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Part 0
Introduction
1 Why Random Matrices?
Matrices play a central role in mathematics and its applications. Just as one considers the properties
of probability measures defined on a space of real or complex variables, it is also natural to associate
probability measures with spaces of matrices. We shall be interested in the properties of such random
matrices, and in applications of Random Matrix Theory to predict what one should expect in ‘typical’
situations involving linear algebra. Random matrices is a rich topic in contemporary mathematics
that intersect with probability, analysis, mathematical physics, combinatorics, number theory and data
sciences. This course is designed as an introduction to the foundational principles of random matrix
theory.

Why should one expect random matrices to be so ubiquitous in mathematics and in nature? A
linear operator T from Rm → Rn is a function with the property that T (av1 + bv2) = aTv1 + bTv2,
where a, b ∈ R and v1,v2 ∈ Rm. Linear operators are arguably the simplest functions from Rm to
Rn. The linear operator T can be represented as a matrix A for a given choice of basis of Rm, say
(ei, i ≤ m) and (fj , j ≤ n). The entry Aij of A is then the component of Tei in the direction of fj . 1

With this point of view, it is natural to consider random matrices. Indeed, one should think of a
random matrix as a generic linear operator. We will often think of the dimensions m and n as large,
tending to infinity in fact. It is then in practice impossible to define exactly an operator entry by
entry. A better approach is to look at the problem statistically. One would like to sample a linear
operator among a large set of operators with perhaps some a priori properties and symmetries. It is
thus necessary to construct probability distributions on matrices.

1.1 What is a random matrix?
There are many ways to construct probability distributions on matrices. Given the standard bases on
Rm and Rn, the simplest way is perhaps to consider each entry Mij with i ≤ m and i ≤ n as random
variables. There might be correlations between the entries. The distribution of the random matrix is
then given by the joint distribution of the entries. A distribution on random matrices is often called a
random matrix ensemble.2

Throughout these notes, we will usually denote a random matrix by M.

We will use the notation M for a given deterministic matrix, for a example for a given realization of M.

Example 1.1. Let Mij be independent, identically distributed (IID) uniform random variables on
[0, 1]. We can define a random matrix M by taking

(
M11 M12

M21 M22

)
.

Any event pertaining to M can be computed using the joint probability density function (PDF) of the
Mij . More precisely, if B is a (measurable) subset of R2×2 then

P(M ∈ B) =

∫

B

dx1dx2dx3dx4.

One can then compute for example the probability that M is singular or symmetric.
1Of course, the above setup generalizes when T is a linear operator on other vector spaces. In this course, we will

focus on Rn and sometimes Cn.
2The word ensemble is often used in physics for a probability distribution.
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To sample only symmetric matrices, we can force the symmetry by taking instead

M =

(
M11 M12

M12 M22

)
.

Note that the off-diagonal are now completely correlated! The subspace of 2× 2 symmetric matrices
has dimension 3. In particular, the distribution of M is determined by

P(M ∈ B) =

∫

B

dx1dx2dx3,

where B is now a subset of R3.

Another way to sample is to directly define the probability on the space of matrices.

Example 1.2. Consider the set of rotation matrices in R2. For a rotation by an angle θ, we have

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

To sample a rotation uniformly, it suffices to take θ as a random variable uniform on [0, 2π).

We will see in Section 2 many examples of random matrix ensembles defined in similar ways.

1.2 What is our goal?
As it is often the case in probability, there are fascinating phenomena that arise in the limit where
the number of random variables tends to infinity 3. Random matrix theory is no exception. Our
main objective is to understand the properties of very large matrices, when the dimensions m,n→∞,
sometimes at the same rate, sometimes at different rate. Of course, one cannot keep track of the whole
operator then, and it is convenient to reduce our attention to certain statistics or observables in the
limit. One might object that defining random matrices by describing the distribution of each entry is
too basis-specific. Thus, good observables should be independent of the basis.

An obvious choice of observables is the eigenvalues, if the matrix is square. If the random matrix
M is not square, one could look at the singular values, i.e., the square root of the eigenvalues of the
matrix MTM. (The eigenvalues of MTM must then be real and non-negative. Why?) The eigenvalues
of a matrix M is a function of the entries, therefore if M is a n× n random matrix, then

its eigenvalues (Λ1, . . . ,Λn) are random variables taking values in C or R

When n is large, this collection is again large. In this course, we will study different statistics of this set:

• Part I: Empirical Spectral Measure (ESM). We can define a discrete probability measure
by associating to each Λi a point mass (also known as Dirac Delta) each with a weight of 1/n:

µM =
1

n

n∑

i=1

δΛi .

This is called the empirical spectral measure (ESM). It gives a macroscopic measure of how
the eigenvalues are distributed. We will see that µM converges to some universal distributions
depending on the matrix type: the semicircle law, the Marchenko-Pastur law, and the Girko law.

3This is also the case in statistical physics when we take the limit of particles going to infinity, the so-called
thermodynamic limit.
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• Part II: Eigenvalue Statistics In the second part, we will look at the unnormalized spectral
measure

∑n
i=1 δΛi . This can be seen as a point process that is a random configuration of points in

C and R. One can then ask questions about the statistics of these points such as the gap between
consecutive eigenvalues or the distance between pairs. As for the ESM, we will see in examples
that one recover similar statistics in the limit n → ∞ for seemingly different ensembles. This
gives us a glimpse of the universality of random matrix statistics.

• Part III: Dyson Brownian Motion and Universality We will end the journey by defining
the Dyson Brownian motion. This is a dynamic on the eigenvalues that turns out to be extremely
useful to prove universality results. We will also explore the appearances of the random matrix
statistics in other fields of mathematics, most of which is still misunderstood.

2 Examples of Random Matrix Ensembles
We start by defining explicitly the random matrix ensembles that will be studied in this course. There
are many important ensembles that we will not have the time to investigate. Those defined here are a
representative set and are amongst the most widely studied. Here an ensemble is a space of matrices
endowed with a probability measure.

2.1 The Ginibre Ensemble
A n× n real Ginibre random matrix M is arguably the simplest random matrix. It is simply defined by
taking

Mij IID standard Normal random variables, 1 ≤ i, j ≤ n.
The eigenvalues of a Ginibre matrix are not necessarily real.

2.2 Wigner Matrices
A Wigner matrix is a random matrix where some symmetries are imposed. More precisely, a real
Wigner matrix M is such that above the diagonal

Mij , 1 ≤ i < j ≤ n, are IID real random variables with E[Mij ] = 0 and E[M2
ij ] = 1. (2.1)

We then impose that M is symmetric so that Mji = Mij . The distribution of the diagonal may
be different from the off-diagonal entries. We assume Mii is IID with E[Mii] = 0 and E[M2

ii] < ∞
(uniformly in n). When taking the limit n→∞, we will sometimes rescale the matrix elements by a
power of n.

A complex Wigner matrix is defined similarly as the real case by imposing the Hermitian property.
Namely, we take

Mij , 1 ≤ i < j ≤ n, are IID complex random variables with E[Mij ] = 0 and E[|Mij |2] = 1, (2.2)

with Mji = Mij is the complex conjugate of Mij . Again, the diagonal may have different distributions
but the entries remain IID with mean 0 and finite second moment.

2.3 The Gaussian Orthogonal Ensembles (GOE)
The Gaussian Orthogonal Ensemble (GOE) is the particular class of real Wigner random matrices
for which the matrix elements are independent normal random variables. Specifically, Mij with
1 ≤ i < j ≤ n are IID random variables with distribution N (0, 1), and Mii, i ≤ n, are IID real random
variables with distribution N (0, 2).
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Hence, the joint probability density function (PDF) of the entries of M is

n∏

i=1

1√
4π
e−

1
4M

2
ii

∏

1≤i<j≤n

1√
2π
e−

1
2M

2
ij =

1

2n/2(2π)n(n+1)/4
e−

1
4 Tr(M2). (2.3)

The following is one of the most important properties of the GOE (and the reason for its name).

Lemma 2.1. Let O be a non-random n× n orthogonal matrix (i.e. OOT = I) and let M be an n× n
GOE matrix. Then the distribution of M is the same as that of OMOT; that is, the GOE is invariant
under conjugation by all orthogonal matrices.

Proof. We need to show that the PDF of OMOT is the same as the one of M. Note first that

Tr
(

(OMOT)2
)

= Tr
(
OM2OT

)
= Tr(M2OTO) = Tr(M2). (2.4)

It remains to show that the Jacobian of the transformation is 1. One can compute the Jacobian by
hand and confirm this by explicit calculation. To see this directly, note that the Hilbert-Schmidt norm
of M is precisely Tr(M2). But we have just seen that this is invariant under conjugation by O 4. The
map M 7→ OMOT is therefore an isometry, so its Jacobian determinant is 1.

It turns out that the only ensemble of symmetric random matrices whose entries are independent
(up to the symmetry constraint) and whose distribution is invariant under conjugation by all orthogonal
matrices is the GOE – so the orthogonal invariance is a special property of the Gaussian nature of
the matrices. One can easily construct matrix ensembles that are invariant under conjugation by all
orthogonal matrices but in which the matrix elements are not statistically independent.

2.4 The Gaussian Unitary Ensembles (GUE)
The Gaussian Unitary Ensemble (GUE) is the particular class of complex Wigner random matrices
for which the matrix elements are independent complex normal random variables. We take Mij ,
1 ≤ i < j ≤ n IID random variables with real and imaginary parts that are independently Gaussian
N (0, 1/2), and Mii, 1 ≤ i ≤ n, IID real standard Gaussian random variables. Note that the matrix M

is Hermitian (i.e., M = M† = M
T
) by construction.

In this case the joint PDF of the entries is

n∏

i=1

1√
2π
e−

1
2M

2
ii

∏

1≤i<j≤n

1√
π
e−(ReMij)

2 1√
π
e−(ImMij)

2

=
1

2n/2πn2/2
e−

1
2 Tr(M2). (2.5)

Not surprisingly, we have:

Lemma 2.2. Let U be a n× n unitary matrix (i.e. UU† = I) and M be a GUE matrix. Then UMU†

is also a GUE matrix.

Proof. This is done again by computing the PDF of UMU†. We have

Tr
(

(UMU†)2
)

= Tr(UM2U†) = Tr(M2U†U) = Tr(M2). (2.6)

Again, the Jacobian of the transformation M 7→ UMU† is 1 since Tr(M2) is the Hilbert-Schmidt norm
of M , and so conjugation by a unitary matrix is an isometry.

4The Hilbert-Schmidt norm of a matrix is defined generally by Tr(MTM).
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The only ensemble of Hermitian random matrices whose entries are independent (up to the symmetry
constraint) and whose distribution is invariant under unitary conjugation is the GUE. One can easily
construct matrix ensembles that are invariant under unitary conjugation but in which the matrix
elements are not statistically independent.

The PDF of GOE and GUE matrices may, up to a normalization constant, be written in the form

e−
β
4 Tr(M2) (2.7)

where for the GOE β = 1 and for the GUE β = 2. There is a third Gaussian ensemble with
good invariance properties for which the matrix elements are quaternions. It is called the Gaussian
Symplectic Ensemble (GSE), and its distribution is invariant under conjugation by a symplectic matrix.
It corresponds to β = 4. What about other β’s? We will see in Part II that the distribution makes
sense for any β > 0, however there is no obvious invariance under conjugation in this case.

2.5 The Circular Unitary Ensembles (CUE)
The circular unitary ensemble (CUE) is the space of n× n unitary matrices endowed with a probability
measure that is invariant under all unitary transformations (i.e., under left and right multiplication by
all unitary matrices). In this case, the matrices represent elements of the compact Lie group U(n) and
the invariant measure is called the Haar measure. This measure does not have a simple expression in
terms of the matrix elements, as in the case of Wigner matrices.

Similarly, one can consider the space of n × n orthogonal matrices endowed with a probability
measure that is invariant under all orthogonal transformations (i.e., under left and right multiplication
by all orthogonal matrices). In this case the matrices represent elements of the compact Lie group O(n)
and the invariant measure is the Haar measure on this group. Again, this measure does not have a
simple expression in terms of the matrix elements.

For a careful introduction to Haar measure on compact Lie groups, see, for example, [Mec19]
and [Mez07]. The latter reference discusses how to generate random unitary and orthogonal matrices
numerically.

2.6 Wishart Matrices
Let X be a p-dimensional Gaussian vector of mean 0 and covariance C (see Example B.3). Consider the
p× n matrix Y constructed by taking n independent copies X(i) of X as its columns. One can think of
each the columns as independent measurements of p quantities with possible correlations between them.
It is natural then to consider p ≤ n. A real Wishart matrix with covariance matrix C is a p-dimensional
random symmetric positive definite matrix M of the form

M = YYT (2.8)

This is an example of sample covariance matrix since if we divide by n,

1

n
Mij =

1

n

n∑

k=1

X
(k)
i X

(k)
j .

The PDF of the entries of M was computed by Wishart in 1928 [Wis28] to be

f(M) =
1

2np/2Γp(
n
2 )(det C)n/2 (detM)(n−p−1)/2 exp

[
−1

2
Tr(C−1M)

]
(2.9)

Here

Γp(
n

2
) = πp(p−1)/4

p∏

j=1

Γ

(
n

2
− j − 1

2

)
. (2.10)
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3 Occurences of Random Matrices in Mathematics and Beyond
Historically, questions in Random Matrix Theory (RMT) have arisen in a number of different mathe-
matical contexts. We review a selection of these, by way of motivation and a gentle introduction to
some of the key themes that will be explored later in more detail.

