Question 1
We will often be using the following easy Lemma:

Lemma 0.1. Suppose B is a family of open subsets of a topological space X .
B is a basis for X if and only if for every open U C X and x € U there is
B € B such that x € BCU.

Proof. =: U =B for some B’ C B. Thus = € B for some B € B’ and then
reBCU.

«<: If U is open, for each x € U choose B, € B with x € B, C U and
observe that U = |,y Be- O

Countable Products

Suppose (X,,d,) are metric spaces. From Sheet 0, we may assume all d,
are bounded by 1 (otherwise replace with min {d,,1} which induces the same
topology) so that dg from Sheet 0 is a metric on [],, Xp.

We need to check that the topology induced by dgy coincides with the Ty-
chonoff topology.

Note that 7, : (X,dp) = (Xom, dpm) is continuous since dy, (T, Ym) < 2™d(x, y)
(for z,y € [],, X»). Since the Tychonoff product topology is the smallest topol-
ogy that makes all 7, continuous, the every Tychonoff-open set must be dg-
open.

For the converse it is enough to check that for € [, X, and € > 0 there
is Tychonoff-open U = U, with € U C B.(z). Then if V is dgy-open for
x € V we can choose €; > 0 such that B, (z) CV and thus V = .y Uy, is
Tychonoff open.

So let x € [],, X, and € > 0 and choose N such that ) - 27" < €/2. Now

let 6 = 2(}\,7:_1) and observe that

zeV

2 € Bs(x0) x Bs(x1) x -+ x Bs(an-1) x [[ X = () 7 (Bs(xn)) € Be().
n>N n<N

Remarks

If you live in the category of metric spaces, what should the ‘morphisms’, i.e.
the ‘structure-preserving maps’ be?

We know about the isomorphisms (namely f: (X,dx) — (Y,dy) is an iso-
morphism if and only if f is a bijection such that for all z,2’ € X we have
dy (f(z), f(2")) = dx (z,2).

But we also want that if f: (X,dx) — (Y,dy),¢: (X,dx) — (Y,dy) are
morphisms with fog =idy and go f = idx then f and g are isomorphisms.
If we simply use continuous maps as morphisms, this fails (e.g. X =Y = R,
f(z) = 2z, g(x) = x/2). So the ‘right’ choice of morphism are (can be) the
‘non-expansions’, i.e. maps such that dy (f(z), f(z')) < dx(z,2').



Note however that 7, (m > 1) is not a non-expansion from ([[,, X,,ds)
to (Xm,dm), so dg is not the right’ metric on [],, X,,. In some sense this is
reassuring since dg is sensitive to the order of the metric spaces which ‘should
not’ happen for a product-metric.

In fact, you can check that the sup-metric do(x,y) = sup,, dn(Tn,yn) is
the ‘right’ product-metric, but this (for non-trivial X,,) does not induce the
Tychonoff topology.

Uncountable Products

Let I be uncountable and for ¢ € I let X; = {0,1} with the discrete topology.
We will show that {0} is not a countable intersection of open sets in [, X;.
But in every metric space {z} = (1, .. Bs-«(z) is a countable intersection of
open sets.
So, let U,,n € w be open sets containing 0. We shrink the U, to basic
open sets, i.e. choose finite F;, C I such that 0 € B, = ;cp, 7r2-_1(0) c U,.
Then |J,, F, is a countable union of finite sets so countable and hence we can

new

1; if i = i

choose iy € I'\ |J,, Fr. Let y € [[, X; be given by y; = { . Then

0; otherwise
0#ye(),Bn <), Un as required.

Remarks

First note that the proof above works for any non-trivial Xj.

Next observe that being first countable implies every singleton being a count-
able intersection of open sets.

However, the above argument does not show that the set of continuous
real-valued functions on [0, 1], C([0, 1]), as a subspace of R (this gives it the
topology of pointwise convergence) is non-metrizable: continuous functions on
[0,1] are determined by their values on QN [0, 1], so f is the only continuous
function in

N = ((Fl@—2"" g +27).

n€w,geQNI0,1]

However, the space is still not first countable: for suppose that U,,n € w is
a collection of open sets containing f.

