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CHAPTER 1

General preliminaries

1.1. General metric spaces

A metric space is a set X endowed with a function dist : X×X → R satisfying
the following properties:

(M1) dist(x, y) > 0 for all x, y ∈ X; dist(x, y) = 0 if and only if x = y;

(M2) (Symmetry) for all x, y ∈ X, dist(y, x) = dist(x, y);

(M3) (Triangle inequality) for all x, y, z ∈ X, dist(x, z) 6 dist(x, y)+dist(y, z).
The function dist is called metric or distance function.

Notation. We will use the notation d or dist to denote the metric on a metric
space X. For x ∈ X and A ⊂ X we will use the notation dist(x,A) for the minimal
distance from x to A, i.e.

dist(x,A) = inf{d(x, a) : a ∈ A}.

Similarly, given two subsets A,B ⊂ X, we define their minimal distance

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

We say that two metric spaces (X,distX) and (Y, distY ) are isometric if there
exists a bijection f : X → Y such that for every x, x′ in X,

distY (f(x), f(x′)) = distX(x, x′).

We call such a bijection an isometry.

1.2. Zorn’s Lemma

This is a set-theoretic principle: it is a form of the Axiom of Choice that is
particularly convenient for application in algebra. In order to prove various general
existence statements about groups, rings and modules we just have to accept it as
an axiom.

Let S be a non-empty partially ordered set: a set with a binary relation ≤ that
is transitive and satisfies a = b⇐⇒ (a ≤ b and b ≤ a).

An element a ∈ S then a is said to be ‘maximal’ if

a ≤ b =⇒ b = a (∀b ∈ S).

An element c ∈ S is an upper bound for a subset T of S if

∀b ∈ T. b ≤ c.

A subset T of S is a chain if T is totally ordered by ≤, i.e.

∀x, y ∈ T (x ≤ y or y ≤ x).
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The partially ordered set (S,≥) is said to be inductively ordered if every chain
in S has an upper bound in S.

Zorn’s Lemma If S is inductively ordered then S has a maximal element.

This is often applied to the case where S is a collection of subsets of some set X,
and a ≤ b means a ⊆ b. In this case, we can sometimes verify that S is inductively
ordered by checking that the union of a chain in S still belongs to S. This holds, for
example, if membership of S can be tested by looking at finite subsets (if S consists
of all abelian subgroups of a group, say, we only have to test pairs of elements).

Typical example: S is the set of proper subgroups in a finitely generated group
G = 〈X〉. Thus H ∈ S iff X * H, and (as long as X is finite) this holds for the
union of a chain if it holds for each term in the chain. It follows that G has maximal
proper subgroups.

A group that is not finitely generated may fail to have any maximal subgroups:
think of some examples!
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CHAPTER 2

Groups and their actions

2.1. Subgroups

Given two subsets A,B in a group G we denote by AB the subset

{ab : a ∈ A, b ∈ B} ⊂ G.
Similarly, we will use the notation

A−1 = {a−1 : a ∈ A}.
A normal subgroup K in G is a subgroup such that for every g ∈ G, gKg−1 = K
(equivalently gK = Kg). We use the notation K C G to denote that K is a normal
subgroup in G. When H and K are subgroups of G and either H or K is a normal
subgroup of G, the subset HK ⊂ G becomes a subgroup of G.

A subgroup K of a group G is called characteristic if for every automorphism
φ : G → G, φ(K) = K. Note that every characteristic subgroup is normal (since
conjugation is an automorphism). But not every normal subgroup is characteristic:

Example 2.1. Let G be the group (Z2,+). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z × {0} is not invariant under the
automorphism φ : Z2 → Z2 , φ(m,n) = (n,m).

Definition 2.2. The center Z(G) of a group G is defined as the subgroup
consisting of elements h ∈ G so that [h, g] = 1 for each g ∈ G.

It is easy to see that the center is a characteristic subgroup of G.

Definition 2.3. A subnormal descending series in a group G is a series

G = N0 B N1 B · · · B Nn B · · ·
such that Ni+1 is a normal subgroup in Ni for every i > 0.

