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Section A

1. Let U C R? be a connected and open set, and v : U — R measurable and locally
bounded (for every x € U there exist an open set A such that z € A and u(A) is a
bounded set). Show that the following are equivalent

1. Au(z) =0forall z € U,

2. for any x € U, r > 0, and ball B(«z, T) cU

ulw) = |/

where | - | denotes the Lebesgue measure.
3. for any x € U, r > 0, and ball B(z,r) C U
1
) B e "

where 0, is the surface measure on 0B (zx,r).

Solution: Can be found in most analysis books, see for example Theorem 3.2 in Moert-
ers&Peres book “Brownian Motion”. The equality 2-3 is less important but all students

should know that 1-2 are equivalent.

2. Let d > 3 and U C R% the unit disc and let T be the first exit time from U. Show that

/8 L=l sy dz) = e(d)—Y

v e — 2| |z|y|? — y|?-2

=
forall z,y € U

where c(d) = T'(d/2 — 1)/(27%?).

Solution: In Lecture notes, Lemma 7.22 I had to skip the proof during the lecture.

3. Show that

where p(t, z,y) = (2mt) %2 et

Mathematical Institute, University of Oxford Page 1 of 4



C8.2 Stochastic Analysis and PDEs: Sheet 4 (Tutors Only) — HT23

Solution: Direct calculation by switiching to polar coordinates; see e.g. proof of The-

orem 7.19 in lecture notes.
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Section B
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4. We can use the Feynman-Kac representation to find the partial differential equation
solved by the transition densities of solutions to stochastic differential equations. Sup-
pose that

dX; = p(t, Xy)dt + o(t, X;)dW,. (1)

For any set B let
pa(t,z;T) £ P[Xp € B| X, = 2] = E[15(X1)| X, = x].

Use the Feynman-Kac representation (assuming integrability conditions are satisfied) to
write down an equation for
Ips

W(t’ z;T)

By letting B — {y} (e.g. a ball of radius € around y) deduce that the transition density
p(t,z;T,y) (“the probability of being at time ¢ in x and at time T in 3”) of the solution

(Xs)s>0 to the stochastic differential equation (1) solves

0
a—];(t,x;T,y)JrAp(t,w;T,y) =0 (2)

pt,x;T,y) — 6,(z) ast—T,

where A is the infinitesimal generator of X. Equation (2) is known as the Kolmogorov

backward equation since it operates on the “backward in time” variables (¢, z).

[You can assume that the transition density exists and that the above PDE is well-posed;

in particular you do not need to give a rigorous definition of the Dirac delta d,).

Solution: By the Feynman-Kac representation (subject to the integrability condition)

a%‘(t, #:T) + App(t,:T) = 0 3)
pB(Tava) = 13(1'),
where o7 . o f
Af(t,z) = p(t, x)%(t, T)+ 502@, x)@(t,x)

Writing | B| for the Lebesgue measure of the set B, the transition density of the process
(XS)SZO is given by
NI
p(t,z; T,y) = lim —P[Xr € B| X; = x].
B—y |B|
(We are assuming existence of the density). Since the equation (??) is linear, we have

proved that the transition density of the solution (Xj)s>o to the stochastic differential

equation (1) solves (2) as required.
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5. We continue the above Question: our aim is to obtain an equation acting on the forward

variables (7, y). By using integration by parts, show that

aT(t v T,y) = A'p(t, z; T, y) (4)
where . 5 L p

Equation (4) is the Kolmogorov forward equation of the process (Xs)s>0-

[Hint: State the Chapman-Kolmogorov formula in terms of p and differentiate under the

integration sign.]

Solution: By the Markov property of the process {X;}:>o, for any 7' > r > ¢

p(t,x;T,y) = /p(t, zyr, 2)p(r, 2, T, y)dz.