Assume first that for each n, there is finite F,, C [0,1] and € > 0 such that
Un = Nyer, Tz (Be, (f(2))). Now let y € [0,1]\ U, F,, (this exists as |J,, F, is
countable and [0, 1] is uncountable) and let V' = 7' ((f(z) — 1, f(z) 4+ 1)) which
is open and contains f. For each n, we can construct a continuous function
gn: [0,1] — R (in fact a polynomial) through all the (x, f(z)),z € F,, and
(y, f(z) +2). Then g, € U, \ V so that U, € V.

If the U,, are not of the form above, we can shrink them to this form and
again U, € V.

Thus we have shown: For every countable family of open sets U,, 5 f, n € w
there is open V' > f such that for every n € w U, Z V.



Hence C([0,1]) with the topology of pointwise convergence is not first count-
able and hence not metrizable.

Question 2

The ‘slick’” way of doing this is by using the d¢ from Sheet 0: if C,D are
disjoint closed then dgo,dp: X — R are continuous and by disjointness and
C = dg'(0), D = dj,*(0) we have that dc + dp is non-zero on X. Thus

dc

U R

X —[0,1]

(it is into [0,1] since 0 < d¢ < d¢ +dp) is continuous and still C = f~1(0), D =
f71(1) so that f=1([0,1/3)), f~1((2/3,1]) are disjoint open sets containing C
and D respectively.

Remarks

If you try this ‘manually’ you need to be careful: the two components of the
graph of 1/2? are closed subsets of R? but have ‘distance’ 0. So you need to
do things pointwise, i.e. for ¢ € C choose €, > 0 such that B (c¢) N D = ) and
similarly for d € D. Then you need to halve the es and union up i.e. set

U = U BEC/2(C); V= U Bed/Z(d)

ceC deD

and note that C C U, D C V and if x € U NV then there is ¢ € C and
d € D such that d(c,d) < d(c,z) + d(z,d) < €./2+ €4/2 < €, €q so that either
d € B. (c) C X\ D (impossible) or ¢ € B, (d) C X \ C (also impossible).

Question 3

second countable implies separable

Suppose B is a countable basis. For B € B choose dg € B and set D =
{dBZ B e B}

Clearly D is countable.

To see that it is dense, let U be a non-empty open subset of X, choose xz € U
then B € B with x € B C U. Then dg € BN U as required.

second countable implies Lindelof

Let B be a countable basis.
If U is an open cover of X, for each B € B choose a Vg € U such that
B C Vg if some such Vp exists.



Then
V = {Vp: B € B such that Vg is defined}

is a countable subcollection of ¢/. We’ll show it covers X: if x € X find U € U
such that x € U and then B € B such that x € B C U. Then Vg is defined
(since BC U €U) and x € B C Vg €V as required.

Remarks

This is a typical way to see that usually (but not always) for compactness-like
properties, we may assume that the open cover is in fact a basic open cover:
shrink the open sets to basic open sets and for each such basic open set fix an
element of the cover containing it.

metric+separable implies second countable

Let D be a countable dense subset and let
B={Bs-u(d): d€ D,n € w}.

Clearly B is a countable collection of open sets. We'll verify it is a basis: let
x € Uopen C X and choose N such that © € By-~(z) C U. Find d €
DN By (v (z) (by density of D) and note that by symmetry and the triangle
law

2z € By-(v+1)(d) € By-n(z) CU

as required.

metric + Lindelof implies second countable

For each n € w, note that U,, = {By-n(z): © € X} is an open cover of X so has
a countable subcover B,,.

Then B = |J,, B, is a countable union of countable sets so countable and
consists of open sets. We verify it is a basis: let x € U open C X and choose
N such thath 2 € By-~(2) C U. Choose B = By-(v+1)(y) € B, C B (for some
y € X) such that = € B and as before

2 €BC Byn(z)CU.

