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Abstract

Making precise approximations to solve equations is what distinguishes applied mathemati-

cians from pure mathematicians, physicists and engineers. There are two methods for obtaining

precise approximations: numerical methods and analytical (asymptotic) methods. These are

not in competition but complement each other. Perturbation methods work when some param-

eter is large or small, whereas numerical methods work best when all parameters are order one.

Agreement between the two methods is reassuring when doing research, however, perturbation

methods often give more physical insight. Finding perturbation approximations is more of an

art than a science; it is difficult to give rules, only guidelines, and so experience is valuable!

The author of these notes is Jon Chapman, with minor modifications by Mason Porter, Philip

Maini, Jim Oliver, Eamonn Gaffney and Ruth Baker. Please email comments and corrections

to the course lecturer. All material in these notes may be freely used for the purpose of teaching

and study by University of Oxford faculty and students. Other uses require the permission of

the authors.

These notes are supplementary to the lectures and should be viewed as being a part of the

reading list. These notes are not meant to replace the lectures. Some of the material in these

notes will be covered in a complementary way in lectures and in the problem sheet questions;

some of the material covered in lectures is not covered in these notes and vice versa.

Ruth Baker, MT 2024.
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Chapter 1

Algebraic equations

Suppose that we want to solve

x2 + ϵx− 1 = 0, (1.1)

for x, where ϵ is a small parameter. The exact solutions are

x = − ϵ
2
±
√

1 +
ϵ2

4
, (1.2)

which we can expand using the binomial theorem to give

x =





+1− ϵ

2
+
ϵ2

8
− ϵ4

128
+ · · ·

−1− ϵ

2
− ϵ2

8
+

ϵ4

128
+ · · ·

. (1.3)

These expansions converge if |ϵ| < 2.

More important is that the truncated expansions give a good approximation to the roots

when ϵ is small. For example, when ϵ = 0.1 we have

x ∼ 1.0 1 term

0.95 2 terms

0.95125 3 terms

0.951249 4 terms

exact = 0.95124922 . . .

(1.4)

Here, we first found the exact solution, then approximated. Usually we need to make the

approximation first, and then solve.

1.1 Iterative method

First, rearrange Equation (1.1) so that it can form the basis of an iterative process:

x = ±
√
1− ϵx. (1.5)

Now, if we have an approximation to the positive root, xn, say, a better approximation is given

by

xn+1 =
√
1− ϵxn. (1.6)

3
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We need a starting point for the iteration. A sensible choice is the solution when ϵ = 0. In this

case, x0 = 1.

After one iteration (on the positive root) we have

x1 =
√
1− ϵ. (1.7)

If we expand x1 as a binomial series we find

x1 = 1− ϵ

2
− ϵ2

8
− ϵ3

16
+ · · · . (1.8)

We see that this is correct up to ϵ, but the ϵ2 terms and higher are wrong. Hence going forward

we only need keep the first two terms

x1 = 1− ϵ

2
+ · · · . (1.9)

Using Equation (1.9) in the next iteration we have

x2 =

√
1− ϵ

(
1− ϵ

2

)
, (1.10)

which can be expanded to give

x2 = 1− ϵ

2

(
1− ϵ

2

)
− ϵ2

8

(
1− ϵ

2

)2
− ϵ3

16

(
1− ϵ

2

)3
+ · · · (1.11)

= 1− ϵ

2
+
ϵ2

8
+
ϵ3

16
+ · · · . (1.12)

Now the ϵ2 term is right, but the ϵ3 term is still wrong. At each iteration more terms are correct,

but more and more work is required! In addition, note that we can only check that a term is

correct (without the exact solution) by proceeding to one more iteration and seeing if it changes.

Note. The usual procedure to find the iterative equation is to place the dominant term of the

equation on the xn+1 side (i.e., the side that will give the new value), so that it can be calculated

as a function of the terms on the xn side (i.e., the previously obtained value). As we will see

later, the identity of the dominant term can be adjusted by scaling.

1.2 Expansion method

Here we set ϵ = 0 and find the unperturbed roots x = ±1 as in the iterative method. We then

pose an expansion about one of these roots of the form

x = 1 + ϵx1 + ϵ2x2 + ϵ3x3 + · · · . (1.13)

We substitute this expansion into Equation (1.1) to give

(1 + ϵx1 + ϵ2x2 + ϵ3x3 + · · ·)2 + ϵ(1 + ϵx1 + ϵ2x2 + ϵ3x3 + · · ·)− 1 = 0. (1.14)

Expanding the first term we can write

1 + 2x1ϵ+ (x21 + 2x2)ϵ
2 + (2x1x2 + 2x3)ϵ

3 + · · ·+ ϵ+ ϵ2x1 + ϵ3x2 + · · · − 1 = 0. (1.15)

Now we equate coefficients of powers of ϵ.

O(ϵ0) : 1− 1 = 0. (1.16)
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This level is automatically satisfied because we started the expansion with the correct value

x = 1 at ϵ = 0. At higher orders we have

O(ϵ1) : 2x1 + 1 = 0 =⇒ x1 = −1

2
, (1.17)

O(ϵ2) : x21 + 2x2 + x1 = 0 =⇒ x2 =
1

8
, (1.18)

O(ϵ3) : 2x1x2 + 2x3 + x2 = 0 =⇒ x3 = 0. (1.19)

The expansion method is much easier than the iterative method when working to higher orders.

However, it is necessary to assume the form of the expansion (in powers of ϵ).

1.3 Singular perturbations

Consider now the problem

ϵx2 + x− 1 = 0. (1.20)

When ϵ = 0 there is just one root, x = 1, but when ϵ ̸= 0 there are two roots. This is an example

of a singular perturbation problem, in which the limit problem (given by taking ϵ = 0) differs

in an important way from the limit ϵ → 0. The most interesting problems are often singular.

Problems which are not singular are said to be regular.

To see what is happening let us look at the exact solutions

x =
−1±

√
1 + 4ϵ

2ϵ
, (1.21)

and expand them for small ϵ (where the expansions are convergent if |ϵ| < 1/4). The expansions

of the two roots are

x =





1− ϵ+ 2ϵ2 − 5ϵ4 + · · ·

−1

ϵ
− 1 + ϵ− 2ϵ2 + 5ϵ4 + · · ·

. (1.22)

We see that the second root disappears to x = −∞ as ϵ→ 0.

To capture the second root we need to start the expansion not with ϵ0 but with ϵ−1 i.e.,

x =
x−1

ϵ
+ x0 + ϵx1 + · · · . (1.23)

Substituting this expansion into Equation (1.20) gives

ϵ
(x−1

ϵ
+ x0 + ϵx1 + · · ·

)2
+
(x−1

ϵ
+ x0 + ϵx1 + · · ·

)
− 1 = 0. (1.24)

Expanding the first term we can write

1

ϵ
x2−1 + 2x−1x0 + ϵ(2x−1x1 + x20) + · · ·+ 1

ϵ
x−1 + x0 + ϵx1 + · · · − 1 = 0. (1.25)

Once again, we equate coefficients of powers of ϵ.

O(ϵ−1) : x2−1 + x−1 = 0 =⇒ x−1 = −1 or 0. (1.26)

The root x−1 = 0 leads to the regular root, so we consider the singular root x−1 = −1.

O(ϵ0) : 2x−1x0 + x0 − 1 = 0 =⇒ x0 = −1. (1.27)

O(ϵ1) : 2x−1x1 + x20 + x1 = 0 =⇒ x1 = 1, (1.28)

which is consistent with Equation (1.22).
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1.4 Rescaling the equation

Instead of starting the expansion with ϵ−1, a very useful idea for singular problems is to rescale

the variables before making the expansion. If we introduce the rescaling

x =
X

ϵ
, (1.29)

into the originally singular equation we find that the equation for X,

X2 +X − ϵ = 0, (1.30)

is regular. Thus the problem of finding the correct starting point for the expansion can be

viewed as the problem of finding a suitable rescaling to regularise the singular problem. We now

consider some different approaches to finding the right scaling.

1.4.1 Systematic approach: general rescaling

First pose a general rescaling with scaling factor δ(ϵ),

x = δ(ϵ)X, (1.31)

in which X is strictly of order one as ϵ→ 0. This gives

ϵδ2X2 + δX − 1 = 0. (1.32)

Then consider the dominant balance in the equation as δ(ϵ) varies from very small to very large.

(i) δ(ϵ) ≪ 1. In this case the left-hand side is

ϵδ2X2 + δX − 1 = small + small− 1, (1.33)

which cannot possibly balance the zero on the right-hand side of the equation. As δ is

gradually increased the first term to break the domination of the −1 term is δX, which

comes into play when δ = 1.

(ii) δ(ϵ) = 1. Now the left-hand side is

ϵδ2X2 + δX − 1 = small +X − 1. (1.34)

This can balance the zero on the right-hand side, and produces the regular root X = 1+

small.

(iii) 1 ≪ δ(ϵ) ≪ ϵ−1. Now the term δX dominates the left-hand side since, upon dividing by δ,

ϵδ2X2 + δX − 1

δ
= small +X + small. (1.35)

This can only balance the zero on the right-hand side if X = 0, but that violates the

restriction that X is strictly of order one. As δ is further increased the dominance of δX

is broken when the first term comes into play at δ = ϵ−1.
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(iv) δ(ϵ) = ϵ−1. Now the left-hand side divided by ϵδ2 is

ϵδ2X2 + δX − 1

ϵδ2
= X2 +X + small. (1.36)

This can balance the zero on the right-hand side and gives the singular root X = −1+

small. Note that the solution X = 0 is not permitted since X has to be strictly of order

one.

(v) δ(ϵ) ≫ ϵ−1. Finally, if δ is larger still then the left-hand side divided by ϵδ2 is dominated

by the first term
ϵδ2X2 + δX − 1

ϵδ2
= X2 + small + small, (1.37)

which cannot balance the zero on the right-hand side with X strictly of order one.

1.4.2 Alternative approach: pairwise comparison

An alternative method is to compare terms pairwise, which is quicker when there are a small

number of terms. To get a sensible answer from equating the left-hand side to zero we need at

least two terms to be in balance (sometimes known as a distinguished limit). The possible

combinations are the first and second terms, the first and third terms, or the second and third

terms.

(i) First and second terms in balance. To have ϵx2 and x in balance requires x to be of size

ϵ−1. Then these terms are both of size ϵ−1, and dominate the remaining term −1, which

is of size one. This leads to the singular root.

(ii) First and third terms in balance. To have ϵx2 and −1 in balance requires x to be of size

ϵ−1/2. Then these terms are both of size one, but the remaining term x is of size ϵ−1/2, so

that this single term dominates and there is no sensible balance.

(iii) Second and third terms in balance. To have x and −1 in balance requires x to be of size

one. Then these terms are both of size one, and dominate the remaining term which is

size ϵ. This leads to the regular root.

1.5 Non-integral powers

Consider the quadratic equation

(1− ϵ)x2 − 2x+ 1 = 0. (1.38)

Setting ϵ = 0 gives x = 1 as the double root (a sign of the danger to come). Proceeding as usual

we pose the expansion

x = 1 + ϵx1 + ϵ2x2 + · · · . (1.39)

Substituting into Equation (1.38) gives

(1− ϵ)
(
1 + ϵx1 + ϵ2x2 + · · ·

)2 − 2
(
1 + ϵx1 + ϵ2x2 + · · ·

)
+ 1 = 0. (1.40)
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Expanding leads to

1 + 2x1ϵ+ (2x2 + x21)ϵ
2 + · · · − ϵ− 2x1ϵ

2 + · · · − 2− 2x1ϵ− 2x2ϵ
2 + · · ·+ 1 = 0. (1.41)

Comparing coefficients of ϵ gives

O(ϵ0) : 1− 2 + 1 = 0, (1.42)

which is automatically satisfied because we started with the correct value x = 1 at ϵ = 0, and

O(ϵ1) : 2x1 − 1− 2x1 = 0, (1.43)

which cannot be satisfied by any value of x1 (except x1 = ∞ in some sense).

The cause of the difficulty is illustrated by looking at the exact solution

x =
1

1± ϵ1/2
. (1.44)

Expanding the largest root for small ϵ gives

x = 1 + ϵ1/2 + ϵ+ ϵ3/2 + · · · . (1.45)

We should have expanded in powers of ϵ1/2 instead of ϵ. This is what x1 = ∞ is hinting at: the

scaling on x1 is too small. In retrospect we could have guessed that an order ϵ1/2 change in x

would be required to produce an order ϵ change in a function at its minimum.

If we instead pose the expansion

x = 1 + ϵ1/2x1/2 + ϵx1 + · · · , (1.46)

and substitute into Equation (1.38) we have

(1− ϵ)
(
1 + ϵ1/2x1/2 + ϵx1 + · · ·

)2
− 2

(
1 + ϵ1/2x1/2 + ϵx1 + · · ·

)
+ 1 = 0. (1.47)

Expanding gives

1 + 2x1/2ϵ
1/2 + (2x1 + x21/2)ϵ+ (2x3/2 + 2x1/2x1)ϵ

3/2 + · · ·
−ϵ− 2x1/2ϵ

3/2 + · · · − 2− 2x1/2ϵ
1/2 − 2x1ϵ− 2x3/2ϵ

3/2 + · · ·+ 1 = 0. (1.48)

Comparing coefficients of ϵ we find that

O(ϵ0) : 1− 2 + 1 = 0, (1.49)

is automatically satisfied, as usual, and

O(ϵ1/2) : 2x1/2 − 2x1/2 = 0, (1.50)

is satisfied for all values of x1/2. Note that it is slightly disturbing that x1/2 is not determined

but at least the expansion is consistent so far. Continuing gives

O(ϵ1) : 2x1 + x21/2 − 1− 2x1 = 0, (1.51)

so that x1/2 = ±1 and x1 is not determined at this level.

O(ϵ3/2) : 2x3/2 + 2x1/2x1 − 2x1/2 − 2x3/2 = 0, (1.52)

so that x1 = 1 for both roots x1/2, while x3/2 is not determined.
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1.6 Finding the right expansion sequence

How would we determine the expansion sequence if we did not have the exact solution to compare

with? First pose a general expansion

x = 1 + δ1x1, δ1(ϵ) ≪ 1, (1.53)

and substitute into Equation (1.38) so that

(1− ϵ) (1 + δ1x1)
2 − 2 (1 + δ1x1) + 1 = 0. (1.54)

Expanding gives

1 + 2δ1x1 + δ21x
2
1 − ϵ− 2ϵδ1x1 − δ21ϵx

2
1 − 2− 2δ1x1 + 1 = 0. (1.55)

Simplifying leaves

δ21x
2
1 − ϵ− 2ϵδ1x1 − δ21ϵx

2
1 = 0. (1.56)

Now we play the dominant balance game again. Since ϵδ1 ≪ ϵ the leading terms are δ21x
2
1 and ϵ.

Thus to get a sensible balance we need δ1 = ϵ1/2. With this value for δ1 we equate coefficients

of ϵ to give

x21 − 1 = 0 =⇒ x1 = ±1. (1.57)

To proceed to higher order we play the game again. Choosing x1 = 1 for example, we now have

x = 1 + ϵ1/2 + δ2x2, δ2(ϵ) ≪ ϵ1/2. (1.58)

Substituting into Equation (1.38) gives

(1− ϵ)
(
1 + ϵ1/2 + δ2x2

)2
− 2

(
1 + ϵ1/2 + δ2x2

)
+ 1 = 0. (1.59)

Expanding we have

1 + 2ϵ1/2 + ϵ+ 2δ2x2 + 2ϵ1/2δ2x2 + δ22x
2
2 − ϵ− 2ϵ3/2 − ϵ2

−2ϵδ2x2 − 2ϵ3/2δ2x2 − ϵδ22x
2
2 − 2− 2ϵ1/2 − 2δ2x2 + 1 = 0, (1.60)

and then simplifying leaves

2ϵ1/2δ2x2 + δ22x
2
2 − 2ϵ3/2 − ϵ2 − 2ϵδ2x2 − 2ϵ3/2δ2x2 − ϵδ22x

2
2 = 0. (1.61)

Since δ2 ≪ ϵ1/2 the dominant term involving δ2 is 2ϵ1/2δ2x2. This must balance with −2ϵ3/2,

giving δ2 = ϵ and x2 = 1.

1.7 The iterative method

This is often very useful in cases where the expansion sequence is not known. Writing the

original quadratic as

(x− 1)2 = ϵx2, (1.62)

we are led to the iterative process

xn+1 = 1± ϵ1/2xn. (1.63)

Starting with x0 = 1 the positive root gives

x1 = 1 + ϵ1/2, (1.64)

and

x2 = 1 + ϵ1/2 + ϵ. (1.65)
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1.7.1 Logarithms

Consider the transcendental equation

xe−x = ϵ. (1.66)

To proceed to higher order we play the game again. Choosing x1 = 1 for example, we now have

x = 1 + ε1/2 + δ2x2, δ2 ! ε1/2.

Substituting into the equation

(1 − ε)
(
1 + ε1/2 + δ2x2

)2

− 2
(
1 + ε1/2 + δ2x2

)
+ 1 = 0.