3.1 Random rotations
Arguably, the first substantial RMT calculation appeared in work of Adolf Hurwitz concerning orthogonal
transformations. Rotations of objects in three dimensions can be parametrized by the Euler angles.
One can therefore consider random rotations in three dimensions by defining a probability measure on
these angles. In the absence of any preferred directions, it is natural to use a probability measure that
is itself invariant under all rotations.

Another way of phrasing this is in terms of orthogonal matrices. Consider r ∈ R3. Rotating r
corresponds to multiplying it by a 3×3 orthogonal matrix5, i.e. a matrix O satisfying OOT = I. Random
rotations can therefore be thought of in terms of a probability measure on the space of orthogonal
matrices. A rotationally invariant probability measure corresponds to a probability measure that is
itself invariant under all orthogonal transformations.

Hurwitz was the first to investigate invariant probability measures on the orthogonal and unitary
groups. See [DF17] for an overview of his work and subsequent developments, and [Mec19] for an
introduction to the general theory in wider contexts.

3.2 Systems of linear equations
One of the basic problems of numerical linear algebra involves solving the system of linear equations

Ax = b (3.1)

for the n-dimensional vector x, given an m× n matrix A and an m-dimensional vector b, when m and
n are large. One important consideration is: if b is not specified precisely, how does this imprecision
affect the accuracy with which x can be determined? The condition number is the maximum ratio
of the relative error in x to the relative error in b. A natural way to measure the size of these errors
equates the condition number to the ratio of the largest and smallest singular values of A, or in the
case when A is normal6, the ratio of the maximal and minimal absolute values of the eigenvalues of A.

In 1947 John von Neumann and Herman Goldstine [vNG47] asked what the condition number would
be for a ‘typical’ large matrix and initiated the study of condition numbers of random matrices, taking
the elements of A to be IID random variables. This subject has a long and interesting history, which is
beautifully reviewed in [ER05]. In particular, the distribution of values taken by the condition number
is related to the distribution of the largest and smallest eigenvalues of the associated random matrices.

3.3 Complex quantum systems
In quantum mechanics, the allowed values of the energy in a closed system – the energy levels – are, in
general, the eigenvalues of a complex Hermitian matrix H = H†, the quantum Hamiltonian. In many
settings this matrix is in fact real and symmetric, so H = HT. It was suggested by Eugene Wigner in
the 1950s that in complex quantum systems the independent entries in the matrix H (Hij with i ≥ j,
say) should be modelled as random variables. This gave rise to the Wigner matrices defined in the
last section, The question then is: how are the eigenvalues of random complex Hermitian or random
real symmetric matrices distributed? It turns out that for matrices whose entries are independent
random variables, the eigenvalues are strongly correlated in a distinctive and mathematically interesting

5More generally, orthogonal matrices generate linear isometries; the orthogonality of O preserves the dot product
between any two vectors

6i.e. if AA† = A†A.
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way. These characteristic correlations are indeed seen in the energy level statistics of typical quantum
systems, ranging from atomic nuclei to superconducting systems. The fact that large perfectly ordered
systems conduct electricity while disordered systems do not is because in the latter case the quantum
Hamiltonians behave like random matrices.

In fact this is not an exclusively quantum phenomenon: it is observed in all wave theories, including
acoustics, optics, elasticity, electromagnetism, etc. Moreover, it is observed on the widest range of
scales, ranging from the description of sub-nuclear physics in terms of quantum chromodynamics to the
structure of the cosmic microwave background.

3.4 Stability of high-dimensional dynamical systems
Let x(t) be an n-dimensional vector satisfying

dx

dt
= −λIx (3.2)

where λ is a positive constant and I is the n× n identity matrix. This system has a stable fixed point
at x = 0. Clearly in (3.2) the different components of x are uncoupled (because I is diagonal). The
question is: if one now introduces random coupling between these components, does this make the fixed
point more or less stable? Specifically, what is the stability of the system

dx

dt
= −λIx+Ax, (3.3)

where A is a random matrix?
This question was first raised by Robert May (Lord May of Oxford) in 1972 in a famous paper [May72]

on population dynamics. In that context, it is called the May model. Then the components of x
represent the differences of the populations of various species from some equilibrium values. If the
species do not interact, then it is assumed that the equilibrium values are stable. It had long been
assumed that adding random interactions would make the equilibrium populations more stable when n
is taken to be large. May asked whether this was indeed the case and analysed the situation using the
simple model system (3.3).

Obviously the question of stability is related to knowing the expected size of the eigenvalues of A
when n is large. This question arises in many other contexts as well, for example in the dynamics of
neural models and on complex networks.

3.5 Principal Component Analysis
Let X(1), X(2), . . . , X(n) be p× 1 vectors, where p is to be treated as large with respect to the number
of vectors, n. Let Y be another p× 1 vector. Which of X(1), X(2), . . . , X(n) is closest to Y ? Obviously
one can check each of the distances ‖Y −X(i)‖2, but doing so is costly. This is an important problem
in high-dimensional data analysis.

The idea of Principal Component Analysis is to project onto a subspace in which the vectors
X(1), X(2), . . . , X(n) show maximum variability. It is obviously natural to seek to do this in the
subspace where the vectors exhibit maximum variability, because this is where their differences are
largest. This can be thought of as enacting ‘feature selection’ in many applications. The reduction
in the dimension of the space where the comparison is made increases the efficiency of the search
considerably. For example, for a given unit vector u ∈ Rp, which of the uTX1, u

TX2, . . . , u
TXn have

maximum variability. For simplicity, let us assume that X1 +X2 + · · ·+Xn = 0. Then the variance of
the set uTX1, u

TX2, . . . , u
TXn is

1

n

n∑

j=1

(uTX(j))2 = uT


 1

n

n∑

j=1

X(j)X(j)T


u = uTσnu. (3.4)
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The maximum value uTσnu can take is the largest eigenvalue of σn, and this occurs when u is the
corresponding eigenvector.

Clearly this can be extended so that one can project onto the subspace spanned by the eigenvectors
corresponding to the m largest eigenvalues. How large should m be taken? The idea is to compare the
eigenvalues to those of the random matrix defined by (2.8), taken to be a null model, and to keep those
that differ significantly and so represent non-random features of the data. One therefore needs to know
how the eigenvalues of a random Wishart matrix are distributed.

For an overview of this and similar applications (e.g. to mathematical finance, image analysis, etc)
see [Joh07] and [BS10].

3.6 Complex networks
Many problems in data science and mathematics are related to properties of networks. These can be
modelled by graphs, that is by ordered pairs G = (V,E) comprising a set of vertices V and edges E.
The structure of the graph may be represented in terms of the adjacency matrix A. For a simple graph
this is a square matrix of dimension |V | such that Aij is equal to 1 when there is an edge from vertex i
to vertex j, and zero otherwise7.

The statistical properties of complex graphs are then modelled by random square matrices where
the elements are taken from {0, 1}, each with probability p, in some cases with constraints (e.g. in the
case of regular graphs on the total number of ones in each row and column).

In the physics literature, these network models, where often the non-zero entries of the adjacency
matrix are augmented with a ‘hopping probability’, are usually called tight binding models. One well
known example is the Anderson tight binding model used to explore quantum localization and its
implications for electrical conductivity.

3.7 Machine learning
In machine learning one frequently wishes to minimise functions, which are often highly complex, in
an extremely high-dimensional space. One technique is to use stochastic gradient descent. This raises
the important question as to how easy it is to explore effectively random surfaces in high dimensional
problems; are there many local minima and saddles where one can get stuck? And at a saddle, how
many downward directions are there typically? This is the subject of intense study. One way of
modelling the problem is to take the Hessian at a point on the surface to be a random symmetric matrix.
Understanding the structure of the critical points then reduces to understanding the distribution of the
eigenvalues of this random matrix, for example how many eigenvalues are expected to be positive, and
how many negative. See, for example, [CHM+15].

3.8 Connections with other areas of mathematics
In the above examples it is hopefully clear that matrices play an important role, and that it is reasonable
that one might wish to use random matrices as a statistical model. What is more surprising is that the
mathematical structures one finds in random matrix theory are more general than one might expect, in
that they arise in contexts with no obvious connection with linear algebra. We will go back to this in
Part III.

One example concerns the length of the longest increasing subsequence in random permutations. Let
Sn be the group of permutations of 1, 2, . . . , n. If π ∈ Sn, π(i1), . . . , π(ik) is an increasing subsequence
in π if i1 < i2 < · · · < ik and π(i1) < π(i2) < · · · < π(ik). Let ln(π) be the length of the longest
increasing subsequence. For example, if n = 5 and π is the permutation 5 1 3 2 4, then the longest
increasing subsequences are 1 2 4 and 1 3 4, and ln(π) = 3. Equip Sn with uniform distribution,

P(ln ≤ m) =
#{π ∈ Sn : ln ≤ m}

n!
. (3.5)

7This matrix is related to the discrete Laplacian acting on the vertex set.
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What is the asymptotics of this distribution as n→∞? Remarkably, it is the same as the asymptotics
of the distribution of the largest eigenvalue of a random complex Hermitian n× n matrix, despite the
fact that there is no matrix in the problem.

A second example concerns the Riemann zeta-function

ζ(s) =

∞∑

n=1

1

ns
. (3.6)

The sum converges in Re s > 1, and the zeta function has an analytic continuation to all s (except for
s = 1, where it has a pole). The Riemann Hypothesis asserts that all of the zeros of ζ(s) with non-zero
imaginary parts lie on the line Re s = 1/2. How are the zeros distributed along the line? Like random
points, or are their positions correlated? It turns out that they are correlated, and all of the evidence
we have suggests that the correlations between them are the same as those between the eigenvalues of
large complex Hermitian random matrices, despite the fact that again there is no obvious matrix in the
problem.

Moreover, the same correlations have been found in the distances between parked cars in London,
and the gaps between bus arrivals in the Mexican city of Cuernavaca [BBDS06], and subway arrivals in
the New York City subway system [JT17].

Finally, many of the calculations in random matrix theory have deep connections with ideas and
results in other areas of mathematics, including combinatorics and topology.

3.9 Further reading and remarks
In addition to these notes, students may wish to consult the following for further details and extensions
of the material covered.

• M. Potters & J.-P. Bouchaud, A First Course in Random Matrix Theory for Physicists, Engineers
and Data Scientists (Cambridge University Press)

• G. Livan, M. Novaes & P. Vivo, Introduction to Random Matrices (Springer Briefs in Mathematical
Physics)

• E.S. Meckes, The Random Matrix Theory of the Classical Compact Groups (Cambridge University
Press)

• G.W. Anderson, A. Guionnet & O. Zeitouni, An Introduction to Random Matrices (Cambridge
Studies in Advanced Mathematics)

• M.L. Mehta, Random Matrices (Elsevier, Pure and Applied Mathematics Series)

• G. Akemann, J. Baik & P. Di Francesco, The Oxford Handbook of Random Matrix Theory
(Oxford University Press)

• Z. Bai & J.W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices (Springer).

• T. Tao, Topics in Random Matrix Theory, available online from
https://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

It is worth remarking that random matrix theory is mathematically an extremely broad subject.
Papers and books on the subject vary considerably in style and intended readership, from analysis
and probability theory to engineering, theoretical physics, and data science. They therefore assume
different background knowledge and differ in levels of abstraction and notions of rigour. These notes
will attempt to chart a middle course, focusing on the main ideas and using a mixture of techniques,
hopefully to give a sense of the various viewpoints that have influenced the development of the subject.
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Part I

Empirical Spectral Measure
For a fixed n× n matrix M with eigenvalues (λ1, . . . , λn), the empirical spectral measure is defined by

µM =
1

n

n∑

i=1

δλi .

In particular, for any subset A ⊂ R, µM (A) =
∫
A

dµM is the proportion of eigenvalues falling in A.
Note that µM is a probability measure on R if the eigenvalues are real or C if they are complex.

If M is a random matrix, then µM(A) is a random variable, and µM is a random probability
measure. The distribution of a random probability measure µM is determined by the collection of
random variables

∫
R f(x)dµM, for f in a suitable set of test functions. In this part, we study the

ESM of different random matrix ensembles. In Section 4, we prove convergence of the ESM of Wigner
matrices to the semicircle law. The proof is based on the method moments and is a beautiful piece
of mathematics involving important concepts of combinatorics. For GUE matrices, the computation
involved in the proof has some nice connections to topology. This is explained in Section 5. In Section
6, similar techniques are used to prove the limit of the ESM in the case of Wishart Matrices. This is the
celebrated Marchenko-Pastur distribution. A different approach, and perhaps more robust technique
of proof for convergence of the ESM, involves the Stieltjes transform of a probability measure. This
important tool of analysis is studied in Section 7. Finally, in Section 8, we briefly discussed the ESM
in the non-Hermitian case (for example, the Ginibre ensemble) where the limit of the ESM is Girko’s
circular law.

4 The Semicircle Law for Wigner Random Matrices
Our goal in this section is to study the ESM of Wigner matrices as defined in Section 2.2 with moment
assumptions given in (2.1) and (2.2). Such matrices are Hermitian or symmetric, and therefore their
eigenvalues are real. The ESM is thus a random probability measure on R.

The following result due to Wigner is a formidable limit theorem of probability. Note that as it is
often the case in limit theorems, one needs to rescale quantities to get a meaningful limit. Here, the
eigenvalues needs to be rescaled by 1/

√
n. They correspond to the eigenvalues of M/

√
n.