Differentiating with respect to r and using (2),

< [0
[ {sttr o s - piesinane s T faz =0
oo LOF
Now integrate the second term by parts to obtain
o0 a .
a_p<t7 xZr, Z) — A p(ta Zr, Z) p(T, 2 T7 y)d’z =0.
-

—00

This holds for all T > r, which, if p(r, z; T', y) provides a sufficiently rich class of functions

as we vary 1", implies the result.

6. Suppose that (X;):>o solves
dXt = /J(t, Xt)dt + O_(t, Xt)th,

where W is a Brownian motion. For £ : R, xR — R and ¢ : R — R given deterministic

functions, find the partial differential equation satisfied by the function

1. F(t,:c) [exp( ft )QD(XT)‘Xt:x},
2. F(t,x) =E[®(Xp)| Xy = —i—ft X)| Xe = x] ds.
for0<t<T.

[You can assume that k and ® are regular enough such the PDE is well-posed.]
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Solution: We start with (1) and evidently F(T,z) = ®(x). By analogy with the proof

of the Feynman-Kac representation, it is tempting to examine the dynamics of

Zs = exp (—/ k(u,Xu)du> F(s, Xy).
t
Notice that if this choice of {Z;}i<s<r is a martingale we have that
Zt = F(t,m) :E[ZT|Xt :l']

Thus the partial differential equation satisfied by F (¢, x) is that for which {Z; }o<i<r is

a martingale.

Our strategy now is to find the stochastic differential equation satisfied by {Zs}i<s<r.

We proceed in two stages. Remember that t is now fixed and we vary s. First notice

that ) (exp <_ /tsk(u,Xu)du>) = —k(s, X,) exp (_ /:/g(u, Xu)du) ds

and by It0’s formula

OF oF 10°F
dF (s, X,) = aS(SX)dS—i-a (s, X5)d X +262(8X) 2(s, X,)ds
_ [oF oF 1, O*F
= {5 s X5 5. X+ o X0 SR X b
—f-O‘(S,XS)—aai(S,XS)dWS.

Hence

dZs = exp (—/ k:(u,Xu)du) X
¢

{{—k‘(s,XS)F(S,XS) +%—Z(3,X )+ u(s, X )gF(s Xs) —l—%a (s, Xs)g$2 }ds

OF

U(S,XS)%

(s,Xs>dWs} .

We can now read off the solution: {Z;}<s;<r will be a martingale if F' satisfies

OF OF 1 O*F

R —(s,2) + p(s,x)5— e (s,x) + 502(5, x)w(s, z) — k(s,x)F(s,z) = 0.

We now proceed to (2). Using the same reasoning, we apply It6’s formula to F'(s, X;) +
J7 k(X,)du and integrate with respect to s over [¢,T] to see that

oF oOF 1 ,0°F

and F(T,z) = ®(x).
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7. Let X1, Xs,... be independent and identically distributed random variables such that
P(X; = e) = & for every e = (e1,...,e4) € {—1,0,1}% with 37 |e;| = 1. For z € Z¢
define S* = (S¥),>0 where for n =1,2,...

St=r+ X+ -+ X,
and S¥ = z. Let A C Z% be a finite set with boundary
OA={x ¢ A:|x—y|=1for some y € A}
and denote the first exit time as 7* = inf{j > 0: S5 ¢ A}. The discrete Laplacian of a
function f : Z¢ — R is defined as
Af(x) = E[f(ST) = F(S5)]-
We call a function f harmonic on A if Af(z) =0 for all z € A.

1. Assume that f : Z% — R is bounded and harmonic on A. Show that M, =
f(S® ) is a martingale with respect to the filtration generated by S7.

min(n,77)
2. Show that there exists a constant ¢ < co and a p < 1 such that for each z € A and
n >0
P(r" >n) < cp™.

[Hint: For R = sup{|z|: x € A} and every x € A there is a path of length R + 1

starting in x and ending outside of A.]

3. Let FF:0A — R and g: A — R. Assume that f: AUO0JA — R satisfies

Af(x) = —g(z) for x € A,
f(z) = F(zx) for x € 0A.