Expanding

1 + 2ε1/2 + ε+ 2δ2x2 + 2ε1/2δ2x2 + δ22x2
2

− ε− 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ22x
2
2 − 2 − 2ε1/2 − 2δ2x2 + 1 = 0.

Simplifying leaves
2ε1/2δ2x2 + δ22x2

2 − 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ22x
2
2 = 0.

Since δ2 ! ε1/2 the dominant term involving δ2 is 2ε1/2δ2x2. This must balance with −2ε3/2, giving δ2 = ε and x2 = 1.

2.7 Iterative method

This is often very useful in cases where the expansion sequence is not known. Writing the original quadratic as

(x − 1)2 = εx2

we are led to the iterative process
xn+1 = 1 ± ε1/2xn.

Starting with x0 = 1 the positive root gives
x1 = 1 + ε1/2

and
x2 = 1 + ε1/2 + ε.

2.8 Logarithms

Consider the transcendental equation
xe−x = ε.

1 2 3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

One root is near x = 0 and is easy to approximate. The other gets large as ε → 0 and is more difficult to find. Since the
expansion sequence is not obvious we use the iterative procedure. Now, when x = log 1/ε, xe−x = ε log 1/ε $ ε. When
x = 2 log 1/ε, xe−x = 2ε2 log 1/ε ! ε. Over this range the term x is slowly varying while e−x is rapidly varying. This
suggests rewriting the equation as

e−x =
ε

x

giving the iterative scheme
xn+1 = log(1/ε) + log xn.

We have seen that the root lies roughly around x = log(1/ε), so we start the iteration from x0 = log(1/ε). Then

x1 = log(1/ε) + log log(1/ε).

6

One root is near x = 0 and is easy to approximate. The other gets large as ϵ→ 0 and is more

difficult to find. Since the expansion sequence is not obvious we use the iterative procedure.

Now, when x = log(1/ϵ) we have xe−x = ϵ log(1/ϵ) ≫ ϵ. When x = 2 log(1/ϵ), this gives

xe−x = 2ϵ2 log(1/ϵ) ≪ ϵ. Over this range the term x is slowly varying while e−x is rapidly

varying. This suggests rewriting Equation (1.66) as

e−x =
ϵ

x
, (1.67)

giving the iterative scheme

xn+1 = log(1/ϵ) + log xn. (1.68)

We have seen that the root lies roughly around x = log(1/ϵ), so we start the iteration from

x0 = log(1/ϵ). Then we have

x1 = log(1/ϵ) + log log(1/ϵ), (1.69)

and

x2 = log(1/ϵ) + log(log(1/ϵ) + log log(1/ϵ))

= log(1/ϵ) + log log(1/ϵ) + log

(
1 +

log log(1/ϵ)

log(1/ϵ)

)

= log(1/ϵ) + log log(1/ϵ) +
log log(1/ϵ)

log(1/ϵ)
− 1

2

(
log log(1/ϵ)

log(1/ϵ)

)2

+ · · · . (1.70)
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Iterating again

x3 = log(1/ϵ) + log

(
log(1/ϵ) + log log(1/ϵ) +

log log(1/ϵ)

log(1/ϵ)
− 1

2

(
log log(1/ϵ)

log(1/ϵ)

)2
)

= log(1/ϵ) + log log(1/ϵ) + log

(
1 +

log log(1/ϵ)

log(1/ϵ)
+

log log(1/ϵ)

(log(1/ϵ))2
− 1

2

(log log(1/ϵ))2

(log(1/ϵ))3

)

= log(1/ϵ) + log log(1/ϵ) +

(
log log(1/ϵ)

log(1/ϵ)
+

log log(1/ϵ)

(log(1/ϵ))2
− 1

2

(log log(1/ϵ))2

(log(1/ϵ))3

)

− 1

2

(
log log(1/ϵ)

log(1/ϵ)
+

log log(1/ϵ)

(log(1/ϵ))2
− · · ·

)2

+
1

3

(
log log(1/ϵ)

log(1/ϵ)
+ · · ·

)3

+ · · ·

= log(1/ϵ) + log log(1/ϵ) +
log log(1/ϵ)

log(1/ϵ)
+

−1
2(log log(1/ϵ))

2 + log log(1/ϵ)

(log(1/ϵ))2
+

1
3(log log(1/ϵ))

3 − 3
2(log log(1/ϵ))

2 + · · ·
(log(1/ϵ))3

+ · · · .

(1.71)

This is a difficult sequence to guess! The appearance of log ϵ, and especially of log log(1/ϵ),

means that very small values of ϵ are needed for the asymptotic expansion to be a good approx-

imation. Normally we hope that it is sufficient to take ϵ = 0.5, or at worst ϵ = 0.1. However

even when ϵ = 10−9, log log(1/ϵ) is only three.



Chapter 2

Asymptotic approximations

This chapter provides a series of definitions that are useful for describing the properties of

asymptotic approximations.

2.1 Convergence

A series
∑∞

n=0 fn(z) is said to converge at a fixed value of z if given an arbitrary ϵ > 0 it is

possible to find a number N0(z, ϵ) such that
∣∣∣∣∣
N∑

n=M

fn(z)

∣∣∣∣∣ < ϵ for all M, N > N0. (2.1)

A series
∑∞

n=0 fn(z) is said to converge to a function f(z) at a fixed value of z if given an

arbitrary ϵ > 0 it is possible to find a number N0(z, ϵ) such that
∣∣∣∣∣
N∑

n=0

fn(z)− f(z)

∣∣∣∣∣ < ϵ for all N > N0. (2.2)

Thus a series converges if its terms decay sufficiently rapidly as n→ ∞.

The property of convergence is less useful in practice that we are often led to believe. Consider

erf(z) =
2√
π

∫ z

0
e−t

2
dt. (2.3)

Since e−t
2
is analytic in the entire complex plane it can be expanded in a Taylor series

∞∑

n=0

(−t2)n
n!

, (2.4)

which converges with an infinite radius of convergence (i.e. it converges for all t). This allows us

to integrate term by term to get a series for erf(z) which also converges with an infinite radius

of convergence:

erf(z) =
2√
π

∞∑

n=0

(−1)nz2n+1

(2n+ 1)n!

=
2√
π

(
z − z3

3
+
z5

10
− z7

42
+

z9

216
− z11

1320
+ · · ·

)
. (2.5)

12
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Taking eight terms in the series gives an accuracy of 10−5 up to z = 1. As z increases pro-

gressively more terms are needed to maintain this accuracy, e.g. 16 terms at z = 2, 31 terms

at z = 3, and 75 terms at z = 5. As well as requiring lots of terms, the intermediate terms

get very large when z is large (there is lots of cancellation from positive and negative terms).

Thus round-off errors come into play. A computer with a round-off error of 10−7 can give an

answer accurate to only about 10−4 at z = 3 because the largest term is about 214. At z = 5

the largest term is 6.6× 108, so that round-off error swamps the answer, and the computer gets

it completely wrong.

The problem is that the truncated sums are very different from the converged limit—the

approximation does not get better with each successive term (until we include a lot of terms).

An alternative approximation to erf(z) can be constructed by writing

erf(z) = 1− 2√
π

∫ ∞

z
e−t

2
dt, (2.6)

and integrating by parts to give

∫ ∞

z
e−t

2
dt =

∫ ∞

z

2te−t
2

2t
dt =

e−z
2

2z
−
∫ ∞

z

e−t
2

2t2
dt. (2.7)

Continuing integrating by parts gives

erf(z) = 1− e−z
2

z
√
π

(
1− 1

2z2
+

1.3

(2z2)2
− 1.3.5

(2z2)3
+ · · ·

)
. (2.8)

This series diverges for all z: it has radius of convergence zero. However, the truncated series

is very useful. At z = 2.5 three terms give an accuracy of 10−5. At z = 3 only two terms are

necessary. The series has the important property that the leading term is almost correct, and

the addition of each successive term gets us a bit closer to the answer, i.e. each of the corrections

is of decreasing size (until they finally start to diverge). The series is an asymptotic series.

2.2 Asymptoticness

A sequence {fn(ϵ)}n∈N0 is said to be asymptotic if for all n ≥ 1

fn(ϵ)

fn−1(ϵ)
→ 0 as ϵ→ 0. (2.9)

A series
∑∞

n=0 fn(ϵ) is said to be an asymptotic approximation to (or asymptotic expansion

of) a function f(ϵ) as ϵ→ 0 if for all N ≥ 0

f(ϵ)−∑N
n=0 fn(ϵ)

fN (ϵ)
→ 0 as ϵ→ 0, (2.10)

i.e. the remainder is smaller than the last term included once ϵ is sufficiently small. We write

f ∼
∞∑

n=0

fn(ϵ) as ϵ→ 0. (2.11)

Usually we don’t worry about getting the whole series, just the first few terms.
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Often the fn(ϵ) are powers of ϵ multiplied by a coefficient, i.e.

f ∼
∞∑

n=0

anϵ
n, (2.12)

which is called an asymptotic power series. Sometimes though, as we have already seen,

fractional powers or logs may appear.

2.3 Order notation

We write f = O(g) as ϵ→ 0 to mean that there exist constants K > 0 and ϵ0 > 0 such that

|f | < K|g| for all ϵ < ϵ0. (2.13)

We write f = o(g) as ϵ→ 0 to mean

f

g
→ 0 as ϵ→ 0. (2.14)

Then fn(ϵ) is an asymptotic sequence if fn = o(fn−1), and f ∼∑∞
n=0 fn if

f −
N∑

n=0

fn = o(fN ) for all N ≥ 0. (2.15)

Examples

• sinx = O(x) as x→ 0.

• sinx = O(1) as x→ ∞.

• sinx = O(1) as x→ 01.

• log x = O(x) as x→ ∞.

• log x = o(x) as x→ ∞.

• log x = o(x−δ) as x→ 0, for any δ > 0.

2.4 Uniqueness and manipulation of asymptotic series

If a function posesses an asymptotic approximation in terms of an asymptotic sequence, then that

approximation is unique for that particular sequence. Given the existence of an approximation

f ∼
∞∑

n=0

anδn(ϵ), (2.16)

in terms of a given sequence {δn(ϵ)}n∈N0 , the coefficients can be evaluated inductively from

ak = lim
ϵ→0

f(ϵ)−∑k−1
n=0 anδn(ϵ)

δk(ϵ)
. (2.17)

1Note: when dealing with simple powers we often take the order to be largest/smallest such power that works.
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Note that the uniqueness is for a given sequence. A single function may have many asymp-

totic approximations, each in terms of a different sequence. For example

tan(ϵ) ∼ ϵ+
ϵ3

3
+

2ϵ5

15
+ · · · (2.18)

∼ sin ϵ+
1

2
(sin ϵ)3 +

3

8
(sin ϵ)5 + · · · (2.19)

∼ ϵ cosh

(√
2

3
ϵ

)
+

31

270

(
ϵ cosh

(√
2

3
ϵ

))2

+ · · · . (2.20)

Note also that the uniqueness is for a given function: two functions may share the same

asymptotic approximation, because they differ by a quantity smaller than the last term included.

For example,

exp(ϵ) ∼
∞∑

n=0

ϵn

n!
as ϵ→ 0, (2.21)

exp(ϵ) + exp(−1/ϵ2) ∼
∞∑

n=0

ϵn

n!
as ϵ→ 0+, (2.22)

where ϵ→ 0+ means as ϵ tends to zero through positive values. Two functions sharing the same

asymptotic power series, as above, can only differ by a quantity which is not analytic, because

two analytic functions with the same power series are identical.

Asymptotic approximations can be naively added, subtracted, multiplied or divided, result-

ing in the correct asymptotic expression for the sum, difference, product or quotient, perhaps

based on an enlarged asymptotic sequence.

One asymptotic series can be substituted into another, although care is needed with expo-

nentials. For example, if

f(z) = ez
2
, z(ϵ) = ϵ−1 + ϵ, (2.23)

then

f(z(ϵ)) = e(ϵ
−1+ϵ)2 ∼ e−ϵ

−2
e2
(
1 + ϵ2 +

ϵ4

2
+ · · ·

)
. (2.24)

However, if only the leading term in z is used we get the wrong answer, exp(−ϵ−2), in error by a

factor of e2. To avoid this error the exponents need to be calculated to O(1), not just to leading

order. Remember that cos and sin are exponentials as far as this is concerned.

Asymptotic expansions can be integrated term by term with respect to ϵ resulting in the

correct asymptotic expansion of the integral. However, in general they may not be differentiated

with safety. The trouble comes with terms like ϵ cos(1/ϵ) which has a derivative O(1/ϵ) rather

than the expected O(1). Such terms move higher up the expansion when integrated (safe), but

lower down it when differentiated (unsafe). Thus when differentiating there is always the worry

that neglected higher-order terms suddenly become important.

2.5 Numerical use of divergent series

Usually the first few terms in a series are enough to get the desired accuracy. However, if

a more accurate representation is needed more terms can be taken. Clearly, if the series is
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divergent, as they often are, it makes no sense to keep including extra terms when they stop

decreasing in magnitude and start to diverge. Truncating at the smallest term is known as

optimal truncation.

2.6 Parametric expansions

So far we have been considering functions of a single variable as that variable tends to zero. Such

problems often occur in ordinary and (especially) partial differential equations when considering

far field behaviour, for example, and there they are known as coordinate expansions.

More common is for the solution of an equation to depend on more than one variable, f(x; ϵ),

say. Often we have a differential equation in the independent variable x which contains a small

parameter ϵ, hence the name parametric expansion. For functions of two variables the obvious

generalisation is to allow the coefficients of the asymptotic expansion to be functions of the

second variable:

f(x; ϵ) ∼
∞∑

n=0

an(x)δn(ϵ) as ϵ→ 0. (2.25)



Chapter 3

Asymptotic approximation of

integrals

In this chapter we will explore a range of different approaches to approximate integrals, paying

attention to their validity and accuracy.

3.1 Integration by parts

We have already seen the use of integration by parts to obtain an asymptotic approximation of

the error function. Here we show some more examples.

3.1.1 Example 1: Derivation of an asymptotic power series

If f(ϵ) is differentiable near ϵ = 0 then the local behaviour of f(ϵ) near ϵ = 0 may be studied

using integration by parts. We write

f(ϵ) = f(0) +

∫ ϵ

0
f ′(x)dx. (3.1)

Integrating by parts once gives

f(ϵ) = f(0) +
[
(x− ϵ)f ′(x)

]ϵ
0
+

∫ ϵ

0
(ϵ− x)f ′′(x)dx. (3.2)

Repeating N − 1 times gives

f(ϵ) =
N∑

n=0

ϵnf (n)(0)

n!
+

1

N !

∫ ϵ

0
(ϵ− x)Nf (N+1)(x)dx. (3.3)

If the remainder term exists for all N and sufficiently small ϵ > 0 then

f(ϵ) ∼
∞∑

n=0

ϵnf (n)(0)

n!
as ϵ→ 0. (3.4)

If the series converges then it is just the Taylor expansion of f(ϵ) about ϵ = 0.

3.1.2 Example 2

I(x) =

∫ ∞

x
e−t

4
dt. (3.5)

17
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As x→ ∞,

I(x) = −1

4

∫ ∞

x

1

t3
d

dt
(e−t

4
)dt

=

[
−e

−t4

4t3

]∞

x

− 3

4

∫ ∞

x

1

t4
e−t

4
dt

=
e−x

4

4x3
− 3

4

∫ ∞

x

1

t4
e−t

4
dt. (3.6)

The first term is the leading-order asymptotic approximation because
∫ ∞

x

1

t4
e−t

4
dt <

1

x4

∫ ∞

x
e−t

4
dt =

1

x4
I(x) ≪ I(x) as x→ ∞. (3.7)

Further integration by parts gives more terms in the asymptotic series.

3.1.3 Example 3

I(x) =

∫ x

0
t−1/2e−tdt. (3.8)

Here we need to be more careful because the naive approach

I(x) =
[
−t−1/2e−t

]x
0
− 1

2

∫ x

0
t−3/2e−tdt, (3.9)

gives ∞−∞. Instead we express I(x) as the difference between two integrals

I(x) =

∫ ∞

0
t−1/2e−tdt−

∫ ∞

x
t−1/2e−tdt. (3.10)

The first integral is finite, independent of x; it has the value Γ(1/2) =
√
π. The second may be

integrated by parts successfully, because the contribution from the endpoint vanishes.
∫ x

0
t−1/2e−tdt =

√
π +

∫ ∞

x
t−1/2 d

dt
(e−t)dt

=
√
π − e−x√

x
+

1

2

∫ ∞

x
t−3/2e−tdt. (3.11)

General rule: Integration by parts will not work if the contribution from one of the limits of

integration is much larger than the size of the integral. Here I(x) is finite for all x > 0, but at

the endpoint t = 0 the integrand has a singularity, which gets worse on differentiating.

