Stuff that | covered in the weeks 1—4 of MT 2023:

e Definition of singular homology with coefficients in an abelian group R.
"= {(Xoyee0Xn) € R DX =1}
Ca(XiR) = @oam xR
C.(X) , 01:Ci(X) — Cy(X).
Equivalently 0|, ;. n := 0°d; where di(Xq,...,Xn.1) := (Xo,-+-,Xi-1,0,Xi,...,Xn1).-
0n0n1 =0
Z,(X) = ker(d,), Bn(X) =im(,+1), H= Z,/B,.
e Definition of singular cohomology.
C"(X;R) = Hom,(C.(X;2), R)
C'(X:R) = [No:am—xR
o™ C"(X) — C"(X)

° HO(X) - Z# of connected components

H,(X) = m,(X),, [statement without proof (it's one of the exercises)]
H.(Xi) = @ H.(X), H*(2Xi) = [T H*(X)).
e General definition of (co)chain complex.
(co)chain maps.
e achain homotopy between f.,g.:C. — D. is h.:C. — D.,, satisfying ho+oh=g-f.
chain homotopic maps induce the same map on H. (or H*).
Homotopic maps f,g: X—Y induce chain homotopic maps f.,g-:C.(X) — C.(Y) and chain
homotopic maps f*,g*:C*(Y) — C*(X).
homotopic maps f,g: X—Y induce same map on H. and H*.
X homotopy equivalentto Y = H«(X) =H.(Y) and H*(X) = H*(Y).
e A-complex, defined as a bunch of sets |, and maps d’l, — .., satisfying d'd'=d""d! if j<i.
Geometric realisation X of a A-complex: U,y I,xA" / (d'a,x) ~ (a,dx).
simplicial homology and cohomology:
ComI(X,R) := @, 4R, with differential 9,(a) := Y (-1) d'a.
e short/long exact sequences.
The LES in homology associated to a SES of chain complexes.
Relative homology and cohomology, for a pair A C X.
C.(X,A) = C.(X)/C.(A), C"(X,A;R) = Hom,(C,(X,A;Z), R)
H.(X,A) = ker(9)/im(a). H*(X,A) = ker(8)/im(d)
The SES of chain complexes 0 — C.(A) — C.(X) — C.(X,A) —» 0
The long exact sequences in H. and H* associated to a pair A C X.
Reduced (co)homology, defined as H.(X,{pt}) and H*(X,{pt}).
e Statement of excision: H.(X,A) = H.(X\E,A\E) if E C A C X and the closure of E is
contained in the interior of A.



Week 5, MT 2023:
Given a space X, and an open cover U={U;} of X, write C,Y(X;R) = ®.axm_xR Where the sum is
indexed over those singular simplices whose image lands in one of the U,.

Theorem(small simplices theorem): The inclusion C.Y(X;R) — C.(X;R) induces an
isomorphism at the level of homology.

[postpone the proof until later] We first show some consequences:

Consequence #1:
Theorem(excision): If E C A C X and the closure of E is contained in the interior of A, then the
natural map H.(X\E,A\E) — H.(X,A) is an isomorphism.

Proof: consider the open cover U = {interior of A, complement of closure of E}.
A singular simplex g:A"—X whose image lands in one of the two elements of U is either disjoint
from E, or entirely contained in A. Therefore C.Y(X,A) = C.Y(X\E,A\E).
We get two SES connected by inclusion maps:
0—-C.(A)—» C.X) > C.(X,A)—> 0
1 T T
0 — C.Y(A) — C.YX) — C.YUX,A) = CYUX\E,AE) — 0.
Passing to homology, we get two LES, and comparison maps
H.Y(A) — H.Y(A) (1)
H.Y(X) — H.Y(X) (2)
H.Y(X,A) — H.(X,A).
By an application of the 5-lemma [state the 5-lemma], since (1) and (2) are isomoprhisms, we
get that the third map is also an isomorphism
Therefore H.(X\E,A\E) = H.Y(X\E,A\E) = H.Y(X,A) = H.(X,A). QED

State and prove the 5-lemma.

Consequence #2:

Corollary:
If A C Xis an NDR pair (explain what NDR means), then H.(X,A) = reduced H.(X/A).

Proof:

Let V be the neighbourhood of A from the definition of NDR.

Compare the LES associated to A C X and the LES associated to A C X.

