In this course we use the (fairly) standard notation below to compare the sizes of two functions of a (usually integer) variable $n \ge 1$. Here we assume always that g(n) > 0. If necessary, to ensure this we only consider $n \ge n_0$ for some suitable n_0 .

f = O(g) means there exists a constant C such that $|f(n)| \leq Cg(n)$ for all n (or all $n \geq n_0$),

f = o(g) means that $f(n)/g(n) \to 0$ as $n \to \infty$,

 $f = \Theta(g)$ means that f = O(g) and g = O(f), so there exist constants c, C > 0 such that $cg(n) \leq f(n) \leq Cg(n)$ for all n,

 $f \sim g$ means that $f(n)/g(n) \to 1$ as $n \to \infty$.

Less standard but still common:

 $f = \Omega(g)$ means that g = O(f), i.e., there exists a constant c > 0 such that $f(n) \ge cg(n)$ for all n.

Note that there is an implicit restriction to values of n such that g(n) is both defined and positive. For example, $f = O(n/\log n)$ means there exists C such that $|f(n)| \leq Cn/\log n$ for all $n \geq 2$.

More generally, we may compare a function of n with a formula involving $O(\cdot)$ or $o(\cdot)$ notation; then each occurrence refers to a function with the corresponding property. For example,

$$f = n^3 + O(n^2)$$

means there is a function g(n) with $g = O(n^2)$ such that $f(n) = n^3 + g(n)$. In other words, there exists a constant C such that

$$n^3 - Cn^2 \leqslant f(n) \leqslant n^3 + Cn^2.$$

Similarly,

$$f \ge (2 - o(1))n^2$$

means there is a function g(n) with $g \to 0$ such that $f(n) \ge (2 - g(n))n^2$ for all n, i.e., that $\liminf f(n)/n^2 \ge 2$. In other words,

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge n_0 : f(n) \ge (2 - \varepsilon)n^2.$$

Note that saying, for example, f(n) = o(1) makes no statement about the sign of f; formally 1 + o(1) and 1 - o(1) mean the same thing.

Warning: some people/books use $f \ll g$ to mean f = o(g); others use it to mean f = O(g). Some people use $f = \omega(g)$ to mean g = o(f), i.e., $f/g \to \infty$, but the notation $\omega(n)$ is often used in a different way, as the default notation for a function of n that tends to infinity. I will try to avoid these.