1 Disclaimer

These are draft lecture notes in expanded form. If you would like to have a
coherent, checked and correct account of Analytic Topology, you are better served
by reading the relevant part of various textbooks. These notes are not carefully
checked (so will contain errors), may contain material which is not part of the
course and may not contain all material I will cover in the lectures. In particular,
motivation and order of concepts may differ and I may choose other (equivalent)
definitions.

2 Basics

I expect this to have been covered in a first Topology course.

Definition 2.1. A topology on a set X is a collection 7 of subsets of X such
that 7 is closed under finite intersections and arbitrary unions.

A topological space is a pair (X, 7) where X is a set and 7 is a topology on
X.

Note that I use the convention that [J# = @ and [0 is everything (where
everything depends on the context).

Definition 2.2. Suppose (X, 7) is a topological space and A C X.
Ais X-open or an open subset of X if and only if A € 7.
Ais X-closed if and only if X \ A € 7.

The closure of A, A, is the intersection of all closed subsets of X containing
A. TIf the space/topology with respect to which the closure is taken is unclear

we will use 4™ .
The interior of A, int (A), is the union of all open subsets of X contained in

A.

Lemma 2.3. Suppose X is a topological space and A C X.
1. Finite unions and arbitrary intersections of closed sets are closed.
2. A is closed and
A={zxeX:YopenUCXUNA#D}.
Hence A is the smallest closed set containing A.
3. int (A) is open and
int(A)={xeX:FopenUCX zecUCA}.

Hence int (A) is the largest open set contained in A.



Definition 2.4. Suppose X, Y are topological spaces and f: X — Y a function.
f is continuous if and only if the preimage of every Y-open set under f is
X-open.
f is a homeomorphism if and only if f is a continuous bijection with contin-
uous inverse.

Lemma 2.5. Suppose X,Y are topological spaces and f: X — Y a function.
TFAE:

1. f is continuous.

2. the preimage of every Y -closed set under f is X -closed.

3. for every A C X, f(Z) C f(A).

Definition 2.6. Suppose X is a topological space with topology 7 and A C X.
The subspace topology on Ais {UNA: U € 7}.

Lemma 2.7. Suppose X is a topological space, Y C X and ACY.

Then ZY = YQZX.
Lemma 2.8. Suppose X,Y are topological spaces, f: X =Y a function, A C
X and B CY (equipped with the subspace topology).

If f(X) C B then f is continuous if and only if f': X — B;x — f(x) is
continuous.

If f is continuous then f|a is continuous.

Lemma 2.9 (Pasting Lemma). Suppose X,Y are topological spaces, A, B closed
X such that AUB=X, f: A—=Y,g: B—Y functions.
If f,g are continuous and agree on AN B (i.e. fla= gla then the function

flz); z€A

is well-defined and continuous.
g(z); r€B

hszg:X%Ygivenbya:»—){

3 Bases, Subbases

Definition 3.1. Suppose (X, 7) is a topological space. A collection B of subsets
of X is a basis (of open sets) for 7 if and only if

(B0) BC
(Bl) VUer3IB CB: U=£8.

We say that B generates 7 or that 7 is generated by (the basis)
If a basis for a topological space has been fixed, we call its elements basic
open sets.

Note that (B1) can be restated as VU e Ve € U 3Be Bax € BCU.

Lemma 3.2. Suppose X is a set and B is a collection of subsets of X such that
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(B0’) X =B;
(B1’) YVA,BeB3IB CBANB=JB.

Then B is a basis for a unique topology T on X, namely

{Us: 8 cB}.

Proof. Tt is straightforward to check that the given 7 is a topology (note that
we use the convention that |J@ = 0), that B is a basis for it and that if o is a
topology on X with basis B then 7 = 0. O

Note that (B1’) is satisfied if B is closed under binary (finite) intersections.
Also (BY1) is of course equivalent to

VA, BeBVxe ANB3ICeBxecCCANB.

Definition 3.3. Suppose (X, 7) is a topological space. A collection S of subsets
of X is a subbasis (of open sets) for 7 if and only if

{ﬂf: F finite C S}

is a basis for (X, 7).
We say that S generates 7 or that 7 is generated by (the subbasis) S.

If a subbasis for a topological space has been fixed, we call its elements
subbasic open sets.

Lemma 3.4. Suppose X is a set and S a collection of subsets of X .
Then

Bs = {ﬂf: F finite C S}

satisfies [BO’] and [B1’] and hence S is a subbasis for a topology 7 on X.
Moreover, this topology is uniquely determined by S.

Proof. Note that (1 = X (by convention in this course) so that B satisfies [B0’].
By construction Bs is closed under binary intersections so that [B1’] holds as
well.

Uniqueness follows from 3.2. O

Lemma 3.5. Suppose X,Y are topological space, S is a subbasic for Y and
f: X =Y is a function. Then f is continuous if and only if for each subbasic
open set (of Y') has open preimage.

Proof. Preimages commute with unions and intersections. O



3.1 Examples
1. If (X, d) is a metric space then {B. (z) : x € X, e > 0} is a basis for X.
2. {(a,b): a,b € Q} is a basis for R
3. {[a,b): a,b € R} is a basis for the Sorgenfrey line.

4. If X is a linearly ordered space, {(—00,a): a € X} U{(a,0): a € X} isa
subbasis for the order topology on X.

5. {UxR: U open CR}U{R xU: U open C R} is a subbasis for R2.

4 The Lattice of Topologies

Definition 4.1. Suppose X is a set.

Write T for the set of all topologies on X and define a relation < on 7T by
T <o <= 71 C o, in which case we say that 7 is coarser/weaker/smaller than
o and o is finer/stronger/greater than .

Lemma 4.2. If 7;,i € I are topologies on X then so is T = (\;c; 7. Moreover,
T 1is the greatest topology contained in each of the ;.

Proof. Tt is straightforward to verify the conditions and check the last sentence.
O

Lemma 4.3. (T,<) is a complete lattice, i.e. a partially ordered set such that
any (non-empty) subset T' of T has a sup and inf.

Proof. That < is a partial order (reflexive, transitive, anti-symmetric) is imme-
diate. That infs exist follows from the previous lemma (i.e. inf 7/ = () 7") and
finally sup 7’ =inf {7 € T: Vo € T' : 0 < 7} (noting that P (X) is the greatest
topology on X so the inf is well-defined). O

Note that |J7; is, in general, not a topology but only a subbasis for the
topology sup 7;.

Lemma 4.4. The topology generated by a subbasis is the smallest topology con-
taining this subbasis.

Proof. Let T be the topology generated by a subbasis §. Clearly S C 7 since
N{A} = A for each A.

If o is a topology containing S then o must contain all finite intersections of
elements of S, i.e. Bs. But every element of 7 is the union of elements of Bg
and hence must be in ¢. Thus 7 C ¢ as required. O



5 Initial Topology and Products

Theorem 5.1. Suppose X is a set, (Y;,7;),i € I is a family of topological spaces
and f;: X = Y;,i € I is a family of functions. There is a unique topology T on
X, called the initial topology on X with respect to the family {f;: i € I}, such
that:

(Test Condition) for every topological space Z and for every function f: Z — X, f is con-
tinuous with respect to T if and only if for everyi € I f;o f is continuous.

This unique topology T is generated by the subbasis {fi_l U):iel,Uc€ 7'7;},
Moreover, T is the coarsest topology on X such that all the f; are continous.

Proof. We first show uniqueness: suppose o and 7 are two topologies satisfying
the Test Condition and consider the map id, ,: (X,7) — (X, 7). Since id,  is
continuous and 7 satisfies the Test Condition, each f; = f; oid, , is continuous
(from 7 to 7;). Now consider id,,: (X,7) — (X,0). Since f; oid,;, = f; is
continous (from 7 to 7;) and o satisfies the Test Condition, id,, is continuous
so that ¢ C 7. By symmetry 7 C ¢ and hence uniqueness follows.

Clearly each f; is continuous from the given 7.

For existence, we only need to verify that the given 7 has satisfies the Test
Condition: so suppose that Z is a topological space and f: Z — X is a function.
If f is continuous (into (X, 7)), then, since each f; is continuous, f; o f is a
composition of continuous function so continuous. Conversely, if each f; o f is
continuous and S is subbasic open then S = f; ! (U) for some open U CY; so
that f~1(S) = (fio f)~' (U) is Z-open.

The final sentence follows from elementary set algebra. O

Definition 5.2. Suppose X;,i € I are topological spaces. The (Tychonoff)
product topology on P = [],.; X; = {f: I— U Xi:Viel f(i) € XZ-} is the
initial topology with respect to the natural projections m;: P — X, given by
mi(f) = f(@).

Lemma 5.3. Suppose X;,i € I and Y are topological spaces.

The product topology has basis consisting of all sets of the form [];.; Ui
where each U; is an open subset of X; and for all but finitely many ¢ € I we
have U; = X;. When no explicit basis for the product topology is given, we
assume that this basis has been selected.

A function f: Y — [, X; is continuous if and only if all of the compositions
mio f:Y — X, are continuous and the product topology is the unique topology
on [, Xi satisfying this result.

Proof. Straightforward verification: we note that
HUZ = n 7T2'71 (Ul) = ﬂ 71'1'71 (Ul)
iel iel i€L:U#X,;

so that the given collection of sets is indeed a basis for the product topology.
The sentence about functions follows immediately from the fact that the
product topology is the initial topology with respect to the ;. O



Definition 5.4. Suppose X and Y;,7 € I are sets and f;: X — Y;,i € I are
functions. The diagonal map of the f; is the map

Aicrfi: X = [[Yisz = (fix))ier.
Lemma 5.5. If all the f; are continuous then so is the diagonal map.

Proof. By the Test Condition for initial topologies (recall that the product topol-
ogy is the initial topology with respect to the ;) it is enough to observe that
foreachi € I

T; © A= fl

6 Low Separation Properties

Definition 6.1. Suppose X is a topological space.

X is Ty if and only if for any distinct z,y € X there is open U containing
exactly one of x and y.