Theorem 4.1 (Wigner’s Semicircle Law). Let M be a real of complex n×n Wigner matrix as defined in
Section 2.2. Denote by Λ1, . . . ,Λn its eigenvalues. For every bounded continuous functions f : R→ R,
we have

lim
n→∞

∫
fdµM/

√
n = lim

n→∞

1

n

n∑

i=1

f(Λi/
√
n) =

∫
f(x)dσ(x), (4.1)

where dσ(x) is the semicircle distribution given by

dσ(x) =

{
1

2π

√
4− x2dx if |x| ≤ 2

0 if |x| > 2
. (4.2)

The convergence holds in expectation and almost surely.

Remark 4.2. • Note the limit on the right is deterministic, yet the sequence on the left is random.

• Various versions of the proof of this result yield different notions of convergence to the limit:
Wigner’s original approach [Wig58] gave convergence in expectation (Not to be confused with
convergence in mean or convergence in L1!), i.e.,

lim
n→∞

1

n

n∑

i=1

E[f(Λi)] =

∫
fdσ, f bounded continuous. (4.3)
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Figure 1: The spectral density of a single GOE matrix of dimension 2000 compared to the Wigner
semicircle law.

• The assumption of finite second moment of Mij is crucial. Without this, the theorem does not
hold, see [BAG08].

Before proceeding with the proof, we first illustrate the semicircle law by showing the results of some
numerical experiments. These experiments involved generating random matrices from the GOE and the
GUE, plotting histograms of the eigenvalues, and comparing with the semicircle law (4.2). For ease of
visualisation, the eigenvalues have each been divided by 2, so now the support of the rescaled semicircle
is |x| ≤ 1 and it has area π/2. Figure 1 shows the result for a single GOE matrix of dimension 2000,
and Figure 2 shows the result of averaging over 100 GOE matrices of the same dimension. Similarly
Figure 3 shows the result for a single GUE matrix of dimension 2000, and Figure 4 shows the result of
averaging over 100 GUE matrices of the same dimension.

The strategy for proving the semicircle law is based on the method of moments (cf. Theorem B.10).
(See also Section B.2 for a refresher on convergence of random variables.) This is done in two steps.

1. We first prove convergence in mean. Note that for each n, the collection of expectations

E

[∫
fdµM/

√
n

]
, f bounded continuous,

defines a deterministic probability measure, which is the mean of the ESM for a given n. Let’s
denote this by µn. In Theorem 4.6, we first show that the k-th moment µn converges to the
k-th moment of the semicircle law. The moments of the semicircle law are computed in the next
section. The computation of the moments of µn maps onto a problem in combinatorics, leading
to a proof that they coincide with the moments of (4.2) in the limit when n→∞.

2. A second part of the proof of Theorem 4.6 shows that the moments of µM/
√
n converges to the

moments of the semicircle distribution almost surely. This is done by computing the variance of
the k-th moment

∫
xkdµM/

√
n and applying the Borel-Cantelli lemma.
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Figure 2: The spectral density obtained by averaging over 100 GOE matrices of dimension 2000
compared to the Wigner semicircle law.
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Figure 3: The spectral density of a single GUE matrix of dimension 2000 compared to the Wigner
semicircle law.
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Figure 4: The spectral density obtained by averaging over 100 GUE matrices of dimension 2000
compared to the Wigner semicircle law.

4.1 Moments of the semicircle law and Catalan numbers
The moments of the semicircle law (4.2) are

Lemma 4.3. Let k ∈ N. The moments of the semicircle law are

αk =
1

2π

∫ 2

−2

xk
√

4− x2dx =

{
0 if k is odd;

1
m+1

(
2m
m

)
if k = 2m is even.

(4.4)

The numbers
Cm =

1

m+ 1

(
2m

m

)
(4.5)

are known as the Catalan numbers.
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Proof. Clearly, by symmetry, αk = 0 when k is odd. Setting k = 2m we then have

α2m =
1

2π

∫ 2

−2

x2m
√

4− x2dx

=
22m+1

π

∫ π

0

(cos θ)2m sin2 θdθ

=
22m+1

π

[∫ π

0

(cos θ)2mdθ −
∫ π

0

(cos θ)2m+2dθ

]

=
2

π

[∫ π

0

(eiθ + e−iθ)2mdθ − 1

4

∫ π

0

(eiθ + e−iθ)2m+2dθ

]

= 2

[(
2m

m

)
− 1

4

(
2m+ 2

m+ 1

)]

=
1

m+ 1

(
2m

m

)
, (4.6)

where, in passing from the fourth to the fifth line, we used the binomial expansion and the fact that
only one term in this expansion gives a non-zero contribution when integrated.

The Catalan numbers satisfy (among many other identities)

Cm =

(
2m

m

)
−
(

2m

m+ 1

)
, (4.7)

and the recurrence relation

Cm+1 =

m∑

i=0

CiCm−i, (4.8)

with C0 = 1. They are all integers (Why?). The sequence of Catalan numbers begins 1, 1, 2, 5, 14, 42,
132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, . . . . Note that it follows from
(4.5) that Cm ≤ 4m. In particular, this implies that the semicircle law is determined by its moments,
since by the dominated convergence theorem, we have

∫
eiλxdσ(x) =

∑

k≥0

ikλkαk
k!

, λ ∈ R.

The Catalan numbers play an important role in combinatorics because they count various interesting
objects, ranging from lattice paths to geometric constructions in polygons. See, for example, [Kos09,
Sta15]. We now describe briefly one such connection.

Definition 4.4. For k ∈ N, A Dyck path π of length 2k is a function on {0, 1 . . . , 2k} such that

• the path starts and end at 0, i.e., π(0) = π(2k) = 0;

• for all 0 ≤ j ≤ 2k − 1, the increments π(j + 1)− π(j) are −1 or +1.

• the path stays non-negative, i.e., π(j) ≥ 0 for all 0 ≤ j ≤ 2k.

We denote the set of Dyck paths of length 2k by Dk.

Call a simple walk a path that starts at 0 with increments ±1. The Dyck paths of length 2k are
exactly the simple walks from time 0 to 2k that start and end 0 at 0 while remaining positive. There
are 22k simple walks. The number of Dyck paths is:

Proposition 4.5. For every k ∈ N, #Dk = Ck.
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This is an important combinatorial fact. We give two proofs.

Proof. To prove this, let A denote the set of walks of length 2k with increments ±1 which start at 0
and end at -2, and similarly let B denote the set of all walks of length 2k with increments ±1 which
start at 0 and end at 0. Then |Dk| = |B| − |A|, which may be seen by the reflection principle. More
precisely, let C denote the set of walks of length 2k with increments ±1 which start at 0 and end at 0,
but which hit -1 at some intermediate point. Obviously |Dk| = |B| − |C|. However, |C| = |A| because
the respective paths are in bijection: for a walk in C, let j be the last visit to −1; reflecting the portion
of the path after j about −1 gives a unique path terminating at −2 with the same set of visits to −1.
Clearly |B| =

(
2k
k

)
, because B consists of k steps +1 and k steps −1 in some order, and |A| =

(
2k
k+1

)
,

because A consists of k − 1 steps +1 and k + 1 steps −1. Hence

|Dk| =
(

2k

k

)
−
(

2k

k + 1

)
= Ck. (4.9)

Alternatively, consider a Dyck path of length 2(k + 1). Let 2(m + 1) denote the first ‘time’ this
path hits 0. We can break the path into two pieces: the section up to time 2(m+ 1) and the section
after this time. The path up to time m is itself a Dyck path, as is the path afterwards. If we denote
|Dn| = dn, then clearly

dk+1 =

k∑

m=0

dmdk−m, (4.10)

and d0 = 1. Hence dk satisfies the recurrence relation (4.8).

4.2 Spectral moments
In this section, we compute the k-th moments of the ESM, or spectral moments, of a real Wigner matrix
M with eigenvalues (Λ1, . . . ,Λn) properly rescaled:

1

n

∫
xkdµM/

√
n(x) =

1

n

n∑

i=1

(Λi/
√
n)k =

1

nk/2+1
Tr(Mk). (4.11)

Our goal now is to prove the following theorem.

Theorem 4.6 (Wigner [Wig58] 8). Let M be a n× n real Wigner matrix. Suppose that for all k ∈ N
the following moment assumption is satisfied:

Bk := sup
n∈N

sup
(i,j)∈{1,...,n}2

E[|Mij |k] <∞. (4.12)

For any k ∈ N, we have

lim
n→∞

1

nk/2+1
TrMk =

{
0 if k is odd
C k

2
otherwise,

(4.13)

where the convergence holds in expectation and almost surely.

It turns out that the moment assumption (4.12) is not necessary. It can be worked around using a
truncation procedure [Tao12]. However, the finiteness of the second moment is crucial.

The main idea underlying the proof of this theorem is to expand Tr(Mk) in terms of products
of elements of M, to use the independence of these to select those products that make a non-zero
contribution to the expectation value of the trace, and then from these to identify the products of
elements that make the largest contribution when n→∞.

We begin by proving Theorem 4.6 for convergence in expectation. When this is done we explain
how to extend the proof to almost sure convergence.

8The paper is four pages long and ends with the sentence “The heuristic proof given for the special case considered
before applies equally under the more general conditions here specified”.
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Proof of (4.13) in expectation. Taking the expectation of (4.13) without the limit gives

E

[
1

n
Tr
(

(
M√
n

)k
)]

=

n∑

i1,i2,...,ik=1

1

n1+k/2
E[Mi1i2Mi2i3 . . .Miki1 ]. (4.14)

For a given k, note that for all sets of indices, E[Mi1i2Mi2i3 . . .Miki1 ] is uniformly bounded by Bk
under the assumption (4.12) (Why?).

To evaluate the sum, we make an important connection with graphs. The sum is over ordered
k-tuple i = (i1, . . . , ik) where each ij takes values in {1, . . . , n}. The values taken by ij can repeat.
Now consider the set V (i) of distinct values in contained in i. Clearly 1 ≤ #V (i) ≤ k. We now think
of V (i) as vertices of a graph, each of which labeled by their respective value. We construct an edge
set E(i) for V (i) by putting an edge between two vertices if their labels appear consecutively in i, so
the two vertices appear as ij , ij+1 (with the convention that ik+1 = i1 in the sequence given by i). By
construction, the graph (V (i), E(i)) is connected. We now think of i = (i1, i2, . . . , ik) as a closed walk
on the graph (V (i), E(i)) starting and ending at the vertex i1. Note that, a priori, edges and vertices
can be visited twice in this walk. The evaluation of the sum then consists in understanding
which types of walk have a dominant contribution to the sum.

Some walks can be easily discarded. Indeed, since the matrix entries are independent, centred
random variables, we have E[Mi1i2Mi2i3 . . .Miki1 ] = 0 whenever an edge is traversed only once.
Therefore we can restrict to walks that traverse each edge at least twice, possibly in reverse (since
the matrix is symmetric). This means that we can restrict our attention to underlying graphs with
#E(i) ≤ k/2, and hence #V (i) ≤ k/2 + 1 distinct vertices.

Clearly, two k-tuple i and i′ will carry the same weight in the sum if there exists a bijection on
the set {1, 2, . . . , n} mapping each ij to i′j keeping the same edge structure. These two walks then
only differ by the labeling of their vertices. We will say these walks are equivalent. The next step is
to show that the walks with #V (i) < k/2 + 1 make a negligible contribution to the sum. As noted
above, E[Mi1i2Mi2i3 . . .Miki1 ] is uniformly bounded. It only remains to count the number of such
walks For a given index sequence i1i2 . . . iki1 with #V (i) = w, the number of equivalent walks to it is
n(n− 1)(n− 2) . . . (n−w+ 1) ≤ nw. The contribution of the terms in this equivalence class to the sum
is therefore ≤ Bknw−k/2−1. This tends to zero as n→∞ if w < k/2 + 1. Now, note that the number
of distinct equivalent classes is independent of n (though it depends on k). Thus, the total contribution
from walks with w < k/2 + 1 tends to zero in the limit. When k is even, it does so at least as fast as
1/n.

It follows from the above that the only sequences making a non-zero contribution to (4.14) in the
limit n → ∞ are those for which #V (i) = k/2 + 1. When k is odd this equation has no solution,
because w is an integer. Hence when k is odd the left-hand side of (4.14) tends to zero in the limit n→∞.

Consider now the case when k is even and w = k/2 + 1. In this case the graphs we need to consider
are connected, have k/2 + 1 vertices and k/2 distinct edges. They are therefore trees, i.e., they have no
cycles. To see this note that for any finite connected planar graph G = (V,E) consisting of a set of
vertices V and a set of edges E, we have the Euler relation

#V −#E + #F = 2, (4.15)

where #F is the number of faces defined by the graph. There is always one face (the one containing
∞). In particular, we have #V −#E ≤ 1. There is equality if and only if #F = 1, in which case the
graph has no cycle. In other words #V −#E = 1 if and only if (V,E) is a tree.

When k is even and w = k/2 + 1, the sequence i therefore corresponds to a closed path on a tree
that traverses each edge exactly twice, once in each direction. This means that for any 1 ≤ j ≤ k
ij+1 6= ij . Hence in (4.14) only off-diagonal matrix entries contribute, and these are precisely paired,
so each appears squared. Using the fact that E|Mij |2 = 1 for i 6= j, and that the off-diagonal matrix
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entries are independent, we have 9 for such i’s

E[Mi1i2Mi2i3 . . .Miki1 ] = 1. (4.16)

The number of different labeling of the vertices for such trees is n(n− 1)(n− 2) . . . (n−w+ 1) ∼ nk/2+1,
exactly canceling the normalization.

