
1 Axioms

The point of this is to stay flexible. Definitions aren’t true or false, they are
convenient or inconvenient, depending on what one wants to study. If you
encounter a problem where a variation of the standard definition of topology
makes more sense, then feel free to change to that variation. Carefully check
which ‘standard’ results are still true, though.

1.1 Open Sets

1. X = {0, 1, 2}, τ = {∅, X, {0, 1} , {0, 2}} satisfies Unions, Non-triviality but
not Intersections.

2. X = {0, 1, 2}, τ = {∅, X, {0} , {1} , {2}} satisfies Non-triviality, Intersec-
tions but not Unions.

3. Of course the discrete topology (τ = P (X)) and the indiscrete topology
(τ = {∅, X}) satisfy ‘arbitrary Intersections’.

More interesting is the following (a version of which appeared on a Part
A Topology example sheet): Let X be an uncountable set and add a new
point ? to X. The topology on Y = X ∪ {?} is given by

P (X) ∪ {Y \ C : C is countable } .

One can easily check that this is a topology satisfying ‘countable In-
tersections’. The critical observation is that a countable intersection of
co-countable sets (co-countable = countable complement) is co-countable
since a countable union of countable sets is countable.

In a similar spirit, the co-countable topology on any set X (i.e. τ =
{X \ C : C is countable}) will have ‘countable Intersections’.

4. Let X be infinite [uncountable] and τ be the collection of all finite [count-
able] subsets of X together with X.

1.2 Closure

I find thinking in terms of closure much more intuitive than in terms of open
sets. Think of x is in the closure of A as x can be approximated to arbitrary
precision from within A.

5. Suppose that x ∈ A (according to the first definition), that U is open and
contains x and that U ∩ A = ∅. As X \ (X \ U) = U ∈ τ and A ⊆ X \ U
we get a contradiction. Conversely, if x 6∈ A then there is a closed subset
C containing A and not x and then U = X \C witnesses that x does not
belong to the second definition fo A.
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6. Non-triviality is trivial, Increasing follows straight from the first definition.
They correspond (intuitively) to: you can’t approximate anything from
nothing and everything approximates itself.

Next we note that A is closed (by duality, intersections of closed sets
are closed) and that by definition the closure operator is monotone, i.e.
preserves ⊆.

For Idempotency, by the fact that A is closed, A ⊆ A (by minimality) but

also A ⊆ A by Increasing giving equality. Idempotency is a ‘diagonality’
property (or the triangle law): if you have a very good approximation
and a very good approximation to the approximation, then this is still a
reasonably good approximation to the original.

For distributity over finite (binary) unions we have: the RHS is closed
(finite unions of closed sets are closed) so ⊆ follows from Increasing. Con-
versely A ⊆ A ∪ B so by monotonicity A ⊆ A ∪B and by symmetry
B ⊆ A ∪B giving ⊇. Finite Union Distributivity is hard(er) to justify
intuitively.

7. X = R with its usual topology, An = [2−(n+1), 2−n] = An gives
⋃
n∈ω An =⋃

n∈ω An = (0, 1] but
⋃
n∈ω An = (0, 1] = [0, 1], so closures need not dis-

tribute over infinite unions. Similarly X = R, A = Q and B = R \Q gives
A = R = B but A ∩B = ∅ = ∅.

8. X any non-empty set, and A = X fails Non-triviality, but satisfies (triv-
ially) everything else.

Similarly, X any non-empty set and A = ∅ fails Increasing but satisfies
(again trivially) everything else.

For failing Idempotency, either the artificial X = {0, 1, 2} with ∅ = ∅,
{0} = {0, 1}, {1} = {0, 1}, {2} = {2}, and A = X for any other A will do.

Alternatively, considerX = {(0, 0)}∪{(0, 2−n) : n ∈ ω}∪{(2−m, 2−n) : n,m ∈ ω}
(draw it!) with closure as follows: (2−m, 2−n) ∈ A if and only if (2−m, 2−n) ∈
A; (0, 2−n) ∈ A if and only if A contains infinitely many (2−m, 2−n) and
(0, 0) ∈ A if and only if A contains infinitely many (0, 2−n). This shows
what I meant by ‘diagonality’ property.

To fail Finite Union Distributivity, again an artificial example with X =
{0, 1, 2} can be easily found. Or consider R with the following ‘closure’
operator: x ∈ A if and only if there are B,C ⊆ A such that x = inf B =
supC (i.e. x can be approximated from above and below from within A).

9. As suggested, we start with monotonicity: suppose A ⊆ B. Then

c (A) ⊆ c (A) ∪ c (B) = c (A ∪B) = c (B) .

Next, we show that the set of fixed points of c is closed under intersections:
so, suppose that c(Ci) = Ci for Ci ⊆ X, i ∈ I. Then

⋂
j∈I Cj ⊆ Ci for
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each i ∈ I so c
(⋂

j∈I Cj

)
⊆ c (Ci) = Ci for each i ∈ I. Hence

c

⋂
j∈I

Cj

 ⊆ ⋂
i∈I

Ci ⊆ c

(⋂
i∈I

Ci

)

(from Increasing) giving the result.

That the set of fixed points of c is closed under finite unions follows from
Finite Union Distributivity. Finally, ∅ (Non-triviality) and X (Increasing)
are fixed points of c. By duality τc is a topology on X.

10. We need to show c(A) = A (where the RHS is the closure according to
τc). By definition of τc and Idempotency, c(A) is τc-closed and contains
A (Increasing), so certainly A ⊆ c(A). Conversely, if A ⊆ B and B is
τc-closed, then c(B) = B so that by monotonicity of c we have c(A) ⊆
c(B) = B. But then by definition of A we get c(A) ⊆ A as required.