Remarks

You could be tempted to directly go from metrict+separable to Lindelof: a
typical attempt may go as follows: let D be countable dense and U be an
open cover. For d € D choose Uy € U such that d € U;. Now we hope that
{Uq: d € D} covers X, but that fails unless you are clever about choosing the Uy
(eg. X =R,D=0Q\{0},U ={(—00,0), (0,00),R}, Uy = (—00,0) or (0,00)).

An interesting question is under which conditions (other than metric) sep-
arable implies Lindel6f and conversely. We will see one of these later in the
course.



Also, from the 1960s onwards, a lot of research went into the question of
whether there exists a hereditarily separable space that is not Lindelof (called
an S-space) and whether there eixsts a hereditarily Lindelof space that is not
separable (called an L-space). For more information see the bottom half of page
2 of http://web.mat .bham.ac.uk/C.Good/research/pdfs/ency-1lind.pdf.

Question 4

metric spaces have halving operators

Define H(z, Be(x)) = B./2(z) and extend as follows: if z € U open C X choose
€, > 0 such that z € B, (x) CU and set H(z,U) = H(z, B, (x)).
If H(z,U) meets H(y,V) in z say then wlog €, < ¢, and then

d(z,y) < d(z,z)+d(z,y) < €:/2+€,/2 < ¢,

so that = € B, (y) C V as required.

having halving operators is hereditary

Next if H is a halving operator for X and Y C X we define a halving operator
fo Y as follows: for each Y-open U C Y, choose X-open Wy C X such that
U=WyNY and if x € V then set HY (x,U) = H(z, Wy)NY.

If then z € HY (z,U)NHY (y,V) = H(x, Wy) N H(y, Wy )NY then z € Wy
oryeWy. Butz,yeYsoxeWyNY=VoryeWynY =U as required.

Hausdorff+halving operator implies normal

We follow the ‘manual’ proof of metric implies normal: Suppose C, D are disjoint
closed. For ¢ € C note that ¢ € X \ D which is open and similarly for d € D we
have d € X \ C which is open (from disjointness). Thus we can set

U=|JH(,X\D); V=|]H(dX\C)

ceC deD

and observe that these are open and C C U, D C V.
If U and V were to meet, then some H(c, X \ D) meets some H(d, X \ C)
giving ¢ € X\ C or d € X\ D a contradiction. thus U, V are disjoint as required.

Remark

When considering normality, we can view it as a function N : (C,D) —
(Ue,p, Ve, p) from the set of pairs of disjoint closed subsets to the set of pairs of
disjoint open subsets. We would expect this function to be ‘monotone’ in both
C and D, ie. if C C C' (and D is disjoint from C) then Ucp C Ucr p and
Ver,p € Ve,p (and similarly if D C D’). If such a monotone function exists, the
space is called monotonically normal. It turns out (see Q7) the in regular spaces,


http://web.mat.bham.ac.uk/C.Good/research/pdfs/ency-lind.pdf

monotone normality is equivalent to having halving operators! It also turns out
that monotone normality is a very important property and much research has
been carried out into it.

Question 5

First note that just like for compactness,

Lemma 0.2. If X is Lindeldf and C is a closed subset of X then every X -open
cover of C' has a countable subset covering C.

Proof. Let U be an X-open cover of C. Then Y U{X \ C} is an open cover of
X so has a countable subcover U’. Then U NU' =U"\ {X \ C} is a countable
subset of U that covers C (since the removed set X \ C' does not contribute to
covering C). O

So, let C, D be disjoint closed subsets of X. By regularity, for ¢ € C and
d € D choose open U, 3 ¢, V; 2 d respectively such that

ceU.CU.CX\D
and similarly o
dEVdnggX\C.

Then {U.: ¢ € C} and {Vy: d € D} are open covers of C' and D respectively, so
have countable subcovers U = {U,: n € w} and V = {V,,: n € w} respectively.

Now let R o o
U= \UV Va=UW\U T
k<n k<n k<n k<n

These are open sets (finite union of closed sets are closed) and U, N C
since the removed stuff, | J, -, Vi, does not meet C' and similarly V,, N D
Therefore B

c U,
cV,.

v=t. 2Jw.nc)=cnlJu.=C

and similarly V = J,, Vv, D> D.