The problem has been reduced to that of counting the number of k-tuples corresponding to walks of
length k on trees with k/2+1 vertices and k/2 distinct edges, each traversed twice. Such paths are called
non-crossing. We can perform this count in the following way. As a given path is traversed, record at each
edge on it whether that edge has been traversed before, or not. If it is being traversed for the first time,
term it open, if it is being traversed for the second (and last) time, term in closed. For each non-crossing
path of length k we associate a sequence, called the path sequence, whose jth entry is the number of open
edges minus the number of closed edges in the path i1i2 . . . ij+1. Now we reach the main point: this
sequence starts with a 1 and ends with a 0, and successive terms differ by ±1. For example, for the path
corresponding to the set of edges ({1, 2}, {2, 3}, {3, 2}, {2, 4}, {4, 5}, {5, 4}, {4, 6}, {6, 4}, {4, 2}, {2, 1}),
the edges are respectively open, open, closed, open, open, closed, open, closed, closed, closed, and the
associated sequence is 1, 2, 1, 2, 3, 2, 3, 2, 1, 0. If we attach a label 0 at the start, then these sequences
are clearly in bijection with the set of Dyck paths of length k.

Collecting together what we have shown so far, when k is even

lim
n→∞

1

n
ETr(Mk) = #{path sequences of length k}

= #{Dyck paths of length k}
= Ck/2, (4.17)

and when k is odd, the limit is zero. This proves Theorem 4.6 for convergence in expectation.

Proof of (4.13) almost surely. We next indicate how to prove almost sure convergence to the same
limit. The strategy here is to compute the variance. We will see that the variance vanishes as n→∞
sufficiently fast that a sequence of matrices with increasing size will converge to the mean almost surely
by the Borel-Cantelli lemma, Lemma B.8. It is an example of a phenomenon known as concentration
of measure that plays an important role in random matrix theory.

The variance is

Var

(
1

n
Tr(Mk)

)
= E

[(
1

n
Tr(Mk)

)2
]
−E

[
1

n
Tr(Mk)

]2

(4.18)

and so by expanding the moments, we get

Var

(
1

n
Tr(Mk)

)
=

1

n2+k

∑

i

∑

j

E[Mi1i2Mi2i3 . . .Miki1Mj1j2Mj2j3 . . .Mjkj1 ]

−E[Mi1i2Mi2i3 . . .Miki1 ]E[Mj1j2Mj2j3 . . .Mjkj1 ], (4.19)

where the sums are over k-tuples i = (i1, . . . , ik) and j = (j1, . . . , jk) with coordinates taking values
in {1, . . . , n}. As in the calculation of the expectation value of the moments above, one can analyse
this sum in terms of walks on a graph. We write G(i, j) = (V (i, j), E(i, j)) for the graph constructed
from i and j. In the case of the first term on the right-hand side of (4.19), the vertices of the graph in
question are now labelled by the distinct values of {i1, i2, . . . , ik, j1, j2, . . . , jk}.

For this graph to contribute to the sum, it must be connected, so i1 = j1, otherwise the first term
factorizes and is exactly cancelled by the second term. As before, each edge must appear at least twice
and must be traversed an even number of times. From the same argument as in the proof for the

9When f(n)/g(n)→ 1 as n→∞ we write f(n) ∼ g(n).
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expectation, the terms making a non-zero contribution to (4.19) have #V (i, j) ≤ k + 1. The fact that
the summand is uniformly bounded by (4.12) directly implies that

Var

(
1

n
Tr(Mk)

)
≤ ck

n
, (4.20)

for some positive constant ck depending on k. This proves convergence in L2 of the moments. This
also proves convergence in probability by Chebyshev’s inequality.

We need a bound summable in n to lift this convergence to convergence almost sure by applying the
Borel-Cantelli lemma B.8. With analogy with the convergence in expectation, the largest contribution
is expected to come from paths with #V (i, j) = k+ 1. The number of edges #E(i, j) is smaller or equal
to k since each edge must be traversed twice. The Euler relation implies that the number of edges is
exactly k, and the graph is a tree. We now argue that such a graph G(i, j) cannot exist. To see this,
note that G(i) and G(i) are two subgraphs of G(i, j). But G(i, j) is connected! So there must be an
edge linking G(i) to G(j). Such an edge must be traversed exactly twice by the walk (i, j). But this is
impossible since the walk starts at i1 and comes back to i1 in the i-portion of the walk visiting the
common edge only once. This means the graph would contain a cycle, which is a contradiction. We
conclude that #V (i, j) < k + 1, and the inequality (4.20) is sharpened to a 1/n2 decay.

We can now easily complete the proof of Theorem 4.1 under the extra assumption of uniform
boundedness of the moments (4.12).

Proof of Theorem 4.1. For any k ∈ N, we know from Theorem 4.6 that there exists an event Ak of
probability 1 such that on Ak,

∫
xkdµM/

√
n →

∫
xkdσ. Now consider A =

⋂
k∈NAk. This event has

probability 1. Moreover, on this event A,
∫
xkdµM/

√
n →

∫
xkdσ, for all k ∈ N.

By the method of moments (Theorem B.10), we get that µM/
√
n converges in distribution to σ. In

particular, this implies convergence of the integral of any bounded continuous function.

4.3 Applications
The semicircle law has applications in settings where real-symmetric or complex-Hermitian matrices
arise and can be modelled by random matrices. As noted in the introduction, many problems in
population dynamics, modelling random neural networks, etc, reduce to the following mathematical
question. The seminal paper on this subject is [May72].

Let x(t) be an n-dimensional vector satisfying

dx

dt
= −λIx (4.21)

where λ is a positive constant and I is the n× n identity matrix. This system has a stable fixed point
at x = 0. Clearly in (4.21) the different components of x are uncoupled (because I is diagonal). The
question is: if one now introduces random couplings between these components, does this make the
fixed point more or less stable? Specifically, what is the stability of the system

dx

dt
= −λIx+ Ax (4.22)

where A is a random matrix. What, for example, should one expect if |λ| is large compared to the
typical size of the elements of A?
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In population dynamics, this is called the May model. Then the components of x represent
the differences of the populations of various species from some equilibrium values and A represents
interactions between the different species.

Now, if A is a real symmetric random matrix in which the mean-square size of the matrix entries
(i.e. the interactions) is 1, it is a consequence of the semicircle law that the eigenvalues of A lie between
−2
√
n and 2

√
n with increasing probability as n grows. We expect to find eigenvalues over the whole

of this range, but very few outside it. And any outside it will not be far from it. So when n > λ2/4
we expect to see a transition in the dynamics from exponential stability to exponential instability. In
large random neural networks, this question of stability is related to a transition in the dynamics from
ordered to ‘chaotic’.

If A is not symmetric, so the matrix entries are independent random variables, the circular law
(briefly discuss in Section 8) implies a similar transition occurs for large enough systems. In this case the
stability also depends on the eigenvectors, which no longer need be (and typically are not) orthogonal,
so the details are more complicated, but the qualitative picture is the same.

Now, one can question whether it is reasonable to model the interactions as IID random variables
with the same variance. In population dynamics, some species pairs interact far more strongly than
others. For example, lions interact strongly with zebras, wildebeests, and impalas (and the interaction
is clearly not symmetric!), but barely at all with butterflies or fish. There are food chains and these
give rise to complex networks. Building this topological structure into population models is a significant
area of research involving random matrices with structured correlations between the matrix entries
and where the matrices may be rather sparse. It is also an important area of research in neuroscience,
where again the connectivity matrix for neural pathways is both highly structured and also stochastic.

Finally, we remark that this discussion relates to linear stability. Extending it to nonlinear stability
analysis is currently an active area of research.
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5 The Empirical Spectral Measure of GUE
In the previous section, we calculated the spectral moments for general Wigner random matrices. We
now look at the special case when the matrix elements have a Gaussian distribution. In this case we
can go more deeply into the formula embodied in Theorem 4.6 and compute the moments exactly for
finite n. Recall that Wigner’s theorem relates the moments to the Catalan numbers in the limit as
n→∞, and that this is proved by linking them to counts of certain non-crossing paths on graphs. In
this limit, they therefore have an interpretation in terms of counting topologically defined objects. We
shall see that for Gaussian random matrices this may be viewed as part of a bigger picture.

To start with, we need to explain a formula that will prove useful in analysing the expectation value
on the right-hand side of (4.14).

5.1 Wick’s theorem
Let X be a real standard Gaussian random variable. The Gaussian moments are given by

E[Xn] =
1√
2π

∫ ∞

−∞
yne−y

2/2dy =

{
0 if n is odd
(2m)!
2mm! if n = 2m is even.

(5.1)

Therefore E[Xn] is equal to the number of ways of splitting n objects into disjoint pairs. For example
E[X4] = 3, corresponding to the 3 ways to split the numbers 1, 2, 3, 4 into disjoint (unordered) pairs,
i.e., {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, and {{1, 4}, {2, 3}}.

The following is then a straightforward application of (5.1) due to Isserlis in 1918 and Wick in
1950 (and many others). In probability, this is a simple application of Gaussian integration by parts,
cf. Lemma B.2.

Theorem 5.1. Let Y1, . . . , Yp be independent standard Gaussian random variables. Consider a collection
X1, . . . , Xn ∈ {Y1, . . . , Yp} with possible repetition (so we can have n > p for example). Then

E[X1X2 . . . Xn] =
∑

π∈P2(n)

∏

{i,j}∈π

E[XiXj ], (5.2)

where P2(n) stands for the collection of pairings of n objects into disjoint unordered pairs.

Importantly, the covariances in the Wick formula can be computed straightforwardly:

E[XiXj ] =

{
1 if Xi = Xj

0 if Xi 6= Xj .
(5.3)

Note that because it is linear in the variables X1, . . . , Xn, this formula applies in exactly the same
way to standard complex Gaussian random variables Z = (X+iY )/

√
2, where X and Y are independent

real standard Gaussian random variables. In this case E[Z] = E[Z2] = 0 and E[|Z|2] = 1. If Z1, . . . , Zp
are independent complex standard Gaussian random variables then for z1, . . . , zn ∈ {Z1, . . . , Zp},
E[z1z2 . . . zk] is equal to the number of pairings which connect zi with its complex conjugate. In
general, it is not hard to derive a formula for Gaussian vectors whose coordinates are not necessarily
IID standard.

Historically, Isserlis introduced this formula in the context of statistical analysis. It was later
re-introduced by Wick to count Feynman diagrams in Quantum Field Theory and it tends now to be
associated with his name.

5.2 The genus expansion for Gaussian random matrices
Let M be a n× n complex Wigner matrix. The moments of the ESM of M/

√
n can be expressed as

before as

E

[
1

n1+k/2
Tr(Mk)

]
=

n∑

i1,i2,...,ik=1

1

n1+k/2
E[Mi1i2Mi2i3 . . .Miki1 ]. (5.4)
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In the previous section, we analysed this for general Wigner matrices and found that when n→∞ the
leading order asymptotics may be calculated by counting non-crossing paths. If we now specialize to
GUE matrices (i.e., complex Hermitian Gausssian random matrices), we can apply Wick’s theorem to
compute this expression exactly.

We have from Wick’s theorem that

E[Mi1i2Mi2i3 . . .Miki1 ] =
∑

π∈P2(k)

∏

(a,b)∈π

E[Mia,ia+1
Mib,ib+1

], (5.5)

where ik+1 = i1. Hence, we get

E
[
Tr(Mk)

]
=

∑

π∈P2(k)

n∑

i1,i2,...,ik=1

∏

(a,b)∈π

δia,ib+1
δia+1,ib , (5.6)

where δi,j denotes the Kronecker δ-symbol.10
We can think of π as a particular kind of permutation on k elements, namely one that factorizes

into permutations between the elements being paired, so permutations made up of cycles of length 2.
Hence (a, b) ∈ π means that π(a) = b, or equivalently π(b) = a. This implies (double-check this)

∏

(a,b)∈π

δia,ib+1
δia+1,ib =

k∏

a=1

δia,iπ(a)+1
. (5.7)

If we introduce the shift notation γ(a) = a + 1 mod k on the set {1, 2, . . . , k}, so that γ ∈ Sk is a
permutation with cycle (1, 2, . . . , k), then we have that

E
[
Tr(Mk)

]
=

∑

π∈P2(k)

n∑

i1,i2,...,ik=1

k∏

a=1

δia,iγπ(a)
. (5.8)

One can think of the k-tuple i = (i1, i2, . . . , ik) as a function i : {1, . . . , k} → {1, . . . , n}. Then
k∏

a=1

δia,iγπ(a)
=

{
1 if i is constant on the cycles of γπ
0 otherwise.

(5.9)

We therefore have that

E
[
Tr(Mk)

]
=

∑

π∈P2(k)

#
{
i : {1, . . . , k} → {1, . . . , n} : i is constant on the cycles of γπ

}
. (5.10)

The count in the summand is straightforward: we simply need to choose one value for each of the cycles
in γπ (with repeats allowed). For any permutation σ ∈ Sk, let #(σ) denote the number of cycles in σ.
Then we have

1

nk/2+1
E
[
TrMk

]
=

∑

π∈P2(k)

n#(γπ)−k/2−1. (5.11)

Equation (5.11) is an exact formula for the spectral moments of M. To understand its structure,
note first that if k is odd then P2(k) is empty and so the corresponding spectral moment is identically
zero. We therefore now set k = 2m, so that

1

nm+1
E
[
Tr(M2m)

]
=

∑

π∈P2(2m)

n#(γπ)−m−1. (5.12)

This sum is known as the genus expansion, because there is an interpretation of #(γπ) that combines
geometric and topological ideas.