By using the fact that A = V induces an isomorphism in H., we see that we can once again apply
the 5-lemma, to get H.(X,A) = H.(X,V). Therefore

H.(X,A) = H.(X,V) =excson H (X\A,V\A) =excsion H (X/AV/A) = H.(X/A,pt).

(The last isomorphism is again by the same argument as above, this time comparing the LES of
V/A C X/A to the LES of pt C X/A)

QED



Consequence #3:

Theorem(Mayer-Vietoris): Whenever AUB = X and A,B are open (or whenever we have a
situation which is homotopy equivalent to the above e.g. the two closed hemispheres of a
sphere), then we have a LES

.—HANB)—>HA)eH(B)—>H(X)>H(ANB) — ...

Proof:

Letting U={A,B}, we have a SES of chain complexes
0—-C(ANB)—C.(A)eC.(B)— CYX)—0

where the maps are the ones you expect, except for a pesky little minus sign.
Therefore, we geta a LES

..—H(ANB)— H.(A)® H(B) » H.YX) - H4(ANB) — ...

But H.Y(X) = H.(X).

QED

Do some examples of Mayer-Vietoris:

— wedge of two (well-pointed) connected spaces: H.(XV'Y) = H.(X) @ H.(Y) in positive degrees.
— sphere covered by two hemispheres.

— genus 2 Riemann surfaces cut along a separating curve.

(uses that TAD? is homotopy equivalent to S’V S'; explain why that's the case.

Compute the map S' = TAD? at the level of homology by means of H; = (T7;)).

Proof of small simplices theorem:
Recall the statement: C.Y(X) — C.(X) induces an isomorphism at the level of homology.

Strategy of proof:

* Define S : C.(X) — C.(X), where S stands for "subdivide".
[Draw some examples of what S does on some 1-chains: it replaces each singular
1-simplex by two singular 1-simplices going in opposite direction, one of which has a
coefficient (-1). Then draw some examples of what S does on some 2-chains: it replaces
each singular 2-simplex by six singular 2-simplices, again with various signs.]

* Prove that S is chain homotopic to the identity map C.(X) — C.(X).

* Prove that V ceC.(X) 3 N&N such that SN(c) € C.Y(X).

Assuming the above, let us prove the surjectivity of H.Y(X) — H.(X):
Pick [c] € H.(X).
Then VN, [SY(c)] = [c] by virtue of S (hence SN) being chain homotopic to the identity.
But [SN(c)] € H.Y(X) for N large enough. v

...and injectivity of H.Y(X) — H.(X):
Pick [c] € H.Y(X) and assume that its image in H.(X) is zero.
We want to show that ¢ € im(9:C..Y(X) — C.Y(X)).
Pick C € C.(X) such that dC = ¢, and NEN large enough so that SNC € C.Y(X).
Let h be the chain homotopy between 1 and SV, so that haC + ohC = C - SNC.



That is:
hc + ohC = C - SNC.
Applying d to the above:
ohc = c - aSNC.
Thus ¢ = d(hc - SNC) as desired, provided that h maps C.Y(X) — C., Y(X).

So, when we construct h, we'll have to be careful that it doesn't increase the size of the
simplices. But this will be obvious from the construction.

Next task:
Define S : C.(X) — C.(X) and h : C.(X) — C.,4(X), and check that ho + oh =id - S.

We will construct S and h in a way which is natural in X, meaning that if f:X — Y is any map, we
will construct S and h in such a way that the following diagrams commutes:
C.(X) —S— C.(X)
I 12 (*)
C.(Y)—S— C.(Y)

and
C.(X) —h— C..4(X)
If. If. (%)
C.(Y) —h— C..4(Y) In formulas: S(f(0)) = f(S(0)). and h(f.(0)) = f.(h(0)).

If we know S and h on the singular simplex 1 € C,(A") given by the identity map

I :=id, 1 A" — A", then we can use (*) and (**) to deduce what they do on an arbitrary singular
simplex o : A" — X. Indeed, we must have S(o) = S(o-(1)) = 6-(S(1)) and h(c) = h(a-(1)) = o-(h(1)).
So it's enough to define S(1) and h(i).

By a similar argument to above, in order to check the relation hd + oh =id - S, it's enough to
check it when applied to 1 := idps, : A" — A". Indeed:
hdo + oho = hdo-(1) + dho-(1)
= a«(ha(1) + ah(1))
=01 - S1)
= 0+(1) - So:(1)
=0-S0
So it's enough to check hai + chi =1 - S1.

