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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Master of Science in Mathematical Sciences: Paper C5.2

Elasticity and Plasticity

TRINITY TERM 2023

Tuesday 30 May, 2:30pm to 4:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.

You should ensure that you observe the following points:

• start a new answer booklet for each question which you attempt.

• indicate on the front page of the answer booklet which question you have attempted in that
booklet.

• cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

• hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. A linear elastic material with density ρ1 and shear modulus µ1 occupies a layer of constant
thickness h in 0 6 y 6 h, −∞ < x < ∞ sandwiched between a rigid plate at y = 0 and
another linear elastic material with density ρ2 and shear modulus µ2 occupying the region
y > h, −∞ < x < ∞. The layered medium undergoes antiplane strain with displacement
u = w1(x, y, t)k for 0 6 y 6 h and displacement u = w2(x, y, t)k for y > h, where k is a
unit vector in the z-direction. The displacement w1 = 0 on the plate at y = 0, while the
displacement and stress are continuous on the boundary between the elastic media at y = h.

(a) [5 marks] Show that the transverse displacement wj in either material satisfies the two-
dimensional wave equation

∂2wj
∂t2

= c2j

(
∂2wj
∂x2

+
∂2wj
∂y2

)
,

where the wave speed cj should be determined for j = 1, 2.

What are the boundary conditions on y = h?

[You may assume that Navier’s equation and the constitutive relations for a linear elastic
material with density ρ, first Lamé parameter λ and shear modulus µ are

ρ
∂2ui
∂t2

=
∂τij
∂xj

, τij = λ(∇ · u)δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where u = (ui) is the displacement, (τij) is the stress tensor and δij is Kronecker’s delta.]

(b) [11 marks] Let c1 < c2. By seeking solutions of the form wj(x, y, t) = fj(y) exp {ik(x− ct)}
for j = 1, 2, show that the system supports waves travelling in the x-direction with wave
speed c > 0 and wavenumber k > 0, while decaying exponentially as y → ∞, only if c
and k are related parametrically to m > 0 and ` > 0 by

c2

c 21
= 1 +

m2

k2
,

c2

c 22
= 1− `2

k2
, tanmh = −µ1m

µ2`
.

(c) [9 marks] Eliminate c and ` to obtain the transcendental equation relating θ = mh and
k given by

tan θ = − εθ√
a2k2 − θ2

, (?)

where 0 < θ < ak and the dependence of the positive constants ε and a on ρ1, ρ2, µ1, µ2
and h should be determined.

Using a diagram explain why (?) has N = b(ak/π) + 1/2c roots for θ ∈ (0, ak), where bxc
is the largest integer n 6 x.

Consider now the limit in which 0 < ε � 1 with ak held fixed. Derive for N > 1 the
approximate roots for θ and hence c that arise from neglecting the right-hand side of (?).
Explain why this approximation can fail for the largest wave speed and derive a valid
approximation.
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2. A thin beam of bending stiffness B undergoes small two-dimensional deformations in the (x, z)-
plane. The beam lies along the x-axis and is of length 2L in its undeformed state. The ends of
the beam are clamped so that its small transverse displacement w(x) in the positive z-direction
satisfies w(±L) = 0 and w′(±L) = ±α, where α is an imposed slope. The beam lies above a
smooth rigid obstacle at z = f(x) < 0 with which it is brought into contact by increasing α
from zero while remaining in equilibrium under the action of a body force p(x) in the negative
z-direction.

(a) [7 marks] Show that in an open region of non-contact the tension T (x), transverse shear
force N(x) and bending moment M(x) about the y-axis satisfy

dT

dx
= 0, T

d2w

dx2
+

dN

dx
= p,

dM

dx
= N.

Explaining clearly any assumptions that you make, deduce that w(x) satisfies

B
d4w

dx4
− T d2w

dx2
+ p = 0.

How is this equation modified in an open region of contact to account for the upward
reaction force R(x) exerted by the obstacle on the beam? State with justification the
constraint that R(x) should satisfy for a physically relevant solution.

