HT 2025 C8.4 Probabilistic Combinatorics Problem Sheet 0
Hints/Solutions

1. (a) Apply the mean value theorem to f(z) = e* —1—; (b) use (a); (c) expand ek
For (d) use (c¢); and note also that, if 0 < j < k < n, then % > 7.

2. (a) For k fixed, f(n) = ©(g(n)) (since f(n) < g(n) and f(n) > g(n)/k* for n > k
by 1(d)). For k = k(n) — oo, f(n) = o(g(n)) (since f(n) < g(n)/k!).

(b) f(n) = o(g(n)) (take logs and note loglogn = o(logn)). This is just a version
of ‘exponentials grow faster than powers’.

3. Using part of 1 (d), for the given n,
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and the last term is o(n) as k — oc.
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4. Colour the edges of K, independently, each red with probability p and blue oth-
erwise. Let X be the number of red Kis and Y the number of blue Kys. Find
E[X 4 Y] and use the fact that P(X +Y < E[X 4+ Y]) > 0. N.B. It’s not enough
to argue that the events A = {X < E[X]} and B = {Y < E[Y]} both have positive
probability!

5. Pick a 3-colouring of the vertices uniformly at random. Call an edge e bad if e gets
at most 2 colours. Then P(e is bad) < 3(3)", and so the expected number of bad

edges is < 1. (The result is ok even if r is 1 or 2, since then H has no edges.)

6. If I is finite, pick uniformly at random a 0, 1 string of length ¢, where ¢ > max; ¢;.
Let A; be the event that the initial ¢; bits form the ith codeword. Then P(A;) =
27%. But the events are disjoint, so ...

F may be infinite; the same argument works using a random infinite sequence. (Or
note that its enough to prove the final bound for all finite subsets of F.)



Bonus question (for MFoCS students)

. Consider the first displayed equation (0.1). Fix a realisation (i.e., an outcome, i.e.,
a point w in the probability space 2 we are working in). Let K be the set of i such
that A; holds, and let k = |K]|.

Suppose k£ > 1. LHS is 0. RHS is

Suppose k = 0. LHS is 1. RHS is (=1)%Sy = 1.
Thus (0.1) holds, and taking expectations gives (0.2).

For the alternating inequalities, again consider the RHS in (0.1). Arguing as before,
it suffices to check alternating inequalities for ZT>O(—1)"(]:). If £ =0, the LHS is
L and > " is 1 for each m > 0. Suppose that k > 1, so the LHS is 0.

If m > k then Z;nzo(—l)r(’:) =0.

Method 1. Let 0 < m < (k+1)/2. For r < (k+1)/2, (ff) increases, and so
Sorro(=1)" (if) is > 0 for m even and < 0 for m odd, as required.

Let (k+1)/2 < m < k. We may use

> v (F)=- S i (F) - —<—1>’fk_zm<—1>s(§)

r=0 r=m+1 s=0
(setting s = k — r) to see from the previous case that the alternating inequalities
hold for such m.

Method 2. (The slick way.) Notice that

i(—l)r(f) ("1

which easily follows from (k) = (kil) + (kil).
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Either way, we have the alternating inequalities for » _;(=1)"S, in (0.1), and
taking expectations gives the corresponding result for (0.2).

If you find an error please check the website, and if it has
not already been corrected, e-mail riordan@maths.ox.ac.uk



