# C3.5 Lie Groups Sheet 2 — HT25

Section A contains introductory questions. Section B contains material to test understanding of the course. Section C contains further questions which are optional. No answers should be submitted for marking.

## Section A

1. The algebra of quaternions is defined as

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$$

where i, j, k satisfy the relations

$$ij = k = -ji$$
 and  $i^2 = j^2 = k^2 = -1$ .

- (a) Show that jk = i = -kj and ki = j = -ik.
- (b) Show that  $\mathbb{H}$  may be identified with the algebra of matrices

$$\left\{ \left(\begin{array}{cc} z & w \\ -\bar{w} & \bar{z} \end{array}\right) : z, w \in \mathbb{C} \right\}.$$

(c) If  $q = a + bi + cj + dk \in \mathbb{H}$ , we define the quaternionic conjugate to be

$$\bar{q} = a - bi - cj - dk.$$

- (i) Show that  $q\bar{q}$  is real and non-negative, so that the *norm* of q, which is the nonnegative real number |q| such that  $|q|^2 = q\bar{q}$ , is well-defined.
- (ii) Deduce that  $q \in \mathbb{H} \setminus \{0\}$  has a multiplicative inverse  $q^{-1} = \frac{\bar{q}}{|q|^2}$ .
- (d) (i) Show that, for  $q_1, q_2 \in \mathbb{H}$  and  $q \in \mathbb{H} \setminus \{0\}$ ,

$$|q_1q_2| = |q_1| \cdot |q_2|$$
 and  $|q^{-1}| = |q|^{-1}$ .

(ii) Viewing  $\mathbb{H}$  as a real 4-dimensional vector space, check that |q| is the usual norm on  $\mathbb{R}^4$ .

## Solution:

- (a) We have  $jk = -i^2 jk = -ik^2 = i = -k^2 i = kji^2 = -kj$  and  $ki = -kij^2 = -k^2 j = j = -jk^2 = -ik.$
- (b) Let

$$A = \left\{ \left( \begin{array}{cc} z & w \\ -\overline{w} & \overline{z} \end{array} \right) : z, w \in \mathbb{C} \right\}.$$

An  $\mathbb R\text{-algebra}$  isomorphism  $\theta:\mathbb H\to A$  is given by

$$a + bi + cj + dk \mapsto \left( \begin{array}{cc} a + ib & c + id \\ -c + id & a - ib \end{array} \right).$$

By inspection  $\theta$  is compatible with the relations defining  $\mathbb{H}$  and is  $\mathbb{R}$ -linear, so is a genuine homomorphism of  $\mathbb{R}$ -algebras that is also clearly bijective.

(c) (i) If q = a + bi + cj + dk then

$$q\overline{q} = (a + bi + cj + dk)(a - bi - cj - dk) = a^2 + b^2 + c^2 + d^2 \in \mathbb{R}^{\ge 0}.$$

- (ii) With  $q \neq 0$  and  $|q| = \sqrt{q\overline{q}}$  we have  $q\overline{q}/|q|^2 = 1$  so  $q^{-1} = \overline{q}/|q|^2$ .
- (d) (i) We have (by a quick calculation)  $\overline{q_1q_2} = \overline{q_2} \cdot \overline{q_1}$  and  $q\overline{q} = \overline{q}q$  then

$$|q_1q_2|^2 = q_1 \cdot q_2 \cdot \overline{q_2} \cdot \overline{q_1} = q_1|q_2|^2 \overline{q_1} = |q_1|^2 |q_2|^2.$$

Taking square roots yields  $|q_1q_2| = |q_1||q_2|$ . Taking  $q_1 = q$  and  $q_2 = q^{-1}$  gives  $|q||q^{-1}| = |1| = 1$ , hence  $|q^{-1}| = |q|^{-1}$ .

Alternatively, by direct calculation

$$|q|^2 = \det \theta(q),$$

so the multiplicativity of the quaternionic norm follows from the multiplicativity of the determinant.

(ii) This is immediate from the earlier calculation that  $|q|^2 = a^2 + b^2 + c^2 + d^2$  for q = a + bi + cj + dk.