(b) [3 marks] You may assume that the tension T (x) and displacement w(x) at an end point
of an open region of contact or at an isolated point of contact satisfy the jump conditions

[
T
]

= 0,
[
w
]

= 0,

[
dw

dx

]
= 0,

[
d2w

dx2

]
= 0,

[
B

d3w

dx3

]
= Ri,

where [g] = g(x+i ) − g(x−i ) denotes the jump in the quantity g(x) across the point of
contact at x = xi and Ri is the upward point reaction force exerted by the obstacle on
the beam at x = xi. State the physical basis for these boundary conditions. State with
justification the constraint that Ri should satisfy for a physically relevant solution.

(c) [15 marks] Suppose that T = 0, p(x) = 0 and f(x) = −H, where H is a positive constant.

(i) Show that, as α is gradually increased from zero, the beam does not make contact
with the obstacle until α = 2H/L.

(ii) Show that, as α is increased further, the beam makes contact with the obstacle at an
isolated point until α = 3H/L.

(iii) Show that, as α is increased further still, the beam makes contact with the obstacle
in a region −s 6 x 6 s, where s should be determined.

(iv) Determine the net upward force exerted by the obstacle on the beam for α > 0.
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3. Perfectly plastic material undergoes quasi-steady spherically symmetric strain in the region
r > a outside a spherical cavity of radius a, with displacement field given by u(r) = u(r)er,
where (r, θ, φ) denote spherical polar coordinates and er is a unit vector in the r-direction.
The stress tensor is diagonal with entries τrr, τθθ and τφφ that satisfy the Navier equations

1

r2
d

dr

(
r2τrr

)
−
τθθ + τφφ

r
= 0, τθθ = τφφ.

The Tresca yield function may be written in the form f = 1
2 |τrr − τθθ|. The material remains

linearly elastic while f < τY and the stress satisfies f = τY when the material is plastic, where
τY > 0 denotes the yield stress. The stress vanishes in the far field as r →∞, while the inner
boundary at r = a is subject to a non-negative pressure P .

(a) [5 marks] Show that when the material is elastic the displacement satisfies

d

dr

(
(λ+ 2µ)

(
du

dr
+

2u

r

))
= 0

and hence derive the compatibility condition

d

dr
(τrr + τθθ + τφφ) = 0.

[You may assume the linear elastic constitutive relations

τrr = (λ+ 2µ)
du

dr
+ 2λ

u

r
, τθθ = τφφ = λ

du

dr
+ 2(λ+ µ)

u

r
,

where λ and µ are the Lamé constants.]

(b) [6 marks] First supposing that the material remains elastic, evaluate the stress outside
the cavity. Hence show that, as P increases gradually from a starting value of zero, yield
first occurs at r = a when P reaches a critical value Pc = 4

3τY .

(c) [7 marks] Show that for P > Pc, the material is plastic in a region a < r < s, where

s = a exp

(
P − Pc

4τY

)
.

(d) [7 marks] Suppose that P increases gradually from zero to a maximum value Pm > Pc,
and then decreases to zero again. Assuming that the material instantaneously reverts to
being elastic once the applied pressure starts to decrease, find the stress outside the cavity
while it is being unloaded. Under what condition on Pm does the material yield again
while it is being unloaded? Justify your answer.
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(5.2 2023 Ql

(a) 1 =Wiky,t) => nonzer stress components are TazG,Tyz=MicewM;

Soc- and y-components of Navier equation are satisfied identically,
while z-componentgives plri=0T20TyE

I
US 8y

substituting -> wrigwit,i= M;
602 Pi

OCs:(2ZY=8,S(xi;]YE=0 =w, =w,m,y =moray =48s07

S

(6) wi =+i(y) eiRK-ct) in (H) and the BCs =>

I," nit, =0 forocych, to"+(*-1Rt =0 forycht - I
C,"

with f, (0) =0, f,(n) =t(), M, ti(n) =art(h), t.exp.smalas y->00

to can only decoy exponentially as y-00 it in, in which case to -Aely
where At D and K 0 s.t. =1- IR"