10Recall that for standard complex normal random variables, we have to pair a random variable in Wick’s theorem
with its complex conjugate, and that the matrices we are dealing with are Hermitian.
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Theorem 5.2. Let M be a n× n GUE matrix. Then for any m ∈ N, we have

1

nm+1
E
[
Tr(M2m)

]
=
∑

g≥0

τg(m)n−2g, (5.13)

where

τg(m) = #{genus-g surfaces obtained by gluing together pairs of edges of a 2m-gon}. (5.14)

This remarkable formula therefore implies that averaging Tr(M2m) over the GUE leads to a method
for counting the number of genus-g surfaces obtained by gluing together pairs of edges of a 2m-gon!

Proof. We start by drawing a 2m-gon and labelling its vertices in cyclic order v1, v2, . . . , v2m. We can
then label its edges by the vertices they connect; so for i = 1, . . . , 2m− 1, ei = vivi+1, and e2m = v2mv1.
A pairing π ∈ P2(2m) corresponds to an association between pairs of edges, which can then be glued
together to form a compact surface. If this is done so that when vivi+1 is glued to vjvj+1, vi is glued
to vj+1, and vi+1 to vj , then the surface that results is orientable. So, for example, if π(1) = 3 one
identifies e1 and e3 by gluing v1 to v4 and v2 to v3. We term this the tail-to-head convention.

Consider now the surface Sπ obtained by this gluing procedure. The number of distinct vertices in
the graph Gπ of the 2m-gon in Sπ is precisely #(γπ). To see this, note that ei is glued to eπ(i), and so
vi is glued to vγπ(i) for each i ∈ {1, . . . , 2m}. The edge eγπ(i) is glued to eπγπ(i) and so vγπ(i), which is
now the tail of the edge in question, gets glued to vγπγπ(i) etc. Continuing on this way, we see that vi
ends up being identified with precisely those vj for which j = (γπ)l(i) for some l ∈ N. Therefore the
cycles of γπ count the number of distinct vertices after gluing.

The Euler characteristic of Sπ, χ(Sπ), is an even integer which may be defined as follows: if
G = (V,E) is any embedded polygonal complex in Sπ, then

χ(Sπ) = #V −#E + #F, (5.15)

where F is the number of faces of G. This is a generalization of the relation (4.15) that holds for planar
graphs where χ = 2. Now, any orientable compact surface is homeomorphic to a g-holed torus for some
g ≥ 0 (the g = 0 case is the sphere). The topological invariant g is known as the genus of the surface.
It is a theorem of Cauchy that the Euler characteristic is 2 minus twice the genus, and so

χ(Sπ) = 2− 2g(Sπ). (5.16)

The embedded complex Gπ in Sπ that we constructed above has one face, m edges, and #(γπ) vertices,
thus

2− 2g(Sπ) = χ(Sπ) = #(γπ)−m+ 1. (5.17)

Putting all these observations together, we get from (5.12) that

1

nm+1
E
[
Tr(M2m)

]
=

∑

π∈P2(2m)

n#(γπ)−m−1 =
∑

π∈P2(2m)

n−2g(Sπ) =
∑

g≥0

τg(m)n−2g, (5.18)

as claimed.

As a consequence of the theorem, we see immediately that since g ≥ 0,

lim
n→∞

1

nm+1
E
[
Tr(M2m)

]
= τ0(m) = #{spheres obtained by gluing together pairs of edges of a 2m-gon}.

(5.19)
In particular, Wigner’s theorem 4.6 implies

#{spheres obtained by gluing together pairs of edges of a 2m-gon} = Cm (5.20)

where Cm is the m-th Catalan number. This is the simplest of a wide and important variety of examples
where random matrix theory connects with enumerative topology.
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6 The Marchenko-Pastur law for Wishart random matrices
The Marchenko-Pastur11 law is the analogue for Wishart random matrices of the Wigner semicircle law
for Hermitian matrices.

6.1 The Marchenko-Pastur Theorem
Let X be a p × n matrix with entries Xij that are IID real random variables with E[Xij ] = 0 and
E[X2

ij ] = 1. Denote by Σ the p× p matrix given by

Σ =
1

n
XXT ∈ Rp×p. (6.1)

(As for Wigner matrices, we suppress the dependence on p and n in the notation of the matrix.) Denote
by Λ1,Λ2, . . . ,Λp, the eigenvalues of Σ. We consider the empirical spectral measure of Σ

µp =
1

p

p∑

j=1

δΛj . (6.2)

The Marchenko-Pastur law asserts that:

Theorem 6.1. Let Σ be a p× p random matrix constructed as in (6.1), and let µp be its corresponding
ESM. Suppose also that for all k ∈ N

Bk := sup
n∈N

sup
(i,j)∈{1,...,n}2

E[|Xij |k] <∞. (6.3)

When p→∞ and n→∞ such that p/n→ γ for some γ ∈ (0, 1], then µp converges to µ in expectation
and almost surely, where µ is the deterministic measure satisfying

dµ

dx
=

{
1

2πγx

√
(a+ − x)(x− a−) if a− ≤ x ≤ a+

0 otherwise,
(6.4)

where a− = (1−√γ)2 and a+ = (1+
√
γ)2. When γ > 1, one needs to add (1−γ−1)δ0 to the right-hand

side of (6.4), where δ0 is a Dirac delta at the origin.

Remark 6.2. The additional factor (1 − γ−1)δ0 which needs to be added to the right-hand side of
(6.4) when γ > 1 is explained by the fact that, since the rank of σn is the smaller of p and n, there
are then approximately p− n zero eigenvalues which will contribute a mass of (1− γ−1) at 0 in the
limiting measure.

Note that when γ = 1, a− = 0 and a+ = 4, and that then (6.4) coincides with the semicircle law
under the mapping x 7→ x2.

We illustrate the Marchenko-Pastur law by showing the results of numerical experiments. These
involved generating random matrices Σ, plotting histograms of the eigenvalues, and comparing with
(6.4). Figure 5 shows the result when p = 103 and n = 104, compared to (6.4) with γ = 0.1. Similarly
Figure 6 shows the result when p = 1000 and n = 2000, compared to (6.4) with γ = 0.5.

One can prove the Marchenko-Pastur formula using the method of moments as we did for the
semicircle law. The main steps are:

1. Prove that the spectral moments converge in expectation to the moments of the limiting deter-
ministic Marchenko-Pastur distribution when n→∞.

11Sometimes written Marčenko-Pastur.
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Figure 5: Eigenvalue density when p = 103 and n = 104, compared to (6.4) with γ = 0.1.
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Figure 6: Eigenvalue density when p = 1000 and n = 2000, compared to (6.4) with γ = 0.5.

28



2. Lift this convergence to almost sure convergence by showing that the variance of the moments
vanishes quickly in the limit when n → ∞, and then by using the Borel-Cantelli lemma to
conclude that the moments converge almost surely.

We focus on the first step. The second follows very similar lines to the corresponding ones in the proof
of the semicircle law and so we shall not repeat it here.

6.2 Moments of the Marchenko-Pastur distribution
We start by computing the moments of the Marchenko-Pastur and show that the distribution is
determined by its moments. We focus on the case when γ ≤ 1.

Lemma 6.3. Let γ ≤ 1 and a± = (1±√γ)2. Consider the Marchenko-Pastur distribution given in
(6.4). Its k-th moment, k ∈ N, is given by

∫ a+

a−

xk
1

2πγx

√
(a+ − x)(x− a−)dx =

k−1∑

r=0

γr

r + 1

(
k

r

)(
k − 1

r

)
. (6.5)

Proof. Note that a− + a+ = 2(1 + γ) and that a−a+ = (1− γ)2, and hence the k-th moment is

1

2π

∫ 2

−2

(
√
γy + 1 + γ)k−1

√
4− y2dy. (6.6)

Expanding (
√
γy + 1 + γ)k−1 binomially in powers of y, and using the formula for the moments of the

semicircle law and Vandermonde’s identity

(
m+ n

k

)
=

k∑

r=0

(
m

r

)(
n

k − r

)
(6.7)

yields the result (Exercise!).

The k-th moments is trivially bounded by ak+, which is enough for the moments to determine the
distribution.

6.3 Proof of the Marchenko-Pastur law (Theorem 6.1)
The goal is to show that

E

[
1

p

p∑

i=1

Λki

]
= E

[
1

p
Tr

(
1

n
XXT

)k]
(6.8)

converges to (6.5) in the appropriate limit.
As in the case of Wigner’s semicircle theorem, we proceed by expanding the trace in terms of the

matrix entries. We then use the independence of these to identify the products that make the largest
contributions. We have

E

[
1

p
Tr

(
1

n
XXT

)k]
=

1

pnk

∑

i,j

E
[
Xi1j1X

T
j1i2Xi2j2X

T
j2i3 . . .XikjkX

T
jki1

]

=
1

pnk

∑

i,j

E [Xi1j1Xi2j1Xi2j2Xi3j2 . . .XikjkXi1jk ] ,

(6.9)

where the sum is over k-tuples i = (i1, . . . , ik) ∈ {1, . . . , p}k and k-tuples j = (j1, . . . , jk) ∈ {1, . . . , n}k.
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As for Wigner matrices, we represent the sums in terms of walks on a graph. Here, to each pair
i j, we associated a directed bipartite graph G(i, j). The vertices are labeled by the distinct values of
i1, i2, . . . , ik on one side and the distinct values of j1, j2, . . . , jk in the other. The edges are directed
and go from i1 to j1, j1 to i2, i2 to j2, j2 to i3, etc, and with finally an edge from jk to i1. The walk
represented by the two k-tuples i and j is of length 2k and starts and ends at the vertex i1.

Since EXij = 0 and the Xij are independent, the summand in (6.9) vanishes unless each edge
appears at least twice in a walk. Hence there can be at most k edges and therefore k + 1 vertices in
G(i, j).

We consider first the case when #V (i, j) < k + 1. Say the walk visits `i i-vertices and `j j-vertices
(so #V = `i + `j). The total number of ways of choosing these sites is bounded from above by a
constant (i.e. a factor independent of n) times p`in`j . Hence the contribution of all such terms in
(6.9) is bounded from above by a constant (that might depend on k using the assumption (6.3)) times
p`in`j/pnk, which tends to zero as n→∞ if p ∼ γn.

As in the proof of the semicircle law, we therefore need to focus on the case when there are exactly
k edges and k + 1 vertices in the graph G(i, j). The graph then is a double tree, namely a tree where
vertices can be labeled either by values in i or values in j and these are visited alternately on the walk,
which passes through each edge exactly twice. So, if we start at i1, other i-vertices can be reached if
and only if the number of steps taken is even, and j-vertices reached if and only if the number of steps
taken is odd.

As before, the summands with different k-tuples i and j might contribute the same weight to the
sum if they correspond to the same walk on the double tree with a different labeling of the vertices.
We pick the representative of such equivalent walks to be the labeling corresponding to the order of
appearance in the walk, i.e., i1 is vertex 1, j1 is vertex 2, etc. The question then is: how k-tuples i, j
are equivalent to this walk up to labeling? Let r + 1 be the number of distinct i-vertices visited. Note
that 0 ≤ r ≤ k − 1. We then need to choose r + 1 distinct labels for the i-vertices from {1, . . . , p} and
k − r distinct labels for the j-vertices from {1, . . . , n}. There are

p(p− 1) . . . (p− r)× n(n− 1) . . . (n− k + r + 1) (6.10)

ways of doing this. Since p ∼ γn, then as n→∞, we have

p(p− 1) . . . (p− r)n(n− 1) . . . (n− k + r + 1) = pnkγr(1 +O(1/n)), (6.11)

where f(x) = O(g(x)), with g(x) strictly positive for sufficiently large values of x, means |f(x)| ≤ Cg(x)
for some constant C > 0 and for all sufficiently large x.

Hence, if we denote by G(r, k) the collection walks on double trees (with vertices labeled by order of
appearance) with exactly r + 1 i-vertices and k − r j-vertices, we have

E

[
1

p

p∑

i=1

Λki

]
=

k−1∑

r=0

γr#G(r, k)(1 +O(1/n)). (6.12)

In light of Lemma 6.3, it remains to show that

#G(r, k) =
1

r + 1

(
k

r

)(
k − 1

r

)
. (6.13)

This is done in the combinatorial lemma below and concludes the proof of Theorem 6.1.

Lemma 6.4.
G(r, k) =

1

r + 1

(
k

r

)(
k − 1

r

)
(6.14)

Proof. This is done by establishing a bijection between G(r, k) with a specific collection of paths π with
2k steps, much as we did in the case of the semicircle law with Dyck paths. In this case the paths are
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generated as follows. Let π : {0, 1, 2 . . . , 2k} with π(0) = π(2k) = 0. The increments are denoted by
sm = πm − πm−1 for m = 1, . . . , 2k. We take the increments are defined as follows: s1 = 0, then for for
j = 1, . . . , k − 1

(s2j , s2j+1) =





(1,−1)

(0, 0)

(0,−1)

(1, 0).