- 2. Calculate the Lie algebras of the following Lie groups. (Note that this means finding both the vector space and the Lie bracket.)
  - (a) The isometric transformations of  $\mathbb{R}^2$  of the form  $x \mapsto Ax + b$ .
  - (b) The non-zero quaternions  $\mathbb{H}^*$ .
  - (c) The unit quaternions  $\{q \in \mathbb{H} : |q| = 1\}$ .
  - (d) The group of Möbius transformations of the form

$$z\mapsto \frac{az+b}{cz+d}$$

where  $a, b, c, d \in \mathbb{R}$  and ad - bc > 0.

[*Hint:* It may be helpful to consider a homomorphism from a subgroup of  $GL(2, \mathbb{R})$  to this group.]

## Solution:

(a) The group G of isometric transformations of  $\mathbb{R}^2$  of the form  $x \mapsto Ax + b$  can be identified with the subgroup of  $GL(3, \mathbb{R})$  consisting of matrices of the form

$$\left(\begin{array}{rrrr} A_{11} & A_{12} & b_1 \\ A_{21} & A_{22} & b_2 \\ 0 & 0 & 1 \end{array}\right)$$

where  $A \in O(2)$ . Thus the Lie algebra of G is a subalgebra of the Lie algebra of  $GL(3,\mathbb{R})$  with Lie bracket given by commutator of matrices. O(2) has Lie algebra the skew-symmetric  $2 \times 2$  matrices, so a basis for the Lie algebra of G is

$$X = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and the Lie brackets are:

$$[X,Y] = 0, \ [Y,Z] = -X, \ [Z,X] = -Y.$$

(b) The nonzero quaternions form an open subset in  $\mathbb{R}^4$  so the tangent space at the identity is  $\mathbb{R}^4 = \mathbb{H}$ . By left multiplication the nonzero quaternions form a subgroup of  $GL(4,\mathbb{R})$  with the Lie bracket again the commutator. So the Lie algebra is spanned by 1, i, j, k and [1, q] = 0 for all  $q \in \mathbb{H}$ . The remaining Lie brackets are determined by

$$[i, j] = 2k, \ [j, k] = 2i, \ [k, i] = 2j.$$

- (c) The unit quaternions form the unit sphere in  $\mathbb{R}^4$  whose tangent space at 1 is the orthogonal complement of  $\mathbb{R} \subseteq \mathbb{H}$ , namely the imaginary quaternions. The Lie brackets are as above.
- (d) The composition of this group G of Möbius transformations is achieved by multiplying the corresponding  $2 \times 2$  matrices. This means there is a surjective homomorphism from the subgroup of  $GL(2,\mathbb{R})$  consisting of matrices of strictly positive determinant to G and a corresponding surjective map from the Lie algebra of  $GL(2,\mathbb{R})$  to the Lie algebra of G. The Lie bracket for the matrix group is again commutator of matrices. The scalar matrices in  $GL(2,\mathbb{R})$  give the trivial Möbius transformation, so the Lie algebra homomorphism maps the 3-dimensional Lie algebra of  $SL(2,\mathbb{R})$ , which consists of the trace zero  $2 \times 2$  real matrices, surjectively to the 3-dimensional Lie algebra of G. This is therefore an isomorphism of Lie algebras.

Take a basis

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and the Lie brackets are

$$[X,Y]=Z, \ [Y,Z]=2Y, \ [Z,X]=2X.$$

# Section B

3. Define the Lie group (called the *compact symplectic group*) by

$$\operatorname{Sp}(n) = \{ A \in \operatorname{GL}(n, \mathbb{H}) : \overline{A^{\mathrm{T}}}A = I \},\$$

where  $\overline{A^{\mathrm{T}}}$  denotes the quaternionic conjugate transpose of A (ie the (i, j) entry of  $\overline{A^{\mathrm{T}}}$  is the quaternionic conjugate of the (j, i) entry of A).

- (a) Find the dimension of Sp(n) and the Lie algebra  $\mathfrak{sp}(n)$  of Sp(n).
- (b) Show that

 $\operatorname{Sp}(1) = \operatorname{SU}(2)$ 

and that Sp(1) is topologically the 3-sphere.

(c) For  $q \in \mathbb{H} \setminus \{0\}$  define

$$\mathcal{A}_q: \mathbb{H} \to \mathbb{H}, \quad p \mapsto qpq^{-1}.$$

Show that  $\mathcal{A}_q$  is an orthogonal map (viewing  $\mathbb{H}$  as  $\mathbb{R}^4$ ).