84

Three cases to consider forf,:(i) c>,, (ii)=C,, (iii) oc,

In case (i), ti(0)=0 => +, =8sinmy, where BED and m > 0 whos
is s.t. m

=

Y - 1p

5(son y
=h =

- (h
- sinmt A

-

O
e

m Leich m,mcosmh I O

M



Imotrinal solution!F8 EC def(M)=0E) taumh=- Mim I
Mich

where from above 2 =1, and- I- I 34

Ittherefore remains to rule outcases (ii) and (iii).
M, = -Math

In case (ii), t, (0) =0 =+, =by, where EE4, so thatthe Ols on y
=h

-

give th =Aec, M, B =MALe-ch.so for nontrival solutionsM,=-MulhI
Or recover from case (i) in limitm -so with 8 =Bm=0(1) L

In case (ii), the solvability condition is still given by I butwith m =im,
where in 30 Wlog is s.t.in=1-ak;butthis would require

-

tanhinh + m,m =0, which is notpossible because the LHSC0 for 1,mc 0.
Mich

33

11

c) I =1+ =c=1.2

=>I=r = ?i(rimY

=>I=rr - (asm =2)

=>I = n alk"-O", where a =hai - 1

So I-> tanc=- Mi O
C

ML ar!Oh
C2h

=>tano -mor where &M

1 12Mz

and 130 provided 0 t (0, ak). S/N3



y
=tand

iti
As illustrated, tand is monotonic increasing from or to too on ((n-t)5,(n+t)(i)

for Reto, while - 20 ard' ismonotomic decreasing on 10, an). So there

are N roots Of(0, ah), namely 0=0,0., .... Or as illustrated, ifabe((N-I)n,(N+t)I),
i.e. N =(a +Y. S/NS

Neglecting RHS* for <<1 -> tanc =0 => 0 -On=UT for n = 1,2, . . ., N.

=>c =4Foyrims for m =b2, ..., N.

From sketch, approximation for orinvalid for all [(N-I)1, NM) in which
case e => all"-Op = - Ir =) Omar =c - 2,1 +a

N3
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(5.2 2023 Q2

(a) Tension T, transverse shear force N and momentM about

y-asi's acton a segment (x,x+ 65) in an open region of
contactas shown:

N(x+5x)
p(s) -

>T(x+fx)

W W W

Mk1 <M(x+6x)
W o()

T()d

VN(x)

- - x+6x x+63

Force balance => TCOJO

- -pl da =-Tsind+N
a

x=63

d TCOJO
=] ! don Tine+ N

+-pl da =
True Posts and integrand its (or taking limit6x -> 0)

d
-S

de Tcoso =0, Tsind+N) - p =0

droSmall displacement -> 101 <1 => coso-1, sinc-O-tand=
da

So d T
=0 T

d'W
t
dN

de I dach dan
-

P

Momentbalance ->M(x11 +N(x+5x)fx - M(x+fx) =0

so proceeding as above or taking limits-0 => N =d

Assume constitutive relation M = - 8
diw
doch

Combine equations in boxes ->Edes-Ta +p =0
BS



In an open region ofcontact, an additional upward reaction force Rayis

excerted by the obstacle on the beam, so thatOdie-Td+p =R
For a physically relevant solution we impose the constraintR30
because the obstacle can push butnot pull on the beam. 82

I

16) The jump conditions follow from continuity of the beam (i.e. it
cannot break) and a force and momentbalance atthe contactpoint.

For a physically relevantsolution we impose the constraint Rix, o
because the obstacle can push butnot pull on the beam (as in part (a))

33

3

(1) No contactfor =0, w =0 and hence for a sufficiently small.

=>wll =0 for kilCL with WIIL) =0, wEL) =Id

-3 v =

2x- 1" for a s.t. WKl 3
- H for bel? L

Since w minimum atx=0 where wo)=-, there is no
contactfor 0? < >, and contactis firstmade at

c =0 when x =2, 83

(iii) Since w"(0) = 4 =2. 0 when a =24, contactisL

initially made atan isolated pointat(x,z) =(0, -H).

As a increases further, this configuration persists until
the aurature of the beam matches thatof the obstacle,
i.e. until n"(0) =0.