3.1.4 Failure of integration by parts

I(x) =

∫ ∞

0
e−xt

2
dt. (3.12)

If we try integration by parts we find
∫ ∞

0
e−xt

2
dt =

∫ ∞

0

(
− 1

2xt

)(
−2xte−xt

2
)
dt =

[
e−xt

2

−2xt

]∞

0

−
∫ ∞

0

1

2xt2
e−xt

2
dt. (3.13)

The final integral does not exist, a sure sign that integration by parts has failed. In fact, I(x) has

the exact value
√
π/(2

√
x). Integration by parts could never pick up this fractional power, and

is doomed to failure. Integration by parts will also not work when the dominant contribution to

the integral comes from an interior point rather than an end point. While integration by parts

is simple to use and gives an explicit error term that can often be rigorously bounded, it is of

limited applicability and inflexible.
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3.2 Laplace’s method

Laplace’s method is a general technique for obtaining the behaviour as x→ +∞ of integrals of

the form

I(x) =

∫ b

a
f(t)exϕ(t)dt, (3.14)

where f(t) and ϕ(t) are real continuous functions.

3.2.1 Example

Find the asymptotic behaviour of

I(x) =

∫ 10

0

e−xt

(1 + t)
dt, (3.15)

as x→ +∞. The integrand is shown for x = 1, · · · , 10.

Example Find the asymptotic behaviour of

I(x) =

∫ 10

0

e−xt

(1 + t)
dt

as x → +∞. The integrand is shown for x = 1, · · · , 10.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

As x → ∞ the largest contribution to the integral comes from near t = 0 because this is where −t is biggest. For values of
t away from zero the integrand is exponentially small. So split the range of integration:

I(x) =

∫ ε

0

e−xt

(1 + t)
dt +

∫ 10

ε

e−xt

(1 + t)
dt

where x−1 $ ε $ 1. The second integral is O(e−εx) which is exponentially small by comparison to the first, so we can
neglect it. In the first integral t is small so we can Taylor expand 1/(1 + t). The best way to be systematic is to change
variable xt = s, giving

I(x) ∼ 1

x

∫ xε

0

e−s

(1 + s/x)
ds.

Since xε (the largest value of s) is $ x we Taylor expand 1/(1 + s/x) to give

I(x) ∼ 1

x

∫ xε

0

e−s
∞∑

n=0

(−s)n

xn
ds =

∞∑

n=0

1

xn+1

∫ xε

0

(−s)ne−s ds,

since the expansion is uniform on 0 < s < εx. Finally, we can now replace the upper limit xε by infinity in each sum,
introducing only exponentially small errors again, since

∫ ∞

xε

sne−s ds = O((xε)ne−εx).

Hence

I(x) ∼
∞∑

n=0

1

xn+1

∫ ∞

0

(−s)ne−s ds =

∞∑

n=0

(−1)nn!

xn+1
.

4.4 Watson’s lemma

The method of the example can be justified using Watson’s lemma, which applies to integrals of the form

I(x) =

∫ b

0

f(t)e−xt dt, b > 0.

Suppose f(t) is continuous on the interval 0 ≤ t ≤ b and has the asymptotic series expansion

f(t) ∼ tα
∞∑

n=0

antβn, as t → 0+,

where α > −1 and β > 0 so that the integral converges at t = 0. If b = ∞ it is also necessary that f(t) $ ect as t → +∞
for some positive constant c so that the integral converges at t = ∞. Then Watson’s lemma states that

I(x) ∼
∞∑

n=0

anΓ(α+ βn + 1)

xα+βn+1
as x → +∞.

The proof is basically by the same method as in the example.

12

As x → ∞ the largest contribution to the integral comes from near t = 0 because this is

where −t is biggest. For values of t away from zero the integrand is exponentially small. So

split the range of integration:

I(x) =

∫ ϵ

0

e−xt

(1 + t)
dt+

∫ 10

ϵ

e−xt

(1 + t)
dt, (3.16)

where x−1 ≪ ϵ≪ 1. The second integral is O(e−ϵx) which is exponentially small by comparison

to the first, so we can neglect it. In the first integral t is small so we can Taylor expand 1/(1+ t).

The best way to be systematic is to change variable xt = s, giving

I(x) ∼ 1

x

∫ xϵ

0

e−s

(1 + s/x)
ds. (3.17)

Since xϵ is the largest value of s and, obviously, ϵx≪ x we Taylor expand 1/(1 + s/x) to give

I(x) ∼ 1

x

∫ xϵ

0
e−s

∞∑

n=0

(−s)n
xn

ds =

∞∑

n=0

1

xn+1

∫ xϵ

0
(−s)ne−sds, (3.18)

since the expansion is uniform on 0 < s < ϵx.

Finally, we can now replace the upper limit xϵ by infinity in each sum, introducing only

exponentially small errors again because integration by parts shows that
∫ ∞

xϵ
sne−sds = O((xϵ)ne−ϵx). (3.19)

Hence

I(x) ∼
∞∑

n=0

1

xn+1

∫ ∞

0
(−s)ne−sds =

∞∑

n=0

(−1)nn!

xn+1
as x→ ∞. (3.20)
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3.3 Watson’s lemma

The method of the example can be justified using Watson’s lemma, which applies to integrals

of the form

I(x) =

∫ b

0
f(t)e−xtdt, b > 0. (3.21)

Suppose f(t) is continuous on the interval 0 ≤ t ≤ b and has the asymptotic series expansion

f(t) ∼ tα
∞∑

n=0

ant
βn as t→ 0+, (3.22)

where α > −1 and β > 0 so that the integral converges at t = 0. If b = ∞ it is also necessary

that f(t) ≪ ect as t→ +∞ for some positive constant c so that the integral converges at t = ∞.

Watson’s lemma states that

I(x) ∼
∞∑

n=0

anΓ(α+ βn+ 1)

xα+βn+1
as x→ +∞. (3.23)

The derivation of Watson’s Lemma is basically by the same method as in the example if the

asymptotic series for f is uniformly convergent in a neighbourhood of the origin (as is often the

case in practice). If this is not the case (as it is in general), then it is no longer possible to

interchange the order of integration and summation: we work instead with a finite number of

terms in the asymptotic expansion of f by writing, for each positive integer N ,

f(t) = tα
N−1∑

n=0

ant
βn +O(tβN ) as t→ 0 + . (3.24)

The result is then readily derived by showing that, for each positive integer N ,

I(x) =
N−1∑

n=0

anΓ(α+ βn+ 1)

xα+βn+1
+O

(
1

xα+βN+1

)
as x→ +∞. (3.25)

3.4 Asymptotic expansion of general Laplace integrals

Consider the integral

I(x) =

∫ b

a
f(t)exϕ(t)dt. (3.26)

We have seen that the dominant contribution to the integral will come from the place where

ϕ(t) is largest.

4.5 Asymptotic expansion of general Laplace integrals

Consider the integral

I(x) =

∫ b

a

f(t)exφ(t) dt.

We have seen that the dominant contribution to the integral will come from the place where φ(t) is largest.
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There are three cases to consider

1. The maximum is at t = a.

2. The maximum is at t = b.

3. The maximum is at some t = c, with a < c < b.

In each case the argument is as follows:

1. The dominant contribution to the integral comes from the near the maximum of φ. We can reduce the range of
integration to this local contribution introducing only exponentially small errors.

2. Near this point we can expand φ and f in Taylor series.

3. After rescaling the integration variable, we can replace the integration limits by ∞ introducing only exponentially
small errors.

Case 1: The maximum is at t = a. First we can split the integral into a local and nonlocal part:

I(x) =

∫ a+ε

a

f(t)exφ(t) dt +

∫ b

a+ε

f(t)exφ(t) dt,

where 1/x " ε " 1/
√

x (we will see where these restrictions come from soon). The second integral is exponentially small
compared to the first, since it is O(exφ(a+ε)) and φ(a + ε) ∼ φ(a) + εφ′(a). Thus the second integral is O(exεφ′(a)) times the
first (which we will see is O(exφ(a))). This is why we need xε % 1 (remember that φ′(a) < 0 since φ is maximum at t = a).

In the first it is OK to expand φ(t) and f(t) as an asymptoptic series about t = a

φ(t) ∼ φ(a) + (t − a)φ′(a) + · · · , f(t) ∼ f(a) + (t − a)f ′(a) + · · · .

Then

I(x) ∼
∫ a+ε

a

(f(a) + (t − a)f ′(a) + · · · ) ex(φ(a)+(t−a)φ′(a)+
(t−a)2

2 φ′′(a)+··· ) dt

Now we rescale the integration variable to remove the x from the exponential, i.e. we set x(t − a) = s. Then

I(x) ∼ exφ(a)

x

∫ xε

0

(
f(a) +

s

x
f ′(a) + · · ·

)
esφ′(a)+ s2

2xφ
′′(a)+··· ds.

Note that φ′(a) < 0, since φ is maximum at a. Now we can expand e
s2

2xφ
′′(a)+··· as x → ∞ as

1 +
s2

2x
φ′′(a) + · · · .

13
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There are three cases to consider:

1. the maximum is at t = a;

2. the maximum is at t = b;

3. the maximum is at some t = c, with a < c < b.

In each case the argument is as follows:

1. the dominant contribution to the integral comes from the near the maximum of ϕ. We can

reduce the range of integration to this local contribution introducing only exponentially

small errors;

2. near this point we can expand ϕ and f in Taylor series;

3. after rescaling the integration variable, we can replace the integration limits by ∞ intro-

ducing only exponentially small errors.

3.4.1 Case 1: maximum at t = a

First we can split the integral into a local and nonlocal part:

I(x) =

∫ a+ϵ

a
f(t)exϕ(t)dt+

∫ b

a+ϵ
f(t)exϕ(t)dt, (3.27)

where x−1 ≪ ϵ ≪ x−1/2 (we will see where these restrictions come from soon). The second

integral is exponentially small compared to the first, since it is O(exϕ(a+ϵ)) and ϕ(a + ϵ) ∼
ϕ(a) + ϵϕ′(a). Thus the second integral is O(exϵϕ

′(a)) times the first (which we will see is

O(exϕ(a))). This is why we need xϵ≫ 1; remember that ϕ′(a) < 0 since ϕ is maximum at t = a.

In the first integral we can expand ϕ(t) and f(t) as asymptoptic series about t = a:

ϕ(t) ∼ ϕ(a) + (t− a)ϕ′(a) + · · · , f(t) ∼ f(a) + (t− a)f ′(a) + · · · . (3.28)

Then

I(x) ∼
∫ a+ϵ

a

(
f(a) + (t− a)f ′(a) + · · ·

)
exp

(
x

[
ϕ(a) + (t− a)ϕ′(a) +

(t− a)2

2
ϕ′′(a) + · · ·

])
dt.

(3.29)

Now we rescale the integration variable to remove the x from the exponential, i.e. we set

x(t− a) = s. Then

I(x) ∼ exϕ(a)

x

∫ xϵ

0

(
f(a) +

s

x
f ′(a) + · · ·

)
exp

(
sϕ′(a) +

s2

2x
ϕ′′(a) + · · ·

)
ds. (3.30)

Note that ϕ′(a) < 0, since ϕ is maximum at a. Now we can expand exp(s2ϕ′′(a)/2x + · · ·) as

x→ ∞ as

1 +
s2

2x
ϕ′′(a) + · · · . (3.31)

This is fine providing (xϵ)2/x≪ 1 i.e., ϵ≪ x−1/2. This is where the other restriction on ϵ comes

from. Keeping only the leading-order term we have

I(x) ∼ f(a)exϕ(a)

x

∫ xϵ

0
esϕ

′(a)ds. (3.32)
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Now we can replace the upper limit by infinity, introducing only exponentially small errors:

I(x) ∼ f(a)exϕ(a)

x

∫ ∞

0
esϕ

′(a)ds = −f(a)e
xϕ(a)

xϕ′(a)
. (3.33)

3.4.2 Case 2: maximum at t = b

A similar argument shows that

I(x) ∼ f(b)exϕ(b)

xϕ′(b)
. (3.34)

3.4.3 Case 3: maximum at t = c where a < c < b

First we can split the integral into a local and nonlocal part:

I(x) =

∫ c−ϵ

a
f(t)exϕ(t)dt+

∫ c+ϵ

c−ϵ
f(t)exϕ(t)dt+

∫ b

c+ϵ
f(t)exϕ(t)dt, (3.35)

where in this case we will see that we need 1/x1/2 ≪ ϵ ≪ 1/x1/3 (we will see where these

restrictions come from shortly). The first and last integrals are exponentially small compared to

the second, since they are O(exϕ(c+ϵ)). In this case ϕ(c+ ϵ) ∼ ϕ(c) + ϵ2ϕ′′(c)/2 because ϕ has a

maximum at the interior point t = c so ϕ′(c) = 0. This is why we need xϵ2 ≫ 1 i.e., x−1/2 ≪ ϵ.

In the second integral we can expand ϕ(t) and f(t) as asymptotic series about t = c:

ϕ(t) ∼ ϕ(c) +
(t− c)2

2
ϕ′′(c) +

(t− c)3

6
ϕ′′′(c) · · · , f(t) ∼ f(c) + (t− c)f ′(c) + · · · . (3.36)

Then

I(x) ∼
∫ c+ϵ

c−ϵ

(
f(c) + (t− c)f ′(c) + · · ·

)
exp

(
x

[
ϕ(c) +

(t− c)2

2
ϕ′′(c) +

(t− c)3

6
ϕ′′′(c) + · · ·

])
dt.

(3.37)

Now we rescale the integration variable to remove the x from the exponential, i.e. we set√
x(t− c) = s (note the different scaling of the contributing region). Then

I(x) ∼ exϕ(c)√
x

∫ √
xϵ

−
√
xϵ

(
f(c) +

s

x
f ′(c) + · · ·

)
exp

(
s2

2
ϕ′′(c) +

s3

6
√
x
ϕ′′′(c) + · · ·

)
ds. (3.38)

Note that ϕ′′(c) < 0, since ϕ has a maximum at t = c. Now we can expand exp
(
s3ϕ′′′(c)/6

√
x+ · · ·

)

as x→ ∞ as

1 +
s3

6
√
x
ϕ′′′(c) + · · · . (3.39)

This is fine providing (x1/2ϵ)3/x1/2 ≪ 1, i.e. ϵ ≪ x−1/3. This is where the other restriction on

ϵ comes from. Keeping only the leading-order term we have

I(x) ∼ f(c)exϕ(c)√
x

∫ √
xϵ

−
√
xϵ
es

2ϕ′′(c)/2ds. (3.40)

Now we can replace the upper and lower limits by ±∞, introducing only exponentially small

errors:

I(x) ∼ f(c)exϕ(c)√
x

∫ ∞

−∞
es

2ϕ′′(c)/2ds =

√
2πf(c)exϕ(c)√
−xϕ′′(c)

. (3.41)
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3.5 Method of stationary phase

The method of stationary phase is used for problems in which the exponent ϕ is not real but

purely imaginary, say ϕ(t) = iψ(t), where ψ(t) is real.

I(x) =

∫ b

a
f(t)eixψ(t)dt. (3.42)

3.5.1 Riemann-Lebesgue Lemma

If
∫ b
a |f(t)|dt <∞ and ψ(t) is continuously differentiable for a ≤ t ≤ b and not constant on any

subinterval in a ≤ t ≤ b, then

∫ b

a
f(t)eixψ(t)dt→ 0 as x→ ∞. (3.43)

The Riemann-Lebesgue Lemma is useful when using integration by parts.

Example

I(x) =

∫ 1

0

eixt

1 + t
dt. (3.44)

Integrating by parts gives

I(x) = − ie
ix

2x
+
i

x
− i

x

∫ 1

0

eixt

(1 + t)2
dt. (3.45)

The last integral is lower order by the Riemann-Lebesgue lemma.

Why is the Riemann-Lebesgue lemma true? Locally near any point t = t0, we have ψ(t) ∼
ψ(t0) + (t − t0)ψ

′(t0) + · · · and the period of oscillation is 2π/(xψ′(t0)). As x → ∞ this is

very small, f(t) is almost constant, and the contribution from the “up” and “down” parts of

the oscillation almost cancel out1. However, this is not true if ψ′(t0) = 0. In this case the

integrand oscillates much more slowly near t0, so that there is less cancellation. Here is a plot

of Re(e100ix
2
):

Riemann-Lebesgue lemma If
∫ b

a |f(t)| dt < ∞ then

∫ b

a

f(t)eixt dt → 0 as x → ∞.

Useful when using integration by parts.

Example

I(x) =

∫ 1

0

eixt

1 + t
dt.

Integrating by parts gives

I(x) = − ieix

2x
+

i

x
− i

x

∫ 1

0

eixt

(1 + t)2
dt.

The last integral is lower order by the Riemann-Lebesgue lemma.
Why is the Riemann-Lebesgue lemma true? As x → ∞ the integrand oscillates more and more rapidly so that the

contribution over one period of oscillation f(t) is almost constant and the contribution from the “up” and “down” parts
of the oscillation almost cancel out. (You can find a rigorous proof of the Riemann-Lebesgue lemma in analysis books. I
might show you the basic steps in one of the final lectures.)

