
Exercise sheet 3. Chapters 1-12.

Part A

Question 3.1. Show that k2 is not homeomorphic to P2(k).

Solution. Suppose for contradiction that there is a homeomorphism h : k2 ! P2(k). Let V0 := Z(x1) and

V1 = Z(x1�1). We have dim(V0) = dim(V1) = 1 and V0 and V1 are irreducible. Noting that both dimension

and irreducibility only depend on the underlying topology, we see that h(V0) and h(V1) are irreducible

closed subsets of dimension 1 of P2(k). Thus we have h(V0) \ h(V1) 6= ; by Proposition 11.2. However, by

construction we have V0 \ V1 = ;, so this is a contradiction.

Part B

Question 3.2. Let V0 = Z(x0x3 � x2
1) ✓ P3(k) and V1 = Z(x1x3 � x2

2) ✓ P3(k). Let C := V0 \ V1 ✓ P3(k).

Let U := P3
\Z(x0, x1, x2) and endow U with its structure of open subvariety of P3(k). Let g : U ! P2(k) be

the morphism such that g([X0, X1, X2, X3]) = [X0, X1, X2] for all [X0, X1, X2, X3] 2 U (see question 2.3).

(1) Show that the morphism g|C\U : C \ U ! P2(k) extends to a morphism f : C ! P2(k).

(2) Show that f(C) is closed and that f(C) = Z(z0z22 � z31).

(3) Show that the induced map f : C ! f(C) is an isomorphism.

Solution. (1) We have Z(x0, x1, x2) = {[0, 0, 0, 1]} ✓ C. So g|C\U is only undefined at one point. Now

assuming that X1, X2, X3 6= 0 and [X0, X1, X2, X3] 2 C, we have

g([X0, X1, X2, X3]) = [X0, X1, X2] = [X0X3, X1X3, X2X3] = [X2
1 , X

2
2 , X2X3]

= [X2
1X2, X

3
2 , X

2
2X3] = [X2

1X2, X1X2X3, X1X
2
3 ] = [X1X2, X2X3, X

2
3 ].

So the map h : C\(Z(x1x2, x2x3, x2
3) \ C) ! P2(k) given by the formula

h([X0, X1, X2, X3]) = [X1X2, X2X3, X
2
3 ]

coincides with g on C\((Z(x1x2x3) [ Z(x0, x1, x2)) \ C). Now [0, 0, 0, 1] 62 Z(x1x2, x2x3, x2
3) so h extends

g|U\C in a neighborhood of [0, 0, 0, 1].

(2) The fact that f(C) ✓ Z(z0z22 � z31) follows from the fact that if [X0, X1, X2, X3] 2 C then

X3
1 = X1X0X3 = X0(X1X3) = X0X

2
2 .

The fact that f(C) is closed follows from Corollary 12.10 (and the fact that projective varieties are complete).

It also follows from (3) of this question.

(3) We shall construct an inverse map. Suppose that [Z0, Z1, Z2] 2 Z(z0z22 � z31). Suppose first that

Z0, Z1 6= 0. Then we have

[Z0, Z1, Z2, Z
2
2/Z1] = [Z0Z1, Z

2
1 , Z2Z1, Z

2
2 ] = [Z0, Z1, Z2, Z

2
1/Z0] = [Z2

0 , Z1Z0, Z2Z0, Z
2
1 ]

(because Z2
2/Z1 = Z2

1/Z0 since [Z0, Z1, Z2] 2 Z(z0z22 � z31)). Next, plugging either member of this equality

into the equations for C we see that

[Z0Z1, Z
2
1 , Z2Z1, Z

2
2 ] 2 C
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if either Z0Z1 6= 0 or Z2
1 6= 0 or Z2Z1 6= 0 or Z2

2 6= 0 and

[Z2
0 , Z1Z0, Z2Z0, Z

2
1 ] 2 C

if either Z2
0 6= 0 or Z1Z0 6= 0 or Z2Z0 6= 0 or Z2

1 6= 0.