In other words, the increment sm is −1 or 0 if m is odd, and 0 or 1 if it is even. We restrict to paths π
that stay positive, that is

∑t
m=1 sm ≥ 0 for all 1 ≤ t ≤ 2k. Moreover, we consider paths π with exactly

r increments +1 (and thus also r increments −1), 0 ≤ r ≤ k− 1. We denote this set of paths by P(r, k).
The bijection between G(r, k) and P(r, k) is given by the following rules. For m odd: if sm = 0 go

from the left vertex to an unvisited right vertex, and if sm = −1 go back to the adjacent, previously
visited j-vertex. For m odd: if sm = 1, go from a right vertex to a new left vertex; if sm = 0 go back to
an adjacent, previously visited left vertex. (Working out some specific examples would help here.)

In the reverse direction, consider a path on the double tree as described above. Starting at a left
(that is i-vertex in the context above). After an even number 2m of edge crossings one sits at a left
vertex. If this vertex is new, that is, if it is being visited for the first time, then set s2m = +1, and
otherwise set s2m = 0. After an odd number 2m− 1 of edge crossings one must sit at a right or j-vertex.
If this edge crossing is the last exit from the i-vertex in question, set s2m−1 = −1, and otherwise set
s2m−1 = 0. We need to check that the paths constructed with these increments stay positive. We do
this by establishing a contradiction. Let us suppose we have a first t such that

∑2t−1
m=1 sm = −1. This

requires
∑2t−2
m=1 sm = 0 and s2t−1 = −1. Now, we could use the sequence up to 2t− 2 to construct a

double tree, and having s2t−1 = −1 would then mean not establishing a new vertex, but instead going
back to one previously created. This however, contradicts already having built a double tree.

Having established the bijection, we now compute #P(r, k). Without the positivity constraint,
the number of paths with the above increments with exactly r +1 increments is

(
k−1
r

)(
k
r

)
. We now

subtract number of paths that become negative yet π(0) = π(2k) = 0. To count such paths, we use
a variation on the reflection principle. For each of these paths, there must exist a first time 2t − 1
such that

∑2t
m=1 sm = −1. Note that this must happen at an odd time. Therefore, by reflecting the

increments (s2m, s2m+1) that are (1, 0) by replacing them with (0,−1) and vice-versa (leaving all other
pairs of increments unchanged), we see that these paths are in bijection with paths that start at 0 but
end at −2. There are

(
k−1
r−1

)(
k
r+1

)
such paths (Why?). Hence, we showed that

#P(r, k) =

(
k − 1

r

)(
k

r

)
−
(
k − 1

r − 1

)(
k

r + 1

)
=

1

r + 1

(
k

r

)(
k − 1

r

)
. (6.15)

6.4 Applications
Many applications of mathematics involve matrices that are rectangular, not square. In these cases
one is often interested in the singular values. The Marchenko-Pastur law describes the distribution of
singular values when the matrix entries are taken at random.

In data science, we have already seen that the empirical correlations between data points can be
represented as a matrix. These can be analysed through the spectrum of the sample covariance matrix.
The Marchenko-Pastur law gives a null hypothesis against which to test the spectrum, enabling one to
identify the directions (eigenvectors) associated with statistically significant correlations, in the same
way that one might test one-dimensional data against a normal distribution.

An example of this is in Principal Component Analysis, where one wants to identify the effective
dimensionality of the subspace representing the main variation in the data. A rule of thumb for how
many of the largest eigenvalues should be retained is to focus on those lying outside the support of the
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Marchenko-Pastur distribution, or those near the edge if these is an unexpected density of them, as
these are most likely to represent non-random features.

For an overview covering a wide range of applications see [Joh07], and for specific applications to
mathematical finance (where this is as an important technique), see [PB20,LCPB00].

Finally, in many algorithms in numerical linear algebra, the rate of convergence is determined by
the largest singular values, and the Marchenko-Pastur law determines where these are expected to lie
(at the edge of the support).
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7 The Stieltjes Transform
In this section, we present another approach to prove limit theorems for the spectral measure of a
random matrix, the Stieltjes transform. The method of moments has some drawbacks. For example, to
use it, moments of the spectral measure must obviously exist, which might be a problem when dealing
with entries whose distributions are heavy-tailed. The Stieltjes transform is much more powerful and
has been applied in different settings, see for example [BAG08,BGK18].

7.1 A quick introduction to the Stieltjes transform
At this stage, you have probably encountered different objects that encode the information of a proba-
bility distribution on R. There are for example the cumulative distribution function, the characteristic
function (which is the Fourier transform), the moment generating function (if it exists), etc. The
Stieltjes transform is yet another way to do this.

Definition 7.1. Let µ be a probability measure on R. The Stieltjes transform of µ is the function from
C \ R defined by

gµ(z) =

∫

R

1

x− zdµ(x). (7.1)

In some areas of mathematics and physics, −gµ(z) is referred to as the Green function. We have
the following basic properties.

Lemma 7.2. Let µ be a probability measure on R and gµ its Stieltjes transform. We have

1. For any z ∈ C \ R, |gµ(z)| ≤ 1/|Imz|.

2. More generally, for any z ∈ C \ R and integers j ≥ 0, we have
∣∣∣∣
djgµ
dzj

(z)

∣∣∣∣ ≤
Cj

|Imz|j+1
, (7.2)

for some constant Cj > 0 depending on j.

3. The function z 7→ gµ(z) maps the upper half plane {z : Imz > 0} to itself, and is analytic on that
domain.

4. Suppose that the support of µ is bounded. Then for sufficiently large z, we have

gµ(z) = −1

z

∞∑

k=0

mk

zk
, (7.3)

where mk is the k-th moment of µ. Thus, gµ(z) can be thought of as a moment generating function
of µ.

Proof. Let’s write z = u+ iv. The Stieltjes transform at z is then

gµ(z) =

∫
1

x− µ− iv
dµ(x).

The modulus of the integrand is clearly smaller then 1/|Imz|. This proves 1). In particular, this proves
also that the integral is well-defined for any z /∈ R. By linearity of the integral, we get

gµ(z) =

∫
x− u

(x− u)2 + v2
dµ(x) + i

∫
v

(x− u)2 + v2
dµ(x).

It is clear that Imz > 0 implies Imgµ(z) > 0. We now prove 3). Note that this implies analyticity for z
large enough in the case where µ has bounded support. The general case and part 2) are left as an
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exercise. Let X be a random variable that is µ-distributed. In particular, we must have |X| ≤ C for
some C > 1 with probability 1. We have for some fixed z with |z| > C,

gµ(z) = E

[
1

X − z

]
=
−1

z
E

[ ∞∑

k=0

Xk

zk

]
,

by expanding (1− x)−1. We can now apply the dominated convergence theorem (Theorem B.7) to get

gµ(z) = E

[
1

X − z

]
=
−1

z
E

[ ∞∑

k=0

Xk

zk

]
=
−1

z

∞∑

k=0

mk

zk
.

Note that part 3) of the lemma ensures that the Stieltjes transform determines the distribution
whenever the distribution has bounded support. This is also true in the general case:

Proposition 7.3. Let µ be a probability measure on R. Then, µ is determined by its Stieltjes transform
gµ. In fact, for any interval [a, b] with µ({a}) = µ({b}) = 0, we have

µ([a, b]) = lim
η→0

∫ b

a

1

π
Imgµ(x+ iη)dx. (7.4)

Proof. It suffices to prove the inversion formula. It follows from interchanging the order of integration
in ∫ b

a

1

π
Imgµ(x+ iη)dx =

∫ b

a

1

π

∫ ∞

−∞

η

(y − x)2 + η2
dµ(y)dx. (7.5)

This gives ∫ b

a

1

π
Imgµ(x+ iη)dx =

∫ ∞

−∞
V (y)dµ(y), (7.6)

where
V (y) =

1

π

[
arctan

(
b− y
η

)
− arctan

(
a− y
η

)]
(7.7)

As η → 0, we have V (y)→ 1 for y ∈ (a, b), and V (a), V (b)→ 1/2. If y ∈ [a, b]c, then V (y)→ 0. Since
V (y) is uniformly bounded and, for any η, V (y) ∼ η/y2 as y →∞, it can be majorized uniformly in η
by a positive integrable function. Hence it follows from the dominated convergence theorem that

∫ ∞

−∞
V (y)dµ(y)→ µ([a, b]), as η → 0. (7.8)

7.2 The Stieltjes transform and the semicircle law
The Stieltjes transform provides an alternative route to proving both the Wigner semicircle law and the
Marchenko-Pastur law that avoids the combinatorics and path-counting of the proofs described earlier
in these notes. We sketch here the proof for GOE matrices. The proof can be extended to Wigner
random matrices in general, but this is an important class of examples and specialising will allow us to
introduce new techniques that provide some shortcuts.

We start by computing the Stieltjes transform of the semicircle distribution.

Lemma 7.4. Let σ be the semicircle distribution given in (4.2), then we have

gσ(z) =
−z +

√
z2 − 4

2
, Imz > 0. (7.9)
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Proof. A direct computation gives

gσ(z) =
1

2π

∫ 2

−2

1

x− z
√

4− x2dx =
1

π

∫ π

0

2

2 cos y − z (sin y)2dy =
1

2π

∫ 2π

0

2

2 cos y − z (sin y)2dy.

(7.10)
Setting w = eiy (and so w−1 = e−iy), this is

gσ(z) = − 1

4πi

∮

|w|=1

(w2 − 1)2

w2(w2 + 1− zw)
dw, (7.11)

The integrand here has poles at w = 0, (z ±
√
z2 − 4)/2 (but only two lie inside the unit circle).

Evaluating the integral using Cauchy’s theorem yields

gσ(z) =
−z +

√
z2 − 4

2
(7.12)

where the branch cut associated with the square root is chosen so that Imgσ(z) > 0 when Imz > 0.

Observe that gσ(z) satisfies the quadratic functional equation

gσ(z) = −1

z
− 1

z
gσ(z)2, (7.13)

with (7.12) being the solution satisfying Imgσ(z) > 0 when Imz > 0. We remark in passing that for the
Marchenko-Pastur distribution, the formula analogous to (7.13) is

γzg(z)2 + (z − 1 + γ)g(z) + 1 = 0, (7.14)

and the Stieltjes transform of the Marchenko-Pastur distribution is the solution of this equation
satisfying Img(z) > 0 when Imz > 0.

The goal of the section is to prove:

Theorem 7.5. Let M be a n× n GOE matrix. Let µn be the empirical spectral measure of M/
√
n.

Then for any z ∈ C with Imz > 0, we have

lim
n→∞

gµn(z) = gσ(z) in expectation and almost surely.

We start by making some important observations. Let M be some n× n matrix (not necessarily
random) with eigenvalues λ1, . . . , λn. The Stieltjes transform of its empirical spectral measure (ESM)
µM is given by

gµM (z) =
1

n

∑

j

1

λj − z
=

1

n
Tr

(
1

M − zI

)
(7.15)

This is a consequence of the spectral theorem. The matrix GM (z) = (M − zI)−1 is called the resolvent.
If M has real eigenvalues, then the operator is well-defined for any z /∈ R. The resolvent is an important
tool in the study of Markov processes, and more generally of unbounded and bounded operators. From
the definition, we get:

Lemma 7.6. Let M and A be n× n matrices such that M and M +A have real eigenvalues. Then
for any z /∈ R, we have

GM+A(z)−GM (z) = −GM+A(z)AGM (z). (7.16)
In particular, for A = −M , we get

GM (z) = −1

z
I +

1

z
MGM (z). (7.17)

Moreover, the derivative of the entry (GM )kl with respect to Mij is

∂(GM )kl
∂Mij

= −(GM )ki(GM )jl − (GM )kj(GM )il. (7.18)
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Proof. The identity (7.16) is proved by direct computation, and (7.17) by substitution. The last relation
is obtained by taking Aij = Aji = ε and Auv = 0 otherwise, and then taking the limit as ε→ 0.

Proof of Theorem 7.5. Let µn be the ESM of the matrix M/
√
n where M is a n× n GOE matrix. We

write Gn(z) = (M/
√
n− zI)−1 for the resolvent of M/

√
n. We compute the expectation of gµn(z) using

(7.15) and(7.17):

gµn(z) =
1

n
E[TrGn(z)] = −1

z
+

1

n3/2z
E
[
Tr
(
MGn(z)

)]

= −1

z
+

1

n3/2z

∑

i,j

E
[
Mij

(
Gn(z)

)
ji

]
. (7.19)

We now use the fact that the entries of M are Gaussian. By Lemma B.2 (Gaussian integration by
parts), the above equals

−1

z
+

1

n3/2z

∑

i,j

E

[
∂(Gn)ji
∂Mij

]
.

(Here the derivative is with respect to the the ij-entry of M in the map Gn(z) = (M/
√
n− zI)−1.) The

derivative is evaluated using (7.17). We finally get

E[gµn(z)] =− 1

z
+

1

n2z

∑

i,j

E [−(Gn)ji(Gn)ij − (Gn)jj(Gn)ii]

= −1

z
− 1

n2z
E
[
Tr
(
G2
n

)]
− 1

z
E

[( 1

n
TrGn

)2
]
.

The second term is negligible in the limit. Indeed, we have by the spectral theorem

∣∣∣∣
1

n2z
Tr(Gn(z)2)

∣∣∣∣ =
1

n|z|

∣∣∣∣∣
1

n

n∑

i=1

1

|Λi − z|2

∣∣∣∣∣ ≤
1

n|z||Imz|2 → 0,

when n→∞. Hence we have that

E[gn(z)] = −1

z
− 1

z
E
[
gn(z)2

]
+ E(z, n) (7.20)

where for any z, E(z, n)→ 0 as n→∞.
We now want to establish that we can replace E

[
gn(z)2

]
with (E[gn(z)])

2, with an error that tends
to zero as n→∞. This is justified by the concentration of the Stieltjes transform around its mean:

Lemma 7.7. Let gn(z) be the Stieltjes transform of M/
√
n where M is a n× n GOE matrix. Then

for any κ > 0, we have

P
(∣∣gn(z)−E[gn(z)]

∣∣ ≥ κ/√n
)
≤ C exp(−cκ2), (7.21)

for some absolute constants c, C > 0.