- (d) By considering the orthogonal complement of  $\mathbb{R} = \mathbb{R} \cdot 1 \subset \mathbb{H}$ , deduce that  $SU(2) \cong$  $Sp(1) \subset \mathbb{H} \setminus \{0\}$  acts on  $\mathbb{R}^3$  by rotations.
- (e) (Optional) Explain briefly why this gives a homomorphism  $Sp(1) \cong SU(2) \rightarrow SO(3)$ with kernel  $\{\pm 1\}$ .

# Solution:

(a) Using the regular value theorem, we see that Sp(n) is a manifold with

$$\mathfrak{sp}(n) = T_I \mathrm{Sp}(n) = \{ B \in M_n(\mathbb{H}) : \overline{B^{\mathrm{T}}} + B = 0 \}.$$

This is therefore the Lie algebra with the matrix commutator as the Lie bracket. Its dimension is  $4 * \frac{1}{2}n(n-1) = 2n(n-1)$  for the off-diagonal entries plus 3 \* n for the diagonal entries (which are purely imaginary), which is a total of  $2n^2 + n = n(2n+1)$ , which is then the dimension of Sp(n).

- (b) Sp(1) is precisely the set of all quaternions q with  $|q|^2 = 1$ . Identifying  $\mathbb{H} \equiv \mathbb{R}^4$  induces an identification Sp(1)  $\equiv S^3$ . Identifying  $\mathbb{H} \equiv A$  via  $\theta$  from Question 1 induces the identification Sp(1) with SU(2).
- (c) Observe that if v = a + bi + cj + dk and w = a' + b'i + c'j + d'k then by direct calculation

$$\langle v, w \rangle = \operatorname{Re}(v\overline{w}) = \frac{1}{2}(v\overline{w} + \overline{v\overline{w}}) = \frac{1}{2}(v\overline{w} + w\overline{v}).$$

Without loss of generality we may assume q has unit norm, so  $q^{-1} = \overline{q}$ . Then

$$\begin{aligned} \langle \mathcal{A}_q(v), \mathcal{A}_q(w) \rangle &= \langle qvq^{-1}, qwq^{-1} \rangle \\ &= \frac{1}{2} \left( qv\overline{q} \cdot \overline{qw\overline{q}} + qw\overline{q} \cdot \overline{qv\overline{q}} \right) \\ &= \frac{1}{2} \cdot q \left( v\overline{w} + w\overline{v} \right) \overline{q} \\ &= \frac{1}{2} (v\overline{w} + w\overline{v}) = \langle v, w \rangle, \end{aligned}$$

since  $\mathcal{A}_q|_{\mathbb{R}} = \mathrm{id}_{\mathbb{R}}$ . Therefore  $\mathcal{A}_q$  is an orthogonal map on  $\mathbb{R}^4$ .

(d) Let  $V = \operatorname{Im}(\mathbb{H}) \cong \mathbb{R}^3$  be the orthogonal complement of  $\mathbb{R} \subset \mathbb{H} = \mathbb{R}^4$ . Since  $\operatorname{Sp}(1) \subset \mathbb{H}^*$  acts by orthogonal transformations on  $\mathbb{R}^4$  and restricts to the identity on  $\mathbb{R}$  then  $\mathcal{A}_q(V) = V$  for all  $q \in \operatorname{Sp}(1)$ .

To show Sp(1) acts on  $\mathbb{R}^3$  by rotations, we consider the composition

$$S^3 = \operatorname{Sp}(1) \longrightarrow \operatorname{O}(3) \longrightarrow \{\pm 1\}$$

This gives a continuous map to a discrete space; as Sp(1) is connected this map is necessarily constant. But  $1 \in \text{Sp}(1)$  and  $\det(\mathcal{A}_1) = 1$ , so  $\mathcal{A}_q \in \text{SO}(3)$  for all  $q \in \text{Sp}(1)$ . In other words Sp(1) acts on  $\mathbb{R}^3$  by rotations.

(e) The homomorphism in question is given by  $\mathcal{A}$  (which is in fact a homomorphism of Lie groups). The elements  $\pm 1$  lie in the kernel of this map; we will show these are the only elements. We will do this by showing that  $\mathcal{A}$  is a non-trivial covering map then appealing to the fact that the fundamental group  $\pi_1(SO(3)) = \mathbb{Z}/2$ .