Let ◆2 : P2(k)\Z(z0z1, z21 , z2z1, z
2
2) ! P3(k) be the map such that

◆2([Z0, Z1, Z2]) = [Z0Z1, Z
2
1 , Z2Z1, Z

2
2 ]

and ◆1 : P2(k)\Z(z20 , z1z0, z2z0, z
2
1) ! P3(k) be the map such that

◆1([Z0, Z1, Z2]) = [Z2
0 , Z1Z0, Z2Z0, Z

2
1 ].

We have shown that these two maps coincide on Z(z0z22�z31) whenever Z0, Z1 6= 0. If [Z0, Z1, Z2] 2 Z(z0z22 � z31)

and Z0 = 0 then Z1 = 0 so [Z0, Z1, Z2] = [0, 0, 1]. By the above ◆2 is defined at [0, 0, 1]. On the other hand,

if Z1 = 0 then either Z0 = 0 or Z2 = 0 so that either [Z0, Z1, Z2] = [0, 0, 1] or [Z0, Z1, Z2] = [1, 0, 0]. Again,

◆1 is defined at [1, 0, 0]. Hence ◆1 and ◆2 together define a map � : Z(z0z22 � z31) ! C. Also, by construction,

we have

�|Z(z0z2
2�z3

1)\Z(z0z2
2�z3

1 ,z0z1)
� f |C\Z(x0x1) = IdC\Z(x0x1)

and

f |C\Z(x0x1) � �|Z(z0z2
2�z3

1)\Z(z0z2
2�z3

1 ,z0z1)
= IdZ(z0z2

2�z3
1)\Z(z0z2

2�z3
1 ,z0z1)

(use the equalities at the beginning of the solution to (3)). Finally, we check by hand

f(�([1, 0, 0])) = f(◆1([1, 0, 0])) = f([1, 0, 0, 0]) = [1, 0, 0]

f(�([0, 0, 1])) = f(◆2([0, 0, 1])) = f([0, 0, 0, 1]) = h([0, 0, 0, 1]) = [0, 0, 1].

Suppose [X0, X1, X2, X3] 2 C. If X0 = 0 then X1 = X2 = 0. Also, if X1 = 0 then X2 = 0 and either X0 = 0

or X3 = 0. So we have either [X0, X1, X2, X3] = [0, 0, 0, 1] or [X0, X1, X2, X3] = [1, 0, 0, 0]. Again we check

�(f([0, 0, 0, 1])) = �([0, 0, 1]) = ◆2([0, 0, 1]) = [0, 0, 0, 1]

�(f([1, 0, 0, 0])) = �([1, 0, 0]) = ◆1([1, 0, 0]) = [1, 0, 0, 0]

So we have shown that f : C ! f(C) and � are inverse to each other.

Question 3.3. (1) Let f : X ! Y be a surjective morphism of quasi-projective varieties. Suppose that X

is complete. Show that Y is also complete.

(2) Show that a noetherian topological space only has finitely many connected components.

(3) Let (V,OV ) be a projective variety. Show that the k-vector space OV (V ) is finite-dimensional.

Solution. (1) We have to show that for any quasi-projective variety B and any closed subset C ✓ Y ⇥ B

the projection ⇡B(C) of C on the second factor is closed. Now the natural map f ⇥ IdB : X⇥B ! Y ⇥B is

surjective, so we have ⇡B(C) = ⇡B((f ⇥ IdB)�1(C)) and ⇡B((f ⇥ IdB)�1(C)) is closed since X is complete.

(2) Recall that the connected components of a topological space T are the connected subsets of T , which are

maximal (with respect to inclusion) among all such subsets. One can show that the connected components

of T cover T (if this is not known to the students, this can be part of the exercise. See any standard textbook

in topology for the solution, which is not di�cult).
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Note that if C ✓ T is connected then so is its closure C̄. Indeed, if C̄ = C1 [ C2 where C1 and C2 are

disjoint, non empty and open in C̄, then C = (C1 \C)[ (C2 \C) and again C1 \C and C2 \C are disjoint,

non empty and open in C. Hence the connected components of T are closed. This fact is not needed for (2)

but will be used in (3).