If all Ni’s are normal subgroups of G, then the series is called normal.
A subnormal series of a group is called a refinement of another subnormal series

if the terms of the latter series all occur as terms in the former series.

The following is a basic result in group theory:

Lemma 2.4. If G is a group, N C G, and A C B < G, then BN/AN is
isomorphic to B/A(B ∩N).

Definition 2.5. Two subnormal series

G = A0 B A1 B . . . B An = {1} and G = B0 B B1 B . . . B Bm = {1}
are called equivalent if n = m and there exists a bijection between the sets of partial
quotients {Ai/Ai+1 | i = 1, . . . , n− 1} and {Bi/Bi+1 | i = 1, . . . , n− 1} such that
the corresponding quotients are isomorphic.
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Theorem 2.6 (Jordan-Hölder). Any two finite subnormal series

G = H0 > H1 > . . . > Hn = {1} and G = K0 > K1 > . . . > Km = {1}

possess equivalent refinements.

Proof. Define Hij = (Kj ∩Hi)Hi+1. The following is a subnormal series

Hi0 = Hi > Hi1 > . . . > Him = Hi+1 .

When inserting all these in the series of Hi one obtains the required refinement.
Likewise, define Krs = (Hs ∩Kr)Kr+1 and by inserting the series

Kr0 = Kr > Kr1 > . . . > Krn = Kr

in the series of Kr, we define its refinement.
According to Lemma 2.4

Hij/Hij+1 = (Kj ∩Hi)Hi+1/(Kj+1∩Hi)Hi+1 ' Kj ∩Hi/(Kj+1∩Hi)(Kj ∩Hi+1) .

Similarly, one proves that Kji/Kji+1 ' Kj ∩Hi/(Kj+1 ∩Hi)(Kj ∩Hi+1). �

The following properties of finite-index subgroups will be useful.

Lemma 2.7. If N C H and H C G, N of finite index in H and H finitely
generated, then N contains a finite-index subgroup K which is normal in G.

Proof. By hypothesis, the quotient group F = H/N is finite. For an arbitrary
g ∈ G the conjugation by g is an automorphism ofH, henceH/gNg−1 is isomorphic
to F . A homomorphism H → F is completely determined by the images in F of
elements of a finite generating set of H. Therefore there are finitely many such
homomorphisms, and finitely many possible kernels of them. Thus, the set of
subgroups gNg−1, g ∈ G , forms a finite list N,N1, .., Nk. The subgroup K =⋂
g∈G gNg

−1 = N ∩N1 ∩ · · · ∩Nk is normal in G and has finite index in N , since
each of the subgroups N1, . . . , Nk has finite index in H. �

Proposition 2.8. Let G be a finitely generated group. Then:
(1) For every n ∈ N there exist finitely many subgroups of index n in G.

(2) Every finite-index subgroup H in G contains a subgroup K which is finite
index and characteristic in G.

Proof. (1) Let H 6 G be a subgroup of index n. We list the left cosets of H:

H = g1 ·H, g2 ·H, . . . , gn ·H,

and label these cosets by the numbers {1, . . . , n}. The action by left multiplication
of G on the set of left cosets of H defines a homomorphism φ : G → Sn such that
φ(G) acts transitively on {1, 2, . . . , n} and H is the inverse image under φ of the
stabilizer of 1 in Sn. Note that there are (n − 1)! ways of labeling the left cosets,
each defining a different homomorphism with these properties.

Conversely, if φ : G → Sn is such that φ(G) acts transitively on {1, 2, . . . , n},
then G/φ−1(Stab (1)) has cardinality n.

Since the group G is finitely generated, a homomorphism φ : G→ Sn is deter-
mined by the image of a generating finite set of G, hence there are finitely many
distinct such homomorphisms. The number of subgroups of index n in H is equal
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to the number ηn of homomorphisms φ : G → Sn such that φ(G) acts transitively
on {1, 2, . . . , n}, divided by (n− 1)!.