So look for a solution with thisconfiguration and exploitsymmetry
aboutx=0 to obtain the OVP



~I =0 for OCC < 1 with w10 = -H, w0)=0,w"(0),0,w(L) =0, will) =<

AL atx =0 =w =
- H +a(t+6(2), where a,6EIR TPA

81 atx =2 =a +6 =H,2a +36 =cL

=> a =3H - x,6 =x - 2H

Since w"(0) =?? =E13H-cL) 20 for a*, the
beam makes contactwith the obstacleat an isolated

contact pointfor S/NS

cs(iii) For cat, introduce an open contactsetin 1913 <L
in which w =0.

By symmetry, just focus on s<x <L.

BVP:w"ll
=0 for scacL with wis)=-H, wikl=0, w"() =0,

w(L) =0 and will) =c.

Olsat x = =w =
- H +c(x- s)where CEIR TOO

H015atx =2 =c =

(-x :
3c(- s) =c

Hence, contactsetis by 23 where s =L-3for a
S/N4

c)(iv) By part(6) the netupward force Iexerted by the
obstacle on the beam is given by
~O for0b

F =0(w"40+) - w"(0-1) =28. =R(x-4) foraY 28(w"(s+) -wills-1) =28.6c =128H =45c N3

(1-53 &H2 for
ac 3H IS



(S.2 2023 Q3

(a) While the material remains elastic, the displacementsatisfies
the Navier equations with given constitutive relations, so

dTru 2

dr
t
~ Trr-Too

=0
- 4m2

=>ar(x+2n)a +2x t ? 2nd-2 I 0

- dr (i +2n) a +2Y =0 03

=>Yr(3x+2n)d +2* =0

d
-
dr Trr+T00+TGG

=0 82

S

16) Pre-yield part (a) =>Tr +2400 =3A say (AGR)

So radial Navier equation ->
Atrr Tr =3At
dr r

=>)
d ~3Tr =3Ar
de

=>Tr =A - 2, Too=Ykp =A+I A,WEIR

OLs Trr(a) =- P, Trr100) =0 => A =0,28 =Pa

So Tr = -Pa Pa
vs, TOO

=

ToG
=

2rs for usa
84

3PaSince PC,O, theTresca yield function f =I too - err= ↳w has
its maximum at r=a, so as Pincreases gradually from zero
yield firstoccurs atr=a when t

r=a
=xy, i.e.P =Pc == Ty. 82

6

v S



(2) For P>Pc, material mustyield in a neighbourhood ofv=a

say a crc J.

28
In r> s, still have elastic solution irr =-

vs, TOO
=Yak=

by part (6) with A =0 because Tr100) =0.

Yield condition atr =s gives I too-Frr=3 =Ty, with

the sign determined by how yield condition was satisfied initially.

so 0 =3 Tys => im = - 4s, Too-Yqp= II* for res 53

In was apply the Yield condition too -Tor= 2Ty

So radial Navier equation -> dTr=4T, with [r(a)=-Pdr

So Tr =-P +4Tylog).400 =Yob =2Ty-P +4y log for acres

Stress balance atr == > York-) =TrIst)

=>-P +4Tylog? =
- *Tx

=>S =

aesp
P- Pc 34
↳Ty

7

(d) Now superimpose a purely elastic stress on the plastic
stress obtained atthe maximum pressure Pm> P,viz.

Tr =28 + E
- Pm +4Tylog for a crc Sm
- 44y3

3r3 for >Sm

22y- Pm+4Tylog for acrcSi
Too =Tak =- Is t E 24x33

3r3 for > Sm



Pm -Pcwhere Sm=aesp
4Ty

5( Tr(a) =- P =3
- P =2 - Pm

=>2t =aPm-P for Pc Pi
S/NG

So Tresca yield function += 191, where

Yy for a cr dm
g(r==TOO-Tr = - 3alPmP E xysm for rem

9/1 Pdecreasing
Ty P=Pm -

L P=Pm..........! " L

Pt(Px,Pm)
L

al >r
P=Pxc.t.2a(Pm- Px)=xysm
PC PE------------------

As P decreases from Pm, the maximum ofg is always less
than to, while the minimum of g ismind gial, oh, as illustrated.

So the material yields again it g(a) reaches - Ty,
which occurs when - Pm-P)+ Ty =

-xy, i.e.P =Pm -8xy

Hence material yields again while being unloaded if Pm-Tx",
i.e. P<2Pc. N4

M
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