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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Master of Science in Mathematical Sciences: Paper C5.2

Elasticity and Plasticity

TRINITY TERM 2023
Tuesday 30 May, 2:30pm to 4:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.
You should ensure that you observe the following points:
e start a new answer booklet for each question which you attempt.

e indicate on the front page of the answer booklet which question you have attempted in that
booklet.

e cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

e hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. A linear elastic material with density p; and shear modulus @y occupies a layer of constant
thickness h in 0 < y < h, —00 < x < oo sandwiched between a rigid plate at y = 0 and
another linear elastic material with density ps and shear modulus ps occupying the region
y > h, —0o < x < oo. The layered medium undergoes antiplane strain with displacement
u = wi(z,y,t)k for 0 < y < h and displacement u = wy(z,y,t)k for y > h, where k is a
unit vector in the z-direction. The displacement w; = 0 on the plate at y = 0, while the
displacement and stress are continuous on the boundary between the elastic media at y = h.

(a) [5 marks| Show that the transverse displacement w; in either material satisfies the two-
dimensional wave equation
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where the wave speed c¢; should be determined for j =1, 2.
What are the boundary conditions on y = h?

[You may assume that Navier’s equation and the constitutive relations for a linear elastic
material with density p, first Lamé parameter A and shear modulus p are
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where u = (u;) is the displacement, (7;;) is the stress tensor and d;; is Kronecker’s delta.]

(b) [11 marks] Let ¢; < 2. By seeking solutions of the form w;(z,y,t) = f;(y) exp {ik(z — ct)}
for j =1, 2, show that the system supports waves travelling in the z-direction with wave
speed ¢ > 0 and wavenumber k£ > 0, while decaying exponentially as y — oo, only if ¢
and k are related parametrically to m > 0 and ¢ > 0 by
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c c
(c¢) [9 marks] Eliminate ¢ and ¢ to obtain the transcendental equation relating § = mh and
k given by
€t
tanf = R/ (%)
where 0 < 0 < ak and the dependence of the positive constants € and a on p1, pa, f1, fo
and h should be determined.
Using a diagram explain why (x) has N = | (ak/7)+1/2] roots for 0 € (0, ak), where |z|
is the largest integer n < z.
Consider now the limit in which 0 < ¢ < 1 with ak held fixed. Derive for N > 1 the
approximate roots for 6 and hence ¢ that arise from neglecting the right-hand side of (x).
Explain why this approximation can fail for the largest wave speed and derive a valid
approximation.
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2. A thin beam of bending stiffness B undergoes small two-dimensional deformations in the (z, z)-
plane. The beam lies along the x-axis and is of length 2L in its undeformed state. The ends of
the beam are clamped so that its small transverse displacement w(z) in the positive z-direction
satisfies w(+L) = 0 and w'(+L) = +«, where « is an imposed slope. The beam lies above a
smooth rigid obstacle at z = f(x) < 0 with which it is brought into contact by increasing «
from zero while remaining in equilibrium under the action of a body force p(z) in the negative
z-direction.

(a) [7 marks| Show that in an open region of non-contact the tension T'(x), transverse shear
force N(z) and bending moment M (z) about the y-axis satisfy

dT d?w  dN dM
& y R R N
dx 0, dz?2  dx dx

Explaining clearly any assumptions that you make, deduce that w(x) satisfies
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How is this equation modified in an open region of contact to account for the upward
reaction force R(z) exerted by the obstacle on the beam? State with justification the
constraint that R(z) should satisfy for a physically relevant solution.

(b) [3 marks] You may assume that the tension 7'(x) and displacement w(x) at an end point
of an open region of contact or at an isolated point of contact satisfy the jump conditions

dw d?w d3w

where [g] = g(z;) — g(x;) denotes the jump in the quantity g(z) across the point of
contact at x = z; and R; is the upward point reaction force exerted by the obstacle on
the beam at x = xz;. State the physical basis for these boundary conditions. State with
justification the constraint that R; should satisfy for a physically relevant solution.
(c) [15 marks] Suppose that ' =0, p(xz) = 0 and f(z) = —H, where H is a positive constant.
(i) Show that, as « is gradually increased from zero, the beam does not make contact
with the obstacle until o« = 2H/L.
(ii) Show that, as « is increased further, the beam makes contact with the obstacle at an
isolated point until o« = 3H/L.
(iii) Show that, as « is increased further still, the beam makes contact with the obstacle
in a region —s < x < s, where s should be determined.

(iv) Determine the net upward force exerted by the obstacle on the beam for a > 0.
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3. Perfectly plastic material undergoes quasi-steady spherically symmetric strain in the region
r > a outside a spherical cavity of radius a, with displacement field given by u(r) = u(r)e,,
where (7,0, ¢) denote spherical polar coordinates and e, is a unit vector in the r-direction.
The stress tensor is diagonal with entries 7., 799 and 744 that satisfy the Navier equations

1d Too + T
7472& (7"27'7“7“) - TM = 0, T0 = Tpep-

The Tresca yield function may be written in the form f = %|7‘T7- — 7gg|. The material remains
linearly elastic while f < 7y and the stress satisfies f = 7y when the material is plastic, where
7y > 0 denotes the yield stress. The stress vanishes in the far field as r — oo, while the inner

boundary at r = a is subject to a non-negative pressure P.

(a) [ marks| Show that when the material is elastic the displacement satisfies

(o (3 2)-

and hence derive the compatibility condition

d
ar (Trr + Too +T¢¢) = 0.

[You may assume the linear elastic constitutive relations

du U
e = (A +20) — + 2\ —, = =\
U (A+2p) dr+ . Too = T

du

u
2N+ )~
o ( +u)r,

where A and p are the Lamé constants.)

(b) [6 marks] First supposing that the material remains elastic, evaluate the stress outside
the cavity. Hence show that, as P increases gradually from a starting value of zero, yield
first occurs at r = @ when P reaches a critical value P, = %Ty.

(¢) [7 marks] Show that for P > P, the material is plastic in a region a < r < s, where

P—- P
s = aexp Iy .

(d) [7 marks] Suppose that P increases gradually from zero to a maximum value P, > P,
and then decreases to zero again. Assuming that the material instantaneously reverts to
being elastic once the applied pressure starts to decrease, find the stress outside the cavity
while it is being unloaded. Under what condition on F;, does the material yield again
while it is being unloaded? Justify your answer.
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