Problem Difficulty
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Figure 3: Excess risk against normalised MMLB quartile Table 1: Mixup Performance

4 ConfMix

In all existing Mixup methods the hyper-parameter « needs to be manually chosen. We propose a
novel Mixup algorithm called ConfMix (confidence based mixing) to address this issue. Recall that,

o if ¢ = 0 then Mixup collapses to standard ERM (Empirical Risk Minimisation),
o if a = 1 then Beta(a, o) ~ U ([0, 1]) and so Mixup corresponds to a uniform mixing.

4.1 Proposed method

We consider training a smooth classifier h on a K -class classification problem, by smooth we mean
that h outputs a confidence rather than a class label (i.e max instead of arg max for the final layer).
We are loosely inspired by smoothMix [4] and momentum based gradient decent methods.



(Input) ConfMix Algorithm Mixup Technique Accuracy Change

Input : Data points (z;,:),(x;,y;) and a Tnput Mixup (a = 0.5) +1.9%
smooth classifier h Input Confmix +3.4%
Output: The mixed input and target (Z; ;,7s,;) 1nput ConfMix +2.4%
Input Mixup : o from 0 — 1 +3.1%
. K . 1 .

I o g5 [h () = ?] €[0,1] Input Mixup : a from1 — 0 +3.1%
2: Sample A from Beta(a, ) Manifold Mixup (a = 0.5) +3.7%
3t Ty = Az + (1 - Nz Manifold Confmix +3.7%
4 Fij =My + (1= Ny; 1 Manifold ConfMix +2.9%
5: return (Z;,5, T,5) Manifold Mixup : a from 0 — 1 +3.9%
Manifold Mixup : « from 1 — 0 +2.6%

Algorithm 1: Pseudo code for (input) ConfMix ~ Table 2: Improvement over the baseline network

The idea behind ConfMix is as follows,

o 'We first train under ERM for an initial M epochs, so that h produces sensible smooth labels
for most points.

o Points with high confidence can be used as *anchors’ to propagate information about the
location of a decision boundary by Mixup (want o ~ 1).

o Points with low confidence would benefit more from ERM (want o ~ 0).

4.2 Experimental details

We look at the CIFAR-10 benchmark dataset, with K = 10. In our experiments we trained a
network with two convolutional layers Conv (32, 64) with 3 x 3 kernel sizes, and then with two fully
connected layers ReLU(64), Softmax(10). The networks were trained for 50 epochs with batch sizes
of 250. The baseline (in table 2) is the same network trained under ERM. We ’turned on’ ConfMix
after M = 5 epochs. We denote 1ConfMix to mean exactly ConfMix but with A ~ Beta($, 5).
We performed Manifold Mixup immediately before the first fully connected layer. Two natural
benchmarks for ConfMix are schemes in which o varies from 0 to 1 (or visa versa) over the course of
training. We implemented an exponential decay scheme, with a half-life of 25 epochs.

4.3 Experimental results

Firstly we found that for 4/5 of the techniques, applying the Mixup later in the network was more
beneficial, which supports our discussion from section 3. During the duration of training with
ConfMix we observed that during early training o ~ 0.2 but in later training o ~ 1. The training
accuracy (which is under the Mixup labels) converged to almost 100%. This is evidence that ConfMix
allows the model to reinforce its own biases.

We can see that all Mixup techniques offer an improvement over the baseline network. ConfMix and a
scheme in which « varies from 0 — 1 during training offered the greatest performance improvement.
This makes sense as these techniques are similar in practice. Overall we can see that starting with
ERM and increasing the strength of Mixup regularization during training is the most beneficial to test
accuracy.

5 Conclusion

Manifold Mixup is a data augmentation/regularization technique that generates new samples from
convex combinations of hidden states in deep networks. In this paper we introduced a family of
toy datasets and a quantity called the Manifold Mixup lower bound to quantify the difficulty of
a classification problem. We gathered empirical evidence that Manifold Mixup performed deeper
into the network is most beneficial and offers a greater improvement on harder problems. We also
introduced ConfMix, a method for generating the value of the hyper-parameter a on a per sample
basis. We found that adaptive o schedules where « transitions from 0 — 1 (increasing the strength
of the Mixup regularization) during training were most impactful. Extensions to this work include
extending section 3 to images (see [3]], [T2] and [3])) and investigating further schemes like ConfMix.
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