X is Ty if and only if for any ordered pair (x,y) € X2\ A of distinct
points there is open U C X such that x € U # y (which is equivalent to
relUCX\{y}).

X is Ty (Hausdorff) if and only if for any distinct =,y € X there are disjoint
open U > z, V > y if and only if for any distinct x,y € X there is open U such
that

reUCUCX\{y}.

X is T3 (regular) if and only if X is T} and for any = ¢ C closed C X
there are disjoint open U > z,V O C if and only if X is 77 and for any
x & C closed C X there is open U such that

reUCUCX\C.

X is T35 (Tychonoff) if and only if X is T} and for any x ¢ C closed C X
there is a continuous f: X — [0, 1] such that f(x) =0, f(C) C {1} if and only
if X is Ty and for any « € U open C X there is a continous f: X — [0, 1] such
that f(z) =0and C (X \U){1}.

Lemma 6.2. Suppose X is a topological space and B a basis for X.

Then X is regular (resp. Tychonoff) if and only the condition holds for basic
open sets.

Also in the Tychonoff condition, we can swap the roles of 0 and 1.

Proof. The forward directions are clear.

For the backwards directions: if # € U open X find basic open B with
x € B C U, apply the condition to the pair , B and observe that the open set
(resp. continuous function) also works for the pair z, U.

For the last sentence, note that z — 1 — z is a homeomorphism of [0, 1] to
itself swapping 0 and 1. O



Lemma 6.3. X is Ty if and only if every singleton {a} of X is closed.
Thus T35 = T3 = To, = T1 = Ty.

Proof. Suppose X is Ty and « € X. For each y € X \ {z} find U, > y such that
z € X\ Uy. Then
{z} = ﬂ X\ Uy
yF#w
is an intersection of closed sets, so closed.

For the converse, let x,y € X be distinct. By assumption U = X \ {y} is
open and clearly z € U & y.

For the (non-trivial) implications: If X is T35, « € X and C closed C X
with z ¢ C, let f: X — [0,1] be a continuous function with f(xz) = 0 and
f(C) C{1}. Then U = f~1([0,1/3)) and V = f~1((2/3,1]) are the required
open sets.

If X is T3 then it is T} so singletons are closed. If z,y € X are distinct then
apply regularity to & {y} closed C X. O

Lemma 6.4. For i < 3.5 all the T; are preserved by subspaces and products.

Proof. Suppose X and X,k € K are topological spaces satisfying T; (for some
i <3.5) and A C X. We write P =[], X for the Tychonoff product.

Ty, subspace: If x,y € A are distinct, let U be X-open containing exactly
one of x and y. Then ANU is as required.

T1, subspace: As for Tj.

T, subspace: As for T; (intersect both the open sets).

T3, subspace: Suppose x € A and C C A is A-closed. Then x & c =D

—A —X
since C = C = ANC" and x € A. Thus we can apply regularity to x &
D closed C X and intersect the open sets we obtain with A.

T35, subspace: As for T3, except we of course restrict the continuous map to

A.

Ty, products: If z,y € P are distinct, then there is some k& € K such that
xp = g (¢),yxr = 7k (y) are distinct. Thus in X; we can find and open U
containing exactly one of x, yr. Then 7! (U) is as required.

T1, products: As for Tj.

T, products: As for Tj.



T3, products: It is enough to check the condition for standard basic open
sets. Solet x € P and U = (,cp 7" (Ux) be basic open (i.e. each Uy is an
open subset of Xj, and F' is a finite subset of K). If x € U then for k € F,
r, = mp(x) € Uy so that there is Xg-open Vi and Xj-closed Dy, = Vj, with
xy € Vi € Dy C Ug. Then

zeV=\m '(Vi) SD=(]m "(Dy)CU
keF keF

and V is open and D closed so that V C D as well.

T35, products: It is enough to check the condition for standard basic open
sets. Solet © € P and U = (,cp 7' (Ux) be basic open (i.e. each Uy is an
open subset of X and F is a finite subset of K). If x € U then for k € F,
xp = m(z) € Uy so that there is a continuous function fr: X — [0, 1] such
that fr(xz) = 1 and fx (X% \ Ux) C {0} (note that 0 and 1 have interchanged
roles).

Now consider the functions

g P — HXk
keF

gHg‘Fa

II #e: I Xe = 10,107

kel keF
(Tr)ker = (fe(zr))rer

and
m: [0,1]F = [0,1]
(’r’k) — HTk.
k

Each of them is continuous (the first two by the Test Condition, the last by
elementary Analysis) and hence so is there composition

h:monkoTrF:P—>[0,l].
k

Tt is straightforward to check that h(z) =1 and h (P \ U) C {0}. O

Theorem 6.5 (The Embedding Lemma). Suppose X is a topological space,
Y;, 7 € I are topological spaces and f;: X — Y;,i € I are continuous such that

e the f; separate points, i.e. for distinct x,y € X there is i € I with f;(x) #
fily);



. {ffl(U):iEI,U open QY;} is a basis for X.

Then the diagonal A = Aicrfi is an embedding of X into [[,c;Y:, i.e. a
continuous map which is a homeomorphism onto its image.

Proof. The diagonal is continuous and as the f; separate points, it is injective.
It remains to check that it is open into f(X): so let U C X be basic open,
i.e of the form f;~* (V) for some i € I, V open C Y;. Then by construction
AWU) C m Y (V)NA(X). On the other hand, if y € 7,~1 (V) N A (X) then
we can find z € X with A(x) = y and fi(z) = m(A(x)) = mi(y) € V so that
x € f;7' (V) giving D. Thus basic open sets are mapped to A (X)-open sets.
Finally, images and unions commute so the result follows. O

Corollary 6.6. If X is Ty then the two conditions in the previous theorem are
equivalent to

e the f; separate points from closed sets, i.e. for x & C open C X there is
1 € I and disjoint open U,V CY; with f(z) e U, f(C) C V.

Definition 6.7. The Sierpinsky space S is ({0,1},{0,{1},{0,1}}).

Theorem 6.8. A topological space is Ty if and only if it is homeomorphic to a
subspace of some S*.

A topological space is Ts5 if and only if it is homeomorphic to a subspace of
some [0,1]".

Proof. For the first result, apply the Embedding Lemma to the family xy, U open C
X.

For the second result, apply the Embedding Lemma to the family of all
[0, 1]-valued continuous functions. O

Lemma 6.9. A topological space X is Hausdorff if and only if the diagonal
A={(x,x): x € X} is closed in X x X.

Proof. Suppose X is Hausdorff. If (x,y) € X2\ A then x # y so by Hausdorffness
there are disjoint X-open U 2 z,V > y. As U,V are disjoint U x VN A =)
so that (z,y) € U x V C X2\ A. As (z,y) was arbitrary this shows that A is
closed.

Suppose now that A is closed and z,y € X are distinct. Then (z,y) € A so
there is a basic open W = U x V (in X?) with (z,y) € W € X \ A and U,V
open in X. Then UNV = () so that U > z,V > y are as required. O

Lemma 6.10. Suppose f,g: X — Y are continuous functions and Y a Haus-
dorff space. Then {z € X: f(z) = g(x)} is closed in X.

Proof.
{zeX: f(z)=g(2)} = (fAg) "' (A).



7 Normality

Definition 7.1. Suppose X is a topological space.

X is normal if and only if X is T7 and for every pair C, D of disjoint closed
subsets of X there are disjoint open subsets U,V of X such that C' C U and
DCV.

Equivalently (by duality) X is normal if and only if X is 77 and for every
closed C C U open C X thereisopen VC X withCCV CV CU.

Definition 7.2. Suppose X is a topological space.

X is functionally normal if and only if X is T7 and for every pair C, D of
disjoint closed subsets of X there is a continuous function f: X — [0, 1] such
that f(C) C {0} and f (D) C {1}. We call f a Urysohn function for the pair
C,D.

Equivalently (by duality) X is functionally normal if and only if X is 77 and
for every closed C' C U open C X there is a continuous function f: X — [0, 1]
with f (C) C {0} and f (U) C [0,1).

Lemma 7.3. Suppose X is a functionally normal topological space. Then X is
normal.

Proof. For disjoinct closed C, D with Urysohn function f consider U = f~1(]0,1/2)),
V= £ ((1/2,1)). 0

Theorem 7.4 (Urysohn’s Lemma). Suppose X is a topological space.
If X is normal then X is functionally normal.

Proof. Suppose we have a closed C C U open C X.

Constructing the Onion Slices Let D = {d,,: n € w} be a countable dense
subset of (0,1) (e.g. D = QN (0,1) or D as the dyadic rationals) and write
D_; = {0,1} and D,, = {do,...,d,} U{0,1} = {d,} UD,,_1 for n € w. Let
70 = (C and U1 =U.

By (strong) induction on n we will construct open sets Uy, ,n € w such that

Induction Hypothesis for r,s € D,, with r < s we have U, CU,

(note that we never talk abaout Up or U; here!).
Suppose we have defined Uy, for k < n.
Let
L={deD,_1:d<d,} G={d€Dy_1:d,<d}

and note that these are both finite non-empty sets. Let | = max L and g = min G
and apply normality to U; C U, to obtain open Uy, with U, C Ug, C Uidn C Uy.
By choice of [ and g (and transitivity of C) the inductive hypothesis has been
preserved.
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Defining the Urysohn function We define f,g: X — [0,1] by
f@)=inf{de D:x €Uy} g(x) =inf{d e D: z €Uy}

(treating inf ) = 1).

Next we claim that f = g: clearly g(z) < f(x) (as if € Uy then z € Uy).
Next, if g(z) < r € [0, 1] then there are e,d € D with g(z) < e < d < r such
that x € U, C Uy, giving f(z) <d < r. Hence f(z) < g(z), as required.

Continuity For r € (0,1) we see: if f(x) € [0,r) then there is d € D with
f(z) < d < rsothat x € Uy and f (Ug) C [0,7); if on the other hand f(x) =
g(z) € (r,1] then there is d € D with r < d < g(z) so that z ¢ U, and
g (X \Ug) C (r,1]. Hence f is continuous.