(2) Let H be a subgroup of index n. For every automorphism ϕ : G → G,
ϕ(H) is a subgroup of index n. According to (1) the set {ϕ(H) | ϕ ∈ Aut (G)} is
finite, equal {H,H1, . . . ,Hk}. It follows that

K =
⋂

ϕ∈Aut (G)

ϕ(H) = H ∩H1 ∩ . . . ∩Hk.

Then K is a characteristic subgroup of finite index in H hence in G. �

Exercise 2.9. Does the conclusion of Proposition 2.8 still hold for groups
which are not finitely generated?

Let S be a subset in a group G, and let H 6 G be a subgroup. The following
are equivalent:

(1) H is the smallest subgroup of G containing S ;

(2) H =
⋂
S⊂G16G

G1 ;

(3) H =
{
s1s2 · · · sn : n ∈ N, si ∈ S or s−1i ∈ S for every i ∈ {1, 2, . . . , n}

}
.

The subgroup H satisfying any of the above is denoted H = 〈S〉 and is said
to be generated by S. The subset S ⊂ H is called a generating set of H. The
elements in S are called generators of H.

When S consists of a single element x, 〈S〉 is usually written as 〈x〉; it is the
cyclic subgroup consisting of powers of x.

We say that a normal subgroup K C G is normally generated by a set R ⊂ K
if K is the smallest normal subgroup of G which contains R, i.e.

K =
⋂

R⊂NCG

N .

We will use the notation
K = 〈〈R〉〉

for this subgroup. The subgroupK is also called the normal closure or the conjugate
closure of R in G. Other notations for K which appear in the literature are RG

and 〈R〉G.

2.2. Commutators and the commutator subgroup

Recall that the commutator of two elements x, y of a group G is defined as
[x, y] = xyx−1y−1. Thus:

• two elements x, y commute, i.e. xy = yx, if and only if [x, y] = 1.
• xy = [x, y]yx .

Thus, the commutator [x, y] ‘measures the degree of non-commutation’ of the
elements h and k.

Let H,K be two subgroups of G. We denote by [H,K] the subgroup of G
generated by all commutators [h, k] with h ∈ H, k ∈ K.

Definition 2.10. The commutator subgroup (or derived subgroup) of G is the
subgroup G′ = [G,G]. As above, we may say that the commutator subgroup G′ of
G ‘measures the degree of non-commutativity’ of the group G.
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A group G is abelian if every two elements of G commute, i.e. ab = ba for all
a, b ∈ G.

Exercise 2.11. Suppose that S is a generating set of G. Then G is abelian if
and only if [a, b] = 1 for all a, b ∈ S.

Proposition 2.12. (1) G′ is a characteristic subgroup of G;

(2) G is abelian if and only if G′ = {1};

(3) Gab = G/G′ is an abelian group (called the abelianization of G);

(4) if ϕ : G → A is a homomorphism to an abelian group A, then ϕ factors
through the abelianization: Given the quotient map p : G → Gab, there
exists a homomorphism ϕ : Gab → A such that ϕ = ϕ ◦ p.

Proof. (1) The set S = {[x, y] | x, y ∈ G} is a generating set of G′ and for
every automorphism ψ : G→ G, ψ(S) = S.

Part (2) follows from the equivalence xy = yx ⇔ [x, y] = 1 , and (3) is an
immediate consequence of (2).

Part (4) follows from the fact that ϕ(S) = {1}. �

Recall that the finite dihedral group of order 2n, denoted by D2n or I2(n), is
the group of symmetries of the regular Euclidean n-gon, i.e. the group of isometries
of the unit circle S1 ⊂ C generated by the rotation r(z) = e

2πi
n z and the reflection

s(z) = z̄. Likewise, the infinite dihedral group D∞ is the group of isometries of Z
(with the metric induced from R); the group D∞ is generated by the translation
t(x) = x+ 1 and the symmetry s(x) = −x.

Exercise 2.13. Find the commutator subgroup and the abelianization for the
finite dihedral group D2n and for the infinite dihedral group D∞.

Exercise 2.14. Let Sn (the symmetric group on n symbols) be the group of
permutations of the set {1, 2, . . . , n}, and An < Sn be the alternating subgroup,
consisting of even permutations.