We first compute the derivative at 1 of  $\mathcal{A}$ , viewed as a map  $\mathbb{R}^4 \to M_4(\mathbb{R})$  (where  $SO(3) \hookrightarrow M_4(\mathbb{R})$  via  $A \mapsto (\begin{smallmatrix} 1 \\ A \end{smallmatrix})$ ). Take  $q, h \in \mathbb{H}$  with |h| < 1. We may expand  $(1+h)^{-1}$  as an infinite series:

$$(1+h)^{-1} = \sum_{n=0}^{\infty} (-1)^n h^n.$$

Then

$$(\mathcal{A}_{1+h} - \mathcal{A}_1)(q) = (1+h)q(1+h)^{-1} - q$$
  
=  $(1+h)q(1-h+o(h)) - q$   
=  $hq - qh + o(h) = [h,q] + o(h)$ 

It follows that

$$(d\mathcal{A})_1:\mathfrak{su}(2)\cong T_1Sp(1)\to\mathfrak{so}(3), \qquad h\mapsto [h,-].$$

It can easily be shown that this map is an isomorphism of Lie algebras (the Lie bracket of  $S^3$  is given by the cross product on  $\mathbb{R}^3$  - see Question 5). This implies that  $\mathcal{A}: Sp(1) \to SO(3)$  is a covering map, which is non-trivial since  $\mathcal{A}$  has non-trivial kernel.

From algebraic topology there exists a homeomorphism  $SO(3) \cong \mathbb{RP}^3$ . But  $S^3$  is the universal cover of  $\mathbb{RP}^3$  via the obvious two-to-one quotient map, so  $S^3$  is also the universal cover of SO(3). In particular this implies that  $\pi_1(SO(3)) = \mathbb{Z}/2$  and that any non-trivial covering of SO(3) is equivalent to the covering  $S^3 \to \mathbb{RP}^3 \cong$ SO(3). Therefore  $\mathcal{A} : Sp(1) \cong SU(2) \to SO(3)$  is a double covering and induces an isomorphism  $Sp(1)/\{\pm 1\} \cong SO(3)$ .

- 4. Check these properties of  $\exp : \mathfrak{g} = \operatorname{Lie}(G) \to G$  for a Lie group G with identity e.
  - (a) Image(exp)  $\subseteq G_0$  where  $G_0$  = connected component of  $e \in G$ .
  - (b)  $\exp((s+t)X) = \exp(sX)\exp(tX)$  for all  $s, t \in \mathbb{R}$  and  $X \in \mathfrak{g}$ .
  - (c)  $(\exp(X))^{-1} = \exp(-X)$  for all  $X \in \mathfrak{g}$ .
  - (d) If  $g = \exp(X)$  then it has an *n*-th root.
  - (e)  $\exp: \mathfrak{sl}(n,\mathbb{R}) \to \operatorname{SL}(n,\mathbb{R})$  is not surjective for  $n \geq 2$ .

# Solution:

- (a) Recall that if  $X \in \mathfrak{g}$  then  $\exp(X) = \alpha^X(1)$ , where  $\alpha^X$  is the 1-parameter subgroup with tangent vector X at the identity. But  $t \to \alpha^X(t)$  is a path in G with  $\alpha^X(0) = e$ , so  $\exp(X)$  must lie in the same path component as e.
- (b) By definition  $\exp((s+t)X) = \alpha^{(s+t)X}(1)$ . For any  $\lambda \in \mathbb{R}$  we have  $\alpha^{\lambda X}(u) = \alpha^{X}(\lambda u)$ as both curves have tangent vector  $\lambda X$  at the identity. Therefore  $\exp((s+t)X) = \alpha^{X}(s+t) = \alpha^{X}(s)\alpha^{X}(t) = \exp(sX)\exp(tX)$ .
- (c) Taking s = -t = 1 gives  $\exp(X) \exp(-X) = \exp(0) = e$ , hence  $\exp(X)^{-1} = \exp(-X)$ .
- (d) If  $g = \exp(X)$  then an *n*-th root of g is given by  $\exp(X/n)$ .
- (e) Let  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, C = \begin{pmatrix} -2 & 0 \\ 0 & -1/2 \end{pmatrix} \in SL(2, \mathbb{R})$  and suppose for a contradiction that  $A^2 = C$  (for some choice of  $a, \ldots, d$ ). Then b(a + d) = 0 and  $a^2 + bc = -2$ . This forces  $b \neq 0$ , so a = -d and  $1 = ad bc = -(a^2 + bc) = 2$ , contradiction. Therefore C has no square root so cannot lie in the image of exp. Then by embedding A in  $SL(n, \mathbb{R})$  in the obvious way for any  $n \geq 2$  gives the result.