Finally observe that if x € C' = Uy then z € Uy for all d € D so that f(z) =0
and if # ¢ U = U; then o € Uy for all d € D so that g(z) = 1. O

The following example shows that subspaces of normal spaces need not be
normal. Note that you can replace Xy with any uncountable set.

Example 7.5. Let T'= 8y U {r} with topology P (R;)U{T" \ F': F finite C T}
and let R = Ng U {t} with topology P (Xg) U{R\ F: F finite C R}.

Note that T and R are compact Hausdorff so that T x R is compact Hausdorff
and hence normal.

Let X =T x R\ {(r,0)}.

X is not normal, specifically the disjoint X-closed subsets C = ¥y x {t}
and D = {r} x Ry cannot be separated by open sets. For suppose U 2 D
is open. For each n € Ny we can then choose some finite F,, C N; such that
(r,n) € (T\ Fy) x{n} CU. Letting & € Ny \ U, ¢y, Fn (the latter is non-empty
as N is uncountable but | J,, F}, is a countable union of finite sets so countable),
we see that {a} x Ny C U and hence (o, t) € UNC.

7.1 Urysohn’s Metrization Theorem

Definition 7.6. A topological space is metrizable if and only if there is a metric
on that induces the topology of the space.

Theorem 7.7. A compact Hausdorff space is metrizable if and only if it is
second countable.

Proof. For the forward direction note that compact implies Lindeloef and Lin-
deloef metric spaces are second countable (Sheet 1).

‘We now prove the reverse implication. By Sheet 0, compact Hausdorff spaces
are normal, hence functionally normal and Tychonoff.

Thus

B={f"(U): f: X —[0,1] continuous ,U open C [0,1]}

is a basis for X.
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By Sheet 2, Q1 and the fact that X has a countable basis, there is a countable
B’ C B which is still a basis for X. Hence there are countably many continuous
functions f;: X — [0,1],7 € N such that

B C{fi ' (U):ieN,Uopen C[0,1]} = B".

Observe that B” is thus still a basis for X and X is T} so that f;,i € T
satisfies the conditions for the Embedding Lemma.

Thus Ajenfi: X — [0,1]Y is a homeomorphic embedding. But [0, 1]Y is
metrizable (Sheet 1) so that X is homeomorphic to a subspace of a metrizable
space and hence metrizable. O

Note that we can replace ‘compact Hausdorff’ with ‘Lindelof regular’ or
‘separable normal’ in the above theorem.

Alternative proof. Instead of appealing to Sheet 2, Q1, fix a countable basis
B of X. Note that there are only countably many pairs (U,V) € B2?. For
each such pair which satisfies U C V, use Urysohn’s Lemma (i.e. functional
normality) to find a continuous f = fyv: X — [0,1] such that f (U) C {0}
and f (X \ V) C {1}. Note that then U C f~1([0,1/2)) C V.

We then claim that

{fU,V_1 ([Ov 1/2)) : (U,V) € BQaU - V}

is a basis for X and hence the family fyv, (U, V) € B? with U C V satisfies the
conditions of the Embedding Lemma.

To prove the claim, let x € W open C X. Find V € Bwithz e V C W.
Use regularity to find open W' such that € W’ C W’ C V and then find
U € B such that z € U C W’. We thus have (U,V) € B? such that z € U C
UC fuv " ([0,1/2)) CV C W as required.

O

8 Paracompactness

8.1 General Theory of Paracompactness

Definition 8.1. Suppose X is a set and A is a collection of subsets of X.
A collection A’ is a refinement of A if and only if VA’ € A9A" € A" A’ C A.

Definition 8.2. Suppose X is a topological space.

A collection A of subsets of X is locally finite if and only if Vo € X3 open U >
r {AeA: ANU # 0} < No.

A collection A of subsets of X is discrete if and only if V& € X3 open U >
x {AcA: ANU #£ 0} < 1.

A collection A of subsets of X is closure preserving if and only if for every
A CA Unea A=Unecn A
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Lemma 8.3. Suppose X is a topological space and A a collection of subsets of
X.

If A is discrete then it is locally finite.

If A is locally finite then it is closure preserving.

Proof. The first statement is trivial (1 < Np).

For the second, suppose A" C A. As |JA’ is a closed set containing each
A € A’ it contains each A for A € A’ yielding (JA' 2 Uyen 4.

Thus all we need to show that J,. 4 Ais closedin X. Soletz € X\U e 4
and find open U 3 z such that Ay = {A € A’: UN A # 0} is finite. Note that
since U is open, UNA # 0 <= UNA#Qsothat V =U\Uycy, Ais an

open set containing = which is contained in X \ |J ¢ 4/ A O

Definition 8.4. Suppose X is a topological space.
X is paracompact if and only if every open cover of X has a locally finite
open refinement covering X.

Lemma 8.5. A compact space is paracompact.

Lemma 8.6. Suppose X is a paracompact topological space and C a closed
subset of X.

Then every X-open cover of C' has an X-locally finite X-open refinement
covering C.

Proof. Suppose U is an X-open cover of C. Then Y U {X \ C} is an X-open
cover of X, so has a locally finite open refinement V covering X. We claim that
W={V eV: VNC # 0} is the required X-locally finite X-open refinement of
U covering C.

The only non-trivial claim is that W is a refinement of /. For this, note
that if VN C # 0 then V € X \ C so there is U € U with V C U. O

Lemma 8.7. A closed subspace of a paracompact space is paracompact.

Proof. Suppose C'is a closed subspace of a paracompact space X. Let U be a C-
open cover of C' and for each U € U choose X-open Viy C X such that VyNC =
U. Then {Vyy: U € U} is an X-open cover of C' and by the previous lemma has
a X-locally finite open refinement V covering C. Let W ={V NC: V € V} and
check that this is the required C-locally finite C-open refinement of I covering
C. O

Theorem 8.8. A paracompact reqular space is normal.

Proof. Suppose X is paracompact regular and that C, D are disjoint closed
subsets of X. For ¢ € C use regularity to find open U, such that ¢ € U, C U, C
X\ D. Then {U.: ¢ € C} is an X-open cover of C and thus has a locally finite
open refinement V covering C. We then note that V is closure preserving and
since V refines {U,: ¢ € C'} we have



as required. O

Definition 8.9. Suppose X is a topological space and P is a property of families
of subsets of X (e.g. ‘locally finite’).

A family A of subsets of X is o-P if and only if there are families A,,,n € N
of subsets of X such that each A, is P and A =J,, An.

For example a family A is o-locally finite if and only if it can be written as
a countable union of locally finite families.

Lemma 8.10. Suppose X is a regqular space.
TFAE:

1. X is paracompact.
2. X has a o-locally finite open refinement covering X .
3. every open cover of X has a locally finite refinement covering X.

4. every open cover of X has a locally finite closed refinement covering X.

Proof. Exercise (Probably). O

8.2 Paracompactness and Metrizability

Theorem 8.11 (Stone’s Theorem). Suppose X is a melric space.
Then X is paracompact and in fact every open cover of X has a o-discrete
open refinement covering X.

Proof. Suppose U is an open cover of X. Well order U by < (by the well-ordering
principle).
For each U € U and n € w we define

U={zeU:VW<UzxzgV},

VU’n = {.T € U/I Bg/Qn(.’L’) g U}

and
WU,n = U Bl/?" (1’)

z€VU n

We claim that for each n € w, W,, = {Wy,,: U € U} is a discrete family of open
subsets of X refining /. The only non-trivial claim is discreteness. So assume
y1 € Wuy m,y2 € Wy, n with Uy # Us and without loss of generality U; < Us.
For each i = 1,2 pick x; € Vi, , such that y; € By/on(z). Since z € Uy we
have 29 ¢ Uy and hence d(x1,z2) > 3/2™. But then by the triangle law

d(y1,y2) > d(x1,22) — d(y1,z1) — d(y2,22) > 1/2".

Hence the By jon+1(x),z € X witness discreteness of W,.
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Next observe that (J,, W, is a cover of X: if z € U' C U for some U € U
then for sufficiently large n we have Bsjon(x) C U.

Hence |J,, Wi, is a o-discrete open refinement of X covering X as required.

As o-discrete certainly implies o-locally finite, the previous lemma shows

that X must be paracompact.
O

It is possibly to define W{]n such that they form a locally finite family: we
define by recursion on n

Wi, = U{Bl/gn(x); 2 € Vo \|J{Wi, 4t k < n, Uy eu}}.

We can then manually check that this is locally finite - see Engelking Theorem
4.4.1 for details.

Lemma 8.12. FEvery metric space has a o-discrete basis.

Proof. For every n € N, consider the open cover U,, = {Ba-n(x): z € X} and
use the previous theorem to obtain a o-discrete open refinement W,, of U,,.
Then observe that [ J,, W, is still a basis for X (easy) and is o-discrete. [

Lemma 8.13. Suppose X is a normal space with a o-discrete basis B = J,, By
(where each B, is discrete).
For every open U C X there is a continuous f: X — [0,1] such that U =

F7H(0,1]).

Proof. Let U be an open subset of X and for eachn € Nlet U, = J {B €B,:BC U}.
Since B is a basis and X is regular, U = |J,, U,. But as each B,, is discrete and
hence locally finite, U,, = |J {E: BC U} C U so that UnU7n = U. Thus every
open set is a countable union of closed sets (and, by duality, every closed set is
a countable intersection of open sets).

Now apply Urysohn’s Lemma for each n € N to choose continuous f,: X —
[0,27"] such that f, (U,) € {27"} and f, (X \U) C {0}. By the M-test
f=>", fnis continuous and f (X \ U) C {0} and f (U) C (0,1] as claimed. [

Definition 8.14. Suppose k is any cardinal.
The hedgehog of spininess k, H, is the quotient of [0,1] x x obtained by
identifying all the points (0, @), « € k.

Lemma 8.15. The hedgehog of spininess k is metrizable with metric

Y z=0
ORISR
vty a#s

Hence a countable product of hedgehogs is metrizable.