(1) Prove that for every n 6∈ {2, 4} the group An is generated by the set of
cycles of length 3.

(2) Prove that if n > 3, then for every cycle σ of length 3 there exists ρ ∈ Sn
such that σ2 = ρσρ−1.

(3) Use (1) and (2) to find the commutator subgroup and the abelianization
for An and for Sn.

Note that it is not necessarily true that the commutator subgroup G′ of G
consists entirely of commutators {[x, y] : x, y ∈ G}. However, occasionally, every
element of the derived subgroup is indeed a single commutator. For instance, every
element of the alternating group An < Sn is the commutator in Sn, see [Ore51].
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2.3. Semidirect products and short exact sequences

Let Gi, i ∈ I, be a collection of groups. The direct product of these groups,
denoted

G =
∏
i∈I

Gi

is the Cartesian product of the sets Gi with the group operation given by

(ai) · (bi) = (aibi).

Note that each group Gi is the quotient of G by the (normal) subgroup∏
j∈I\{i}

Gj .

A group G is said to split as a direct product of its normal subgroups Ni C
G, i = 1, . . . , k, if one of the following equivalent statements holds:

• G = N1 · · ·Nk and

Ni ∩N1 · . . . ·Ni−1 ·Ni+1 · . . . ·Nk = {1} for all i;
• for every element g of G there exists a unique k-tuple

(n1, . . . , nk), ni ∈ Ni, i = 1, . . . , k

such that g = n1 · · ·nk.
Then, G is isomorphic to the direct product N1 × . . .×Nk. Thus, finite direct

products G can be defined either extrinsically, using groups Ni as quotients of G,
or intrinsically, using normal subgroups Ni of G.

Similarly, one defines semidirect products of two groups, by taking the above
intrinsic definition and relaxing the normality assumption:

Definition 2.15. (1) (with the ambient group as the given data) A group
G is said to split as a semidirect product of two subgroups N and H, which
is denoted by G = N oH, if and only if N is a normal subgroup of G, H
is a subgroup of G, and one of the following equivalent statements holds:
• G = NH and N ∩H = {1};
• G = HN and N ∩H = {1};
• for every element g of G there exists a unique n ∈ N and h ∈ H such

that g = nh;
• for every element g of G there exists a unique n ∈ N and h ∈ H such

that g = hn;
• there exists a retraction G→ H, i.e. a homomorphism which restricts

to the identity on H, and whose kernel is N .
Observe that the map ϕ : H → Aut (N) defined by ϕ(h)(n) = hnh−1,

is a group homomorphism.

(2) (with the quotient groups as the given data) Given any two groups N and
H (not necessarily subgroups of the same group) and a group homomor-
phism ϕ : H → Aut (N), one can define a new group G = N oϕ H which
is a semidirect product of a copy of N and a copy of H in the above sense,
defined as follows. As a set, N oϕ H is defined as the cartesian product
N ×H. The binary operation ∗ on G is defined by

(n1, h1) ∗ (n2, h2) = (n1ϕ(h1)(n2), h1h2) , ∀n1, n2 ∈ N and h1, h2 ∈ H .
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The group G = N oϕ H is called the semidirect product of N and H
with respect to ϕ.

Remarks 2.16. (1) If a group G is the semidirect product of a normal
subgroup N with a subgroup H in the sense of (1), then G is isomorphic
to N oϕ H defined as in (2), where

ϕ(h)(n) = hnh−1 .

(2) The group N oϕ H defined in (2) is a semidirect product of the normal
subgroup N1 = N × {1} and the subgroup H = {1} ×H in the sense of
(1).

(3) If both N and H are normal subgroups in (1), then G is a direct product
of N and H.

If ϕ is the trivial homomorphism, sending every element of H to the
identity automorphism of N , then N oφ H is the direct product N ×H.