- 5. (a) Prove directly that ad is a Lie algebra homomorphism from ad(X)(Z) = [X, Z] for X, Z in the Lie algebra.
  - (b) Show that

$$X_{1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad X_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

is a basis for the Lie algebra  $\mathfrak{so}(3) \subset M_3(\mathbb{R})$  of SO(3).

(c) By computing  $[X_i, X_j]$  for i, j = 1, 2, 3, show that if  $e_1, e_2, e_3$  are the standard basis vectors on  $\mathbb{R}^3$  and  $\times$  is the cross product on  $\mathbb{R}^3$ , then

$$F:\mathfrak{so}(3)\to(\mathbb{R}^3,\times),\quad X_i\mapsto e_i$$

is a Lie algebra isomorphism.

- (d) Via F in the previous part we identify  $\operatorname{End}(\mathfrak{so}(3))$  with  $3 \times 3$  matrices. Compute the matrices  $\operatorname{ad}(X_i)$ .
- (e) By computing  $\kappa(X_i, X_j)$  for i, j = 1, 2, 3 show that the Killing form

$$\kappa(X,Y)=\mathrm{tr}(\mathrm{ad}(X)\mathrm{ad}(Y))\in\mathbb{R}$$

is a negative definite scalar product on  $\mathfrak{so}(3)$ .

#### Solution:

(a) Let  $X, Y, Z \in \mathfrak{g}$ . From the given expression for  $\operatorname{ad}(X)$  we already have that ad is linear, so it remains to show that

$$\mathrm{ad}([X,Y])(Z) = [\mathrm{ad}(X), \mathrm{ad}(Y)](Z).$$

But by antisymmetry and the Jacobi identity

$$[ad(X), ad(Y)] \cdot Z = (ad(X) \circ ad(Y) - ad(Y) \circ ad(X)) \cdot Z$$
  
=  $ad(X)([Y, Z]) - ad(Y)([X, Z])$   
=  $[X, [Y, Z]] - [Y, [X, Z]]$   
=  $[X, [Y, Z]] + [Y, [Z, X]]$   
=  $-[Z, [X, Y]]$   
=  $[[X, Y], Z]$   
=  $ad([X, Y])(Z).$ 

Therefore ad is a Lie algebra homomorphism.

- (b) The  $X_i$  are linearly independent by inspection. Any skew-symmetric  $3 \times 3$  real matrix must have zeros on the diagonal, and is uniquely determined by the entries  $a_{ij}$  with i < j. Therefore the  $X_i$  span  $\mathfrak{so}(3)$ .
- (c) The Lie bracket on  $\mathfrak{so}(3)$  inherited from the Lie group SO(3) coincides with the matrix commutator. Quick computations then give

$$[X_1, X_2] = X_3, \quad [X_2, X_3] = X_1, \quad [X_3, X_1] = X_2.$$

Then F is isomorphism of Lie algebras, as

$$e_1 \times e_2 = e_3, \quad e_2 \times e_3 = e_1, \quad e_3 \times e_1 = e_2.$$

(d) With respect to the ordered basis  $(X_1, X_2, X_3)$ , by inspection

$$ad(X_1) = -X_3$$
,  $ad(X_2) = -X_2$ ,  $ad(X_3) = -X_1$ .

(e) We have for all i and j

$$\kappa(X_i, X_j) = -2\delta_{ij}$$

By the linearity of trace and ad the Killing form is bilinear, and is symmetric as tr(AB) = tr(BA). Given  $X \in \mathfrak{so}(3)$ , expanding out X as a linear combination of the  $X_i$  gives  $\kappa(X, X) \leq 0$ , with equality if and only if X = 0. Therefore the Killing form is a negative definite scalar product on  $\mathfrak{so}(3)$ .

- 6. (a) Show that for a matrix group G, we have  $\exp(gXg^{-1}) = g\exp(X)g^{-1}$  for all  $g \in G$ and  $X \in \mathfrak{g}$ .
  - (b) Consider the subgroup T of the unitary group U(n) consisting of diagonal matrices. Show that T is a torus T<sup>n</sup> and that T lies in the image of the exponential map exp: u(n) → U(n).
  - (c) Deduce that  $\exp: \mathfrak{u}(n) \to U(n)$  is surjective.