Proof. Straightforward verification. O
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Theorem 8.16. Every normal space in with a o-discrete basis is a subspace of
a product of countably many hedgehogs and thus metrizable.

Proof. Suppose X is a normal space with a o-discrete basis B = |J,, B,, where
each B, is a discrete family of open sets and write k,, = |B,|.

By the lemma above, for each B € B,, we can find a continuous fp: X —
[0,1] such thath B = fz~" ((0,1]).

Define the functions f,: X — H, by

fula) = {fB(x) reBe b
0 otherwise
First note that by discreteness of B, f, is well-defined (each x belongs to at
most one B € B,,).

Next, f, is continuous: fix x € X and open U 3 z such that U meets at most
one B € B,,. If U meets no B € B,, then f,, = 0 on U and hence is continuous at
z. If U meets a unique B € B,, then f, = fp on U and again f,, is continuous
at .

By definition of f,, we have B, C {f, ' ((0,1] x {a}) : & € K, } and hence
the family f,,n € N satisfies the conditions of the Embedding Lemma (noting
that X is T1).

Thus A, f,: X = [[,, Hx, is an embedding of X into the product of count-
ably many hedgehogs. O

We can summarize the result of this section by:
Theorem 8.17. TFAE:
1. X is metrizable
2. X is normal and has a o-discrete base.
8. X 1is a subspace of a product of countably many hedgehogs.

Examining the proofs carefully, we can do better: we can replace o-discrete
by o-locally finite and we can insist that each of the hedgehogs has spininess
w(X).

Finally, with a bit of work we can show that regular spaces that have a o-
locally finite base are normal (essentially having a o-locally finite base implies
that the space is paracompact) and hence we can replace normality in the second
condition by regularity to obtain:

Theorem 8.18 (Bing-Nagata-Smirnov Metrization Theorem). A topological
space is metrizable if and only if it is reqular and has a o-locally finite base.
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9 Filters

9.1 Abstract Filters

Definition 9.1. Suppose X is a set.
A filter on X is a set F C P (X) such that

D& F#0;
e F is closed under finite intersection;
e F is closed under supersets.

A filter U which is maximal with respect to C is called an ultrafilter.
Two collections F,G C P (X) mesh, written F#G, if and only if VF €
FVYG € G FNG # (. In this case we also use F#G for {FNG: F € F,G € G}.
If F and/or G consist are singletons, we may omit the curly braces, i.e. if
F = {F}, we write F#G instead of F#G.
A basis for a filter F is a collection B C F such that F = {F C X: 3B e B B C F}.
A collection C C P (X) has the finite intersection property if and only if for
every finite C' C C we have [C' # 0.

The following lemmas are elementary:

Lemma 9.2. Suppose X is a set. A non-empty collection B C X is a filter basis
for a unique filter F on X if and only if 0 € B andVA,B € B3C € BC C ANB,
in which case F ={A C X:3B € B B C A}. We call F the filter generated by
B.

Lemma 9.3. Suppose X is a set. A non-empty collection S C X is contained
in a smallest (wrt C) filter F if and only if 0 ¢ S and S has the finite in-
tersection property, in which case F is the filter generated by the filter basis
{NS': &' finite CS}. We call F the filter generated by S.

Lemma 9.4. Suppose X is a set.
Two non-empty collections F,G of subsets of X mesh if and only if there is
a filter containing both of them.

In the following we make no explicit distinction between a filter and a basis
generating it.

Lemma 9.5. Suppose X is a set, F a filter on X and G C P (X) closed under
finite intersections. If G#F then GH#F is a filter basis on X (and we also use
G#F for the filter generated by this basis.

Lemma 9.6. Suppose X is a set. A filter U on X is an ultrafilter on X if and
only if for every A C X we have A€ U or X\ A€U.

Proof. Suppose U is maximal wrt C and A C X such that A ¢ U. If U e U
then U € A so that U#(X \ A). Hence (X \ A)#U is a filter containing U and
by maximality the two must be equal, giving X \ A € U.
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Conversely, let U be a filter on X satisfying the condition and suppose G is
a strictly bigger filter on X. Then A € G\ U for some A C X. By the condition
X\AelU CGsothat (X\A)NA=0eg, a contradiction. O

Lemma 9.7. Suppose X is a set. A filter U on X is an ultrafilter on X if and
only if for every A,B C X, if AUB € U then A € U or B € U if and only if
for every ABC X, if A, B&U then AUBEU.

Proof. Suppose U is an ultrafilter on X and AUB e Y. If A ¢ U then X\ A e U
and hence Y 5 (AUB)N X \ A C B so that B € Y.

Conversely, suppose U is a filter and the condition holds. For A C X, note
that sinceld 3 X = AU (X \ A), one of A or X \ A belongs to U.

The last condition is simply the contrapositive of the previous one. O

Example 9.8. Suppose X is a set, z € X. The following are filters on X:
o P, ={AC X:x e A}, the principal filter at = (it is in fact an ultrafilter);
e cof = {X \ F: F finite C X} the cofinite (or Frechet) filter on X;

e if X is a topological space with topology 7 then N, = {N C X: U e T x €
is the neighbourhood filter at x.

Theorem 9.9 (Ultrafilter Extension Lemma). Suppose X is a set. Then every
filter can be extended to an ultrafilter.

Proof (not examinable). Either well-order P (X) and construct an ultrafilter by
recursion on this well-order: given a filter F recursively define F4 for A € P (X)
by F#A if F#A and F#(X \ A) otherwise.

Alternatively, observe that the union of an increasing chain of filters is a
filter (which is an upper bound) and apply Zorn’s Lemma. O

The following fact is non-examinable: We write ZF for the axioms of set
theory without the Axiom of Choice.

Theorem 9.10. [t is consistent with ZF that the only ultrafilters (on any set)
are the principal ultrafilters. In particular, it is consistent with ZF that the
cofinite filter on w cannot be extended to an ultrafilter.

Lemma 9.11. Suppose XY are sets, f: X — Y 1is a function.

If Fis a filter on X, then f (F) = {f (F) : F € F} is a filter-basis for a filter
G on X (which we also, in general, denote by f (F)) andG = {BCY: f~'(B) €
Moreover, if F is an ultrafilter on X then G is an ultrafilter on Y.

Proof. Computing f (Fy) N f(Fz) 2 f(Fy N Fy) easily implies that f (F) is a
filter basis.

Next, if B C'Y such that f~! (B) € F then f (f~!(B)) C B so that B € G.
Conversely, if B € G then there is F' € F with f (F) C B so that ' C f~!(B)
and hence f~!(B) € F.

Finally, if F is an ultrafilter on X and B C Y then since f~! (B)Uf~1 (Y \ B)
X one of B or Y \ B belongs to G as required. O
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9.2 Topological filters

Example 9.12. Suppose X is aset and a : N — X; k +— a is a sequence in X.
Writing T}, = {ax: k > n} for the n-tail of (a,), we have that {T,,: n € N}
is a filter basis for a filter F(, ) on X.
We note that if X is a metric space then a,, — = € X if and only if N, C
Fa,) since a, — x means that every open U > x contains some tail T},.

Definition 9.13. Suppose X is a topological space, F a filter on X and z € X.
We say that F converges to x, written F — x, if and only if N, C F.
We write imF = {z € X: F — z} and abuse notation to write im F = x
for F = {z}.

Lemma 9.14. Suppose X is a topological space, F,G are filters on X and
reX.
If F—x and F C G then G — x.

Lemma 9.15. Suppose X is a topological space, A C X and x € X.
TFAE:

1. z € A.

2. Na#A.

3. There is a filter F on X containing A that converges to X.

4. There is an ultrafilter U on X containing A that converges to X.

Proof. Since -
A={zxeX:Vopen Uz UNA#Q]}

the first two conditions are equivalent.
Equivalence of the other three conditions is then obvious (using the Ultra-
filter Extension Lemma). O

Lemma 9.16. Suppose X,Y are topological space and f: X — Y is a function.
TFAE:

1. f is continuous.
2. For every filter F on X and x € im F, f(x) € lim f (F).
3. For every ultrafilter U on X and x € im F, f (x) € lim f (F).

Proof. Note that if f is continuous (at =) then f (N;) € Ny(,). Hence if N, C F
then f (F) 2 Ny(a).

The second implication is obvious.

Finally if z € A then we can find an ultrafilter 4 — x that contains A.
Hence f (U) — f(x) and f (A) € Uf so that x € f(A). O

Lemma 9.17. A topological space is Hausdorff if and only if every filter con-
verges to at most one point if and only if every ultrafilter converges to at most
one point.
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Proof. Suppose X is a topological space.

If F is a filter on X converging to two distinct points z,y € X then N, N, C
F which implies NV, #N,, which in turn implies that any two open sets containing
x and y respectively must meet.

Conversely if X is not Hausdorff then let x,y € X be distinct such that any
two open sets containing z and y meet. Then N;#N, and hence the generated
filter converges to x and . O

10 Compactness

10.1 Prerequisites
I assume that this material has been seen before.

Definition 10.1. Suppose X is a set.
A cover of X is a collection U of subsets of X such that JU D X.
A subcover of a cover U of X is a family V C U such that V is a cover of X.

We use adjectives to specify the kinds of sets which appear in a cover. For
example, we will use ‘open cover’ to refer to a cover consisting of open sets.

Definition 10.2. X is compact if and only if every open cover U has a finite
subcover, i.e. there is a finite V C U such that X D V.

A subset A of X is compact as a subset if and only if every X-open cover of
A has a finite subcover.

Lemma 10.3. Suppose X is a topological space.
X is compact if and only if every family of closed subsets with the f.i.p. has
non-empty intersection.

Proof. Duality together with the fact that U/ is a cover of X if and only if
Nueu X \U = 0. 0

In view of the following lemma, we drop the distinction between ‘compact
as a subset’ and ‘compact (with respect to the subspace topology)’.

Lemma 10.4. Suppose X is a topological space and A is a subset of X.
A is compact as a subset if and only if A is compact with respect to the
subspace topology.