Let Cone: C.(A") — C..4(A") be the operation which sends a singular k-simplex o : A — A" to
the singular (k+1)-simplex Cone(o) : A" — A" defined by

Cone(0)(Xog,---,Xks1) = Xo*b + (1-X0) 0 (X4/(1-Xo), - Xix1/(1-X0)),
where b := 1/(n+1)-(1,...,1) = barycenter of A".

[draw an example of o : A — A", and then draw Cone(o) : A*"" — A"]

Lemma: the above operation satisfies ¢ ° Cone =id - Cone ° @.



[Draw a picture to show why this looks plausible, and tell the students that the proof is left as an
exercise.]

Inductive definition of S:

e For n=0, we define S : Cy(X) — Cy(X) to be the identity map.

e Forn=1, we define S(i) for 1 := id, : A" — A" by the formula S(1) := Cone(S(a1)).
The RHS makes reference to S : C,..4(X) — C,.4(X), which is assumed to be already defined by
induction.

[draw some examples in dimensions 0, 1, and 2 to unpack the above inductive definition.]

Inductive definition of h:

e For n=0, we define h : Cy(X) — C,(X) to be the zero map.

e For n=1, we define h(1) for 1 := id, : A" — A" by the formula h(i) := Cone(i - h(ar)).
The RHS makes reference to h : C,{(X) — C,(X), which is assumed to be already defined by
induction.

Finally, we check that the equation hoo + dho = o - So holds true.

We may assume by induction that the above equation holds true for all chains ¢ of degree <n
(it's easy to check for o of degree 0).

As explained above, to prove the above equation for all chains of degree n, it's enough to argue
that it holds true for 1 = idpn,.

And here we go:

dhi =t 3(Cone(i - har))

=Lemma I - hoi - Cone(di - 8han)
—induction I - hor - Cone(Sa| + haal)
—defof S 1-hdi-Si

Final task:

Prove that vV ceC.(X) 3 N€N such that SN(c) € C.Y(X).
It's enough to show this when c consists of a single singular n-simplex o:A" — X.

Pulling back the open cover U along the map 0:A" — X to an open cover U’ of A", it's enough to
show that 3 N&€WN such that SN(1) € C.U(A").

[draw iterated barycentric subdivisions of an interval, and of a triangle.
Explain that our task is to show that the simplices become smaller and smaller.]

So, if we can prove the following lemma, we're good:

Lemma;



If 0 C R"is a straight-line simplex (the convex hull of n+1 points in R") with diameter D, then
each of the (n+1)! straight-line simplices which occur in the barycenric subdivision on ¢ has
diameter < n/(n+1)-D.

Proof:

We first note that if o = conv{v,...,v,} is a straight-line simplex in R", and w € R" is any point,
then max, <, dist(v,w) = max; dist(v;,w). l.e. the maximal distance to a point in ¢ is achieved at
some vertex of o:

dist(v,w) = I xvi-w I = 1| >xi(v; - w) II < >x llv; - wll < max; lv,- wll  because ) x=1.
The diameter of a simplex is therefore given by diam(o) = max;; llv; - vjll.

Let 0 = conv{vy,...,v,} be a straight-line simplex with diameter D, and let T = conv{wy,...,w,} be a
simplex which occurs in the barycenric subdivision on 0. We need to show:
Vi,j lw; - wll < n/(n+1)-D.

If neither w; nor w; is the barycenter of o, then w; and w, are contained in some face of g, and
we're done by induction (with a better constant).

So we may asume that w; = b := 1/(n+1) = (vo +...+ V,).
We need to show: Vi llw, - bll < n/(n+1)-D.

we've seen 3 a vertex v, of ¢ such that llw, - bl < llv, - bll.
So it's enough to show: VKk llv, - bll < n/(n+1)-D.

The straight line through v, and b intersects o into a segment of length L, and the ratio of
lengths is always llv, - bll / L = n/(n+1), independently of o.

Therefore llv, - bll = n/(n+1) - L < n/(n+1) - D. QED (lemma)

This finishes the proof of the small simplices theorem. QED

Tuesday week 6. MT 2023

Universal coefficient theorem.
Basic questions that the UCT tries to answer:

* Is H.(X,R) determined by H.(X,Z)?

* Is H*(X,R) determined by H.(X,Z)? (And, if yes, how?)
input = H.(X,2)

Certainly, C.(X,R) and C*(X,R) are determined by C.(X,Z), via the formulas



C.{X,R)=C.X,2)®R and C*(X,R)=Hom,(C.(X,2), R)

Recall Hom; just means homomorphisms of abelian groups.
The subscript ; means 'z-module’, but a Z-module is the same thing as an abelian group.