Here is yet another way to define semidirect products. An exact sequence is a
sequence of groups and group homomorphisms

. . . Gn−1
ϕn−1−→ Gn

ϕn−→ Gn+1 . . .

such that Imϕn−1 = Kerϕn for every n. A short exact sequence is an exact
sequence of the form:

(2.1) {1} −→ N
ϕ−→ G

ψ−→ H −→ {1} .
In other words, ϕ is an isomorphism from N to a normal subgroup N ′ C G and ψ
descends to an isomorphism G/N ′ ' H.

Definition 2.17. A short exact sequence splits if there exists a homomorphism
σ : H → G (called a section) such that

ψ ◦ σ = Id .

When the sequence splits we shall sometimes write it as

1→ N → G
x→ H → 1.

Every split exact sequence determines a decomposition of G as the semidirect prod-
uct ϕ(N)oσ(H). Conversely, every semidirect product decomposition G = N oH
defines a split exact sequence, where ϕ is the identity embedding and ψ : G → H
is the retraction.

Examples 2.18. (1) The dihedral group D2n is isomorphic to Znoϕ Z2,
where ϕ(1)(k) = n− k.

(2) The infinite dihedral group D∞ is isomorphic to ZoϕZ2, where ϕ(1)(k) =
−k.

(3) The permutation group Sn is the semidirect product of An and Z2 =
{Id, (12)}.

(4) The group (Aff(R) , ◦) of affine maps f : R → R, f(x) = ax + b , with
a ∈ R∗ and b ∈ R is a semidirect product Roϕ R∗, where ϕ(a)(x) = ax.

Proposition 2.19. (1) Every isometry φ of Rn is of the form φ(x) =
Ax + b, where b ∈ Rn and A ∈ O(n).
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(2) The group Isom(Rn) splits as the semidirect product Rn oO(n), with the
obvious action of the orthogonal group O(n) on Rn.

Sketch of proof of (1). For every vector a ∈ Rn we denote by Ta the translation
of vector a, x 7→ x + a.

If φ(0) = b, then the isometry ψ = T−b ◦ φ fixes the origin 0. Thus, it suffices
to prove that an isometry fixing the origin is an element of O(n). Indeed:

• an isometry of Rn preserves straight lines, because these are bi-infinite
geodesics;
• an isometry is a homogeneous map, i.e. ψ(λv) = λψ(v); this is due to the

fact that (for 0 < λ 6 1) w = λv is the unique point in Rn satisfying

d(0,w) + d(w,v) = d(0,v).

• an isometry map is an additive map, i.e. ψ(a+b) = ψ(a) +ψ(b) because
an isometry preserves parallelograms.

Thus, ψ is a linear transformation of Rn, ψ(x) = Ax for some matrix A. The
orthogonality of the matrix A follows from the fact that the image of an orthonormal
basis under ψ is again an orthonormal basis.

Exercise 2.20. 1. Prove the statement (2) of Proposition 2.19. Note that Rn
is identified with the group of translations of the n-dimensional affine space via the
map b 7→ Tb.

2. Suppose that G is a subgroup of Isom(Rn). Is it true that G is isomorphic
to the semidirect product T oQ, where T = G ∩ Rn and Q is the projection of G
to O(n)?

2.4. Free abelian groups

Definition 2.21. A group G is called free abelian on a generating set S if it
is isomorphic to the direct sum ⊕

s∈S
Z.

The minimal cardinality of S is called the rank of G and denoted rank (G), the set
S is called a basis of G.

Of course, if |S| = n, G ∼= Zn. Given an abelian group G, we define its subgroup

2G = {2x : x ∈ G}.

Clearly, this subgroup is characteristic in G, i.e. is invariant under all automor-
phisms of G. Then, for the free abelian group G = ⊕s∈SZ, the quotient G/2G is
isomorphic to ⊕

s∈S
Z2,

which has natural structure of a vector space over Z2 with basis S. Since any two
bases of a vector space have the same cardinality, it follows that two bases of a free
abelian group have the same cardinality, equal to rank (G).

Exercise 2.22. Every free abelian group is torsion-free.

Below is a characterization of free abelian groups by a universality property:
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Theorem 2.23. Let G be an abelian group and X is a subset of G. The group
G is free abelian with basis X if and only if it satisfies the following universality
property: For every abelian group A, every map f : X → A extends to a unique
homomorphism f : G→ A.