Proof. Suppose A is compact as a subset. Let U be an A-open cover. For each
U € U choose X-open Vi such that U = Viy N A. Then V,, is an X-open cover
of X so has a finite subcover which we can write as {Vy,: i =0,...,n} for some
n and U; € Y. Then {U;: i =0,...,n} is the required subcover of U.

For the converse suppose A is compact with respect to the subspace topology.
Let U be an X-open cover of A. Then {UNA: U € U} is an open (wrt the
subspace topology) cover of A and thus has a finite subcover which we can
write as {U; N A:i=0,...,n} for some U; € Y. Then {U;:i=0,...,n} is the
required subcover of U. O
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Lemma 10.5. A closed subset of a compact space is compact.

Proof. Suppose X is a compact space and C C X is closed.

Suppose U is an X-open cover of C. Then U U {X \ C} is an open cover of
X and hence has a finite subcover V. We then note that ¥V N is the required
finite subcover of U. O

10.2 Compactness via ultrafilters

Lemma 10.6. A topological space is compact if and only if every ultrafilter on
X converges.

Proof. Suppose X is a topological space.

=-: Suppose U is an ultrafilter on X that does not converge. For each z € X
we can thus choose X-open U, > x such that U, ¢ U. Then {U,: z € X} is
an open cover of X so has a finite subcover V. By finiteness X = JV € U, a
contradiction.

<: Suppose that every ultrafilter on X converges. Let C be a family of closed
sets with the f.i.p.. Then C generates a filter which can be extended to an
ultrafilter U converging to some z € X. As each C' € C belongs to U we have
that © € C' = C for each C' € C and thus x € (\C # () as required. O

Theorem 10.7 (Tychonoft’s Theorem). A product of compact spaces is com-
pact.

Proof. Suppose X;,7 € I are compact spaces and let &/ be an ultrafilter on
[I; Xi- Then U; = m; (U) are ultrafilters on X; and hence converge to some
xr; € X;.

Let © = (2;)ier € [[; Xi. For every i € I and X;-open U; > z; we have
U; € U; so that ;! (Ui) € U. Hence all subbasic open sets containing = belong
to U and thus N, C U so that U — z as required. O

10.3 Tychonoft’s Theorem implies the Axiom of Choice

This subsection is non-examinable.

Note that we employed the Axiom of Choice twice in the proof of Tychonoff’s
Theorem. First to show that compactness is equivalent to ultrafilters converging
(Ultrafilter Extension Lemma) and secondly to choose some z; € limm; (U).
This second ‘choice’ is not needed in Hausdorff spaces (since then limm; (i) is
at most a singleton anyway).

To understand the proof, you need to accept (prove) that ‘finitely many
choices do not require the Axiom of Choice’.

Theorem 10.8. Tychonoff’s Theorem implies the Axiom of Choice.
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Proof. Suppose Y;,i € I are non-empty sets. For each i, let X; = Y;U{x;} where
*x; € Y; (e.g. x; =Y; to avoid choice). The topology on X; is {0, Y;, {*;}, X;}.

Clearly each X; is compact and Y; is a closed subset of X;. By Tychonoft’s
Theorem, [], X; is compact and C = {m;~* (¥;) : i € I} is thus a collection of
closed sets. We need to verify the f.i.p., i.e.

VF finite C I, Cp =[] m ' (Y;) # 0.
i€F

So fix a finite /' C I and note that by induction [[,., Y; # 0 (as A, B # 0 — Ax
B #0). Lety € [[,cp Yi and define z € [[, X; by s = yU{is %:i € I\ F} €
Cr (the ‘choice’ of y does not need the Axiom of Choice).

By compactness (C # 0 and it is easy to verify that (\C C [], Yi. O

11 Compactifications

11.1 An Example
11.1.1 The Space

Let
Pw = {U: U is an ultrafilter on N} .

Two ultrafilters could be considered to be similar if they contain lots of the
same subsets of N, so if for A C N, we define

A* ={U € Bw: AU}

the collection {A*: A C N} is a reasonable subbasis for a topology 7 on Sw.
Note that since the U are filters, for A, B C N,

A'NB*={Ucpw: A, BeU}={Uc fw: ANBelU}=(ANB)".
Thus
B={A*: ACN}

is in fact a basis for 7.
Also note that
B\ A" = (N\ A)*

since the U are ultrafilters on N (i.e. A ¢U <= N\ A € U), so the basic open
sets are in fact clopen.
11.1.2 pPw is Hausdorff

Next, if U,V are distinct ultrafilters then there is A C N such that wlog A €
U\ V. As they are ultrafilters this gives N\ A € V\ U so that A* and (N\ A)*
are disjoint open sets containing &/ and V respectively.
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11.1.3 Pw is compact
Note that the basic closed sets (complements of basic open sets) are
Ar={U e pw: AgU} = (N\ A"

Let C, = {C’i: 1€ I} be a collection of basic closed sets with the finite inter-
section property. As C? N CL = (O N CY), we see that C = {C?:i €1} is a
family of subsets of N with the finite intersection property. Thus C is a subbasis
for a filter on N which can be extended to an ultrafilter &/ O C. Then U € (Cy
showing that (C, # 0.

As it is enough to consider basic open covers (and hence families of basic
closed sets with the f.i.p.) to prove that a space is compact, this gives the claim.

11.1.4 n+— P, is a dense homemorphic embedding

Let 8: N — SBw be given by n +— P,. This is a continuous (N is discrete so
every map from N is continuous) injection. By noting that

B(4) =A"np(N)

we see that (8 is open onto its image and hence a homeomorphic embedding.
Now let A* be a non-empty basic open subset of Sw. Then A # () and picking
n € A we see that P, € A* N B (N) showing that 8 (N) is dense as claimed.

11.1.5 Summary

We have constructed a compact Hausdorff space fw which contains (a copy
of) N as a dense subspace. The extra points we added (the elements of the
remainder Sw \ 8 (N)) correspond to the non-converging ultrafilters on N.

11.2 General Theory of Compactifications

Definition 11.1. Suppose X is a topological space.

A compactification of X is a pair (h,Y’) such that Y is a compact Hausdorff
topological space and h: X — Y is a homeormorphic embedding such that
h(X) is dense in Y.

The remainder of a compactification (h,Y) of X is the subspace Y \ h(X)
of Y.

We sometimes emphasize the fact that Y is Hausdorff by writing ‘Hausdorff
compactification’ instead of ‘compactification’.

Definition 11.2. Suppose X is a topological space and (h,Y), (g, Z) are com-
pactifications of X.

We say that (g, Z) is larger than (h,Y), written (h,Y) < (g, %), if and only
if there is a continuous function 7: Z — Y such that wo g = h.

We say that (h,Y) and (g, Z) are equivalent compactifications of X, written
(h,Y) ~ (g,7) if and only if there is a homeomorphism 7: Z — Y such that
mog=h.
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Lemma 11.3. Suppose X is a topological space and (h,Y), (g,Z) are compact-
ifications of X.

If (h,Y) < (g9,2) and (g9, Z) < (h,Y) then (g9,Z) ~ (h,Y).

Thus < induces a partial order on the collection of equivalence classes (wrt
~) of compactifications of X.

Proof. Let w: Z — Y witness (h,Y) < (9,Z) and p: Y — Z witness (g,2) <
(h,Y). We claim that = and p are inverses of each other so that both are
homeomorphisms as required.

To show this, it is sufficient to show that w0 p = idy and ponw = idz (which
will follow by symmetry).

Since ¢ (X) is dense in Y and Y is Hausdorff, it is sufficient to show that
7 o p is the identity on g (X). But 7(p(g(z)) = w(h(x)) = g(z) as required. O

Lemma 11.4. Suppose X is a topological space and (h,Y) and (g,Z) are com-
pactifications of X. If m: Z — Y witnesses that (h,Y) < (g,Z) then m maps
the remainder onto the remainder, i.e.

m(Z\g (X)) =Y \h(X).

Proof. We first note that the image of the compact space Z under = contains
the dense subset h (X) of Y and hence must be all of Y (as compact subsets are
closed in Hausdorff spaces).
In the following we will use that if A C Z then g(X)NA = g(g7'(A))
which follows from injectivity of g
Now assume that there is z € Z \ g(X) such that n(z) € h(X) and fix
x € X such that 7(z) = h(z). Since z # g(z) we can find an Z-open U > z
such that g(z) ¢ U. Since g(X) is dense in Z, 2 € UNg(X) Z g(x) and
x g g (U ) since g is a homeomorphic embedding (i.e. if x € g=1 (U) then
g(x) € g(g~1(U))=UnNg(X)). Since h is a homeomorphic embedding, h(z) ¢

B <U>>’“X) —h(X)Nh (gL () . But

W) =n(z) € x (TNg(X)) 70 Ng (X)) =7 (g (g~ () = (g~ (0))
since m o g = h and we have the required contradiction. O

Theorem 11.5. A topological space has a Hausdorff compactification if and
only if it is Tychonoff.

Proof. If a topological space X has a Hausdorff compactification, it is a home-
omorphic to a subset of a compact Hausdorff space. But compact Hausdorff
spaces are normal, hence functionally normal (Urysohn’s Lemma) hence Ty-
chonoff and subspaces of Tychonoff spaces are Tychonoff.

Conversely if X is Tychonoff then there is a homeomorphic embedding
h: X — [0,1]® for some k. Thus (h,h (X)) is a Hausdorff compactification
of X. O

24



Theorem 11.6. The partially ordered set of (equivalence classes of ) compact-
ifications of a Tychonoff space has suprema.

Proof. Suppose (g;,Y;),i € I are compactifications of X. Let A = A;g;: X —
[L;Y: be the diagonal. Since one (in fact every) g; is a homeomorphic embed-

ding, A is a homeomorphic embedding. Writing S = A (X) and Ag for the map
A with co-domain restricted to S, we see that (Ag,.S) is a compactification of
X. Clearly each m;: S — Y; witnesses that (g;,Y;) < (Ag, S).