And AeB (also denoted Ae,B) is the ab group whose elements are formal sums }; a®b; with
a,€A and b,eB,

modulo the equivalence relation generated by (a+a')eb ~ aeb + a'eb and by a®(b+b') ~ asb +
aeb'.

Alternatively, A®B is the quotient of ®,B by the subgroup generated by (a+a')eb - asb + a'eb,
or the quotient of @zA by the subgroup generated by a®(b+b') ~ a®b + aeb'.

In order to formulate the UCT, one needs Ext and Tor which, just like Hom and @, are bifunctors.
They take two abelian groups as input, and produce a new abelian group.

Definition of Tor and Ext:

For any abelian group A, using that evey subgroup of a free abelian group is free, one can find a
short exact sequence

00— 2ZY¥ —H-2"'"— A——> 0.

(The chain complex ... 0 — 0 — z* — Z"' is called a free resolution of A.)

One then defines

Ext(A,B) := coker (f: [, B — [, B)

and

Tor(A,B) := ker (f.. ®, B — &, B).

where we've applied the functors Hom(-,B) and -@B to the map f: z*) — Z", respectively.

Facts (I won't prove this):

Ext(A,B) is a contravariant functor of the variable A, and covariant of the variable B (just like
Hom is).

Tor(A,B) is a covariant functor of each variable, and satisfies Tor(A,B) = Tor(B,A) (just like —® —

)-

Example:
Ext(z/2,B) = B/{2b:b&EB}
Tor(z/2,B) = {bEeB :2b=0}

(can be seen by taking the free resolution of Z/2 given by Z —2— Z.)

Note that

Hom(A,B) = ker (f*: [], B — [, B) because that's ker(Hom(z*',B) — Hom(Z*,B))
and

A @ B = coker (f,: ®, B — ®, B) because that's coker(Z”¢B — Z"'¢B).

The second is harder to check:



Proof:
The map coker(Z*®B — Z*'*B) —— A®B is visibly surjective.
Because for a typical element 3, a®b, € AeB, one can lift each a, to Z°'.

We need to see that if }; xeb; € Z"'sB - 0 € A®B, then it comes from zZ*/¢B.

The expression Y, x®b, represents an element of ®g(Z").

Since its image in @A represents zero in A®B, it can be written as ), a,®(b'+b")) - a@b'y -
aeb", € @gA.

Lift each a, €A to some x'.€Z" and consider the corresponding sum ¥, x@(b"+b",) - X' @b’ -
X' @b", € @g(Z™).

That new element of ®@3(Z") differs from our original ¥ ; x@b; by something in @gker(Z" — A) =
®g(Z™).

We have written 3 x®b, € ®5(Z") as a sum of something in @g(Z*’) and something that
represents 0 in Z°'©B.

= we have written our }; x@b; € Z"'©B as something in zB.  QED

Theorem(universal coefficient theorem):
There exist natural, split short exact sequences

0 —— Hy(X,2) ® R —— H,(X,R) — Tor(H,.«(X,Z), R) —— 0
0 —— Ext(H,+(X,Z), R) —— H"(X,R) —— Hom(H,(X,Z), R) —— 0

Proof:

The proof relies on the following observation:

The short exact sequence
0 — Zy(X) — Co(X) —"— B,4(X) » 0 (*)

can be interpreted as a short exact sequence of chain complexes
0->2Z(X)—>C.(X) > B.4(X) >0

where the the 1%t and 3™ terms are viewed as chain complexes with zero differential.

(Look at associated LES? In the associated LES of homology groups,
the connecting homomorphism B.,(X) — Z..,(X) is just the usual inclusion.
l l l
0 — Z,(X) = Cu(X) — Bpn.y(X) — 0
l l }
0 - Zn1(X) - Cn1(x) - Bn2(X) - 0
l l l )

Applying the functors — ® R and Hom( —, R) to get

two new short exact sequences of chain complexes
0—2(X)*R— C.(X,R)— B.;(X)®*R— 0

and



0 —> Hom(B.(X),R) —— C*(X,R) — Hom(Z.(X),R) — 0.

(Note: These two functors do not, in general send SES to SES. But (%) is a split SES, because
B..1(X) is a free abelian group. Recall, every subgroup of a free abelian group is free.)