Proof. Suppose that G is free abelian with the basis X. Every element g ∈ G
is uniquely represented as a sum

g =
∑
x∈X

mx · x,mx ∈ Z

with only finitely many non-zero terms. Then, we extend f to G by

f(g) =
∑
x∈X

mx · f(x).

It is clear that this extension is unique.
Conversely, assume that (G1, X1), (G2, X2) satisfy the universality property and

f : X1 → X2 is a bijection. Then f and f−1 = f̄ : X2 → X1 admit homomorphic
extensions F : G1 → G2, F̄ : G2 → G1 respectively. The compositions F̄ ◦
F, F ◦ F̄ are homomorphisms φ : G1 → G1, ψ : G2 → G2, respectively. These
homomorphisms extend the identity maps X2 → X2, X1 → X1. By the uniqueness
part of the universality property, it follows that φ and ψ are the identity maps.
Therefore, the homomorphism F : G1 → G2 is an isomorphism. Applying this to
G1 = G,X1 = X and G2 equal to the free abelian group with the basis X2 = X1 =
X, we conclude that G is free abelian with the basis X. �

Corollary 2.24. Let 0 → A → B
r→ C → 0 be a short exact sequence of

abelian groups, where C is free abelian. Then this sequence splits and B ∼= A⊕ C.

Proof. Let ci, i ∈ I, denote a basis of C. Then, since r is surjective, for every
ci there exists bi ∈ B such that r(bi) = ci. By the universal property of free abelian
groups, the map s : ci → bi extends to a homomorphism s : C → B such that
r ◦ s = Id. �

Exercise 2.25. Show that a group G is free abelian with basis S if and only
if G admits the presentation

〈S|[s, s′] = 1,∀s, s′ ∈ S〉 .

Theorem 2.26. 1. Subgroups of free abelian groups are again free abelian.
2. If G < F is a subgroup of a free abelian group F , then rank (G) 6 rank (F ).

Proof. Let X be a basis of a free abelian group F = AX . For each subset Y
of X let AY be the free group with the basis Y , thus AY embeds naturally as a
free abelian subgroup AY in F . We fix a subgroup G 6 F once and for all; for each
Y ⊂ X we let GY denote the intersection G ∩AY .

Define the set S consisting of triples (GY , B, φ), where Y ranges over the set
of all subsets of X such that GY is free with a basis of cardinality at most the
cardinality of X; the sets B are bases of such GY , and φ is an injective map
φ : B → X.

The set S is non-empty, as we can take Y = ∅.
We define a partial order 6 on S by:

(GY , B, φ) 6 (GZ , C, ψ) ⇐⇒ Y ⊂ Z,B ⊂ C, φ = ψ|B .

xii



Suppose that L is a chain in the above order indexed by an ordered set M :

{(GYm , Bm, φm),m ∈M}, (GYm , Bm, φm) 6 (GYn , Bn, φn) ⇐⇒ m 6 n.

Then the union ⋃
m∈M

GYm

is again a subgroup in F and the set

C =
⋃
m∈M

Bm

is a basis in the above group. Furthermore, the maps φm determine an embedding
ψ : C ↪→ X. Thus,

(
⋃
m∈M

GYm , C, ψ) ∈ S.

Therefore, by Zorn’s Lemma, there exists a maximal element (GY , B, φ) of S. If
Y = X then GY = G and we are done. Suppose that there exists x ∈ X \ Y . Set
Z := Y ∪ {x}. We will show that GZ is still free abelian with a basis C containing
B and φ extends to an embedding ψ : Z → X. If GZ = GY , we take C = B, ψ = φ.
Otherwise, assume that GZ/GY 6= 0. The quotient AZ/AY is isomorphic to Z and
is generated by the image x̄ of x. The image of GZ in this quotient is isomorphic
to GZ/GY and is generated by some n · x̄, n ∈ Z \ 0. Let g ∈ GZ be an element
which maps to n · x̄. The mapping GZ/GY → 〈g〉 splits the sequence

0→ GY → GZ → GZ/GY = Z→ 0

and, hence,
GZ ∼= GY ⊕ 〈g〉 .