This is also true for general ψ(t) (rather than the specific case of the Riemann-Lebesgue lemma ψ(t) = t). Locally
near any point t = t0, ψ(t) ∼ ψ(t0) + (t − t0)ψ

′(t0) + · · · and the period of oscillation is 2π
xψ′(t0) . As x → ∞ this is very

small, f(t) is almost constant, and the contribution from the “up” and “down” parts of the oscillation almost cancel out.
However, this is not true if ψ′(t0) = 0. In this case the integrand oscillates much more slowly near t0, so that there is less

cancellation. Here’s a plot of Re(e100ix2

).
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As for Laplace’s method, we split the range of integration

I(x) =

∫ c−ε

a

f(t)eixψ(t) dt +

∫ c+ε

c−ε
f(t)eixψ(t) dt +

∫ b

c+ε

f(t)eixψ(t) dt.

The first and third integrals are lower order. To show this we use integration by parts

∫ c−ε

a

f(t)eixψ(t) dt =

∫ c−ε

a

f(t)

ixψ′(t)
d

dt

(
eixψ(t)

)
dt

=

[
f(t)

ixψ′(t)
eixψ(t)

]c−ε

a

− 1

x

∫ c−ε

a

eixψ(t) d

dt

(
f(t)

iψ′(t)

)
dt.

Providing the last integral exists it is lower order by the Riemann-Lebesgue lemma. The first integal is

O

(
1

xψ′(c − ε)

)
= O

(
1

xεψ′′(c)

)

providing ψ′′(c) %= 0. For the second integral we expand ψ and f as an asymptoptic series about t = c

f(t) ∼ f(c) + (t − c)f ′(c) + · · · , ψ(t) ∼ ψ(c) +
(t − c)2

2
ψ′′(c) +

(t − c)3

6
ψ′′′(c) + · · · .

15

1You can find a rigorous proof of the Riemann-Lebesgue lemma in analysis books.
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Suppose ψ′(c) = 0 with a < c < b and ψ′(t) being nonzero for a ≤ t < c and c < t ≤ b. As

for Laplace’s method, we split the range of integration

I(x) =

∫ c−ϵ

a
f(t)eixψ(t)dt+

∫ c+ϵ

c−ϵ
f(t)eixψ(t)dt+

∫ b

c+ϵ
f(t)eixψ(t)dt, (3.46)

where ϵ ≪ 1. The first and third integrals are lower order. To show this we use integration by

parts
∫ c−ϵ

a
f(t)eixψ(t)dt =

∫ c−ϵ

a

f(t)

ixψ′(t)

d

dt

(
eixψ(t)

)
dt

=

[
f(t)

ixψ′(t)
eixψ(t)

]c−ϵ

a

− 1

x

∫ c−ϵ

a
eixψ(t)

d

dt

(
f(t)

iψ′(t)

)
dt. (3.47)

Providing the last integral exists it is lower order by the Riemann-Lebesgue lemma. The

first intergal is

O

(
1

xψ′(c− ϵ)

)
= O

(
1

xϵψ′′(c)

)
, (3.48)

providing ψ′′(c) ̸= 0. For the second integral we expand ψ and f as an asymptotic series about

t = c

f(t) ∼ f(c) + (t− c)f ′(c) + · · · , ψ(t) ∼ ψ(c) +
(t− c)2

2
ψ′′(c) +

(t− c)3

6
ψ′′′(c) + · · · . (3.49)

Then
∫ c+ϵ

c−ϵ
f(t)eixψ(t)dt ∼

∫ c+ϵ

c−ϵ

(
f(c) + (t− c)f ′(c) + · · ·

)
×

exp

(
ix

[
ψ(c) +

(t− c)2

2
ψ′′(c) +

(t− c)3

6
ψ′′′(c) + · · ·

])
dt. (3.50)

As for Laplace’s method, we change the integration variable so that the oscillation is on an

order one scale by setting x1/2(t− c) = s to give

∫ c+ϵ

c−ϵ
f(t)eixψ(t)dt ∼ eixψ(c)

x1/2

∫ x1/2ϵ

−x1/2ϵ

(
f(c) +

s

x1/2
f ′(c) + · · ·

)
×

exp

(
i
s2

2
ψ′′(c) + i

s3

6x1/2
ψ′′′(c) + · · ·

)
ds. (3.51)

Now we can expand exp
(
is3ψ′′′(c)/6x1/2 + · · ·

)
as

1 + i
s3

6x1/2
ψ′′′(c) + · · · , (3.52)

so long as ϵ≪ x−1/3. The leading order term is

∫ c+ϵ

c−ϵ
f(t)eixψ(t)dt ∼ f(c)eixψ(c)

x1/2

∫ x1/2ϵ

−x1/2ϵ
eis

2ψ′′(c)/2ds. (3.53)

Now we replace the limits of integration by ±∞, which introduces error terms of order 1/(xϵ)

(check by integration by parts). Hence
∫ c+ϵ

c−ϵ
f(t)eixψ(t)dt ∼ f(c)eixψ(c)

x1/2

∫ ∞

−∞
eis

2ψ′′(c)/2ds+O

(
1

xϵ

)

=

√
2πf(c)eixψ(c)e±iπ/4

x1/2|ψ′′(c)|1/2 +O

(
1

xϵ

)
, (3.54)
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where (contour integration reveals that) the factor e+iπ/4 is used if ψ′′(c) > 0 and e−iπ/4 is used

if ψ′′(c) < 0. Thus we need x−1/2 ≫ (ϵx)−1, i.e. ϵ ≫ x−1/2, as in Laplace’s method. The error

is the same order as the neglected first and third integrals. So finally

I(x) =

√
2πf(c)eixψ(c)e±iπ/4

x1/2|ψ′′(c)|1/2 +O

(
1

xϵ

)
, (3.55)

as x→ ∞ with x−1/2 ≪ ϵ≪ x−1/3.

Important notes

• The error terms are only algebraically small, not exponentially small as in Laplace’s

method.

• Higher-order corrections are very hard to get since they may come from the whole range of

integration. This is in contrast to Laplace’s method where the full asymptotic expansion

depends only on the local region because the errors are exponentially small.

3.6 Method of steepest descents

Laplace’s method and the method of stationary phase are really just special cases of the general

method of steepest descents, which is for integrals of the form

I(x) =

∫

C
f(t)exϕ(t)dt, (3.56)

where f(t) and ϕ(t) are complex, and C is some contour in the complex t-plane.

We might expect, based on Laplace’s method, that the important contribution to the integral

as x → +∞ comes from the place where Re(ϕ) is maximum, at t0 say, and that the integral is

basically of size

f(t0)e
xϕ(t0)

√
2π

−λϕ′′(t0)
, (3.57)

where ′ is the derivative along the path of integration. However, this estimate is way too large.

The reason is that it ignores the rapid oscillation due to the imaginary part of ϕ, which causes

cancellation exactly as in the method of stationary phase. We can see that the estimate above

is wrong by deforming the contour a bit, which does not change the value of the integral, but

which can change the maximum value of Re(ϕ).

Now, since ϕ(t) = u(ξ, η) + iv(ξ, η) is an analytic function of t = ξ + iη, we have the

Cauchy-Riemann equations

uξ = vη, uη = −vξ. (3.58)

Hence ∇2u = uξξ + uηη = 0. This means that u cannot have any maxima or minima in the

(ξ, η)-plane, only saddle points (since a maximum or minimum would require uξξuηη > 0). Thus

the landscape of u has hills (u > 0) and valleys (u < 0) at infinity, with saddle points which are

the passes from one valley into another. By the Cauchy-Riemann equations the saddle points

are where dϕ/dt = 0. If our contour is infinite it must tend to infinity in a valley (see e.g.

the surface plot of u(ξ, η) = η2 − ξ2 for ϕ(t) = −t2). By deforming the contour we can keep

reducing the maximum value of u, until the contour goes through the saddle point which is the
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lowest that u gets (see e.g. the contour plot of u in which solid lines are for positive values of u,

dotted lines are for negative values of u, and the dashed lines show C being deformed through

the saddle point).
where t = x+iy. Hence ∇2Re(φ) = Re(φ)xx+Re(φ)yy = 0. This means that Re(φ) cannot have any maxima (or minima) in
the complex plane, only saddle points (since a maximum would require Re(φ)xx < 0 and Re(φ)yy < 0). Thus the landscape
of Re(φ) has hills (Re(φ) > 0) and valleys (Re(φ) < 0) at infinity, with saddle points which are the passes from one valley
into another. By the Cauchy-Riemann equations the saddle points are where dφ/dt = 0.
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If our contour is infinite it must tend to infinity in a valley. By deforming the contour we can keep reducing the maximum
value of Re(φ), until the contour goes through the saddle point which is the lowest that Re(φ) gets.

Contours of Re(φ), continuous for positive values, dotted for negative values.

But why do we know that this is the right value. Suppose we can deform the contour C into one in which the imaginary
part of φ is constant. Then there is no oscillation in the integrand, and the Laplace-type argument will work. Now if
Im(φ) = constant on the path then dIm(φ)/dt = 0, so that ∇(Im(φ)) is perpendicular to the path. By the Cauchy-Riemann
equations this means that ∇(Re(φ)) is parallel to the path, so that the path follows the steepest directions on the surface
of Re(φ).
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If our contour is infinite it must tend to infinity in a valley. By deforming the contour we can keep reducing the maximum
value of Re(φ), until the contour goes through the saddle point which is the lowest that Re(φ) gets.

Contours of Re(φ), continuous for positive values, dotted for negative values.

But why do we know that this is the right value. Suppose we can deform the contour C into one in which the imaginary
part of φ is constant. Then there is no oscillation in the integrand, and the Laplace-type argument will work. Now if
Im(φ) = constant on the path then dIm(φ)/dt = 0, so that ∇(Im(φ)) is perpendicular to the path. By the Cauchy-Riemann
equations this means that ∇(Re(φ)) is parallel to the path, so that the path follows the steepest directions on the surface
of Re(φ).
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But why do we know that this is the right value? Suppose we can deform the contour C into

one in which v is constant. Then there is no oscillation in the integrand, and the Laplace-type

argument will work. Now if v is constant on the path, then ∇v = (vξ, vη) is perpendicular to

the path. By the Cauchy-Riemann equations this means that ∇u = (uξ, uη) is parallel to the

path, so that the path follows the steepest directions on the surface of u.

There is only one path on which v is constant which goes to a valley at ±∞ and this is the

path through the saddle. A little thought shows that this has to be the case. Since u is first

increasing as we come up from one valley and then decreasing as we go off to another valley,

we must go through a point where du/ds = 0, where s is distance along the path. Since v is

constant, so that dv/ds = 0 everywhere on the path, we must go through a saddle point at

which both du/ds = 0 and dv/ds = 0.

Hence the method of steepest descents is as follows:

1. deform the contour to be the steepest descent contour through the relevant saddle point(s);

2. evaluate the local contribution from the saddle point exactly as in Laplace’s method;

3. evaluate the local contribution from the end point(s) exactly as in Laplace’s method.

Remember that when deforming the contour we must include the contribution from any poles

that we cross.

Of course, we could have chosen a path on which u = Re(ϕ) was constant and applied the

method of stationary phase. However, we have seen that Laplace’s method is far superior in

that it can generate all the terms in the asymptotic series: the neglected “tails” of the integral

are exponentially small. In fact, the best way to generate higher order terms in a stationary

phase integral is to deform to the steepest descent contour.
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3.6.1 Example: steepest descents on the gamma function

Consider as x→ ∞ the gamma function, Γ(x), which may be defined by

1

Γ(x)
=

1

2πi

∫

C′
ett−xdt , (3.59)

where C ′ is a contour which starts at t = −∞− ia (a > 0), encircles the branch cut that lies

along the negative real axis, and then ends up at t = −∞+ ib (b > 0).
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There is only one path on which Im(φ) is constant which goes to a valley at ±∞ and this is the path through the saddle.
A little thought shows that this has to be the case. Since the Re(φ) is first increasing as we come up from one valley and
then decreasing as we go off to another valley, we must go through a point where dRe(φ)/dt = 0. Since dIm(φ)/dt = 0
everywhere on the path, we must go through a point dφ/dt = 0, which are the saddle points.

So the method of steepest descents is as follows:

(i) Deform the contour to be the steepest descent contour through the relevant saddle point(s).

(ii) Evaluate the local contribution from the saddle exactly as in Laplace’s method.

(iii) Evaluate the local contribution from the end point(s) exactly as in Laplace’s method.

Remember that when deforming the contour we must include the contribution from any poles that we cross.
Of course, we could have chosen a path on which Re(φ) was constant and applied the method of stationary phase.

However, we have seen that Laplace’s method is far superior in that it can generate all the terms in the asymptotic series:
the neglected “tails” of the integral are exponentially small. In fact, the best way to generate higher order terms in a
stationary phase integral is to deform to the steepest descent contour.

Example
1

Γ(x)
=

1

2πi

∫

C

ett−xdt ,

where C is a contour which starts at t = −∞ − ia (a > 0), encircles the branch cut that lies along the negative real axis,
and then ends up at t = −∞ + ib (b > 0).
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This is a moveable saddle problem. Writing ett−x = et−x ln t and differentiating the whole

exponent with respect to t shows that there is a saddle point at t = x. Thus we begin by

changing the moveable saddle to a fixed saddle by the change of variable t = xs to give

1

Γ(x)
=

1

2πixx−1

∫

C
ex(s−log s)ds =

1

2πixx−1

∫

C
exϕ(s)ds, (3.60)

where ϕ = s− log s and C is the rescaled contour (which we could take to be the same as C ′ by

the deformation theorem). The saddle point(s) are now at ϕ′(s) = 0, i.e. s = 1.

We begin by changing the moveable saddle to a fixed saddle by the change of variable t = xs to give

1

Γ(x)
=

1

2πixx−1

∫

C

ex(s−log s) ds.

We have φ = s − log s. The saddle point(s) are at φ′(s) = 0, i.e.

1 − 1

s
= 0, s = 1.
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We deform to the steepest descent contour through the saddle. We expand φ in a Taylor series about s = 1 giving

φ(s) ∼ 1 +
(s − 1)2

2
− (s − 1)3

3
+ · · · .

We then change rescale the integration variable so that the quadratic term in the exponent is O(1) by setting
√

x s− 1 = u,
giving

1

Γ(x)
∼ ex

2πixx−1
√

x

∫

C

e
u2

2 − u3

3
√

x
+···

du.

Expanding e
− u3

3
√

x
+···

keeping only the first term gives

1

Γ(x)
∼ ex

2πixx−1/2

∫

C

e
u2

2 du.

Now the steepest descent contour is locally parallel to the imaginary axis, so we set u = iv to give

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e

−v2

2 dv =
ex

√
2π xx−1/2

,

i.e.

Γ(x) ∼
√

2π xx−1/2e−x.

Example. Steepest descents on the Airy function

1. Positive argument Consider

Ai(x) =
1

2π

∫ ∞

−∞
ei(t3/3+xt) dt,
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We deform to the steepest descent contour Im(s) = arg(s) (| arg(s)| < π) through the saddle,

as illustrated in the above figure. Having deformed to the steepest descent contour the procedure

is exactly that for Laplace’s method. The integral is split into a local contribution from near

the saddle and the rest, which is exponentially smaller. For the local contribution ϕ is expanded

in a Taylor series about the saddle point s = 1 giving

ϕ(s) ∼ 1 +
(s− 1)2

2
− (s− 1)3

3
+ · · · , (3.61)
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so that
1

Γ(x)
∼ ex

2πixx−1

∫
exp

(
x(s− 1)2

2
− x(s− 1)3

3
+ · · ·

)
ds. (3.62)

At this stage the integral is from −ϵ to ϵ along the steepest descent contour from the saddle

s = 1. We then rescale the integration variable so that the quadratic term in the exponent is

O(1) by setting
√
x(s− 1) = u, giving

1

Γ(x)
∼ ex

2πixx−1
√
x

∫
exp

(
u2

2
− u3

3
√
x
+ · · ·

)
du, (3.63)

where the integral is from −x1/2ϵ to x1/2ϵ along the steepest descent contour. We now expand

e−u
3/3

√
x+··· keeping only the first term and replace the integration limits by ±∞ along the

steepest descent contour (introducing only exponentially small errors), giving

1

Γ(x)
∼ ex

2πixx−1/2

∫
eu

2/2du. (3.64)

Now the steepest descent contour is locally parallel to the imaginary axis near to the saddle point

s = 1, so we set u = iv. A comparison with the figure above tells us which way to integrate, in

this case from v = −∞ to v = ∞. Thus,

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e−v

2/2dv =
ex√

2πxx−1/2
, (3.65)

i.e.

Γ(x) ∼
√
2πxx−1/2e−x as x→ ∞. (3.66)

3.6.2 Example: steepest descents on the Airy function

Positive argument

Consider as x→ ∞ the Airy function

Ai(x) =
1

2π

∫

C′
ei(t

3/3+xt)dt, (3.67)

where C ′ is a contour that starts at infinity with 2π/3 < arg(t) < π and ends at infinity with

0 < arg(t) < π/3. Note that the integrand decays at infinity where Re(it3) < 0, i.e. in the

sectors defined by 0 < arg(t) < π/3, 2π/3 < arg(t) < π and 4π/3 < arg(t) < 5π/3.