#### Solution:

(a) Fix  $g \in G$  and consider the Lie group endomorphism  $C_g : G \to G$ ,  $h \mapsto ghg^{-1}$ . By definition we have  $\operatorname{Ad}_g = (dC_g)_I : \mathfrak{g} \to \mathfrak{g}$ . By the naturality of the exponential map the following diagram commutes:



Identifying  $\mathfrak{g}$  as a matrix Lie algebra, we have for  $X \in \mathfrak{g}$  the identity

$$\operatorname{Ad}(g)(X) = gXg^{-1}$$

since the map  $A \mapsto PAP^{-1}$  on matrices is linear. The equality  $\exp(gXg^{-1}) = g \exp(X)g^{-1}$  follows.

(b) If  $A \in T$ , the equality  $\overline{A}^T A = I$  implies that all of the diagonal entries of A are complex numbers of unit norm, so

$$T = \left\{ \operatorname{diag}(e^{it_1}, \dots, e^{it_n}) : t_i \in \mathbb{R} \right\} \cong (S^1)^n.$$

The exponential map on  $\mathfrak{u}(n)$  is given by the usual matrix exponential  $A \mapsto \sum_{n=0}^{\infty} A^n/n!$ . If  $A \in T$ , the equality  $\overline{A}^T A = I$  implies that all of the diagonal entries of A are complex numbers of unit norm, so

$$T = \left\{ \operatorname{diag}(e^{it_1}, \dots, e^{it_n}) : t_i \in \mathbb{R} \right\} \cong (S^1)^n.$$

The exponential map on  $\mathfrak{u}(n)$  is given by the usual matrix exponential  $A \mapsto \sum_{n=0}^{\infty} A^n/n!$ .(In  $GL(k,\mathbb{R})$ , the curve  $t \mapsto \sum_{n=0}^{\infty} (tB)^n/n!$  is a smooth curve in  $GL(k,\mathbb{R})$  with derivative B at t = 0, so by uniqueness of integral curves this is the unique integral curve through I with tangent vector B in  $GL(k,\mathbb{R})$ . Any matrix Lie group is a Lie subgroup of  $GL(k,\mathbb{R})$  for some k. Thus for any matrix Lie group, the Lie group and matrix exponentials coincide.)

As

$$\operatorname{diag}(e^{it_1},\ldots,e^{it_n}) = \exp(\operatorname{diag}(it_1,\ldots,it_n))$$

then T lies in the image of  $\exp: \mathfrak{u}(n) \to U(n)$ .

(c) Given  $A \in U(n)$ , there exists a diagonal matrix D and a unitary matrix P with  $A = PDP^{-1}$ . Then  $D \in T$  so is equal to  $\exp(B)$  for some  $B \in \mathfrak{u}(n)$ . Then (using the first part of this question)  $A = \exp(PBP^{-1})$ . As  $PBP^{-1}$  is skew-Hermitian then A lies in the image of  $\exp: \mathfrak{u}(n) \to U(n)$ .

# Section C

7. The 3-dimensional Heisenberg group G consists of matrices of the form

$$\left(\begin{array}{rrrr}1&a&b\\0&1&c\\0&0&1\end{array}\right)$$

with  $a, b, c \in \mathbb{R}$ .

(a) Show that the Lie algebra of  ${\cal G}$  consists of matrices

| ( | 0 | x | y |   |
|---|---|---|---|---|
|   | 0 | 0 | z |   |
| ĺ | 0 | 0 | 0 | ) |

- (b) Calculate the exponential map for G.
- (c) Is the exponential map surjective in this case?
- 8. (a) If A ∈ GL(n, C) is diagonalizable, show that A = exp B for a complex matrix B.
  (b) Let

$$A = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

with  $\lambda \neq 0 \in \mathbb{C}$ . Show, by writing this in the form  $\lambda(I+N)$ , that in this case too there exists B such that  $A = \exp B$ .

(c) The Jordan normal form states that any complex  $n \times n$  matrix is conjugate to a matrix with blocks of the above form down the diagonal. Deduce that the exponential map for the Lie group  $\operatorname{GL}(n, \mathbb{C})$  is surjective.