Now suppose for contradiction that T has infinitely many connected components. In particular, T is not

connected. So T = T1 [ T2, where T1 and T2 are open, non empty and disjoint. In particular T1 and T2 are

closed. Now either T1 or T2 is not connected. Indeed, from the definitions any connected components of T

is contained in either T1 or T2. If T1 and T2 are connected, then each component is equal to either T1 or T2

(by maximality) and so there would be only finitely many. So suppose that T1 is not connected. Repeating

the same reasoning, we obtain a closed and open subset T11 in T1, which is not equal to T1 and which is

not connected (otherwise all the connected components would be one of T2, T11 or T12). Continuing in this

way, we obtain a decreasing sequence

T ) T1 ) T11 ) T111 ) . . .

of closed subsets, contradicting the noetherian condition.

(3) Recall that a regular function on a variety V defines a morphism f : V ! k. The image of f is a

closed subset of k because V is complete. See Corollary 12.10 for this. Hence f(V ) is either finite or it is

k (see question 1.1). The second case cannot occur because by (1) the variety k would then be complete,

which is not true. To see that k is not complete, let ⇡2 : k2 ! k be the second projection. Note that

⇡2(Z(x1x2 � 1)) = k\{0} and that k\{0} is not closed in k. Hence k is not complete (see Definition 12.7).1

Now if C is a connected component of V , then f(C) is connected and thus f(C) is a point. So f is constant

on each connected component of V (use Lemma 12.8). On the other hand, we know by (2) that V only has

finitely many connected components so the connected components of V are also open.

Hence we have an isomorphism of k-algebras

OV (V ) '
M

C connected comp. of V

OV (C) '
M

C connected comp. of V

k

Question 3.4. Let V and W be quasi-projective varieties. Suppose that V is irreducible. Let Mor(V,W )

be the set of morphisms from V to W and let ⇢ : Mor(V,W ) ! Rat(V,W ) be the natural map (ie ⇢ sends

a morphism to the rational map it represents). Show that ⇢ is injective.

Solution. We have to show that if U ✓ V is an open subvariety and f, g : V ! W are two morphisms

such that f |U = g|U , then f = g. Now suppose that there is v0 2 V \U such that f(v0) 6= g(v0). Let

f ⇥ g : V ! W ⇥ W be the morphism of varieties such that (f ⇥ g)(v) = (f(v), g(v)) for all v 2 V . Let

�W ✓ W ⇥W be the diagonal, which we know to be closed because W is separated (by Proposition 12.5).

In particular, the set (f ⇥ g)�1(W ⇥ W\�W ) is open and contains v0. In particular, there is an open

set O ✓ V such that f(v) 6= g(v) for all v 2 O. But O must meet U , since V is irreducible. This is a

contradiction so f(v) = g(v) for all v 2 V .

Question 3.5. (1) Show that for any m,n > 0, km
Q

kn ' kn+m.

(2) Let V ✓ km and W ✓ kn be algebraic sets. Show that V ⇥W ✓ kn+m is an algebraic set and describe

I(V ⇥W ). Show that the a�ne variety associated with the algebraic set V ⇥W ✓ kn+m is a product of

the a�nes varieties associated with V and W .
1
I am grateful to Dragos Crisan for providing this argument.
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Solution. (1) We proceed as in the proof of Theorem 10.2. The projections from ⇡1 : kn+m
! kn and

⇡2 : kn+m
! km are clearly morphisms since they are polynomial maps. Now let V be a variety and let

a : V ! kn and b : V ! km be morphisms. If there is a morphism of varieties a
Q

b : V ! kn+m such that

⇡1 � a
Q

b = a and ⇡2 � a
Q

b = b then a
Q

b = a ⇥ b, since as a set kn+m is the Cartesian product of kn

and km. Hence we only have to show that a ⇥ b is a morphism a varieties. Since a map between varieties

is a morphism i↵ it is a morphism in a neighborhood of all points of the source, we may assume without

restriction of generality that V is a�ne. So suppose that V is an algebraic set in kt (say). By definition

a (resp. b) is then the restriction to V of a polynomial map A : kt ! kn (resp. B : kt ! km). The map

A⇥B : kt ! kn+m is polynomial by definition and a⇥ b is the restriction to V of A⇥B. Hence a⇥ b is a

morphism.