This is a moveable saddle problem. Differentiating the whole exponent shows that the saddle

points are at t = ±ix1/2. Thus we rescale t = x1/2z to give

Ai(x) =
x1/2

2π

∫

C
eix

3/2(z3/3+z)dz =
x1/2

2π

∫

C
ex

3/2ϕ(z)dz, (3.68)

where ϕ(z) = i(z3/3 + z) and C is the rescaled contour, which we could take to be the same as

C ′ by the deformation theorem and must start in the sector V1 and end in the sector V2 shown

in Figure 3.1(a).

The saddle points are the points where ϕ′(z) = 0, i.e. z = ±i. We deform the contour C to the

steepest descent contour from V2 to V1, which goes through the saddle point z = i but not the

saddle point z = −i.
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Figure 1: Steepest descent curves for positive argument. Note that the shading shows the sectors which are valleys at
infinity and is not supposed to be a contour plot of the magntitude of the integrand, but just an aid to determine the
steepest descent (rather than ascent) contour.
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Figure 2: Steepest descent curves for negative argument. Note that the shading shows the sectors which are valleys at
infinity and is not supposed to be a contour plot of the magntitude of the integrand, but just an aid to determine the
steepest descent (rather than ascent) contour.
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(a) (b)

Figure 3.1: Steepest descent curves for (a) x → ∞ and (b) x → −∞. Note that the shading

shows the sectors which are valleys at infinity and is not supposed to be a contour plot of

the magnitude of the integrand, but just an aid to determine the steepest descent (rather than

ascent) contour.

Having deformed to the steepest descent contour the procedure is exactly that for Laplace’s

method. The integral is split into a local contribution from near the saddle and the rest, which

is exponentially smaller. For the local contribution ϕ is expanded in a Taylor series about the

saddle point z = i as

ϕ(z) ∼ −2

3
− (z − i)2 + · · · , (3.69)

so that

Ai(x) ∼ x1/2e−2x3/2/3

2π

∫
e−x

3/2(z−i)2+···dz. (3.70)

At this stage the integral is from −ϵ to ϵ along the steepest descent contour from the saddle

z = i. Now we change variable by setting x3/4(z − i) = u to give

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫
e−u

2+···du, (3.71)

where the integral is from −x3/4ϵ to x3/4ϵ along the steepest descent contour. We now replace

these limits by ±∞ along the steepest descent contour (introducing only exponentially small
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errors). Keeping only the leading order term we therefore have

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫
e−u

2
du, (3.72)

where the integral goes to infinity along the steepest descent contour. The steepest descent

contour is given by −u2 real and negative, i.e. u real. A comparison with Figure 3.1(a) tells us

which way to integrate, in this case from −∞ to ∞. Thus

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫ ∞

−∞
e−u

2
du =

e−2x3/2/3

2
√
πx1/4

. (3.73)

Negative argument

Consider as x→ ∞ the Airy function

Ai(−x) = 1

2π

∫

C′
ei(t

3/3−xt)dt, (3.74)

with C ′ as before. As before, we rescale t = x1/2z to give

Ai(−x) = x1/2

2π

∫

C
eix

3/2(z3/3−z)dz =
x1/2

2π

∫

C
ex

3/2ϕ(z)dz, (3.75)

where C is as before, but now ϕ(z) = i(z3/3 − z). The saddle points are the points where

ϕ′(z) = 0, i.e. z = ±1. The steepest descent contour through z = 1 goes from V3 to V1. The

steepest descent contour through z = −1 goes from V3 to V2 (see Figure 3.1(b)). Thus we must

deform the contour C to go from V2 to V3 through the saddle at z = −1, and then from V3 to

V1 through the saddle at z = 1. Thus in this case both saddles will contribute to the integral.

Near z = 1 we expand ϕ as a Taylor series

ϕ(z) ∼ −2i

3
+ i(z − 1)2 + · · · , (3.76)

to give

x1/2e−2ix3/2/3

2π

∫
eix

3/2(z−1)2+···dz. (3.77)

We change variable by setting x3/4(z − 1) = u to give

e−i2x
3/2/3

2πx1/4

∫
eiu

2
du. (3.78)

As usual we now replace the integration limits by ±∞ along the steepest descent contour. The

steepest descent contour is given by iu2 real and negative, i.e. u = eiπ/4s with s real. A

comparison with Figure 3.1(b) tells us which way to integrate, in this case from s = −∞ to

s = +∞. Thus the contribution from z = 1 is

eiπ/4e−2ix3/2/3

2πx1/4

∫ ∞

−∞
e−s

2
ds =

eiπ/4e−2ix3/2/3

2
√
πx1/4

. (3.79)

Near z = −1 we expand ϕ as a Taylor series

ϕ(z) ∼ 2i

3
− i(z + 1)2 + · · · (3.80)
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to give

x1/2e2ix
3/2/3

2π

∫
e−ix

3/2(z+1)2+···dz. (3.81)

We change variable by setting x3/4(z + 1) = u to give

e2ix
3/2/3

2πx1/4

∫
e−iu

2
du. (3.82)

As usual we now replace the integration limits by ±∞ along the steepest descent contour. The

steepest descent contour is given by −iu2 real and negative, i.e. u = e3iπ/4s with s real. A

comparison with Figure 3.1(b) tells us which way to integrate, in this case from s = ∞ to

s = −∞. Thus the contribution from z = −1 is

e3iπ/4e2ix
3/2/3

2πx1/4

∫ −∞

∞
e−s

2
ds =

e−iπ/4e2ix
3/2/3

2
√
πx1/4

. (3.83)

Adding together the two contributions we find

Ai(−x) ∼ eiπ/4e−2ix3/2/3

2
√
πx1/4

+
e−iπ/4e2ix

3/2/3

2
√
πx1/4

=
1√
πx1/4

cos

(
π

4
− 2x3/2

3

)
. (3.84)

3.7 Splitting the range of integration

We have seen in the previous examples how to split the range of integration into a local part,

in which some functions may be approximated by Taylor series, and a global part, which in the

previous cases was lower order. In general we may follow such a procedure, splitting the range

of integration and using different approximations in each range.

3.7.1 Example 1

∫ 1

0

1

(x+ ϵ)1/2
dx. (3.85)

On the one hand we would like to expand the integrand for small ϵ:

1

(x+ ϵ)1/2
∼ 1

x1/2
− ϵ

2x3/2
+ · · · . (3.86)

However, such an expansion is only sensible if ϵ ≪ x. Thus there are two regions to consider,

x = O(1) and x = O(ϵ):

• if x = O(ϵ) the integrand is O(ϵ−1/2) and contribution to the integral is therefore O(ϵ1/2);

• if x = O(1) the integrand is O(1) and contribution to the integral is therefore O(1).

Thus we expect the global contribution to dominate.

We split the range of integration from 0 to δ and from δ to 1, where ϵ≪ δ ≪ 1. We write

∫ 1

0

1

(x+ ϵ)1/2
dx =

∫ δ

0

1

(x+ ϵ)1/2
dx+

∫ 1

δ

1

(x+ ϵ)1/2
dx. (3.87)
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In the first integral we rescale x = ϵu to give

∫ 1

0

1

(x+ ϵ)1/2
dx =

∫ δ/ϵ

0

ϵ1/2

(u+ 1)1/2
du+

∫ 1

δ

1

(x+ ϵ)1/2
dx. (3.88)

Now we are safe to use Taylor series for the second integrand. The first integral is

∫ δ/ϵ

0

ϵ1/2

(u+ 1)1/2
du = −2ϵ1/2 + 2(ϵ+ δ)1/2. (3.89)

The second is

∫ 1

δ

dx

(x+ ϵ)1/2
∼
∫ 1

δ

(
1

x1/2
− ϵ

2x3/2
+ · · ·

)
dx

∼ 2− 2δ1/2 + ϵ− ϵ

δ1/2
+ · · · . (3.90)

Hence

∫ 1

0

dx

(x+ ϵ)1/2
∼ −2ϵ1/2 + 2(ϵ+ δ)1/2 + 2− 2δ1/2 + ϵ− ϵ

δ1/2
+ · · ·

∼ −2ϵ1/2 + 2δ1/2 +
ϵ

δ1/2
+ · · · 2− 2δ1/2 + ϵ− ϵ

δ1/2
+ · · ·

∼ 2− 2ϵ1/2 + ϵ+ · · · , (3.91)

remembering that ϵ ≪ δ. Notice that the final answer is independent of δ as it should be. We

can check that our answer is right by comparing with the exact solution

2
(
(1 + ϵ)1/2 − ϵ1/2

)
∼ 2− 2ϵ1/2 + ϵ+ · · · . (3.92)

3.7.2 Example 2

I =

∫ π/4

0

1

ϵ2 + sin2 θ
dθ. (3.93)

There are two regions, θ = O(1) and θ = O(ϵ):

• if θ = O(ϵ) the integrand is O(ϵ−2) and contribution to the integral is therefore O(ϵ−1);

• if θ = O(1) the integrand is O(1) and contribution to the integral is therefore O(1).

Thus we expect the local contribution to dominate.

As before we split the range of integration at δ, with ϵ≪ δ ≪ 1:

I =

∫ δ

0

1

ϵ2 + sin2 θ
dθ +

∫ π/4

δ

1

ϵ2 + sin2 θ
dθ. (3.94)

In the first integral we rescale θ = ϵu to give

I =

∫ δ/ϵ

0

ϵ

ϵ2 + sin2(ϵu)
du+

∫ π/4

δ

1

ϵ2 + sin2 θ
dθ. (3.95)
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Now in the first integral ϵu ≤ δ ≪ 1 so we are safe to Taylor expand sin2(ϵu), giving

∫ δ/ϵ

0

ϵ

ϵ2 + sin2(ϵu)
du ∼

∫ δ/ϵ

0

ϵ

ϵ2 + ϵ2u2 − ϵ4u4/3 + · · · du

∼
∫ δ/ϵ

0

(
1

ϵ(1 + u2)
+

ϵu4

3(1 + u2)2
+ · · ·

)
du

=
1

ϵ
tan−1

(
δ

ϵ

)
+O(ϵ)

=
π

2ϵ
− 1

δ
+ · · ·+O(ϵ). (3.96)

In the second integral we can expand the integrand in powers of ϵ to give

∫ π/4

δ

1

ϵ2 + sin2 θ
dθ ∼

∫ π/4

δ

(
1

sin2 θ
− ϵ2

sin4 θ
+ · · ·

)
dθ

= −1 + cot(δ) +O(ϵ2)

∼ −1 +
1

δ
+ · · · . (3.97)

Hence

I ∼ π

2ϵ
− 1 + · · · . (3.98)



Chapter 4

Matched asymptotic expansions

4.1 Singular perturbations

If a differential equation Dϵy = 0 has a small parameter ϵ in it1, it is natural to aim to use

the solution of the limiting case D0y = 0 (corresponding to ϵ = 0) as an approximation for

the solution of Dϵy = 0. However, if ϵ multiplies the highest derivative of y, say dky/dxk, a

difficulty arises. The original Dϵy = 0 is a k-th order equation with k boundary conditions.

However, D0y = 0 only has order ≤ k − 1, so it cannot satisfy all of the boundary conditions

(in general). This is called a singular perturbation problem: the operator Dϵ is a singular

perturbation of D0.

4.1.1 Linear example

Consider

ϵy′′ + y′ + y = 0, (4.1)

y(0) = a, y(1) = b, (4.2)

where a and b are prescribed real constants. When ϵ = 0, we have

y′ + y = 0, (4.3)

y(0) = a, y(1) = b. (4.4)

The solution is y = Ae−x which cannot satisfy both boundary conditions in general.

4.1.2 Interpretation and procedure

If y is the solution to Dϵy = 0 then one possible behaviour in such cases is that:

• over most of the range ϵdky/dxk is small, and y approximately obeys D0y = 0;

• in certain regions, often near the ends of the range, ϵdky/dxk is not small, and y adjusts

itself to the boundary conditions (i.e. dky/dxk is large in some places).

In fluid dynamics these regions are known as boundary layers, in solid mechanics they are known

as edge layers, in electrodynamics they are known as skin layers, etc.

1Dϵ is the differential operator associated with this differential equation.

34
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A procedure for determining the solution of a singular perturbation problem with boundary

layers is:

1. determine the scaling of the boundary layers (e.g. x ∝ ϵ or ϵ1/2 or . . . );

2. rescale the independent variable in the boundary layer (e.g. x = x̂ϵ or x̂ϵ1/2 or . . . );

3. find the asymptotic expansions of the solutions in the boundary layers and outside the

boundary layers (the “inner” and “outer” solutions);

4. fix the arbitrary constants in these solutions by:

(a) ensuring the inner solutions obey the boundary conditions;

(b) “matching” – making the inner and outer solutions join up properly in the transition

region between them.

This is the method of matched asymptotic expansions. You will see something similar later

when you examine turning points that arise in the WKB method.

4.1.3 The linear example again

We will illustrate the procedure with our linear example. Note that this problem can be solved

exactly. We will work as if we don’t have any a priori knowledge about the solution i.e. as

though there may be boundary layers at either end, even though the boundary layer is actually

only at x = 0.

Scaling

Near x = 0 we let xL = x/ϵα, where L indicates the left-hand end and xL is the local variable

for inspecting the boundary layer on the left. Then we write y(x) = yL(xL) so that

dy

dx
=

dyL
dxL

dxL
dx

= ϵ−α
dyL
dxL

, (4.5)

d2y

dx2
= ϵ−2αd

2yL
dx2L

, (4.6)

so that

ϵ1−2αd
2yL
dx2L

+ ϵ−α
dyL
dxL

+ yL = 0. (4.7)

Now in the boundary layer d2yL/dx
2 is significant. We must increase α until this term balances

the largest of the others in the equation. Hence we want

1− 2α = min(−α, 0) =⇒ α = 1. (4.8)

So the boundary layer is of width ϵ. Note that if we choose 1− 2α = 0, i.e. α = 1/2, to balance

the first and third terms, then the second term is O(ϵ−1/2) which is bigger than the other two.

The boundary layer at the right is also of width ϵ.

So now we develop our asymptotic expansion as follows:
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1. away from the ends of the interval (“the middle”) we expand y as

y(x) = yM (x) ∼ yM0(x) + ϵyM1(x) + · · · ; (4.9)

2. near the left-hand end we rescale x by a factor of ϵ so we have xL = x/ϵ and we expand

y(x) = yL(xL) ∼ yL0(xL) + ϵyL1(xL) + · · · ; (4.10)

3. near the right-hand end we rescale x − 1 by a factor of ϵ so we have xR = (x − 1)/ϵ ≤ 0

and we expand

y(x) = yR(xR) ∼ yR0(xR) + ϵyR1(xR) + · · · . (4.11)

Solution on the left

The equation in the inner variable reads

d2yL
dx2L

+
dyL
dxL

+ ϵyL = 0. (4.12)

Inserting the expansion and equating coefficients of powers of ϵ gives

O(1) :
d2yL0
dx2L

+
dyL0
dxL

= 0, (4.13)

O(ϵ) :
d2yL1
dx2L

+
dyL1
dxL

+ yL0 = 0, (4.14)

etc. Hence

yL0 = AL0 +BL0e
−xL . (4.15)

To satisfy y(0) = a we have AL0 +BL0 = a.

Solution in the middle

The equation in the outer variable reads

ϵ
d2yM
dx2

+
dyM
dx

+ yM = 0. (4.16)

Inserting the expansion and equating coefficients of powers of ϵ gives

O(1) :
dyM0

dx
+ yM0 = 0, (4.17)

O(ϵ) :
d2yM0

dx2
+

dyM1

dx
+ yM1 = 0, (4.18)

etc. Hence

yM0 = AM0e
−x. (4.19)

Solution on the right

The equation in the inner variable reads

d2yR
dx2R

+
dyR
dxR

+ ϵyR = 0. (4.20)
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Inserting the expansion and equating coefficients of powers of ϵ gives

O(1) :
d2yR0

dx2R
+

dyR0

dxR
= 0, (4.21)

O(ϵ) :
d2yR1

dx2R
+

dyR1

dxR
+ yR0 = 0, (4.22)

etc. Hence

yR0 = AR0 +BR0e
−xR . (4.23)

To satisfy y(1) = b we have AR0 +BR0 = b.

Matching

So far we have five arbitrary constants and two equations. The other three equations can be

obtained by matching. The idea is that there is an “overlap” region where both expansions

should hold and therefore be equal.

yL(xL) ∼ yM (x) as x→ 0 and xL = x/ϵ→ ∞. (4.24)

One way is to introduce an “intermediate” scaling x̂ = x/ϵα, 0 < α < 1. Then with ϵ→ 0 with

x̂ fixed we have x = ϵαx̂ → 0 and xL = ϵα−1x̂ → ∞. Often it is easiest to choose some fixed α,

say α = 1/2.

In this case, matching at the left-hand end we have

yL = AL0 +BL0e
−ϵα−1x̂ +O(ϵ),

= AL0 +O(ϵ), (4.25)

while

yM = AM0e
−ϵαx̂ +O(ϵ)

= AM0 − ϵαx̂AM0 + · · ·+O(ϵ). (4.26)

For these to be the same as ϵ→ 0 we need

AL0 = AM0. (4.27)

Thus the y values have to match: the outer limit of the inner problem needs to match with the

inner limit of the outer problem.