Finally for uniqueness, suppose that τ ′ is any topology with closure op-

erator c. Then if A is τ ′-closed we have A = A
τ ′

= c(A) so that A is

τc-closed. On the other hand if A is not τ ′-closed then A 6= A
τ ′

= c(A) so
that A is not τc-closed.

11. This is (more or less - more later) the formal version of the A-level result
that a function is continuous if you can draw its graph without lifting the
pen.

Suppose that f is continuous and x ∈ A. Let V 3 f(x) be open. Observe
thatf−1 (V ) 3 x is open and hence meets A in some a. Then f(a) ∈
V ∩f (A) so V meets f (A) as required (by the second definition of closure).

Now suppose f has the given property and that C ⊆ Y is closed. Let
x ∈ f−1 (C). Then f(x) ∈ f (f−1 (C)) ⊆ C = C so that x ∈ f−1 (C).
Hence f−1 (C) is closed, showing that f is continuous.

2 Metrics

1. The given set clearly contains ∅ and X. For binary intersections, take the
minimum of witnessing εs. For unions, the result is immediate. If x ∈ A
then for each n ∈ ω choose an ∈ A ∩ B2−n (x) (which is non-empty by
the second definition of closure) to get a sequence in A converging to x.
Conversely, if (an) is a sequence in A converging to x and U 3 x is open,
then find ε > 0 with Bε (x) ⊆ U and some N ∈ ω with n ≥ N =⇒
an ∈ Bε (x) to see that aN ∈ Bε (x) ∩ A ⊆ U ∩ A as required. The result
about continuity follows from the characterization of continuity in terms
of closures (which we have just shown to be characterized by converging
sequences).
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2. For a point x in a metric space, it is straightforward to verify that {B2−n (x) : n ∈ ω}
is a countable neighbourhood base (don’t forget to remark that open balls
are indeed open by the triangle law).

3. The next bit requires some messiness: if y ∈ X and U 3 y is open,
first find n ∈ ω with B2−n (y) ⊆ U and then use density of D to find
x ∈ D with d(x, y) < 2−(n+1). Finally check that by the triangle law
y ∈ B2−(n+1) (x) ⊆ B2−n (y) ⊆ U . We note that for any N ∈ ω we can add
the condition n ≥ N to the definition of B.

4. The results in this section were, I think, all in the Part A Topology course
and are mostly messy and not too difficult. Skip them, but note the
results, if you are short on time.

Symmetry and positive definiteness is clear. For the triangle law an easy
case distinction does the trick. The topologies are the same by the basis
given above (with X = D) (where we require n ≥ 1) which coincides for
d and d′.

5. First note that as each dn is bounded by 1, dH and dsup are well-defined.
Again, symmetry and positive definiteness for dH and dsup are clear. For
the triangle law we observe for dH that all terms in the sum are non-
negative, so applying the triangle law to each dn and collecting the terms
(by non-negativity, this doesn’t change the resulting infinite sum) gives the
result. For dsup the triangle law follows from supA+ B ≤ supA+ supB
proven in first year Analysis.

6. Now suppose that all but the first N many Xn are trivial (so that the sup
is in fact a max). Then check that 2−Ndsup(x, y) ≤ dH(x, y) ≤ 2dsup(x, y)
and observe that this implies that the identity map is continuous (in fact
Lipschitz) in both directions, so a homeomorphism.

7. EquippingX×X with dsup gives dsup((x, y), (x′, y′)) < ε/2 so that d(x, x′), d(y, y′) <
ε/2 and hence

d(x, y)− d(x′, y′) ≤ d(x, x′) + d(x′, y′) + d(y′, y)− d(x′, y′) < ε.

Symmetry gives continuity in the classic metric sense.

8. For continuity of dA observe that dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a) for
each a ∈ A. Taking the infimum over all a ∈ A gives dA(x) ≤ d(x, y) +
dA(y) i.e. dA(x)− dA(y) ≤ d(x, y) and hence continuity (δ = ε works).

3 Normality and compactness

1. We note that a collection D of (closed) sets of X has empty intersection
if and only if the collection {X \D : D ∈ D} is a (open) cover of X. Now
apply this to get the if and only if result immediately.
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2. ⇒: Suppose U is an X-open cover of Y . Then {U ∩ Y : U ∈ U} is a Y -open
cover of Y so has a finite subcover V. For each V ∈ V choose UV ∈ U with
UV ∩Y = V . Then note that {UV : V ∈ V} is the required finite subcover.

⇐: Suppose U is a Y -open cover of Y . For U ∈ U choose X-open VU with
U = VU ∩Y . Note that {VU : U ∈ U} is then an X-open cover of Y so has
a finite subcover V. For each V ∈ V choose UV ∈ U with V = VUV

and
finally observe that {UV : V ∈ V} is the required finite subcover.

3. That compactness is closed hereditary follows from the dual version of
compactness (which we just proved) and the fact that closed subsets of
closed subsets are globally closed.

4. The proof that compact Hausdorff implies normal is ‘prototypical’ and we
will encounter variations of it later on. We first show that X is regular:
if x ∈ X, C ⊆ X closed and x /∈ C then by Hausdorffness for each c ∈ C
we can find disjoint open Uc, Vc with x ∈ Uc, c ∈ Vc. Then Vc is an
open cover of the compact set C so has a finite subcover {Vc0 , . . . Vcn}.
Set U =

⋂
i≤n Uci (open because of the finiteness of the intersection) and

V =
⋃
i≤n Vci (open as a union of open sets). Clearly x ∈ U , C ⊆ V and

if U and V are not disjoint then some Uci must meet V so in particular
must meet Vci a contradiction.

Next repeat this proces but replace x by a closed setD and apply regularity
instead of Hausdorffness.
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