(2) The ideal I(V ⇥W ) is described at the beginning of the proof of Proposition 10.8 and it is also shown

there that V ⇥W is closed in kn+m (because it is a vanishing set of an explicit ideal). It then follows from

Corollary 10.6 that V ⇥W ✓ kn+m is a product of V and W .

Question 3.6. Let a : X ! Y be a rational map between two quasi-projective varieties. Suppose that Y

is quasi-projective. Show that there is a unique representative f : O ✓ X of a (where O ✓ X is an open

subvariety of X) such that if f : U ! Y is a representative of a then U ✓ O. The open set O is called the

open set of definition of a.

Solution. Let {fi : Oi ! Y } be the set of all representatives of a. Let O := [iOi. Define the morphism

f : O ! Y in the following way. Let o 2 O and let fi : Oi ! Y be a representative of a such that o 2 Oi.

Define f(o) := fi(o). To show that this definition makes sense, we have to show that fi(o) = fj(o) if

fj : Oj ! Y is any other representative of a such that o 2 Oj . To see this, note that by definition we have

fi|Oi\Oj = fj |Oi\Oj by (a small variant of) Question 3.4 so that fi(o) = fj(o). To see that f is a morphism

note that by construction f |Oi = fi is a morphism for all i. Since the Oi cover O, f is a morphism because

a (ordinary) map between varieties is a morphism i↵ it is everywhere locally a morphism.

Question 3.7. Let n > 0 and let q : kn+1
\{0} ! Pn(k) be the map such that q(v̄) = [v̄] for all v̄ 2 kn+1

\{0}.

Let V ✓ Pn(k) be a closed subset. Endow kn+1
\{0} with the structure of variety it inherits from kn+1 as

an open subset.

(1) Show that q is a morphism of varieties.

(2) Show that I(V ) is prime i↵ V is irreducible.

(3) Show that q�1(V ) is irreducible i↵ V is irreducible.

Solution. (1) Let i 2 {0, . . . , n}. We then have

q�1(Ui) = {hX0, . . . , Xni 2 kn+1
\{0} |Xi 6= 0}

and so q�1(Ui) is an open subset of kn+1. The map q|q�1(Ui) : q�1(Ui) ! Ui is given by the formula

hX0, . . . , Xni 7! hX0/Xi, . . . , �Xi/Xi, . . . , Xn/Xii and so by Proposition 4.5, q|q�1(Ui) : q�1(Ui) ! Ui is a

morphism. Since the q�1(Ui) cover kn+1
\{0}, we conclude that q is a morphism.

(2) We first show that the minimal prime ideals containing I(V ) are homogenous. So let {pi}i2I be the

minimal prime ideals containing I(V ). Write c := #I. We proceed as in question 2.4. So let t 2 K\{0} and

let ⇢t : k[x0, . . . , xn] ! k[x0, . . . , xn] be the map of k-algebras sending xi to txi. Since ⇢1/t � ⇢t = Id, the
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map ⇢t is a bijection. Note that since I(V ) is homogenous, we have ⇢t(I(V )) = I(V ). Now

⇢t(I(V ) = ⇢t(\ipi) = \i⇢t(pi)

and thus by unicity ⇢t permutes the ideals pi (use Theorem 2.4). We conclude that ⇢tc!(pi) = pi for all

i 2 I (since the permutation group on c elements has c! elements). We now reason as in question 2.4. Let

P 2 pi. Let � := deg(P ). Since k is infinite, we can find t0, . . . , t� 2 k such that the elements tc!0 , . . . , t
c!
� 2 k

are distinct. Then we have

⇢tc!l (P ) =
X

j>0

tj·c!l P[j] 2 pi

for all l = 0, . . . , �. This gives a linear system (a Vandermonde matrix) with a unique solution in the P[j]

and so we conclude that P[j] 2 pi. Hence pi is a homogenous ideal.

So now suppose that I(V ) is a prime ideal. Suppose for contradiction that V is not irreducible. By the

discussion after Lemma 7.4, we see that there is a r > 1 and radical ideals I1, . . . , Ir such that I(V ) = \iIi
and Ii ) \j 6=iIj and Ii ( \j 6=iIj for all i. In particular, there are elements r1 2 I1 and r2 2 \j 6=1Ij such

that r1 62 \j 6=1Ij and r2 62 I1. In particular, r1, r2 62 I(V ) = \iIi. However we have r1r2 2 I(V ) so I(V ) is

not prime. This is a contradiction.