To match at the right-hand end we use the intermediate variable x̃ = (x− 1)/ϵα ≤ 0 giving

yR = AR0 +BR0e
−ϵα−1x̃ +O(ϵ), (4.28)

while

yM = AM0e
−1−ϵαx̃ +O(ϵ)

= AM0e
−1 − ϵαx̃AM0e

−1 + · · ·+O(ϵ). (4.29)

Clearly to match we cannot have exponential growth in Equation (4.28), and so

BR0 = 0, AR0 = AM0e
−1. (4.30)
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Again the y values must match. Hence the five equations are

AL0 +BL0 = a, (4.31)

AR0 +BR0 = b, (4.32)

AL0 = AM0, (4.33)

BR0 = 0, (4.34)

AR0 = AM0e
−1, (4.35)

so that

AL0 = eb, BL0 = a− eb, AM0 = eb, AR0 = b, BR0 = 0, (4.36)

and the solution in the three regions is given by

yL0 = eb+ (a− eb)e−xL , (4.37)

yM0 = ebe−x, (4.38)

yR0 = b. (4.39)

Note that there is no rapid variation in y in the right-hand boundary layer – we do not really

need it!

Composite expansion

To plot the solution for the linear example we want a uniformly valid expansion. One way to

construct a uniformly valid approximation is to add together the solution in the inner and outer

regions, and then subtract the solution in the “overlap” region which has been counted twice.

Write the inner solution in terms of outer variables and the outer in terms of inner variables and

expand

yL0 = eb+ (a− eb)e−x/ϵ = eb+O(ϵ), (4.40)

yM0 = ebe−ϵxL = eb+O(ϵ). (4.41)

The common term which has been counted twice is eb. Hence the composite expansion is

y ∼ eb+ (a− eb)e−xL + ebe−x − eb

= (a− eb)e−x/ϵ + ebe−x. (4.42)

The error is O(ϵ) over the whole range of x.

Higher-order terms

At order ϵ in each region

yL1 = −ebxL + (a− eb)xLe
−xL +AL1 +BL1e

−xL , (4.43)

yM1 = −ebxe−x +AM1e
−x, (4.44)

yR1 = −bxR +AR1 +BR1e
−xR . (4.45)

The boundary conditions are

AL1 +BL1 = 0, AR1 +BR1 = 0. (4.46)
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Matching

We follow the same procedure. At the left-hand end we write inner and outer expansions in

terms of x̂:

yL = eb+ (a− eb)e−ϵ
α−1x̂

+ ϵ
(
−ebϵα−1x̂+ (a− eb)ϵα−1x̂e−ϵ

α−1x̂ +AL1 +BL1e
−ϵα−1x̂

)
ϵ+O(ϵ2)

= eb− ebϵαx̂+AL1ϵ+O(ϵ2), (4.47)

while

yM = ebe−ϵ
αx̂ + ϵ

(
−ebϵαx̂e−ϵαx̂ +AM1e

−ϵαx̂
)
+O(ϵ2)

= eb− ϵαx̂eb+
ϵ2αx̂2

2
eb+ · · ·

− ebϵα+1x̂+ ebϵ2α+1x̂2 +AM1ϵ−AM1ϵ
1+αx̂+ · · ·+O(ϵ2). (4.48)

Matching we find that

AL1 = AM1. (4.49)

Note that some terms jump order: −ϵαx̂eb comes from the inner expansion of the first-outer

term, but from the outer expansion of the second-inner term. Note that in order for the neglected

terms ϵ2α to be smaller than the last retained term ϵ we need α > 1/2.

At the right-hand end using the intermediate variable x̃ we find

yR = b+ ϵ
(
−bϵα−1x̃+AR1 +BR1e

−ϵα−1x̃
)
+O(ϵ2),

= b− bϵαx̃+ ϵAR1 + ϵBR1e
−ϵα−1x̃ +O(ϵ2), (4.50)

while

yM = ebe−1−ϵαx̃ + ϵ
(
−eb(1 + ϵαx̃)e−1−ϵαx̃ +AM1e

−1−ϵαx̃)+O(ϵ2)

= b− ϵαx̃b+
ϵ2αx̃2

2
b+ · · · − b(ϵ+ ϵα+1x̃) (1− ϵαx̃+ · · ·)

+ ϵAM1e
−1 (1− ϵαx̃+ · · ·) +O(ϵ2). (4.51)

Matching gives

BR1 = 0, AM1e
−1 − b = AR1. (4.52)

Hence we now have the five equations for five unknowns,

AL1 +BL1 = 0, (4.53)

AR1 +BR1 = 0, (4.54)

AL1 = AM1, (4.55)

BR1 = 0, (4.56)

AM1e
−1 − b = AR1, (4.57)

with solution

AR1 = 0, BR1 = 0, AM1 = be, AL1 = be, BL1 = −be. (4.58)
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This gives

yL1 = −ebxL + (a− eb)xLe
−xL + eb− ebe−xL , (4.59)

yM1 = −ebxe−x + ebe−x, (4.60)

yR1 = −bxR. (4.61)

Composite expansion

The composite is the yL + yM− overlap. We write yL in terms of the outer variable:

yL = eb+ (a− eb)e−x/ϵ + ϵ
(
−ebx

ϵ
+ (a− eb)

x

ϵ
e−x/ϵ + eb− ebe−x/ϵ

)
+ · · ·

= eb− ebx+ ϵeb+O(ϵ2); (4.62)

and yM in terms of the inner variables:

yM = ebe−ϵxL + ϵ
(
−ebϵxLe−ϵxL + ebe−ϵxL

)
+ · · ·

= eb− ebϵxL + ϵeb+O(ϵ2). (4.63)

The common value in the overlap region is

eb− ebϵxL + ϵeb = eb− ebx+ ϵeb. (4.64)

Hence the composite expansion is

y = eb+ (a− eb)e−x/ϵ + ϵ
(
−ebx

ϵ
+ (a− eb)

x

ϵ
e−x/ϵ + eb− ebe−x/ϵ

)

+ ebe−x + ϵ
(
−ebxe−x + ebe−x

)
− (eb− ebx+ ϵeb) +O(ϵ2)

= (a− eb)e−x/ϵ + (a− eb)xe−x/ϵ − ϵebe−x/ϵ

+ ebe−x − ϵebxe−x + ϵebe−x +O(ϵ2). (4.65)

4.1.4 Van Dyke’s matching rule

Using the intermediate variable x̂ is tiresome. Van Dyke’s matching ‘rule’ usually works and is

much more convenient. However, at the end of the day it’s a matter of keeping track of the size

of each term, as you’ll see in this discussion. Van Dyke’s rule is

(m term inner)(n term outer) = (n term outer)(m term inner), (4.66)

i.e. in the outer variables expand to n terms, then switch to inner variables and re-expand to

m terms. The result is the same as first expanding in the inner to m terms, then switching to

outer variables and re-expanding to n terms.

Example revisited

(1to) = AM0e
−x. (4.67)

In inner variables this is

AM0e
−ϵxL . (4.68)
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Expanded this is

AM0 −AM0ϵxL +AM0
ϵ2x2L
2

+ · · · . (4.69)

Hence

(1ti)(1to) = AM0, (4.70)

(2ti)(1to) = AM0 −AM0ϵxL, (4.71)

etc. Similarly

(1ti) = AL0 +BL0e
−xL . (4.72)

In outer variables this is

AL0 +BL0e
−x/ϵ. (4.73)

Expanded this is

AL0 + E.S.T., (4.74)

where E.S.T. means “exponentially small terms”. Hence

(1to)(1ti) = AL0, (4.75)

(2to)(1ti) = AL0, (4.76)

etc. So

(1to)(1ti) = (1ti)(1to) ⇒ AM0 = AL0. (4.77)

Warning: When using this matching rule you must treat log as O(1) because of the size of

logarithmic terms.

Choice of scaling revisited

Near x = 0 we let xL = x/ϵα, and y(x) = yL(xL) so that

ϵ1−2αd
2yL
dx2L

+ ϵ−α
dyL
dxL

+ yL = 0. (4.78)

Now as we gradually increase α we find

ϵ1−2α d2yL
dx2L

+ ϵ−α dyL
dxL

+ yL = 0

α = 0 ......... balance ......... the outer

0 < α < 1 dominant the overlap

α = 1 ......... balance ......... the inner

1 < α dominant the sub-inner

(4.79)

The inner and outer regions can be matched because they share a common term, which is

dominant in the overlap region.

The potentially interesting scalings in an equation are those which balance two or more

terms. Such scalings are sometimes called distinguished limits.
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4.2 Where is the boundary layer?

To have the possibility of a non-trivial boundary layer we need some solution in the inner region

which decays as we move towards the outer. In the problem we considered, the non-constant

solution in the right-hand “boundary layer” grew exponentially as we moved to the outer, so

there could never be a boundary layer at x = 1.

Note that boundary layers do not have to be at boundaries! There can be thin regions of

high gradients in the interior of the domain (they are then sometimes called interior layers).

Example 1

ϵ
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 for 0 < x < 1, with y(0) = A, y(1) = B, (4.80)

where A, B are prescribed constants. If p(x) > 0 for all x ∈ [0, 1], then we expect to find a

boundary layer at x = 0. If p(x) < 0 for all x ∈ [0, 1], then we expect to find a boundary layer

at x = 1. If p(x) = 0 for some x = x0, then there may be an interior layer at x = x0.

Example 2

ϵ2
d2y

dx2
+ 2y(1− y2) = 0 for − 1 < x < 1, with y(−1) = −1, y(1) = 1. (4.81)

The outer solution y = 1 is OK near x = 1, while the outer solution y = −1 is OK near x = −1.

Somewhere there must be a transition between these two states. Rescale near x = x0 by setting

x = x0 + ϵX to give
d2y

dX2
+ 2y(1− y2) = 0 for −∞ < X <∞, (4.82)

with

y → −1 as X → −∞, y → 1 as X → +∞. (4.83)

This transition layer has solution

y = tanh(X), (4.84)

for any x0. In this case the exact solution is

y ∼ tanh(x/ϵ), (4.85)

and the transition layer is near x = 0. This could be argued by symmetry. However, the position

of the transition layer is exponentially sensitive to the boundary data. Finding it for other data

is nontrivial. Not all transition layer problems are so hard.

4.3 Boundary layers in PDEs

By way of example, consider the heat transfer from a cylinder in potential flow with small

diffusion (high Peclet number). We have to solve

u · ∇T = ϵ∇2T for r ≥ 1, (4.86)

where

u = ∇ϕ, ϕ =

(
r +

1

r

)
cos θ, (4.87)
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with boundary conditions

T = 1 on r = 1, T → 0 as r → ∞. (4.88)

Outer solution

We expand

T ∼ T0 + ϵT1 + · · · as ϵ→ 0, (4.89)

and substitute into Equation (4.86) to give

O(ϵ−1) : u · ∇T0 = 0. (4.90)

Hence T0 is constant on streamlines. Since all (almost all: not the cylinder itself or the wake)

streamlines start at x = −∞, where T0 = 0, this means that T0 = 0. Proceeding with the

expansion gives Tn = 0 for all n. This means that there is a thermal boundary layer near the

cylinder.

Inner solution

In cylindrical coordinates Equation (4.86) is

(
1− 1

r2

)
cos θ

∂T

∂r
−
(
1 +

1

r2

)
sin θ

r

∂T

∂θ
= ϵ

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2

)
. (4.91)

We need to scale r close to one so that diffusion becomes important. Set r = 1 + δρ to give

(
1− 1

(1 + δρ)2

)
cos θ

δ

∂T

∂ρ
−
(
1 +

1

(1 + δρ)2

)
sin θ

(1 + δρ)

∂T

∂θ
=

ϵ

(
1

δ2
∂2T

∂ρ2
+

1

δ(1 + δρ)

∂T

∂ρ
+

1

(1 + δρ)2
∂2T

∂θ2

)
, (4.92)

i.e.

(2δρ+ · · ·) cos θ
δ

∂T

∂ρ
(2 + · · ·) sin θ∂T

∂θ
= ϵ

(
1

δ2
∂2T

∂ρ2
+

1

δ
(1 + · · ·) ∂T

∂ρ
+ (1 + · · ·) ∂

2T

∂θ2

)
. (4.93)

Hence we require δ = ϵ1/2. Expanding by letting

T ∼ T̂0(ρ, θ) + ϵ1/2T̂1(ρ, θ) + · · · , (4.94)

as ϵ→ 0 gives, at leading order, the boundary layer equation

2ρ cos θ
∂T̂0
∂ρ

− 2 sin θ
∂T̂0
∂θ

=
∂T̂0
∂ρ

, (4.95)

with T̂0 = 1 on ρ = 0 and T̂0 → 0 as ρ → ∞. Lie group analysis shows that the solution is of

similarity form

T̂0 = f(η), η =
ρ sin θ

(1 + cos θ)1/2
. (4.96)

This gives

2ρ cos θ sin θ

(1 + cos θ)1/2
f ′ − 2 sin θ

(
ρ cos θ

(1 + cos θ)1/2
+

ρ sin2 θ

2(1 + cos θ)3/2

)
f ′ =

sin2 θ

(1 + cos θ)
f ′′, (4.97)
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which simplifies to

f ′′ + ηf ′ = 0. (4.98)

Hence

f = A

∫ ∞

η
e−u

2/2du+B, (4.99)

with f → 0 as η → ∞ giving B = 0, and f = 1 on η = 0 giving A =
√
2/π. Hence the boundary

layer solution is

T̂0 =

√
2

π

∫ ∞

η
e−u

2/2du. (4.100)

As ρ→ ∞ this decays exponentially; the solution in the outer region is exponentially small.

Note that the boundary layer solution works providing θ is not close to 0 or π. There is

another inner region near each stagnation point. There is also a boundary layer in the wake,

where θ = 0 and r > 1. The streamline from here comes from the cylinder, not from infinity.

Note that the heat loss ∂T/∂r is O(1/ϵ1/2). This is the reason for the wind chill factor.

As ρ → ∞ this decays exponentially; the solution in the outer region is exponentially small.

Note that the boundary layer solution works providing θ is not close to 0 or π. There is another inner region near each
stagnation point, and in fact it is through matching with this inner region that we know the similarity variable should
involve (1 + cos θ)1/2 (any constant would work as a similarity variable). There is also a boundary layer in the wake, where
θ = 0 and r > 1. The streamline from here comes from the cylinder, not from infinity.

Note that the heat loss ∂T/∂r is O(1/ε1/2). This is the reason for the wind chill factor.
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5.4 Nonlinear oscillators

Example: Van del Pol oscillator Consider

ẍ + µ(x2 − 1)ẋ + x = 0, µ $ 1.

We shall show that the oscillation looks like

33
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Figure 4.1: (a) Streamlines. (b) Isotherms.
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4.4 Nonlinear oscillators

Once again, we proceed by way of example, considering the Van del Pol oscillator

ẍ+ µ(x2 − 1)ẋ+ x = 0, µ≫ 1. (4.101)

We shall show that the oscillation consists of long slow regions separated by rapid transitions.

-1

-2

1

2

µ
(

3
2

− log 2
)

with long slow regions separated by rapid transitions. Such a solution is known as a “relaxation oscillation”. We could
proceed directly with m.a.e.s on the second order equation, as in Hinch 5.6, but to get a better understanding of what is
going on we write the equation as a system of two first order equations

ẋ = z − µ

(
x3

3
− x

)
= z − µF (x),

ż = −x.

(An equation written in this way is said to be in Liénard form.)

x

z
z = µF (x)

Arrows indicate the general form of the motion for all µ. However, if µ " 1 then |ẋ| " |ż| except near the curve z = µF (x).
This indicates that z will be of size µ, so that it is sensible to rescale z with µ by setting z = µy, giving

ẋ = µ

(
y − x3

3
+ x

)
= µ(y − F (x)),

µẏ = −x.

We see now that there are two timescales: x evolves on the fast timescale t = O(µ−1) (unless y ≈ F (x)), while y evolves
on the slow timscale t = O(µ).

Let us first consider the fast timescale by setting t = τ/µ. The equations become

xτ = y − x3

3
+ x = y − F (x),

yτ = − x

µ2
.

34

Such a solution is known as a “relaxation oscillation”. We could proceed directly with finding

matched asymptotic expansions on the second order equation, but to get a better understanding

of what is going on we write Equation (4.101) as a system of two first order equations of the

form

ẋ = z − µ

(
x3

3
− x

)
= z − µF (x), (4.102)

ż = −x. (4.103)

An equation written in this way is said to be in Liénard form.
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)
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on the slow timscale t = O(µ).
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xτ = y − x3

3
+ x = y − F (x),

yτ = − x

µ2
.
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Arrows indicate the general form of the motion for all µ. However, if µ ≫ 1 then |ẋ| ≫ |ż|
except near the curve z = µF (x). This indicates that z will be of size µ, so that it is sensible to
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rescale z with µ by setting z = µy, giving

ẋ = µ

(
y − x3

3
+ x

)
= µ(y − F (x)), (4.104)

µẏ = −x. (4.105)

We see now that there are two timescales: x evolves on the fast timescale t = O(µ−1) (unless

y ≈ F (x)), while y evolves on the slow timescale t = O(µ).