The lemma is proved at the end of the section. Note that this implies (exercise)

E
[
gn(z)2

]
= (E[gn(z)])

2
+ E ′(z, n) (7.22)

where E ′(z, n)→ 0 as n→∞. Using this in (7.20), we get

Egn(z) = −1

z
− 1

z
(Egn(z))

2
+ E ′′(z, n) (7.23)
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where E ′′(z, n) → 0 as n → ∞. Hence, the limit of Egn(z) of the Stieltjes measure of the ESM of
M/
√
n (if it exists) must be the solution of the self-consistency equation

s(z) = −1

z
− 1

z
s(z)2. (7.24)

The solution is the Stieltjes transform of the semicircle distribution, as seen in (7.13), once one specifies
that Ims(z) > 0 when Imz > 0.

The convergence ofEgn(z) is established by a compactness argument. Equation (7.2) implies that
the sequence of functions (Egn, n ≥ 1) is uniformly bounded and uniformly equicontinuous. The
Arzelá-Ascoli theorem then implies that there is a subsequence (Egnk , k ≥ 1) that converges uniformly
on compact sets of the upper-half plane. The limit must then satisfy (7.24) and must be the Stieltjes
transform of the semicircle distribution. Since the limit is unique, we conclude that (Egn, n ≥ 1)
converges uniformly on compact sets, hence also pointwise, to s(z).

To see that the convergence holds also for (gn(z), n ≥ 1) almost surely, take κ = n1/3 in (7.28) and
apply the Borel-Cantelli lemma (Lemma B.8). We then see that

∣∣∣gn(z)−E[gn(z)]
∣∣∣ = O(n−1/6) (7.25)

for all large n. Therefore gn(z) − E[gn(z)] → 0 almost surely for all z with Imz > 0. This proves
convergence almost surely of the ESM to the semicircle distribution.

Proof of Lemma 7.7. For the proof, we make the dependence on n explicit in the dimension of the
matrix M, and write Mn for M. The strategy will be to show that replacing Mn by one of its
(n− 1)× (n− 1) minor, denoted byMn−1, does not change the Stieltjes transform appreciably when
n is large – i.e. that gµMn−1/

√
n
(z) is close to gµMn/

√
n
(z). Without loss of generality, we take the top

left minor. This will allow us to use an estimate to establish that gµMn/
√
n
(z) lies sufficiently close to

E
(
gµMn

(z)
)
for us to prove what we need.

Let z = a+ ib, with b > 0. We denote the eigenvalues of Mn/
√
n by {λ(n)

j }nj=1 and the eigenvalues
ofMn−1/

√
n by {λ(n−1)

j }n−1
j=1 . Now, Cauchy’s Interlacement Theorem (Theorem A.2) implies that the

eigenvalues of Mn/
√
n and those ofMn−1/

√
n interlace, that is

λ
(n)
j ≤ λ(n−1)

j ≤ λ(n)
j+1 for j = 1, . . . , n− 1.

Hence the difference
n−1∑

j=1

b

(λ
(n−1)
j − a)2 + b2

−
n∑

j=1

b

(λ
(n)
j − a)2 + b2

(7.26)

is bounded in n. This is because b
(x−a)2+b2 has finite total variation and λ(n)

1 , λ
(n−1)
1 , λ

(n)
2 , λ

(n−1)
2 , . . . , λ

(n−1)
n−1 , λ

(n)
n

forms a partition of R. The same conclusion holds if one replaces the numerators in the summands
with λ(n−1)

j − a and λ(n)
j − a respectively. It follows that

gµMn/
√
n
(z) = gµMn−1/

√
n
(z) +O

(
1

n

)
. (7.27)

Note as well that the right-hand side of this equation depends only on the top left (n−1)× (n−1) minor
of Mn and is independent of its nth row and nth column. We can therefore apply the concentration
inequality (Theorem C.2) in the following way. First note that Equation (7.27) still applies if we
resample the nth row and nth column. Denoting the Stieltjes transform of the resampled matrix by
gµM′n

√
n
(z), it follows from (7.27) that gµMn/

√
n(z) = gµM′n

/
√
n(z) +O(1/n). Moreover, this applies to

resampling any row and column with the same label. Therefore, applying McDiarmid’s inequality with
xj being the vector of entries (Mjj ,Mj,j+1, . . . ,Mjn) gives

P(|gµMn
(z)−E[gµMn

(z)]| ≥ κ/√n) ≤ C exp(−cκ2), asclaimed. (7.28)
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7.3 The R-transform
As noted previously, −gµ(z) is sometimes referred to as the Green function. The function Bµ(z) that is
the formal inverse of the Green function, i.e., the function which satisfies

Bµ(−gµ(z)) = z, (7.29)

is sometimes referred to as the Blue function.
The R-transform of µ is then defined to be

Rµ(z) = Bµ(z)− 1

z
. (7.30)

The R-transform of the semicircle distribution is easily seen (e.g. from the quadratic equation satisfied
by the Stieltjes transform of the semicircle distribution) to be

Rsc(z) = z (7.31)

and similarly for the Marchenko-Pastur distribution

RMP (z) =
1

1− γz . (7.32)

The fact that the R-transforms of the semicircle distribution and the Marchenko-Pastur distributions
take such elementary forms is in indication that mathematically they are rather natural and simple, in
a way that may be obscured by other representations. Indeed, the semicircle distribution can be viewed
as playing a similar role to that played by the normal distribution for commuting random variables.

The R-transform plays an important role in analysing the spectral density of sums of random
matrices which satisfy certain natural conditions, but we will not examine this further here.
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8 Girko’s Circular Law
The semicircle law holds for either real symmetric or complex Hermitian matrices, and in both cases the
eigenvalues are real. It is natural to seek to extend it to non-symmetric matrices, when the eigenvalues
are complex numbers. This turns out to be harder, so we simply state the result.

Theorem 8.1 (Girko’s Circular Law). Let M be a n×n matrix with IID entries such that E[Mij ] = 0
and E[|Mij |2] = 1. Consider the empirical spectral measure µn of M/

√
n given by

1

n

n∑

i=1

δΛi/
√
n.

(Note that this is now a probability measure on C.) Then µn converges almost surely to the uniform
probability measure on the unit disc {z ∈ C : |z| ≤ 1}.

The proof of this is much more involved than for the case of Wigner matrices. We refer to [Tao12]
for a proof. One reason for this is that the method of moments fails for complex probability measures.
(This is essentially because polynomials are no longer dense in the space of bounded continuous function
in C.) One can still work with the Stieltjes measure but it is more complicated since z must avoid the
spectrum, and this spectrum can be a priori anywhere in the complex plane. Last but not least, the
spectrum in the non-Hermitian case is very sensitive to perturbation of an entries and therefore any
truncation procedure of the entries is bound to failure. 12
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Figure 7: The empirical spectral measure of a n × n matrix (rescaled by 1/
√
n) with IID standard

normal entries for n = 1000.

12A very nice discussion on the circular law and its proof can be found here https://terrytao.wordpress.com/2010/
03/14/254a-notes-8-the-circular-law/.

39

https://terrytao.wordpress.com/2010/03/14/254a-notes-8-the-circular-law/
https://terrytao.wordpress.com/2010/03/14/254a-notes-8-the-circular-law/


Part II

Eigenvalue Statistics
9 A Microscopic Point of View
In this section, we take a different point of view from Part I. The empirical spectral measure of a random
matrix captures the spectrum macroscopically. In particular, we have seen that Wigner matrices satisfy
the semicircle law, so that if we take the eigenvalues of a GOE or a GUE matrix and scale them by
1/
√
n then the support of the spectrum is almost surely [−2, 2] in the limit n→∞ with a density in

that interval given by the semicircle distribution. The question we wish to address now is: how are the
eigenvalues distributed? We now zoom in on the spectrum and try to understand how the eigenvalues
are distributed microscopically, i.e., on the scale of their mean spacing. This is a much smaller scale
than that for which the semicircle law holds.

More specifically, the main object is now the unnormalized spectral measure, that is

νn =

n∑

j=1

δΛj , (9.1)

where Λj are the eigenvalues of a n× n random matrix M with spectrum in R. Now, µn is a measure
but not a probability measure, since νn(R) = n. For a subset A ⊆ R, we have that νn(A) counts the
number of eigenvalues of M in A:

νn(A) = #{i ≤ n : Λi ∈ A}. (9.2)

We can see νn as a random counting measure. Another equivalent point of view is to think of νn as a
random collection of points in R. Then, we can view {Λj}j≤n as a point process in R. We are interested
in the asymptotic n→∞. The eigenvalues might have to be rescaled to get some sensible limits for
different observables, such as the distance between eigenvalues, the position of the largest eigenvalues,
etc. We will see that the scaling will depend on where in the spectrum we zoom in.

The main point of comparison to the eigenvalue process will be the Poisson point process. The
Poisson point process are obtained when points are thrown on the line independently. We summarize
its properties in Section 9.1. We shall see that the eigenvalue process is in fact very different from the
Poisson process. This is due to the important fact that the eigenvalues are strongly correlated in an
interesting and significant way. This is an important feature of random matrices. We will focus mainly
on matrices sampled from the GOE, the GUE, and the CUE.

9.1 Poisson point processes
You might have encountered the simplest Poisson process defined as follows.

Definition 9.1. A Poisson point process N on R with intensity λ > 0 corresponds to a set of random
points such that the distribution of the number of points in an interval (a, b], denoted N(a, b), is given
by

P(N(a, b) = k) =
(λ(b− a))k

k!
e−λ(b−a), k = 0, 1, 2, . . . (9.3)

Moreover, the numbers of points in any finite collection of disjoint intervals are independent of each
other.

Note that mean number of points in an interval (a, b] is λ(b− a), so it is proportional to the length
of the interval. More generally, for any measurable set A, E[N(A)] is λ times the Lebesgue measure of
A. This mean measure is sometimes called the intensity measure. It is then easy to generalize the above
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definition by replacing the intensity measure by any other measure on R. The examples where the
intensity measure is a multiple of the Lebesgue measure corresponds exactly to the Poisson processes
that are stationary, that is whose distribution is invariant under translation.

It is not hard to compute the statistics of the Poisson processes. We do two examples that serve
later as a reference for the eigenvalue process.

Example 9.2. We compute the distribution of the spacing between two nearest-neighbouring points of
a Poisson process N with intensity 1. Note that since the process is stationary, this will be independent
on the location of the real line. Let ∆ be spacing between two nearest-neighbouring points of the
process. By stationarity, we can without loss of generality conditioned on the event that there is a
point at 0. Therefore, we have that

P(∆ > x) = lim
ε→0

P
(
N((ε, ε+ x]) = 0, N([0, ε]) = 1

)

P(N
(

[0, ε]) = 1
) = e−x

Therefore, the spacing between points is exponentially distributed with parameter 1 and the mean
spacing is 1. (When the intensity is λ > 0, then the mean spacing is 1/λ.) In particular, the PDF of
the spacing is maximal at x = 0.

9.2 Joint eigenvalue density
We have seen earlier in (2.3) and (2.5) that the joint PDF of the entries of GOE and GUE, up to a
normalization constant, are of the form

e−
β
4 Tr(M2), (9.4)

where for the GOE β = 1, for the GUE β = 2. Of course, the eigenvalues are a function of the entries.
Therefore, we should be able to extract the joint PDF of the eigenvalues Λ1, . . . ,Λn from the above. At
this point, the ordering does not reflect the ordering of the eigenvalues. And thus the joint PDF will be
invariant under permutations of its arguments.

Theorem 9.3. Let (Λj , j ≤ n) denote the eigenvalues of the a n× n GOE or GUE matrix. Then their
(symmetric) joint PDF is

ρn(λ1, . . . , λn) = c(β)
n

∏

i<j

|λi − λj |βe−
β
4

∑
i λ

2
i . (9.5)

In other words, for any symmetric function f : Rn → R, we have

E[f(Λ1, . . . ,Λn)] =

∫

Rn
f(λ1, . . . , λn)ρn(λ1, . . . , λn)dλ1 . . . λn.

Here β = 1 stands for the GOE, β = 2 for the GUE, and c(1)
n and c(2)

n are normalization constants.

We remark that the normalization constants can be evaluated to be:

1

c
(β)
n

= (2π)n/2β−n/2−βn(n−1)/4[Γ(1 + β/2)]−n
n∏

j=1

Γ(1 + βj/2). (9.6)

We will not make explicit use of this fact and do not include the proof here.
The idea behind the proof of Theorem 9.3 is the spectral theorem (Theorem A.1). Any Hermitian

matrix M can be diagonalized by a unitary transformation; that is, we can write M = UDU†, where
D is diagonal and U is unitary. The idea is then to change variables from the matrix elements of M to
the matrix elements of U and D. Because the GUE measure is invariant under unitary transformations,
the matrix elements of U can be integrated out trivially, leaving just the matrix elements of D, which
are the eigenvalues.
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Proof. We first note that the eigenvalues of M are distinct with probability 1. To see this, observe that
the joint distribution of the entries of M has a smooth density. Since the eigenvalues are continuous
functions of the matrix entries, and because the event of two eigenvalues coinciding has codimension
≥ 1 in the n-dimensional variety of eigenvalues, it follows that the eigenvalues are almost surely distinct
13.