We get corresponding LES in (co)homology:

wo— B (X) o R— Z (X)® R—— H(X,R) — B, «(X)® R—-—Z «(X)® R — ...
and

... — Hom(Z,.,(X),R) —— Hom(B,.,(X),R) —— H*(X,R) —— Hom(Z,(X),R) —
Hom(B,(X),R) — ...

( Like above, the maps B,(X) ® R — Z,(X) ® R and Hom(Z,..,(X),R) — Hom(B,.,(X),R) are
induced by the inclusion B,(X) ® R = Z,(X). )

We rewrite this as short exact sequences:

0 — coker(B,(X)® R — Z,(X) ® R) — H,(X,R) —— ker(B,.4«(X) ®* R > Z 4(X) ® R) —— 0
and

0 — coker(Hom(Z,.1(X),R) — Hom(B,.,(X),R)) —— H*(X,R) —— ker(Hom(Z,(X),R) —
Hom(B,(X),R))—— 0

which we then recognise as

0— H,(X,2)®* R —— H,(X,R) —— Tor(H,4(X,Z), R) — 0
and
0 — Ext(H.4(X,2), R) — H*(X,R) —— Hom(H.(X,Z), R) —— 0

in view of the fact that (... — 0 — B,(X) — Z,(X)) is a free resolution of H,(X).
Here, we've used that if ... - 0 —» Z* —f— Z" is a free resolution of A, then
Ac¢R = coker (f.: ;R —» @ R)

Tor(A,R) = ker (f.. ®, R - & R)

Ext(A,R) = coker (f: [ R =[], R)

Hom(A,R) = ker (f: [ R — []; R)

Proof that these SES are split:

Recall that 0 — Z,(X) —— C,(X) —°— B,41(X) — 0 is split.

Pick a splitting, which gives us a retraction Z,(X) <— C,(X) of the natural inclusion.

The operation — ° p induces a splitting Hom(C,(X),R) «— Hom(Z,(X),R) of the natural map.

Applying this to some f € ker(Hom(Z,(X),R) - Hom(B,(X),R)) = Hom(H,(X,Z), R)

we get a map f°p : C,(X) — R that vanishes on B,(X).

That's the same as a map C,(X) — R that vanishes when precomposed with 9:C,.,(X) —
Cn+1(X)a

i.e. an element of C"(X,R) in the kernel of 3:C"(X,R) — C™"(X,R), i.e.,

an element of Z"(X,R).



We may then compose with the quotient map Z"(X,R) — H"(X,R) to get a map
H*(X,R) < ker(Hom(Z.(X),R) — Hom(B,(X),R)) = Hom(H,(X,Z), R).

This construction provides a splitting of the natural map H*(X,R) — Hom(H,(X,Z), R).

The splitting is not natural because the retraction Z,(X) «—*— C,(X) is not natural.
It cannot be picked simultaneously for all spaces X in such a way that V X—Y, the diagram
Z,(X) «—— C.(X)
! !
Zy(Y) «— Ci(Y)
commutes.

(See Hatcher p.264 for why the UCT homology short exact sequence is split.)
QED

0 — H,(X,Z2) ® R —— H,(X,R) — Tor(H,4(X,Z), R) — 0

Work out examples of UCT:
— (co)homology of RP?.

— (co)homology of Klein Bottle. (exercise)

Corollary(excision for H*):
If E C A C X and the closure of E is contained in the interior of A, then the natural map H*(X,A)
— H*(X\E,A\E) is an isomorphism.

Proof:
The universal coefficient theorem for H*(X,A) and for H*(X\E,A\E) are short exact sequences

0 — Ext(H,«(X,A; Z), R) — H*(X,A; R) —— Hom(H.(X,A; Z), R) —— 0
and
0 — Ext(H,,(X\E,A\E; z), R) —— H*(X\E,A\E; R) —— Hom(H,(X\E,A\E; z), R) —— 0.

By the naturality of the UCT, the inclusion C.(X\E,A\E) — C.(X,A) induces comparison maps that
fit into a commutative diagram.

0 — Ext(H..«(X,A; Z2), R) — H*(X,A; R) — Hom(H,(X,A; Z), R) — 0

I } !
0 —— Ext(H,1(X\E,A\E; Z),R) —— H*(X\E,A\E; R) —— Hom(H,(X\E,A\E; Z), R) —— 0


https://pi.math.cornell.edu/~hatcher/AT/AT.pdf

The 1%t and 3™ vertical arrows induce isomorphisms by the excision theorem for homology
(using that Ext( -, R) and Hom( -, R) are functors). So we're done by the 5 lemma. QED