Let us first consider the fast timescale by setting t = τ/µ. The equations become

xτ = y − x3

3
+ x = y − F (x), (4.106)

yτ = − x

µ2
. (4.107)

We expand x and y in inverse powers of µ, writing

x ∼ x0 + µ−2x1 + · · · , (4.108)

y ∼ y0 + µ−2y1 + · · · , (4.109)

as µ→ ∞. Inserting these expansions into the fast timescale equations and equating coefficients

of powers of µ we find at leading order

x0τ = y0 −
x30
3

+ x0 = y0 − F (x0), (4.110)

y0τ = 0. (4.111)

Hence y0 is constant on the fast timescale. Now, for a given initial y0, x0 tends to a root of

y0 = F (x0):

• if y0 >
2

3
, the unique root between A and +∞;

• if y0 < −2

3
, the unique root between C and −∞;

• if −2

3
< y0 <

2

3
, x0 → point on AB if it starts to the right of BD;

• if −2

3
< y0 <

2

3
, x0 → point on CD if it starts to the left of BD.

Expand x and y in inverse powers of µ as x = x0 + µ−2x1 + · · · , y = y0 + µ−2y1 + · · · . Inserting these expansions into the
equations and equating coefficients of powers of µ we find at leading order

x0τ = y0 − x3
0

3
+ x0 = y0 − F (x0),

y0τ = 0.

Hence y0 is constant on the fast timescale. Now, for a given initial y0, x0 tends to a root of y0 = F (x0):

• if y0 >
2

3
, the unique root between A and +∞.

• if y0 < −2

3
, the unique root between C and −∞.

• if −2

3
< y0 <

2

3
, x0 → point on AD if it starts to the right of BD.

• if −2

3
< y0 <

2

3
, x0 → point on BC if it starts to the left of BD.

−1
−2 1

2 x

y

y = F (x)

A

B

D

C
−2/3

2/3

Having reached the curve y0 = F (x0) the solution comes to rest on the fast timescale, and thus begins to evolve on the
slow timescale instead.

Let us scale onto the slow timescale by setting t = µT , giving

xT = µ2

(
y − x3

3
+ x

)
= µ2(y − F (x)),

yT = −x.

Again we expand x and y in inverse powers of µ as x = x0 + µ−2x1 + · · · , y = y0 + µ−2y1 + · · · . Inserting these expansions
into the equations and equating coefficients of powers of µ we find at leading order

0 = y0 − x3
0

3
+ x0 = y0 − F (x0),

y0T = −x0.

Hence the solution in the slow timescale stays on the curve y0 = F (x0) but moves along it according to y0T = −x0.
Thus we have the following picture. A trajectory starting say from (0, 1) quickly moves across to the branch A∞. Then

it remains close to the curve y = F and since ẏ = −x < 0 it moves slowly down the curve. When it reaches B, if cannot
keep going down and stay on the curve y = F (x), so on the fast timescale (x, y) flies across horizontally to near C. Then
ẏ = −x > 0 so (x, y) climbs slowly up on the curve y = F (x) to D. Then (x, y) flies across horizontally to near A again
and the motion becomes periodic. During this oscillation, the main time is spent on AB and CD. The time taken to go
from A to B is

TAB =

∫ B

A

dy

yT
= −

∫ B

A

dy

x
=

∫ 2

1

dy

dx

dx

x
=

∫ 2

1

(x2 − 1)dx

x
=

[
x2

2
− log x

]2

1

=

(
3

2
− log 2

)
.

Therefore period of oscillation ≈ µ(3 − 2 log 2).
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Having reached the curve y0 = F (x0) the solution comes to rest on the fast timescale, and thus

begins to evolve on the slow timescale instead.

Let us scale onto the slow timescale by setting t = µT , giving

xT = µ2
(
y − x3

3
+ x

)
= µ2(y − F (x)), (4.112)

yT = −x. (4.113)

Again we expand x and y in inverse powers of µ as

x ∼ x0 + µ−2x1 + · · · , (4.114)

y ∼ y0 + µ−2y1 + · · · , (4.115)

as µ→ ∞. Inserting these expansions into the slow timescale equations and equating coefficients

of powers of µ we find at leading order

0 = y0 −
x30
3

+ x0 = y0 − F (x0), (4.116)

y0T = −x0. (4.117)

Hence the solution on the slow timescale stays on the curve y0 = F (x0) but moves along it

according to y0T = −x0.
Thus we have the following picture. A trajectory starting, say, from (0, 1) quickly moves

across to the branch A∞. Then it remains close to the curve y = F and, since ẏ = −x < 0,

it moves slowly down the curve. When it reaches B, if cannot keep going down and stays on

the curve y = F (x), so on the fast timescale (x, y) flies across horizontally to near C. Then

ẏ = −x > 0 so (x, y) climbs slowly up on the curve y = F (x) to D. Finally, (x, y) flies across

horizontally to near A again and the motion becomes periodic.

x

y

y = F (x)

A

B

D

C

6 Multiple Scales

Of all asymptotic techniques, this is the one which is the most like a “black art”. Problems characterised by having two
processes, each with their own scales, acting simultaneously. Rapidly varying phase, slowly varying amplitude; modulated
waves. Contrast with matched asymptotic expansions, where the two processes with different scales are acting in different
regions.

Example: back to van der Pol oscillator

ẍ + εẋ(x2 − 1) + x = 0.

Last time we looked at relaxation oscillations for large ε (called µ then). Here will will study the initial value problem

x = 1, ẋ = 0 at t = 0,

for small ε. Treating the problem as a regular perturbation expansion in ε gives

x(t, ε) ∼ cos t + ε

[
3

8
(t cos t − sin t) − 1

32
(sin 3t − 3 sin t)

]
+ · · · .

This expansion is valid for fixed t as ε → 0, but breaks down when t ≥ O(ε−1), because of the resonant terms. When the
second term in an expansion becoms as big as the first it is an indication that the expansion is breaking down.

The problem is that the damping term only changes the amplitude by an order one amount over a timescale of order
ε−1, by a slow accumulation of small effects. Thus the two processes on the two time scales are fast oscillation and slow
damping.

We try to capture the behaviour on both these timescales by introducing two time variables:

τ = t — the fast time of the oscillation,

T = εt — the slow time of the amplitude drift.

We look for a solution of the form x(t; ε) = x(τ, T ; ε) treating the variables τ and T as independent. We have

d

dt
=

∂

∂τ
+ ε

∂

∂T
,

so that
ẍ = xττ + 2εxτT + ε2xTT .

Then we expand
x(τ, T ; ε) = x0(τ, T ) + εx1(τ, T ) + · · · .

At ε0 we find
x0ττ + x0 = 0 in t ≥ 0,

36

During this oscillation, most of the time is spent traversing AB and CD. The time taken to

go from A to B is

TAB =

∫ B

A

1

yT
dy = −

∫ B

A

1

x
dy =

∫ 2

1

dy

dx

dx

x
=

∫ 2

1

(x2 − 1)

x
dx =

[
x2

2
− log x

]2

1

=

(
3

2
− log 2

)
.

(4.118)

Therefore period of oscillation is approximately µ(3− 2 log 2).
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4.4.1 Solution by matched asymptotics

We start from x = 2 at t = 0.

Slow phase

The slow timescale is t = µT giving

1

µ2
d2x

dt2
+ (x2 − 1)

dx

dt
+ x = 0. (4.119)

This suggests an expansion

x ∼ X0 + µ−2X1 + · · · . (4.120)

Substituting the expansion into the slow timescale equation and equating coefficients of powers

of µ gives

O(µ0) : (X2
0 − 1)

dX0

dt
+X0 = 0 with X0 = 2 at T = 0, (4.121)

with implicit solution

T = logX0 −
X2

0

2
− log 2 + 2. (4.122)

This solution breaks down when X0 → 1 because

dX0

dt
= −X0/(X

2
0 − 1) → ∞. (4.123)

The nature of the blow up is

T ∼ − log 2 +
3

2
− (X0 − 1)2 as X0 → 1, (4.124)

i.e.

X0 ∼ 1 +

(
3

2
− log 2− T

)1/2

as T → 3

2
− log 2. (4.125)

Proceeding to determine the next term in the expansion we find

O(µ−2) : (X2
0 − 1)

dx1
dt

+ 2X0X1
dx0
dt

+X1 = −d
2X0

dt2
with X1 = 0 at T = 0. (4.126)

We could solve for X1, but the most important thing is to determine the behaviour of X1 as

T → 3/2− log 2, X0 → 1, which illustrates the breakdown of the asymptotic series and indicates

how to rescale in the transition region. With X0 ∼ 1 + (3/2− log 2− T )1/2 we find

dx1
dt

2

(
3

2
− log 2− T

)1/2

−
(
3

2
− log 2− T

)−1/2

X1 +X1 ∼
1

4

(
3

2
− log 2− T

)−3/2

, (4.127)

giving

X1 ∼
1

4

(
3

2
− log 2− T

)−1

as T → 3

2
− log 2. (4.128)

We see that X1 blows up as T → 3/2− log 2, so that µ−2X1 ceases to be smaller than X0 and

the expansion ceases to be asymptotic. If we set T = 3/2− log 2+ δs then X0 ∼ 1+ δ1/2(−s)1/2,
µ−2X1 ∼ δ−1(−s)−1/4µ2 as δ → 0. This means that X1 becomes as large as X0 − 1 when

δ = µ−4/3.
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Transition phase

We rescale using T = 3/2 − log 2 + µ−4/3s and x = 1 + µ−2/3z (corresponding to t = µ(3/2 −
log 2) + µ−1/3s), giving

d2z

ds2
+ 2z

dz

ds
+ 1 +

1

µ2/3

(
z2

dz

ds
+ z

)
= 0. (4.129)

Notice that each of the three terms in the original equation contributes to the leading order bal-

ance; this is characteristic of transition regions. The rescaled equation suggests the asymptotic

expansion

z ∼ z0 + µ−2/3z1 + · · · . (4.130)

Matching with the slow phase we see that we need

z ∼ (−s)1/2 + 1

4
(−s)−1 as s→ −∞. (4.131)

Then

O(µ0) :
dz0
ds

+ 2z0
dz0
ds

+ 1 = 0. (4.132)

We can integrate once immediately to give

dz0
ds

+ z20 + s = a. (4.133)

As s→ −∞,

z0 ∼ (−s)1/2 + a

2
(−s)−1/2 +

1

4
(−s)−1 + · · · . (4.134)

Hence matching gives a = 0.

The Ricatti equation, Equation (4.133), for z0 can be linearised by setting z0 = ζ ′/ζ, giving

the Airy equation

ζ ′′ + sζ = 0, (4.135)

so that

ζ = αAi(−s) + βBi(−s). (4.136)

As s→ −∞,

Ai(−s) ∼ 1

2
√
π(−s)1/4 exp

(
−2

3
(−s)3/2

)
, Bi(−s) ∼ 1√

π(−s)1/4 exp
(
2

3
(−s)3/2

)
, (4.137)

and
d

ds
Ai(−s) ∼ (−s)1/2Ai(−s), d

ds
Bi(−s) ∼ −(−s)1/2Bi(−s). (4.138)

Hence β = 0 and

z0 =
d
dsAi(−s)
Ai(−s) = −Ai′(−s)

Ai(−s) . (4.139)

But Ai(−s) → 0, z0 → −∞, as s → s0 ≈ 2.33811. From the equation for z0, if |z0| → ∞ at a

finite value of s then
dz0
ds

+ z20 ∼ 0, (4.140)

so that

z0 ∼ − 1

s0 − s
. (4.141)
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Including the correction term s gives

z0 ∼ − 1

s0 − s
+
s0(s0 − s)

3
+ · · · . (4.142)

Hence, rewriting this expression in terms of x and t, as the breakdown is approached we have

x ∼ 1 + µ−2/3

[
− 1

s0 − µ1/3t
+
s0(s0 − µ1/3t)

3

]
. (4.143)

The expansion ceases to be asymptotic when µ2/3(s0 − µ1/3t) is order one, i.e. t = µ−1/3s0 +

O(µ−1).

Fast phase

The transition region suggests the scalings t = µ−1/3s0+µ
−1τ for the fast phase. The governing

equation becomes
d2x

dτ2
+ (x2 − 1)

dx

dτ
+ µ−2x = 0. (4.144)

Matching backwards into the transition region gives

x ∼ 1 +
1

τ
− τs0

3µ4/3
as τ → −∞. (4.145)

This matching condition suggests an expansion of the form

x ∼ x0 + µ−4/3x1 + · · · . (4.146)

In this case we have

O(µ−2) :
d2x0
dτ2

+ (x20 − 1)
dx0
dτ

= 0. (4.147)

Integrating once and choosing the constant of integration by matching gives

dx0
dτ

+
x30
3

− x0 = −2

3
. (4.148)

Integrating again and matching backwards gives

1

3
log

(
2 + x0
1− x0

)
+

1

1− x0
= −τ. (4.149)

The fast phase ends when τ → ∞ and x0 ∼ −2+ 3e−3τ−1. This is minus where we started, and

the process repeats.



Chapter 5

Multiple scales

Of all asymptotic techniques, this is the one which is the most like a “black art”. Problems

that require a multiple scales approach are characterised by having two processes, each with

their own scales, acting simultaneously. An example is one where there is a rapidly varying

phase, and a slowly varying amplitude, which gives rise to modulated waves. Such a scenario is

in contrast with the problems we tackled with matched asymptotic expansions, where the two

processes with different scales are acting in different regions.

5.1 Back to the van der Pol oscillator

ẍ+ ϵẋ(x2 − 1) + x = 0. (5.1)

Last time we looked at relaxation oscillations for large ϵ (called µ then). Here we will study

with small ϵ > 0 the initial value problem with initial conditions

x = 1, ẋ = 0 at t = 0. (5.2)

Treating the problem as a regular perturbation expansion in ϵ gives

x(t, ϵ) ∼ cos t+ ϵ

[
3

8
(t cos t− sin t)− 1

32
(sin 3t− 3 sin t)

]
+ · · · . (5.3)

This expansion is valid for fixed t as ϵ → 0, but breaks down when t ≥ O(ϵ−1), because of

the resonant terms. When the second term in an expansion becomes as big as the first it is an

indication that the expansion is breaking down.

The problem is that the damping term only changes the amplitude by an order one amount

over a timescale of order ϵ−1, by a slow accumulation of small effects. Thus the two processes

on the two time scales are fast oscillation and slow damping.

We try to capture the behaviour on both these timescales by introducing two time variables:

τ = t — the fast time of the oscillation; (5.4)

T = ϵt — the slow time of the amplitude drift. (5.5)

We look for a solution of the form x(t; ϵ) = x(τ, T ; ϵ) treating the variables τ and T as inde-

pendent. We have
d

dt
=

dτ

dt

∂

∂τ
+

dt

dt

∂

∂T
=

∂

∂τ
+ ϵ

∂

∂T
, (5.6)
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so that

ẍ = xττ + 2ϵxτT + ϵ2xTT . (5.7)

Then we expand

x(τ, T ; ϵ) ∼ x0(τ, T ) + ϵx1(τ, T ) + · · · as ϵ→ 0. (5.8)

At O(ϵ0) we find

x0ττ + x0 = 0 in t ≥ 0, (5.9)

with

x0 = 1, x0τ = 0 at t = 0. (5.10)

Hence

x0 = R(T ) cos(τ + θ(T )). (5.11)

Thus the amplitude and phase are constant as far as the fast timescale τ is concerned, but vary

over the slow timescale T . Applying the initial conditions we require

R(0) = 1, θ(0) = 0. (5.12)

Apart from these conditions R and θ are arbitrary at present.

Proceeding to order O(ϵ1) gives

x1ττ + x1 = −x0τ (x20 − 1)− 2x0τT ,

= 2RθT cos(τ + θ) +

(
2RT +

R3

4
−R

)
sin(τ + θ) +

R3

4
sin 3(τ + θ), (5.13)

in t ≥ 0. The initial conditions are

x1 = 0, x1τ = −x0T = −RT at t = 0. (5.14)

Now, the sin 3(τ + θ) term is OK, but the sin(τ + θ) and cos(τ + θ) terms are resonant, and will

give a response of the form t sin(τ + θ) and t cos(τ + θ). Thus the expansion will cease to be

asymptotic again when t = O(ϵ−1). To keep the expansion asymptotic, we use the freedom we

have in R and θ to eliminate these resonant terms (the so-called secularity or integrability or

solvability condition of Poincaré), giving

θT = 0, RT =
R(4−R2)

8
. (5.15)

Using the initial conditions we therefore have

θ = 0, R =
2

(1 + 3e−T )1/2
. (5.16)

Thus the amplitude of the oscillator drifts towards the value R = 2, which we found was a limit

cycle. Thus, in particular, we have shown that the limit cycle is stable.

If we are interested in the correction x1 we can now calculate it as

x1 = − 1

32
R3 sin 3τ + S(T ) sin(τ + ϕ(T )), (5.17)

with new amplitude and phase functions S and ϕ. These will be determined by a secularity

condition on x2, etc.