Show that f(x) = E[F(SZ) + Y7, g(S7)).
Solution:

1. By the Markov property

Let B, = {7 > n}. Then M, = M, on B¢ and

E[Myi1|F) = E[Mnialp,|F] + E[Mni11pg|F) (5)
= E[f(Sn+1)15,|F,] + E[M,15¢ | F,)] (6)
= 1p, E[f(Sns1)|Fa] + M, 15 (7)
= 1p,(f(Sn) + Af(Sn)) + Mplpg (8)
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But Af(S,) =0 on B,, therefore
E[M, 1 |F,] = 1B, f(Sy) + 1. M, = M, (9)
2. Let R = sup{|z|: = € A}. Then for each x € A there is a path of length R + 1
starting at = and ending outside of A, hence
P (1 < R+1) > (2d)" ",
By the Markov property

Pt >kR+1)=P(t>(k—-1)(R+1)P(r>k(R+1)|T>(k—1)(R+1))
(10)
< P> (k= 1)(R+1))(1 — (2d)" "), (11)
and hence
P* (1> k(R + 1)) < pFEHD,
where p = (1 — (2d)~F+D)V/(E+D) | For an integer n write n = k(R + 1) + j where
je{l,...,R+1}. Then

Po(1 >n) < P*(1 > k(R +1)) < pFBEHD < p=(BED (12)

3. First note that by above question, f is well-defined since

B(Y19(S)l) < gl ¥ lr) < oo

It is immediate to check that f as given satsifies the discrete PDE with boundary
conditions. To check the uniqueness, assume f solves the discrete PDE and let M

be the martingale

(n—=1)A(T—1)
=0
(n—1)A(T-1)
= f(Snrr + 9(5;). (14)
=0

By the bounds of the previous question
E*[|Mn|1r2n] < ([Ifllso +nllglloc) P*(T = n) — 0.

Therefore the optimal sampling theorem applies and

T—1

fx) = E*[Mo] = E*[M,] = E°[F(S;) + ) _ 9(5))]

J=0

Mathematical Institute, University of Oxford Page 8 of 4



C8.2 Stochastic Analysis and PDEs: Sheet 4 (Tutors Only) — HT23

Section C

8. The Vasicek model models the interest rate (7)¢>0 as solution of the stochastic differen-
tial equation

drt = (b — art)dt + Uth,

where W is standard Brownian motion. Find the Kolmogorov backward and forward
differential equations satisfied by the probability density function of r;. What is the

distribution of r; as t — oo?

Solution: Op(t. T ) L 3
o\t L %,Y) 1 20D o \OP
Bt =% gz~ b arlg
ap(tv T7I7y) . 1 Qazp a

Consider u; = e%r;.
du, = be®dt + ge™dW,.

Integrating and substituting back gives
t t
re=¢e “rg+ e_“t/ be*ds +/ e =) qIy,.
0 0

Thus 7, is normally distributed with mean e~**rq+2(1—e~*") and variance %(1 —e~2at),
As t — oo, 1 tends to a normally distributed random variable with mean b/a and

variance o2/2a.

9. The process usually known as Geometric Brownian motion solves the SDE
dSt = /.LStdt + O'Stth.
Find the forward and backward Kolmogorov equations for geometric Brownian motion
and show that the transition density for the process is the lognormal density given by

o [ osly/w) — (n—50°) (T - t)’
oy/2r(T —1) 202(T —t) .

p(t,z;T,y) =

Solution: Substituting in our formula for the forward equation we obtain

ap 10° )
Lt ;T y) = —— t,2;T,y)) — p— (yp(t, x; T
ap e Ty) 20 (v*p(t,z;T,y)) uay(yp(,x, Y)) s
and the backward equation is
p 1, ,0% Op
g G uTy) = —go "o (G4 Toy) — pag (823 T, y).

It is enough to check that the lognormal density solves one of the Kolmogorov equations.
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