This means that C := B ∪ {g} is a basis of GZ ; we extend φ to C by ψ(g) = x.
Thus, (GZ , C, ψ) ∈ S. This contradicts maximality of (GY , B, φ).

We conclude that G is free abelian and its basis embeds in a basis of F . �

2.5. Classification of finitely generated abelian groups

Theorem 2.27. Every finitely generated abelian group A is isomorphic to a
finite direct sum of cyclic groups.

Proof. The proof below is taken from [Mil12]. The proof is induction on the
number of generators of A.

If A is 1-generated, the assertion is clear. Assume that the assertion holds for
abelian groups with 6 n − 1 generators and suppose that A is an abelian group
generated by n elements. Consider all ordered generating sets (a1, ..., an) of A.
Among such generating sets choose one, S = (a1, ..., an), such that the order of a1
(denoted |a1|) is the least possible. We claim that

A ∼= 〈a1〉 ⊕A′ = 〈a1〉 ⊕ 〈a2, ..., an〉 .
(This claim will imply the assertion since, inductively, A′ splits as a direct sum
of cyclic groups.) Indeed, if A is not the direct sum as above, then we have a
non-trivial relation

(2.2)
n∑
i=1

riai = 0, ri ∈ Z, r1a1 6= 0.
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Without loss of generality, 0 < r1 < |a1| and ri > 0, i = 1, ...n (otherwise, we
replace ai’s with −ai whenever ri < 0). Furthermore, let d = gcd(r1, ..., rn) be the
greatest common divisor of the numbers ri, i = 1, ..., n. Set qi := ri

d .

Lemma 2.28. Suppose that a1, ..., an are generators of A and q1, ..., qn ∈ Z+

are such that gcd(q1, ..., qn) = 1. Then there exists a new generating set b1, ..., bn of
A such that

b1 =

n∑
i=1

qiai.

Proof. The proof of this lemma is a form of the Euclid’s algorithm for com-
putation of gcd. Note that q := q1 + ...+ qn > 1. The proof of lemma is induction
on q. If q = 1 then b1 ∈ {a1, ..., an} and lemma follows. Suppose the assertion
holds for all q < m, we will prove the claim for q = m > 1. After rearranging the
indices, we can assume that q1 > q2 > 0.

Clearly, the set {a1, a1 + a2, a3, ..., an} generates A. Furthermore,

gcd(q1 − q2, q2, q3, ..., qn) = 1

and
q′ := (q1 − q2) + q2 + q3 + ...+ qn < m

Thus, by the induction hypothesis, there exists a generating set b′1, ..., b′n of A, where

b′1 = (q1 − q2)a1 + q2(a1 + a2) + q3a3 + ...+ qnan.

However, b1 = b′1. Lemma follows. �

In view of this lemma, we get a new generating set b1, ..., bn of A such that

b1 =

n∑
i=1

ri
d
ai.

The equation (2.2) implies that db1 = 0 and d 6 r1 < |a1|. Thus, the ordered
generating set (b1, ..., bn) of A has the property that |b1| < |a1|, contradicting our
choice of S. Theorem follows. �

For a prime p, an abelian group A is called a p-group if every element a ∈ A
has the order which is a power of p. Clearly, each subgroup and each quotient of a
p-group is again a p-group.

Exercise 2.29. A finite abelian group A is a p-group if and only if |A| = p`

for some `.

Given an abelian group A, we let A(p) denote the subset of A consisting of
elements whose order is a power of p. Since the sum of two elements of the orders
pk, pm has the order pn, where n = max(k,m), the subset A(p) is a subgroup of A.
A group T is said to be a torsion group if every element of T has finite order. For
every abelian group G, the set Tor (G) of finite-order elements is a subgroup T of
G, called the torsion subgroup T 6 G. This subgroup of G is characteristic.

Exercise 2.30. Every finitely generated abelian torsion group is finite.