At higher orders we would find that a resonant forcing is impossible to avoid. In fact this

is the case here in solving for x1: we cannot avoid resonance in x2. This can be avoided by

introducing an additional slow timescale T2 = ϵ2t.
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5.1.1 Damped linear oscillator

A simple example which illustrates the need for such a super slow time scale is the damped

linear oscillator

ẍ+ 2ϵẋ+ x = 0, (5.18)

with solution

x = e−ϵt cos
(√

1− ϵ2 t
)
. (5.19)

The amplitude drifts on the timescale ϵ−1, while the phase drifts on the timescale ϵ−2. In

general, if we want the solution correct to O(ϵk) for times of O(ϵk−n) then we need a hierarchy

of n slow timescales.

5.1.2 The van der Pol oscillator again

ẍ+ ϵẋ(x2 − 1) + x = 0. (5.20)

In practice we often work directly with the variable t to save introducing the variable τ and

make use of the complex representation of trigonometric functions to simplify the algebra. Thus,

in seeking a multiple scales solution we begin by substituting

d

dt
=

∂

∂t
+ ϵ

∂

∂T
, (5.21)

to obtain

xtt + 2ϵxtT + ϵ2xTT + ϵẋ(x2 − 1) + x = 0. (5.22)

Expanding

x ∼ x0(t, T ) + ϵx1(t, T ) + · · · as ϵ→ 0, (5.23)

we obtain at leading order

x0tt + x0 = 0. (5.24)

The general solution of this PDE has the complex representation

x0 =
1

2

(
A(T )eit +A(T )e−it

)
, (5.25)

where A is an arbitrary complex function of T , A is the complex conjugate of A and the pre-factor

of 1/2 has been introduced so that |A(T )| is the slowly-varying amplitude and arg(A(T )) is the

slowly-varying phase, e.g. if A(T ) = R(T )eiΘ(T ), where R(T ) ≥ 0, then x0 ≡ R(t) cos(it+Θ(T )).

At O(ϵ1), we obtain

x1tt + x1 = −x0t(x20 − 1)− 2x0tT

= −1

2

(
iAeit − iAe−it

)(1

4
(Aeit +Ae−it)2 − 1

)
−
(
iAT e

it − iAT e
−it) ,

= −i
(
dA

dt
− A(4− |A|2)

8

)
eit + complex conjugate term + non-secular terms.

(5.26)

Secular terms proportional to e±it are suppressed only if A(T ) satisfies the ODE

AT =
A(4− |A|2)

8
. (5.27)
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Substituting A(T ) = R(T )eiΘ(T ), where R(T ) ≥ 0, we recover the ODEs

ΘT = 0, RT =
R(4−R2)

8
. (5.28)



Chapter 6

The WKB method

One example of a singular perturbation problem that does not have boundary layers is

ϵ2y′′ + y = 0. (6.1)

It has oscillatory solutions and is typical of many problems arising from wave propagation,

with ϵ = wavelength/size of region. So, for high-frequency propagation, ϵ is small and we need a

way to deal asymptotically with such problems. The WKB method is such a method for linear

wave propagation problems, and is illustrated by the equation

ϵ2y′′ + q(x)y = 0, (6.2)

with q(x) ̸= 0 in the region of interest.

Let us first see what happens if we try to solve the problem by multiple scales. Let ϵX = x

to give
d2y

dX2
+ q(ϵX)y = 0. (6.3)

Thus we have an oscillator with a slowly varying frequency. We might be tempted to write

y = y(x,X), giving
∂2y

∂X2
+ 2ϵ

∂2y

∂x∂X
+ ϵ2

∂2y

∂x2
+ q(x)y = 0. (6.4)

Expanding in the form y ∼ y0 + ϵy1 + · · · gives, at leading order,

∂2y0
∂X2

+ q(x)y0 = 0. (6.5)

Hence

y0 = A(x) cos(q(x)1/2X + θ(x)), (6.6)

where A(x) and θ(x) are arbitrary functions of x, to be determined by secularity conditions at

next order. Equating coefficients of ϵ1 in Equation (6.4) gives

∂2y1
∂X2

+ 2
∂2y0
∂x∂X

+ q(x)y1 = 0, (6.7)

which can be written as

∂2y1
∂X2

+ q(x)y1 = 2
∂

∂x

(
A(x)q(x)1/2 sin(q(x)1/2X + θ(x))

)

= 2
d

dx

(
Aq1/2

)
sin(q1/2X + θ)− 2Aq1/2

(
X

dq1/2

dx
+

dθ

dx

)
cos(q1/2X + θ). (6.8)
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The secularity condition says that there can be no multiple of cos(q1/2X + θ) or sin(q1/2X + θ)

on the right-hand side. Hence

d

dx

(
Aq1/2

)
= 0, X

dq1/2

dx
+

dθ

dx
= 0. (6.9)

Here we see a problem though. The second secularity condition contains the fast scale X, and

so cannot be satisfied since θ is a function of the slow scale x only. This will happen whenever

the frequency of the fast oscillation depends on the slow scale.

Let us now return to Equation (6.2). Instead of using multiple scales, we assume a WKB

asymptotic expansion for y of the form

y = eiϕ(x)/ϵA(x, ϵ), (6.10)

with

A(x, ϵ) ∼
∞∑

n=0

An(x)ϵ
n. (6.11)

This gives

y′′ ∼ eiϕ/ϵ
(
−(ϕ′)2A

ϵ2
+

2iϕ′A′

ϵ
+
iϕ′′A

ϵ
+A′′

)
, (6.12)

so that substituting the expansions into the equation gives, at leading order (O(ϵ0)),

ϕ′(x)2 = q0(x). (6.13)

Hence

ϕ = ±
√
q0(x). (6.14)

At O(ϵ1) we find

2ϕ′A′
0 + ϕ′′A0 = 0, (6.15)

while at O(ϵn+1) for n ≥ 1 we find

A′′
n−1 + 2iϕ′A′

n + iϕ′′An = 0. (6.16)

These are successive first-order linear equations for the An. The first is

2A′
0

A0
+
ϕ′′

ϕ′
= 0, (6.17)

which we can integrate to

2 logA0 + log ϕ′ = constant, (6.18)

i.e.

A0 =
α0

q0(x)1/4
, (6.19)

for some constant α0. In a wave propagation problem this A0(x) gives the amplitude, and this

equation corresponds to energy conservation.

The equation for general An can be solved using an integrating factor giving

2i(ϕ′)1/2
(
(ϕ′)1/2An

)′
= −A′′

n−1, (6.20)

i.e.

An =
i

2(ϕ′)1/2

∫
A′′
n−1

(ϕ′)1/2
dx, (6.21)

where the right-hand side is known.
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6.1 Example 1 – the Legendre polynomial Pn(x)

If we let y(θ) =
√
sin θPn(cos θ) for 0 < θ < π then the equation satisfied by y is

y′′ +

(
n2 + n+

1

4
+

1

4 sin2 θ

)
y = 0. (6.22)

Let ϵ = 1/(n+ 1/2). Then

ϵ2y′′ +

(
1 +

ϵ2

4 sin2 θ

)
y = 0. (6.23)

Using the WKB ansatz y = Aeiϕ/ϵ gives, at leading order (O(ϵ0)),

(ϕ′)2 = 1, ϕ′ = ±1, ϕ = ±θ. (6.24)

At O(ϵ1) we have

2ϕ′A′
0 + ϕ′′A0 = 0, (6.25)

i.e.

A′
0 = 0, A0 = α0. (6.26)

At O(ϵ2) we have

A′′
0 + 2iϕ′A′

1 + iϕ′′A1 +
1

4 sin2 θ
A0 = 0, (6.27)

i.e.

2iA′
1 = ∓ α0

4 sin2 θ
(6.28)

so that

A1 = ∓ iα0 cot θ

8
. (6.29)

Thus

√
sin θPn(cos θ) ∼ α̂0

(
1− i cot θ

8(n+ 1/2)
· · ·
)
ei(n+1/2)θ + β̂0

(
1 +

cot θ

8(n+ 1/2)
· · ·
)
e−i(n+1/2)θ,

(6.30)

as n→ ∞.

6.2 Example 2 – Airy’s equation

Consider Airy’s equation

y′′ − xy = 0, x < 0. (6.31)

For large x we rescale by writing x = ϵ−2/3x̄ to give (on dropping the bars)

ϵ2y′′ − xy = 0, x < 0. (6.32)

Using the WKB ansatz y = Aeiϕ/ϵ gives, at leading order (O(ϵ0)),

(ϕ′)2 = −x, (6.33)

so that

ϕ′ = ±(−x)1/2, ϕ = ±2

3
(−x)3/2. (6.34)

At first order (O(ϵ1)) we have

2ϕ′A′
0 + ϕ′′A0 = 0, (6.35)
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which gives

A0 =
α0

(ϕ′)1/2
=

α0

(−x)1/4 . (6.36)

Thus

y ∼ α0

(−x)1/4 exp
(
2i

3ϵ
(−x)3/2

)
+

β0

(−x)1/4 exp
(
−2i

3ϵ
(−x)3/2

)
for x < 0. (6.37)

One can also undertake this exercise in x > 0, by either changing the ansatz to Aekϕ or just

allowing ϕ to be complex, to find

y ∼ λ0

x1/4
exp

(
2

3ϵ
x3/2

)
+

µ0

x1/4
exp

(
− 2

3ϵ
x3/2

)
for x > 0. (6.38)

One can obtain “connection formulas” relating the coefficients α0 and β0 to λ0 and µ0 by

matching the solutions at x = 0 (as with the matched asymptotics in boundary layer theory).

6.3 Example 3 – an eigenvalue problem

Find the large eigenvalues λ≫ 1 of the Sturm-Liouville problem

y′′ + λp(x)y = 0 for 0 < x < 1, with y(0) = 0, y(1) = 0, (6.39)

where p(x) > 0 for 0 ≤ x ≤ 1. Let λ = ϵ−2 where, for λ≫ 1 we require 0 < ϵ≪ 1, so that

ϵ2y′′ + p(x)y = 0 for 0 < x < 1, with y(0) = 0, y(1) = 0. (6.40)

Then with the WKB approximation y ∼ Aeiϕ/ϵ as ϵ→ 0+, we have

ϕ′ = ±p1/2, A0 ∝
1

(ϕ′)1/2
. (6.41)

If we fix

ϕ(x) = +

∫ x

0
p(s)1/2ds and A0(x) = p(x)−1/4, (6.42)

then the two independent solutions are given by

y+ ∼ A0e
iϕ/ϵ, y− ∼ A0e

−iϕ/ϵ. (6.43)

Hence, at leading order the general solution may be written in the form

y(x) ∼ αA0(x) cos

(
ϕ(x)

ϵ

)
+ βA0(x) sin

(
ϕ(x)

ϵ

)
, (6.44)

as ϵ → 0+, where α and β are arbitrary real constants. The boundary condition y(0) = 0

requires α = 0, so that the boundary condition y(1) = 0 is satisfied at leading order only if

βA0(1) sin

(
ϕ(1)

ϵ

)
= o(1) as ϵ→ 0+. (6.45)

Since A0(1) > 0 and β ̸= 0 for a nontrivial solution, we require

sin

(
ϕ(1)

ϵ

)
= o(1) as ϵ→ 0+, (6.46)
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i.e.
ϕ(1)

ϵ
∼ nπ as ϵ→ 0+, n→ ∞ with n ∈ N. (6.47)

The eigenvalues are therefore given approximately by

ϵn ∼ ϕ(1)

nπ
=

∫ 1
0

√
p(x)dx

nπ
, (6.48)

or

λn ∼
(

nπ∫ 1
0

√
p(x)dx

)2

, (6.49)

as n→ ∞ with n ∈ N.

6.4 Example 4 – turning points

Find the large eigenvalues λ≫ 1 of the harmonic oscillator

−y′′ + x2y = λy for −∞ < x <∞, with y → 0 as |x| → ∞. (6.50)

For λ≫ 1 again let ϵ = 1/λ and rescale using x = ϵ−1/2x̄ to give (dropping the bars)

ϵ2y′′ + (1− x2)y = 0 for −∞ < x <∞, with y → 0 as |x| → ∞. (6.51)

Using the WKB ansatz we find

ϕ′ = ±
√

1− x2, A0 ∝
1

(1− x2)1/4
. (6.52)

Hence, the general solution has the expansion

y ∼ α0

(1− x2)1/4
eiϕ(x)/ϵ +

β0

(1− x2)1/4
e−iϕ(x)/ϵ as ϵ→ 0+, (6.53)

where α0 and β0 are arbitrary complex constants and we have fixed ϕ(x) =
∫ x
0 (1− s2)1/2ds.

However, this approximation is only good for |x| < 1. When x is close to ±1, (1 − x2) is

small, and the WKB approximation breaks down. At these places ϕ′ = 0 (so they are known as

turning points), and hence A0 = ∞ (which indicates the breakdown). We must use a different

expansion in the vicinity of each turning point (an “inner expansion”) and match it with this

“outer expansion”.

Before we carry out the inner expansion, let us continue with the outer expansion for |x| > 1.

Then we can still use WKB, and we find that, in x > 1 say

y ∼ α1

(x2 − 1)1/4
exp

(
−1

ϵ

∫ x

1
(s2 − 1)1/2ds

)
+

β1

(s2 − 1)1/4
exp

(
1

ϵ

∫ x

1
(x2 − 1)1/2ds

)
, (6.54)

where α1 and β1 are arbitrary real constants. Now we can apply the boundary condition at

x = +∞ to give β1 = 0. The inner region near x = 1 will allow us to connect the coefficients

α0 and β0 to α1 and β1. This will give us one condition on α0 and β0. The inner region near

x = −1 will give us another.

Locally near x = 1 we rescale x = 1 + ϵ2/3x̂, y = ϵ−1/6ŷ(x̂) to give at leading order

d2ŷ

dx̂2
− 2x̂ŷ = 0. (6.55)
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This is just the Airy equation. We want a solution which matches with Equation (6.54) as

x̂→ ∞. This solution is

ŷ = CAi
(
21/3x̂

)
, (6.56)

where Ai is the Airy function. It can be shown that, as x̂→ ∞,

ϵ−1/6ŷ(x̂) = ϵ−1/6CAi
(
21/3x̂

)
∼ C

213/12
√
π(ϵ2/3x̂)1/4

e−2
√
2x̂3/2/3, (6.57)

while the inner limit of Equation (6.54) is

α1

(2ϵ2/3x̂)1/4
e−2

√
2x̂3/2/3. (6.58)

Hence, matching the two expansions gives1

C =
213/12

√
πα1

21/4
. (6.59)

Now as x̂→ −∞, it can be shown that

ϵ−1/6ŷ(x̂) = ϵ−1/6CAi
(
−21/3x̂

)
∼ − Ce−iπ/4

213/12
√
π

(
1

(ϵ2/3x̂)1/4
e−2

√
2ix̂3/2/3 − i

(ϵ2/3x̂)1/4
e2

√
2ix̂3/2/3

)
,

(6.60)

while the inner limit of Equation (6.53) is

α0

(2ϵ2/3x̂)1/4
e−

i
ϵ
ϕ(1)e−2

√
2ix̂3/2/3 +

β0

(2ϵ2/3x̂)1/4
e

i
ϵ
ϕ(1)e2

√
2ix̂3/2/3. (6.61)

Matching the two expansions requires

α0e
−iϕ(1)/ϵ ∼ −C2

1/4e−iπ/4

213/12
√
π

, β0e
iϕ(1)/ϵ ∼ Ci21/4e−iπ/4

213/12
√
π

, (6.62)

as ϵ→ 0+. For nontrivial solution (i.e. C ̸= 0), we therefore require

α0e
−iϕ(1)/ϵ ∼ iβ0e

iϕ(1)/ϵ, (6.63)

as ϵ→ 0+. Similarly, through a local analysis at x = −1 we find

α0e
−iϕ(−1)/ϵ ∼ −iβ0eiϕ(−1)/ϵ, (6.64)

as ϵ→ 0+.

Hence, for a nonzero solution α0, β0 to exist we need

e−iϕ(1)/ϵ

e−iϕ(−1)/ϵ
∼ ieiϕ(1)/ϵ

−ieiϕ(−1)/ϵ
, (6.65)

giving

e−2i(ϕ(1)−ϕ(−1))/ϵ+iπ ∼ 1, (6.66)

1Such matching at turning points works just as it does with the usual boundary layer/matched asymptotics

calculations. To practice this, try a WKB problem that has turning points and see how things go. The Airy

equation is the basic structure you expect when matching with the simplest type of turning points.
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so that
2(ϕ(1)− ϕ(−1))

ϵ
∼ (2n+ 1)π as ϵ→ 0+, n→ ∞ with n ∈ N. (6.67)

Hence, the eigenvalues are given approximately by

ϵn ∼ ϕ(1)− ϕ(−1)

(n+ 1/2)π
=

∫ 1
−1

√
1− x2dx

(n+ 1/2)π
=

1

2n+ 1
, (6.68)

or

λn =
1

ϵn
∼ 2n+ 1, (6.69)

as n→ ∞ with n ∈ N. In fact these are exact in this case. The exact solutions are

yn = e−x
2/2Hn(x), λn = 2n+ 1. (6.70)
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