Now suppose that (h,Z) is a compactification of X such that for all i €
I,(9;,Y;) < (h,Z) as witnessed by maps o;: Z — Y;. Then H = Ajo;: Z —
[L;Y: is continuous and if € X then for each i € I, Ag(x); = gi(z) =
oi(h(x)) = H(h(x)); so that Ag = H o h as required. It remains to show that
H maps Z into S: for this we note that

H(Z)=H (h (X)) CHM (X)) =As(X)=S.
Hence (Ag,S) < (h, Z) and thus (Ag, S) = sup;(gi, Y;)- O

11.3 The Stone-Cech Compactification

Lemma 11.7. Suppose Y is a Hausdorff topological space.
2l X1

If X is a dense subspace of Y then Y| <227 .
Proof. Let N: Y — P (P (X)) be given by N(y) ={UNX:y €U open CY}.
Since X is dense in Y, each non-empty Y-open set meets X. Hence each element
of N(y) is non-empty and each N(y) is a filter basis. Since distinct points of Y’
have disjoint open sets containing them, N is an injection as required. O

Theorem 11.8. Suppose X is a Tychonoff topological space.
Then X has a greatest compactification, denoted by (8, 3X) and called the
Stone-Cech-compactifcation of X.

Proof. By the previous lemma every equivalence class of compactifications has a
representative where the space has cardinality 22™' " Choose one representative
for each equivalence class and taking the supremum over all of these represen-
tatives gives the result. O

Definition 11.9. Suppose X is a topological space, (g,Y) a compactification
of X and C a class of topological spaces.

(9,Y) satisfies the Stone-Cech property for C with respect to C if and only if
for every Z € C and every continuous f: X — Z there is a continuous F': Y — Z
such that f = F o g. We say that F extends f.

Usually we drop the ‘with respect to X’ as this is clear from the context.

Theorem 11.10. Suppose X is a Tychonoff topological space.
The Stone-Cech-compactification of X is the unique compactification satis-
fying the Stone-Cech property for compact Hausdorff spaces.
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Proof. We first show uniqueness: suppose (g,Y") and (h, Z) are compactications
for X that satisfy the Stone-Cech property for compact Hausdorff spaces. Since
(g,Y) satisfies the Stone-Cech property for compact Hausdorff spaces there is
a continuous H: Y — Z such that h = H og. Hence (h,Z) < (¢9,Y). By
symmetry (¢,Y) < (h,Z) and by a previous lemma (g,Y) and (h, Z) are thus
equivalent compactifications of X.

We next show that the Stone-Cech-compactification satisfies the Stone-Cech-
property for compact Hausdorff spaces: let Z be compact Hausdorff and f: X —
Z be continuous. Since f: X — X is an embedding, so is BAf: X — X x Z

and hence (BAf, BAf (X)) is a compactification of X. Thus there is 7: fX —

BAf (X) with BAf =mo 8. Then mz onm: BX — Z is continuous and extends
[ O

Theorem 11.11. Suppose X is a topological space.
The Stone-Cech-compactification of X is the unique compactification satis-
fying the Stone-Cech property for {[0,1]}.

Proof. Tt is sufficient to prove that the Stone-Cech property for {[0,1]} implies
the Stone-Cech property for compact Hausdorff spaces.

So let (g,Y) be a compactification of X satisfying the Stone-Cech property
for {[0,1]}, Z a compact Haudorff space and f: X — Z a continuous map.

Since Z is normal so Tychonoff, there is a homeomorphic embedding h: Z —
[0,1]" for some k. For i € k we write h; = m; oh and note that h;o f: X — [0,1]
is continuous so that there is a continuous F;: Y — [0,1] with h; o f = F; 0 g.
Thus F = A;F;: Y — [0,1]" is continuous and m; o F' o g = h; o f showing that
F extends f.

We need to check that F (Y) C Z: for this we compute

F(Y)=F(Xg) CF(g(X)CZ=2
since Z is a compact subset of the Hausdorff space [0,1]" and hence closed in

[0, 1] O

11.4 The One-point Compactification

Theorem 11.12. Suppose X is a Tychonoff space.
TFAE:

1. X* =X\ B(X) is closed in fX.
2. There is a compactification (g,Y) of X such that Y \ g (X) is closed in'Y .
3. For every compactification (g,Y) of X, Y \ g (X) is closed in Y.

Proof. We prove (3) = (2) = (1) = (3).

(3) = (2): Since X is Tychonoff, it has a compactification which by (3) has
the required property.

26



(2) = (1): Suppose (g,Y) is as in (2). Let 7: 8X — Y witness (¢g,Y) <
(8, BX) and note that since remainders are mapped to remainders (and of course
the image of X to the image of X) we have 771 (Y \ g(X)) = X*. As 7 is
continuous, the result follows.

(1) = (3): Suppose (g,Y) is a compactification of X. Let 7: 8X — Y witness
(9,Y) < (B,8X) and note that since remainders are mapped to remainders
(and of course the image of X to the image of X) and w is onto, we have
Y\ g(X)=n(X*). As 7 is continuous, it preserves compactness and since
Y is Hausdorff and compact subsets of Hausdorff spaces are closed the result
follows. O

Definition 11.13. Suppose X is a non-compact Hausdorff topological space
with topology 7 and co & X.

The one-point (not necessarily Hausdorf) compactification of X is the set
wX = X U{oco} with topology

oc=7U{wX\C: C compact C X}
and dense embedding w: X — wX;z — x.

Proof. We need to check that o is a topology on wX. This is straightforward
using that compact subsets of X are closed in X and the intersection of compact
sets in a Hausdorff space is compact.

We also need to check that w is a dense embedding. Again, using that
compact subsets of X are closed in X this is straightforward. Density follows
from non-compactness of X.

Finally, we need to check that wX is compact. So let & be an open cover.
Find U € U such that co € U so that U = wX \ C for some compact C C X. As
C' is compact (both wrt 7 and wrt o since C' C X)) there is a finite V C U such
that |JV 2 C. Then V U {wX \ C} is the required finite subcover of Y. O

Definition 11.14. Suppose X is a topological space.

X is locally compact if and only if every neighbourhood filter has a filter
basis of compact sets, i.e. for every z € X and open U > z there is open V' and
compact K such that r € V C K CU.

Lemma 11.15. A compact Hausdorff space is locally compact.

Proof. Suppose X is compact Hausdorff and « € U open C X.
As X is compact Hausdorff, it is regular so there is open V and compact K
such that x € V C K C U C X as required. O

Lemma 11.16. An open subspace of a locally compact Hausdorff space is locally
compact.

Proof. Suppose X is locally compact Hausdorff and Y is an open subspace of X.
Let x € U where U is a Y-open subset of Y. AsY is open in X, U is in fact X-
open and hence there are X-open V and compact K withz ¢ VC K CUCY.
But then V=V NY is Y-open and K = K NY is compact as required. O
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Theorem 11.17. Suppose X is a Hausdorff topological space.
The one-point compactification wX of X is Hausdorff if and only if X is
locally compact.

Proof. We note that X is open in its one-point compactification.

<: Let z,y € wX be distinct. If z,y € X then Hausdorffness of X gives
disjoint X-open sets U 3 z,V 3> y which are wX-open by definition of wX. So
assume that y = co. By local compactness (with U = X) find X-open V and
compact K C X such that

reVCKCX.

Then V 3 2 and wX \ K 3 oo are the required disjoint Y-open sets.

=-: Since X is open in wX and wX is compact Hausdorff, X is locally compact
by the two previous lemmas. O

Corollary 11.18. A locally compact Hausdorff space is Tychonoff.

Corollary 11.19. Suppose X is a Hausdorff space.
X s locally compact if and only if one (and hence all) of the three conditions
from 11.12 holds.

Theorem 11.20. Suppose X is a Tychonoff space and co & X.
X is locally compact if and only if X has a smallest compactfication.
In this case, the smallest compactification is the one-point compactification.

Proof. We prove both directions separately

=-: Suppose X is locally compact. We will show that the one-point compacti-
fication (w,wX) is the smallest compactification of X. So assume (g,Y") is any
compactification of X and define

w(g™ ), yegX)
otherwise

7r:Y—>wX;yH>{

o,

Clearly w = 7 o g so that we only need to verify that = is continuous. So
let U be open in wX. If co € U then U is an open subset of X and hence
71 (U) = g (U) is open in g (X) which is open in Y (since X is locally compact
Hausdorff). If oo € U then U = wX \ C for some compact subset of X. Hence
71 (U) =Y\ g(C) and C is compact so g (C) is compact so closed in Y.

<: Suppose (g,Y) is the smallest compactification of Y. We will show that
Y \ g(X) is a singleton, giving the result. So assume for a contradiction that
there are distinct y1,92 € Y\ g (X). Then Y/ =Y \ {y1,y2} is an open subset of
Y so is locally compact Hausdorff and hence has a one-point compactification
(h, Z) which is smaller than the two-point compactification (id,Y") of Y’ (in the
lattice of compactifications of V') as witnessed by some 7: Y — Z.
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Since

Z=h(V)Ch(g(X)" ) Chig(X)) =hog(X)

we can see that (h o g,Z) is a compactification of X. But then 7 witnesses
that (hog,Z) < (g9,Y). As (¢,Y) is the smallest compactification of X it
must be equivalent to (h o g, Z) and by the proof of Lemma ?? 7 has to be a
homeomorphism. But 7 maps both of y; and y2 to oo, a contradiction. O

11.5 Cech-completeness

Definition 11.21. Suppose Z is a topological space and X C Z.

X is a G-subset of Z if and only if X is a countable intersection of Z-open
sets, i.e. there are Z-open U,, n € N, such that X =, .y Un

X is an F,-subset of Z if and only if X is a countable union of Z-closed sets,

i.e. there are Z-closed Cy, n € N, such that X = J,,cn Cn

Lemma 11.22. Suppose Z is a topological space and X C Z.
X is a Gs-subset of Z if and only if Z\ X is an F,-subset of Z.

Proof. Dualtiy. O

Definition 11.23. A topological space X is Cech-complete if and only if X is
T35 and X \ B (X) is an F,-subset of 5X.