Theorem 2.31 (classification of abelian groups). Suppose that A is a finitely
generated abelian group. Then there exist an integer r > 0, and k-tuples of prime
numbers (p1, . . . , pk) and natural numbers (m1, . . . ,mk), for which

(2.3) A ' Zr × Zpm1
1
× · · · × Zpmkk .
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Here p1 6 p2 6 . . . 6 pk, and whenever pi = pi+1, we have mi > mi+1. Further-
more, the number r, and the k-tuples (p1, . . . , pk) and (m1, . . . ,mk) are uniquely
determined by A.

Proof. By Theorem 2.27, A is isomorphic to the direct product of finitely
many cyclic groups

C1 × . . . Cr × Cr+1 × . . .× Cn,
where Ci is infinite cyclic for i 6 r and finite cyclic for i > r.

Exercise 2.32. (Chinese remainder theorem) Zs × Zt ∼= Zst if and only if the
numbers s, t are coprime.

In view of this exercise, we can split every finite cyclic group Ci as a direct
product of cyclic groups whose orders are prime powers. This proves existence of
the decomposition (2.3).

We now consider the uniqueness part of the theorem. We first note that

Tor (A) = Cr+1 × . . .× Cn,

which implies that
C1 × . . .× Cr ' Zr ' A/Tor (A).

Since the subgroup Tor (A) is characteristic in A, it follows that the number r is
uniquely determined by A.

Thus, in order to prove uniqueness of pi’s andmi’s it suffices to assume that A is
finite. Since the primes pi are the prime divisors of the order of A, the uniqueness
question reduces to the case when |A| = p`, i.e. when A = A(p) is an abelian
p-group. Suppose that A is an abelian p-group and

A ∼= Zpm1 × · · · × Zpmk , m1 > . . . > mk.

Set m = m1 and let m1 = m2 = . . . = md > md+1. Clearly, the number pm is the
largest order of an element of A. The subgroup Am of A generated by elements of
this order is clearly characteristic and equals the d-fold direct product of copies of
Zpm ,

Zpm1 × · · · × Zpmd
in the above factorization of A. Hence, the number mk and the number d depend
only on the group A. We then divide A by Am and proceed by induction. �

Exercise 2.33. The number r equals the rank of a maximal free abelian sub-
group of A.

Theorem 2.27 implies that each finitely generated abelian group is isomorphic
to a direct sum of finitely many cyclic groups Ci, which are unique up to an iso-
morphism.

Definition 2.34. Generators of cyclic subgroups Ci such that

A = ⊕si=1Ci

will be called standard generators of A. (These generators, of course, are not
uniquely determined by A.)

Below are several immediate corollaries of Theorem 2.27.
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Corollary 2.35. Each finite abelian group A is isomorphic to the direct prod-
uct of abelian p-groups:

A ' A(p1)× . . . A(pk),

where p1, . . . , pk are the prime divisors of |A|.

Corollary 2.36. Every finitely generated abelian group A is isomorphic to
the direct product F × Tor (A), where F is a free abelian group.

Corollary 2.37. A finitely generated abelian group is free abelian if and only
if it is torsion-free.

Exercise 2.38. 1. Show that the torsion-free abelian group Q is not a free
abelian group.

2. Show that the image of the free abelian group F in A is not a characteristic
subgroup of A (unless A ' F or A = Tor (A)).

Corollary 2.39. Let G be an abelian group generated by n elements. Then
every subgroup H of G is finitely generated (with 6 n generators).

Proof. Theorem 2.23 implies that there exists an epimorphism φ : Zn → A.
Let A := φ−1(H). Then, by Theorem 2.26, the subgroup A is free of rank m 6 n.
Therefore, H is also m-generated. �

Exercise 2.40. Construct an example of a finitely generated abelian group
G and a subgroup H 6 G, such that there is no direct product decomposition
G = F ×Tor (G) for which H = (F ∩H)× (Tor (G) ∩H). Hint: Take G = Z× Z2

and H infinite cyclic.

Exercise 2.41. Let F be a free abelian group of rank n and B = {x1, ..., xn}
be a generating set of F . Then B is a basis of F . Conclude that n equals the
minimal cardinality of all generating sets of F .
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