Conversely, suppose that I(V ) is not a prime ideal. Let p1, . . . , pr be the minimal prime ideals of I(V ). By

assumption, we have r > 1 and by the above claim, the pi are also homogenous. By Theorem 2.4, we know

that I(V ) = \ipi and that for all i we have pi ) \j 6=ipj and pi ( \j 6=ipj . Now note that neither p1 nor

\j 6=ipj is the irrelevant ideal. Indeed, the irrelevant ideal contains all the non trivial homogenous ideals and

if either p1 or \j 6=ipj were the irrelevant ideal then the previous two equalities would not be satisfied. Thus,

applying Z(·) to the same last two last equalities, we conclude that V is the union of two proper closed

subsets which are not contained in each other. So V is reducible.

(3) Suppose that V is not empty (otherwise, there is nothing to prove). Then V = Z(I(V )) by Proposition

7.3. In particular, I(V ) is a homogenous ideal which contains no non zero constants. Also, by construction

q�1(V ) is precisely the zero set of I(V ) in kn+1
\{0}. On the other hand, the zero set of I(V ) in kn+1 is

q�1(V ) [ {0} since any non constant homogenous polynomial vanishes at 0. Since q�1(V ) is not empty,

it contains the intersection of a line with kn+1
\{0}. By the reasoning in the second part of the proof

of Proposition 11.2, the Zariski closure of this line contains 0. Hence the Zariski closure of q�1(V ) is

q�1(V ) [ {0}.

Now suppose that q�1(V ) is irreducible (in kn+1
\{0}). We conclude from question 2.5 and the last paragraph

that q�1(V ) [ {0} is closed and irreducible. The last paragraph also implies that the ideal of q�1(V ) [ {0}

in kn+1 is I(V ). Hence I(V ) is prime (by Lemma 2.5). We conclude from (2) that V is irreducible.

Conversely, suppose that V is irreducible. Then I(V ) is prime by (2). By the first paragraph, q�1(V )[ {0}

is then closed and irreducible. Hence q�1(V ) is irreducible (in kn+1
\{0}), since it is the intersection of an

irreducible set and an open set.

Part C

Question 3.8. (1) Let U ✓ P1(k) be an open subset (for the Zariski topology). Let f : U ! P1(k) be a

morphism of varieties. Show that there exists a morphism of varieties g : P1(k) ! P1(k) such g|U = f .

(2) Show that every automorphism of P1(k) is of the form described in question 2.8.
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(3) Show that k is not isomorphic to any of its proper open subvarieties (an open subvariety is proper if it

is not equal to k).

Solution. (1) First note the following. Let O ✓ U be an open subset. Let a : O ! P1(k) be a morphism.

Then: if a extends to a morphism U ! P1(k), then this extension is unique. This follows from question 3.4.

We may thus without restriction of generality replace U by one of its open subsets.

Now since the coordinate charts U0 and U1 cover P1(k) we know that f�1(Ui) 6= ; for either i = 0 or

i = 1. Supposing that f�1(U0) 6= ;, we may thus replace U by f�1(U0) and thus suppose that f(U) ✓ U0.

Further, replacing U by U \U0 we may also suppose that U ✓ U0. Finally, by Lemma 4.1, we may without

restriction of generality suppose that u�1
0 (U) is an open a�ne subvariety with coordinate ring isomorphic

to k[x1][h�1], where h 2 k[x1]. Let now j : u�1
0 (U) ! k be the map such that u0 � j = f � u0.

By Theorem 3.7, the map j is induced by a map of k-algebras j⇤ : k[x1] ! k[x1][h�1]. Let P (x1)/hl(x1) =: j⇤(x1),

where l > 0 and where we suppose without restriction of generality that P and h are coprime. If P = 0

then j and therefore f is a constant map and then g can be defined on all of P1(k) to be the constant map

with the same value. So we may suppose that P 6= 0.