Finally, if U and V would meet, then some U, meets some Vin. Wlog
n < m but by the definition of V,., we have V,,, C X \ Ugem Ux € X\ U,, a
contradiction. -

Thus U,V are as required showing that C, D are separated by open sets.

Remarks

This is a typical use of countability. We construct our open sets in stages and
because each stage is finite, we can use unions over closed sets in our construction
as well.



Question 6

=: Suppose A, B are separated subsets of X, i.e. ANB=0=ANB.
Let Y = X \ (AN B). Note that A,B C Y by construction and that Y is
open in X. Now observe that

A=A ny, B =B ny

and hence by choice of Y we have that ZY and EY are disjoint (and of course
Y-closed).

Since Y is normal by assumption there are disjoint Y-open U D a° DA
and V DO EY D B. But since Y is open in X, U and V are in fact X-open as

required.
<: Suppose Y C X and A, B are disjoint Y-closed subsets of Y. Then

ZXmB:ZmemYﬁqﬂxmntZZYQBzAmB:@

and similarly
BXnA=90
so that by assumption there are disjoint X-open U O A and V O B.

Then UNY and V NY witness separation of A, B in Y by open sets and
hence normality of Y (at A, B).

Remark

This is nice because it gives a straightforward internal definition of hereditary
normality. Also, the property that (some) separated sets are separated by open
sets is useful in many instances.

Question 7

Monotonically Normal implies existence of halving operator: For closed
C C U open write W(C,U) for the open set containing C' and whose closure is
contained in U and assume W is monotonically increasing in C' and monotoni-
cally decreasing in U (by setting D = X \ U).

We first make this ‘symmetric’ by replacing W (C,U) by W(C,U)\ W (U, C)
so that W(C,U)NW (X \U,X \ C) = 0 (and it is still monotone in the right
ways).

Then we define H(z,U) = N({z},U) and show this works: if x ¢ V 5 gy
and y ¢ U 3 z then

Hz,U)NNX\UX\{z})=0
H(y,V) = N({y},V) € N(X\U, X\ {z})
where the first line is the symmetry and the second the monotonicity (y ¢

U means {y} € X\ U and z ¢ V means V C X \ {z}). But this gives
H(z,U)N H(y,V) = 0 as required.



Halving operator implies monotonically normal: Assume H(z,U) is the
halving operator.

We first make it monotone in U by replacing H (z,U) with |J{H (x,V): x € V open C U}
so that wlog x € U CU’' = H(z,U) C H(z,U").

If C, D are disjoint closed then set

U= |]JH(,X\D)
ceC
V=|JHUX\C)

deD

and note that these are open sets with the right monotony properties (because
H is monotonic) and if U NV # @ then there is ¢ € C, d € D such that
H(e, X\ D)NH(d, X \ C) # () so that ¢ € \C (contradiction) or d € X \ D
(contradiction).

Totally ordered spaces are monotonically normal: We do this for a
dense total order without endpoints since we can embed every total order in
a dense total order without endpoints and subspaces of monotonically normal
spaces are monotonically normal.

Well order X by <. For a non-empty open interval (a,b) we let M(ap) be
the <-minimal element of (a,b).

We then set H(x,(a,)) = (M(a,z), M(z,p)) for a <z < B and claim that
this works (note that by density this is well-defined).

The relevant cases for pairs of triples a < z < 8 and o’ < 2’ < 3’ are

e z <o and <7’
e /' <zand 2’ <«

(otherwise z € (o/, ') or 2’ € («, B)).

So consider the first of them and assume that H(z, («, 8)) meets H(z/, (o/, 5'))
in some z. Then z < o/ < M) < 2 < Mg < B < 2’ and 50 My 41y €
(z,B8) and m(, ) € (o/,2') which contradicts their <-minimality as they are
different.

If we now want to define H(x,U) for x € U open we simply choose a, b with

€ (a,b) CU and define H(z,U) = H(z, (a,b)).