Lemma 11.24. Suppose X is a T35 topological space.
TFAE:

1. X is Cech-complete.
2. For every compactification (h,Y) of X, Y \ h(X) is an F,-subset of Y.
3. For some compactificaiton (h,Y) of X, Y \ h(X) is an Fy-subset of Y.

Proof. As for locally compact: (2) implies (3) follows since X has a compacti-
fication.

For (3) implies (1) note that if g: SX — Y witnesses ( Y) < (8,8X)
and Y \ h(X) = UJ,,C» for closed C,, then X \ B(X) = g7 (Y \ h (X)) =
U,, 97 (Cr). Hence by continuity of g the result follows.

For (1) implies (2) note that if g: SX — Y witnesses (h,Y) < (8,5X)
and X \ f(X) = U, Cn for closed and hence compact C,,, then Y \ h(X) =
9(U, Crn) =U,, 9(Cy). Hence by continuity of g, the fact that images of com-
pact sets under continuous maps are compact and the fact that compact subsets
of Hausdorff spaces are closed, the result follows. O

Definition 11.25. A metric space (X, d) is complete if and only if every Cauchy
sequence in X converges.

A topological space X is completely metrizable if and only if there is a metric
d on X such that (X, d) is complete and d induces the topology on X.
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Lemma 11.26. A countable product of completely metrizable spaces is com-
pletely metrizable.
A closed subset of a completely metrizable space is completely metrizable.

Proof. Sheet 0 and standard Part A result. O

Lemma 11.27. Suppose Z is a complete metric space and X is a Gg-subset of
Z.
Then X is completely metrizable.

Proof. Let d be a complete metric on Z inducing its topology.

Let Z\ X =J,, C,, with C,, closed in Z. Then each d¢, : X — [0,00);2
inf {d(z,c): ¢ € Cy,} is continuous and hence by the Embedding Lemma and its
Corollary D =id AA,dc, : Z — Zx[0,00)N = P is a homeomorphic embedding
of Z and hence of X.

We now claim that D (X) = D (Z)NZ x wjg ooy~ ' ((0,00)Y) = Pr: if z € D
then de, (z) > 0 for all n € N giving C. On the other hand if z € Z\ D and
dc, (2) > 0 then z ¢ | J,, Cy, so z € X giving D.

Next, D (Z) is closed in P: Write m,,: Zx[0,00)N — [0, 00) for the projection
onto the (n + 1)%t coordinate (i.e. the map (z,71,72,...) — 7,) and 7z for the
projection onto Z. Then d¢, o 7z and m, are continuous for each n so that

{do, omz =mn} ={p € P: dc, (72 (p)) = mn(p)}

is closed (as [0, 00) is Hausdorff). Now note that

D(Z)=({de, o7z =m0}

Hence P is closed in Z x (0,00)" and the latter the completely metrizable as
(0, 00) if homeomorphic to R.

Hence X is homeomorphic to a closed subspace of a completely metrizable
space and hence completely metrizable. O

Lemma 11.28. For every metric space (X,d) there is complete metric space
(Y,d) and a dense isometric embedding h: X — Y.

Proof. Let Y = {(z,) € X": (z,) is Cauchy} / ~ where (z,) ~ (yn) <=
d(xn,yn) — 0. Note that ~ is indeed an equivalence relation on the set of
Cauchy sequences of X. Define d ([(z)], [(yn)]) = lim d(z,,, y,), noting that this
is well defined. Check that d is indeed a metric on Y and that it is complete
(this is a bit fiddly). Finally observe that h: X — Y;h(z) = (z) where (z) is
the sequence with constant value x is an isometric embedding. Either note that
h(X) is dense or take h (X) to complete the proof. O

We call (h,Y) a completion of X (and could show that Y is unique up to
the natural definition of equivalence) and identify X with its image under h.
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Lemma 11.29. If a metrizable space X is Cech-complete then it is completely
metrizable.

Proof. Let Y be a completion of X and (8,3Y) its Stone-Cech compactifica-
tion. As X is dense in Y, 8 (X) will be dense in Y, so (8|x,8Y) is also a
compactification of X. Thus 8 (X) is a Gs-subset of fY and hence a Gs-subset
of B(Y) (simply intersect the witnessing open sets with 8 (Y)). Hence X is a
Gs-subset of Y and thus completely metrizable. O

Lemma 11.30. If a metric space (X,d) is complete and F is a filter on X that
contains sets of arbitrarily small diameter, then F converges (to a point of X ).

Proof. For each n € N choose C,, € F with diam (C,,) < 27". Without loss of
generality C,, is closed and (by taking finite intersections) the C,, for a decreasing
sequence of closed sets. For each n € N, we can thus choose x,, € C), and observe
that if n < m then z,, z,, € C, so that d(x,,x,,) < 27". Hence (z,) is Cauchy
and thus converges to some & € X. But then & € () C,, (since each C,, is closed
and a tail of (z,,) belongs to C),). Therefore By-»(x) 2 C,, and thus F — I as
required. O

Lemma 11.31. If a space X is completely metrizable then it is Cech-complete.

Proof. Let d be a complete metric on X inducing the original topology on X.
Without loss of generality we may assume that d is bounded by 1 (otherwise take
min {d, 1} which will still be complete). For each z € X, let d,: X — [0,1] be
given by d.(y) = d(z,y), which is clearly continuous so extends to a continuous
function 8d,: 8X — [0,1].

For each z € X, let V,, , = Bd, ([0,27™)) and observe that X NV, , =
By (z) which has diameter < 27" +1,

For each n € N we let

Un = U Vn,m
reX
which is open in SX and claim X =, Uy.

That X C (), U, is clear.

Now let z € (,, Up. Then X#N, — z (by density of X in X).

On the other hand for each n € N, some X NV,, , € X#N, so that interpret-
ing X#MN, as a filter on X, this filter contains sets of arbitrarily small diameter
and thus converges to some & € X. As X is Hausdorff, X#AN, has a unique
limit and thus z = £ € X as required. O

‘We summarize:

Theorem 11.32. A metrizable space X is completely metrizable if and only if
X is Cech-complete.
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11.6 The Baire Category Theorem

Theorem 11.33. Suppose X is a compact Hausdorff space.
If Up,n € N is a countable family of dense open sets, then (), Uy is dense.

Proof. First note that the intersection of two dense open sets is dense open: if
Uy, U, are dense open and V is non-empty open then V N U; is non-empty and
open and hence V' NU; NUs is non-empty. Thus we may assume wlog (replacing
them with (), ., Ux) that the U,, are decreasing.

Now, fix a non-empty open V and inductively non-empty open W,, such that
Wit1 C Upy1 NW,, with Wy € V NUy. This is possible: V N Uy is non-empty
by density of Uy so pick x € V N Uy and then use regularity of X to obtain
Wy as required. For the inductive step, having defined W,,, we note again that
W,, N Uy, 41 is non-empty by density of U, 41 so pick z € W,, N U411 and W, 41
by regularity of X.

Now observe that

AWaC WS (\WaS () WaC (] Wa

n>0 n>0 n>1 n>1 n>0

where the last C follows from W; C Wy,. Thus (), W, = ﬂan and the
latter is an intersection of a decreasing family of non-empty closed sets in a
compact space and hence non-empty. Finally observe that since Wy C V and
N, Wn €N, Un we have (,, U, NV # 0 as required. O

Definition 11.34. Supppose X is a topological space.
X is Baire if and only if a countable intersection of dense open sets is dense.
Dually, a countable union of closed, co-dense subsets of X is co-dense.

Theorem 11.35. A dense Gy subset of a Baire space is Baire.

Proof. Suppose X is a dense G subset of the Baire space Y. Let V,,,n € N be
Y-open sets such that X = (1, V,, and W,,,n € N be X-dense, X-open subsets
of X. Then each W, is Y-dense (as X is dense in Y') and we can find Y-open
U, such that W,, = X NU,. Then {U,: n € N} U{V,: n € N} is a countable
family of dense open sets.

Now assume that W is X-open and non-empty. Find Y-open U such that
W =XnNU. AsY is Baire,

DAUN\Van((Un=UNXN[(\Up=Wn[XNU,=Wn( W,

as required. O

Corollary 11.36. Cech-complete Tychonoff spaces and hence completely metriz-
able spaces are Baire.

Proof. By definition a Cech-complete Tychonoff space is homeomorphic to a
dense Gs-subset of a compact Hausdorff space. O
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Corollary 11.37. Q is not a Gs-subset of R.

Proof. Note that Q is dense in R which is completely metrizable, so Baire. If Q
were a Gg-subset of R it would be Baire. Enumerating Q as {g,: n € N} and
considering the closed co-dense sets {¢,},n € N gives a contradiction. O

Lemma 11.38. Suppose f: R — R is a function.
The set of continuity of f, {x € R: f is continuous at x} is a Gs-subset of
R.

Proof. Let A, = {x € R: 3§ > 0 f (Bs(z)) C Bo-«(f(x))}. Clearly the A,, form
a decreasing sequence of subsets of R and (), A, = [, Ant1 is the set of
continuity of f.

Now, if € A, 41 and 0 > 0 satisfies f (Bs(x)) C Bo-«(f(x)) then Bs(z) C
A,,. Thus there is an open set V,, such that A,+1 CV,, C A4,,. Thus

so the result follows. O

Corollary 11.39. There is no function f: R — R whose set of continuity is
ezactly Q.

11.7 A Combinatorial Theorem using SN - Not lectured

Theorem 11.40 (van der Waerden’s Theorem). If Ay,..., A, is a partition
of N=1{1,2,3,...} and l € N then there is k < n such that A contains an
arithmetic partition of length .

Proof based on work by Dona Strauss. We first will define a semi-group opera-
tion @ on SN which is left-continuous, i.e. for fixed p € SN the map .®p: SN —
BN; g — ¢®p is continuous: to do so, fix n € N and note that n+.: N — N;m —
n + m is continuous and hence extends to a continuous map n+.: SN — SN.
Now fix p € BN and extend the continuous map .4p: N — BN;n — nip to
.®p. Using limits, one can easily show that @ is a semi-group operatrion (i.e. is
associative) and by construction it is left-continuous and restricts to the usual
addition on N.