Now by construction, we have

j(X1) = P (X1)/h
l(X1)

for all X1 2 u�1
0 (U) ✓ k (see Corollary 4.4 for more details about this). Let � := max(deg(P ), l · deg(h)).

Let A(x0, x1) := x�
0P (x1/x0) and B(x0, x1) := x�

0h
l(x1/x0). Note that A and B are homogenous. Note also

that either A(0, 1) 6= 0 or B(0, 1) 6= 0 because we have either � = deg(P ) or � = deg(hl).

Now define a map P1(k) ! P1(k) by the formula

[X0, X1] 7! [B(X0, X1), A(X0, X1)]

for all X0, X1 2 k, not both zero. Note that if X0 = 0 then hA(X0, X1), B(X0, X1)i 6= 0 since either

A(0, 1) 6= 0 or B(0, 1) 6= 0. If X0 6= 0 then hA(X0, X1), B(X0, X1)i 6= 0 for all X1 because P and h are

coprime. So this map is well-defined. If [X0, X1] 2 U then by assumption we haveX0 6= 0 and h(X1/X0) 6= 0

so that

[B(X0, X1), A(X0, X1)] = [X�
0h

l(X1/X0), X
�
0P (X1/X0)] = [hl(X1/X0), P (X1/X0)]

= [1, P (X1/X0)/h
l(X1/X0)] = [1, j(X1/X0)] = u0(j(X1/X0)) = f(u0(X1/X0)) = f([1, X1/X0]) = f([X0, X1])

so the map [X0, X1] 7! [B(X0, X1), A(X0, X1)] is a morphism P1(k) ! P1(k) extending f .

(2) Let A : P1(k) ! P1(k) be an automorphism. Write 1 := [0, 1] 2 P1(k). We saw in the solution of

question 2.8 that any point of P1(k) can be moved to 1 (or any other point) by an automorphism of the

required type (ie given by an invertible 2 ⇥ 2-matrix). Composing A with a suitable automorphism of the

required type, we may thus suppose that A(1) = 1. In that case, the restriction of A to U0 gives an

automorphism U0 ' U0 (since P1(k) = U0 [ {1}). Now note that by Theorem 3.7, an automorphism

of U0 ' k corresponds to a k-algebra automorphism � of C(U0) ' k[x1]. Note that for any polynomial

P (x1) 2 k[x1], deg(P ) = dimk k[x1]/(P (x1)). Since � induces an isomorphism of k-algebras (and hence

k-vector spaces) k[x1]/(P (x1)) ' k[x1]/(�(P (x1))) we thus have deg(�(P (x1))) = deg(P (x1)). So any

automorphism of k[x1] sends x1 to ax1+b for some a, b 2 k with a 6= 0. We conclude that there are elements

a, b 2 k such that a 6= 0 and such that

A([1, X1]) = [1, aX1 + b]
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for all X1 2 k. Thus, if X0 6= 0 we have

A([X0, X1]) = A([1, X1/X0]) = [1, a(X1/X0) + b] = [X0, aX1 + bX0].

Now consider the matrix

M :=

 
1 0

b a

!

This matrix has determinant a and thus lies in GL2(k). By construction, the automorphism aM defined by

M restricts to A on U0 and hence by question 3.4 we have A = aM .

(3) Suppose for contradiction that U ( k is a proper open subvariety and that f : k ! U is an isomorphism.

Identify k with U0, where U0 ✓ P1(k) is the well-known coordinate chart. By composition, f induces a

morphism � : U0 ! P1(k). By (1), � extends to a morphism g : P1(k) ! P1(k), such that g(U0) = U . We

know that g(P1(k)) is closed by Corollary 12.10. Since g(P1(k)) also contains a non-empty subset, we see

that g(P1(k)) = P1(k). In particular, we must have g([0, 1]) = [0, 1], otherwise g is not surjective. But then

g(P1(k)) does not contain U0\U and so g is not surjective, which is a contradiction.

Alternatively, note that if U 6= k, then there are non constant invertible regular functions on U . Indeed

let a 2 k\U . Then the function x � a never vanishes on U . On the other hand there are no non constant

invertible functions on k. So k cannot be isomorphic to U .
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