We will now write + instead of .

Next, we will show that (5N, +) contains a smallest, non-empty compact
ideal K: an ideal is collection I C AN such that for all p € N, p+1 C I
and I +p C I. Clearly SN is an ideal and the intersection of all ideals is a
possibly empty ideal. If Iy,...,I; are ideals then I; + --- + I, C ﬂ’f I;, so
the collection of compact ideals has the finite intersection property and hence
non-empty intersection.

Finally, we will show that K contains an idempotent, i.e. some p such that
p+p = p: K is a compact sub-semi-group of (8N,+). Now, note that the
intersection of a decreasing chain of non-empty closed sub-semi-groups of K is a
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non-empty sub-semi-group, so that by Zorn’s Lemma, there is a minimal closed
sub-semi-group S of K. Let p € S: then {q+ p: ¢ € S} is a sub-semi-group of
S so by minimality equals S. Hence Z = {g€ S: ¢g+p=p} =.®p * ({p}) is
non-empty and closed (by continuity). It is easy to check that Z is a sub-semi-
group of S so again by minimality Z = S, giving that p + p = p.

So, to summarize: (6N, +) is a semi-group containing a smallest ideal K
which contains an idempotent p.

Now let P = (BN)! with pointwise operation 4, another semi-group which
contains N! as a dense sub-semi-group. Let

A={(a,a+d,a+2d,...,a+(1—1)d):a,dc N} CN CP

and
D={(xz,...,x): teNJUACN CP.

Note that D is a sub-semi-group of P and A is an ideal in D. By taking limits
we get that D is a sub-semi-group of P and that A is an ideal in D. Clearly
p=(p,...,p) € D and letting K (D) be the smallest closed ideal of D (as above)
we get mp(K (D)) as a compact (so closed) ideal of 74 (D) = 71(D) = AN and
hence p € K(D) C A.

To summarize, we have a p € AN such that p € A. Now, since N, "N is
an ultrafilter on N (see the third example sheet), we have some A, € N, N N.

Hence Ay, is a neighbourhood of p and thus /Tkl N A # emptyset. Since A C N/
we get that AL N A # 0, as required. O

12 Connectedness

Definition 12.1. Suppose X is a topological space.

A disconnection of X is a partition of X into two non-empty open sets (these
are then necessarily disjoint proper subsets of X which cover X and are also
closed).

A space is disconnected if and only if it admits a disconnection.

A space is connected if and only if it does not admit a disconnection.

Note that a subset of X is disconnected if and only if it is disconnected in
the subspace topology.
We need a few results from Part A:

Lemma 12.2. A space X is connected if and only if the only clopen subsets of
0 and X.

Proof. It ) # D # X is clopen then D, X \ D is a disconnection of X. O

Lemma 12.3. A space is connected if and only if every continuous {0, 1}-valued
map s constant.
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Proof. If U,V is a disconnection, then the indicator function 1y on U is a
continuous non-constant map.

Conversely, if f: X — {0,1} is a continuous surjection, then f~*(0) and
f71(1) form a disconnection. O

We will write 2 for {0,1} (with the discrete topology).
Corollary 12.4. The one point space is connected.

Lemma 12.5. Suppose X is a topological space and A, A;,i € I are connected
subsets of X.
IfVieI A;NA#0D then AU, A; is connected.

Proof. Wlog X = AU|J; A;. Consider a continuous f: X — 2. Note that f|4
and fla, (¢ € I) are continuous and thus constant (by assumption), with values
cand ¢;,i € I. Fix i € I, a € AN A; and observe that ¢ = f(a) = ¢;. Hence f
is constant. O

Definition 12.6. Suppose X is a topological space and x € X.
The component of z (in X) is

Cx(z) = U{A CX:z € Aand A is connected} .
The quasicomponent of z (in X) is
Qx(x) = m{C CX:zeC and C is clopen} .

Lemma 12.7. Suppose X is a topological space and x € X.
The component of x is connected and contained in the quasicomponent of X
and the quasicomponent of x is closed in X.

Proof. Write
Cx(z) ={z} U U {AC X:z € Aand A is connected }

and apply the earlier lemma to see that C'x(x) is connected.
If D is clopen in X and # € D then Cx(z) N D is clopen in Cx () and non-
empty so must be all of C'x(z). Hence Cx(z) C D, giving Cx(z) C Qx ().
Finally Qx () is an intersection of closed sets, so closed. O

Lemma 12.8. If X is compact Hausdorff, C is a family of closed subsets of X
and U is open such that (\C C U then there is finite C' C C such that (\C' C U.

Proof. Suppose C and U are as in the lemma.

Note that C U {X \ U} is a family of closed subsets of X with empty inter-
section so that there is a finite subfamily C’ U {X \ U} with empty intersection.
But this gives ((C' C U as required. O

Theorem 12.9 (Sura-Bura Lemma). In a compact Hausdorff space, compo-
nents and quasicomponents coincide.
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Proof. Suppose X is compact Hausdorff and x € X. Write Q = Qx ().

It is sufficient to show that () is connected. So assume that A, B form a Q-
disconnection, i.e. A, B are disjoint, non-empty, Q-open and @ = A U B. Since
Q is X-closed, A, B are X-closed and as X is compact Hausdorff so normal,
there are disjoint X-open U,V such that A C U, B C V. Note that in particular
UNV=0=UnNV. Then

Q:ﬂ{CQX}zGCclopen =AUBCUUV

so by the preceding lemma there is a finite collection C of clopen sets containing
x such that AUB C C =(\C C UUYV. Note that C is X-clopen (as a finite
intersection of X-clopen sets).

Hence - -
unccunc=un((uv)ync)=U0ncC

so that U N C and (similarly) V N C are X-clopen. Since these are disjoint one
of them contains x, wlog x € U N C. But then B C V so that BNUNC = 0.
Hence B=BNQ C BNUNC =, contradicting non-emptyness of B. O

13 Disconnectedness

Definition 13.1. Suppose X is a topological space.
X is totally disconnected if and only if every component of X is a singleton.
X is zero-dimensional if and only if X has a basis of clopen sets.

Lemma 13.2. In a compact Hausdorff space, total disconnectedness and zero-
dimensionality are equivalent.

Proof. Suppose X is compact Hausdorff.
If X is zero-dimensional, let B be a clopen basis and for each x € X let
B, ={B € B: x € B}. As X is Hausdorff we have

Qx(x) (B, = {x}

and since Cx () C Qx () X is totally disconnected.
Conversely, assume that X is totally disconnected. We claim that

{C C X: C clopen }

is a basis for X.
Let x € X and U > z be open. By the Sura-Bura Lemma

Qx(x)=Cx(z)={«} CU

and recalling that @ x is an intersection of clopen sets in the compact Hausdorff
space, there are finitely many clopen sets C, (each containing x) with z € C' =
(N C: C U and C is clopen. O

36



13.1 Stone Duality - an Outline

Definition 13.3. A Boolean Algebra is a set B together with partial order <
such that

1. B has a maximal element 1 and a minimal element 0;

2. B has binary (and hence finitary) suprema (written a V b) and infima
(written a A b);

3. there is a negation operation —: B — B satisfying Vb € B (=b) Vb =1
and Vb € B (—b) Ab) = 0.

If B and C' are Boolean Algebras, a homomorphism from B to C'is a function
f: B — C preserving V, A, 0,1 and (hence) —.

Lemma 13.4. Suppose X is a topological space. Then Bx = {A C X: A is clopen in X}

with partial order C is a Boolean Algebra with V =U, A =N and A =X\ A.
Moreover if f: X — Y is a continuous between two topological spaces then

f«: By — Bx given by f.(A) = f~1(A) is a Boolean Algebra homomorphism

(and compositions work).

Proof. Straightforward. O

Definition 13.5. Suppose B is a Boolean Algebra. A filter F on B is a subset
of B such that

1. 0g F#0;

2. Ya,be FaNnbeF;

3. Vae FYWeDB (a<b = beF).

An ultrafilter on B is a maximal filter (wrt C).

Lemma 13.6. Suppose B is a Boolean Algebra and U is a filter on B.
The following are equivalent:

1. U is an ultrafilter.
2. ¥Yb € B exactly one of be U and —b € U.
8. Va,be B, ifavbeU thena el orbelUd.

Proof. As for ultrafilters on topological spaces (note that P (X) with C is a
Boolean Algebra). O

Theorem 13.7. Ewvery filter on a Boolean Algebra can be extended to an ultra-

filter.

Proof. Apply Zorn’s Lemma, noting that a union of an increasing chain of filters
is a filter. 0
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Lemma 13.8. Suppose B is a Boolean algebra.
Let Xp = {U: U is an ultrafilter on B}.
Writing

Uy={UecXp:beU}

we have that
{Up: b€ B}

s a basis for a compact Hausdorff zero-dimensional topology on X.
We call Xp with this topology the Stone space of B.
Proof. Asin 11.1. O

Lemma 13.9. Suppose f: B — C is a Boolean Algebra homomorphism.
If U is an ultrafilter on C then

fFU):=v={be B: f(b) e}

s an ultrafilter on B.

Proof. Since f(0p) =05 € U and f(1g) = 1c € U we have Op € V # 0.

Next, if by,bo € V then f(by Abg) = f(b1) A f(b2) € U so that V is closed
under binary infima.

Finally if by € V and by < by € B then f(b1) < f(b2) so that by € V.

Hence V is a filter.

To see that it is an ultrafilter, note that for each b € B, f(—b) = —f(b) and
exactly one of f(b) and —f(b) belongs to U. O

Lemma 13.10. Suppose f: B — C is a Boolean Algebra homomorphism.
Then f*: Xo — Xp is a continuous map (and compositions work).

Proof. Straightforward. O

Theorem 13.11 (Stone Duality). The contravariant functors X — Bx and
B — Xp defined above are ‘inverses’(up to isomorphism) of each other for the
class of compact Hausdorff zero-dimensional spaces.
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