Now a Hermitian matrix M is obviously determined by its entries. Taking account the symmetries,
it can be parametrized by

M = (x11, . . . , xnn;x12, y12, . . . , xn−1,n, yn−1,n) ∈ Rn
2

, (9.7)

where xij stands for the real part of Mij and yij stands for the imaginary part. Note that there are n2

real parameters in this representation. If the eigenvalues of a Hermitian matrix M are distinct, then
the decomposition M = UDU† is unique up to (i) permuting the eigenvalues, and (ii) multiplying U by
a diagonal matrix with entries eiθ1 , eiθ2 , . . . , eiθn . This means that we can also represent M in terms of
the following coordinates:

(λ1, . . . , λn;w1, . . . , wn2−n) ∈ (Rn/Sn)× (U(n)/Tn).

The λ’s are the eigenvalues (now ordered) and the w’s are the real parameters coming from the
eigenvectors. One amazing fact from the proof is that we will not need details about the w’s. Our goal
is to compute the determinant of the Jacobian matrix of the map expressing the entries in terms of the
λ’s and the w’s. We denote this n2 × n2 matrix by

(
∂M
∂λα

, ∂M∂wβ

)
.

Recall that for any fixed unitary matrix V , the conjugation by V , that is the mapping M 7→ V †MV ,
is an isometry, see (2.6). We write τV : Rn2 → Rn2

for the transformation induced on the entries by
this conjugation. This transformation is linear (double-check!), and hence can be represented as a
n2 × n2 matrix. Moreover, since it is an isometry, we must have det τV = 1. This implies that

det

(
∂M

∂λα
,
∂M

∂wβ

)
= det

(
τV

(
∂M

∂λα
,
∂M

∂wβ

))
, (9.8)

for any unitary matrix V . Here comes the magic. For the unitary U that diagonalizes M , we have that

τU

(
∂M

∂λα

)
= τU

(
U
∂D

∂λα
U†
)

=
∂D

∂λα
. (9.9)

Note that the right-hand side gives a vector with all n2 coordinates except the ith equal to zero (in the
representation (9.7). We also have that

τU

(
∂M

∂wβ

)
= τU

(
∂U

∂wβ
DU† + UD

∂U†

∂wβ

)
= U†

∂U

∂wβ
D +D

∂U†

∂wβ
U. (9.10)

Since U†U = I, we have by differentiating with respect to wβ

U†
∂U

∂wβ
+
∂U†

∂wβ
U = 0. (9.11)

Therefore, setting Tβ = U† ∂U∂wβ , we get

τU

(
∂M

∂wβ

)
= TβD −DTβ . (9.12)

13An alternative proof of this uses the fact that the zero set of any polynomial in k variables has zero Lebesgue measure
in Rk. There are degenerate eigenvalues if and only if the characteristic polynomial of M , det(M − xI), and its derivative
have a common zero. A necessary and sufficient condition for this is that the discriminant

∏
i<j(λi − λj)2 vanishes. The

result then follows from the fact that discriminant is itself a polynomial in the entries of M .
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This shows that the matrix τU
(
∂M
∂λα

, ∂M∂wβ

)
has the following form




In 0n 0n 0n . . .
0n Re(T1)12(λ2 − λ1) Im(T1)12(λ2 − λ1) Re(T1)13(λ3 − λ1) . . .
0n Re(T2)12(λ2 − λ1) Im(T2)12(λ2 − λ1) Re(T2)13(λ3 − λ1) . . .
...

...
...

...
...


 , (9.13)

where 0n is the n× n zero matrix. Hence, computing the determinant, we have that

det

(
∂M

∂λα
,
∂M

∂wβ

)
=
∏

i<j

(λj − λi)2 det




Re(T1)12 Im(T1)12 . . .
Re(T2)12 Im(T2)12 . . .

...
...

...
...


 . (9.14)

The problem has now factorized! We are left with a product of
∏
i<j(λj − λi)2 and the determinant,

which is a function only of the w-variables. Hence in computing E[f(Λ1,Λ2, . . . ,Λn)], where the
expectation is computed with respect to the GUE, we can integrate with respect to all of the w-
variables, obtaining some constant, and we are left only with the integrals over λ1, . . . , λn, picking up a
factor

∏
i<j(λj − λi)2. This proves the theorem for the GUE.

The proof for the GOE follows an identical path, except that in this case the matrixM is diagonalized
by an orthogonal transformation, so M = ODOT. The number of independent random variables in M
(e.g. the matrix elements on and above the diagonal) is then n(n+ 1)/2. These can be replaced by the
diagonal elements of D (the eigenvalues), λ1, . . . , λn and n(n−1)/2 other parameters w1, . . . , wn(n−1)/2.

One again needs to compute the Jacobian of the transformation det
(
∂M
∂λα

, ∂M∂wβ

)
. The calculation goes

through essentially as above (but with orthogonal matrices replacing the unitary matrices), and one
ends up with a Jabobian which is similar to (9.13) but missing the columns involving Im(Tβ) because
the orthogonal matrices can be taken to be real valued. Therefore each factor (λj − λi) appears only
once and the Jacobian in this case factorizes as the product of

∏
i<j |λj − λi| and a function only of the

w-variables. Hence again in computing E[f(Λ1, . . . ,Λn)], where the expectation is computed now with
respect to the GOE, we can integrate with respect to all of the w-variables, obtaining some constant,
and we are left only with the integrals over λ1, . . . , λn, picking up a factor

∏
i<j |λj − λi|. This proves

the theorem for the GOE.

We turn next to the CUE. Let M be a n× n CUE matrix. In this case, the eigenvalues lie on the
unit circle thus we can denote them by eiΘ1 , . . . , eiΘn . The theorem is proved similarly. By the spectral
theorem (Theorem A.1), any unitary matrix M is diagonalizable and can be written as M = UDU†,
where D is diagonal with entries eiθ1 , eiθ2 , . . . , eiθn .

Theorem 9.4. Let (eiΘj , j ≤ n) denote the eigenvalues of a n× n CUE matrix. Then the (symmetric)
joint PDF is

ρn(θ1, . . . , θn) =
1

(2π)nn!

∫ 2π

0

· · ·
∫ 2π

0

f(θ1, . . . , θn)
∏

j<k

|eiθj − eiθk |2dθ1 . . . dθn. (9.15)

In other words, for any symmetric function f : Rn → R, we have

E[f(Θ1, . . . ,Θn)] =

∫

Rn
f(θ1, . . . , θn)ρn(θ1, . . . , θn)dθ1 . . . dθn.

This is known as the Weyl integration formula.

Finally, for the Wishart Ensemble, the corresponding result is14

14This is the formula for real Wishart matrices. For complex Wishart matrices the factor
∏
i<j |λi − λj | is squared.
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Theorem 9.5. Let Λ1, . . . ,Λp denote the eigenvalues of a p× p Wishart matrix. For any symmetric
function f : Rn → R, we have

E[f(Λ1, . . . ,Λp)] = c(Wishart)
n,p

∫ ∞

0

· · ·
∫ ∞

0

f(λ1, . . . , λp)
∏

i<j

|λi − λj |
∏

k

λ
(n−p−1)/2
k e−

1
2λkdλ1 . . . dλp,

(9.16)
where c(Wishart)

n,p is a normalization constant.

One of the most important consequences of Theorem 9.3, Theorem 9.4 and Theorem 9.5 is that
the eigenvalues of random matrices repel each other. It is clear from Theorem 9.3 that the probability
that λi − λj ∈ (s, s + ds) vanishes like sβ as s → 0; so it vanishes quadratically for the GUE and
linearly for the GOE. The same repulsion phenomenon may be seen in Theorem 9.4 and Theorem
9.5. Note that this is unlike the Poisson point process (Example 9.2) where the probability to find
nearest-neighbouring random points a distance s apart is maximal at s = 0.

9.3 Eigenvalue statistics and Correlation functions
Now that we have the joint PDF of the eigenvalues for some important examples, we look at how we
translate this information in terms of eigenvalue process. The main tool for this task is the correlation
function.

Definition 9.6. Let ρn(x1, . . . , xn) be the (symmetric) joint PDF of the eigenvalues of a n×n random
matrix with real spectrum. The k-point correlation function R(k)

n : Rk → [0,∞) is defined to be

R(k)
n (x1, . . . , xk) =

n!

(n− k)!

∫ ∞

−∞
· · ·
∫ ∞

−∞
ρn(x1, . . . , xn)dxk+1 . . . dxn. (9.17)

These correlation functions have the following interpretation. Consider a measurable set B ⊆ R.
For k = 1, we have that

∫

B

R(1)
n (x)dx = E[#{i : Λi ∈ B}] = E[νN (B)], (9.18)

where νN is the counting measure defined in (9.1). This is because to count the expected number of
eigenvalues in B, we can integrate out the position of Λ2 up to Λn, then integrate the position of Λ1

over B. By symmetry of ρn, we can then multiply by n to get all possible eigenvalues falling in B. This
reasoning can be generalized to give for k = 2

∫

B

∫

B

R(2)
n (x, y)dxdy = E

[
#
{

(j1, j2) distinct : (Λj1 ,Λj2) ∈ B ×B}
]
. (9.19)

This is the expected number of (ordered) pairs of eigenvalues falling in B. And for k ∈ N, we have
∫

Bk
R(k)
n (x1, . . . , xk)dx1 . . . dxk = E

[
#
{

(j1 . . . , jk) distinct : (Λj1 , . . . ,Λjk) ∈ B}
]
.

10 The method of Orthogonal Polynomials
The problem of obtaining eigenvalue is now reduced to integrating out the joint PDF. The key here is
to unravel a hidden determinantal structure. We illustrate the method using the case of the GUE.

In Theorems 9.3, 9.4 and 9.5, the PDF involves
∏
i<j |λi − λj |. The important observation is that

this product is the Vandermonde determinant:

∏

i<j

|λi − λj | =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ1 λ2 . . . λn
λ2

1 λ2
2 . . . λ2

n
...

...
. . .

...
λn−1

1 λn−1
2 . . . λn−1

n

∣∣∣∣∣∣∣∣∣∣∣

. (10.1)
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To see this, note that the determinant is a homogeneous polynomial in the variables λ1, λ2, . . . , λn of
degree n(n− 1)/2. It vanishes if any pair of the variables are set equal, so is divisible by

∏
i<j(λj − λi).

This is also a homogeneous polynomial of degree n(n−1)/2. Therefore the two polynomials are equal up
to a constant multiplier. That this constant has to be one may be seen by comparing any corresponding
terms on the two sides; for example the product of terms on the diagonal of the matrix corresponds to
multiplying the first terms in

∏
i<j(λj − λi).

The determinant is unchanged under row operations. Therefore, we can write

∏

i<j

|λi − λj | =

∣∣∣∣∣∣∣∣∣∣∣

p0(λ1) p0(λ2) . . . p0(λn)
p1(λ1) p1(λ2) . . . p1(λn)
p2(λ1) p2(λ2) . . . p2(λn)

...
...

. . .
...

pn−1(λ1) pn−1(λ2) . . . pn−1(λn)

∣∣∣∣∣∣∣∣∣∣∣

(10.2)

where pk is a monic polynomial of degree k. This is true for any monic polynomials pk. There is,
however, one choice that considerably simplifies the calculations:

Take (pk(λ), k ≥ 0) to be orthogonal polynomials of the reference measure of the ensemble.

For GUE, the reference measure is e−λ
2/2dλ as seen from (9.5). And for CUE in (9.15), this is the

Lebesgue measure dθ. (We do not need to worry about the normalization for now.) As we shall see,
the orthogonality of the polynomials allows for an exact computation of the correlation functions, even
at finite n (!!!). The key ingredient is Gaudin’s lemma (Lemma 10.2).

The exponent 2 on |λi − λj | helps the analysis considerably in the case of GUE and CUE. We
focus on these examples. The method of orthogonal polynomials works as well for the GOE, but is a
little more complicated in that case. It works also for complex Wishart matrices, when the orthogonal
polynomials are the generalized Laguerre polynomials.

10.1 Correlation functions of GUE
For the GUE, we want the polynomials to satisfy

∫ ∞

−∞
pi(x)pj(x)e−x

2/2dx = κ2
i δij , (10.3)

for some normalization constant κ2
i . This clearly holds for all j < i if

∫ ∞

−∞
xkpi(x)e−x

2/2dx = 0, for all k < i. (10.4)

We can arrange this by taking pi(x)e−x
2/2 to be an exact ith derivative of some function that vanishes

as |x| → ∞, and the obvious choice is to set

pi(x) = (−1)iex
2/2 di

dxi
e−x

2/2. (10.5)

These are known as the Hermite polynomials and are usually denoted Hi(x) (We shall use pk(x) and
Hk(x) interchangeably 15.) We then also have

κ2
i =

∫ ∞

−∞
p2
i (x)e−x

2/2dx =

∫ ∞

−∞
xipi(x)e−x

2/2dx = i!
√

2π. (10.6)

15In some references the Hermite polynomials are defined to be orthogonal with respect to the measure e−x
2/2dx, and

in others with respect to the measure e−x
2
dx. We choose the former convention. The latter convention is more common

in the physics literature.
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It turns out that the normalized Hermite polynomials (κ−1
k pk(x), k ≥ 0) form an orthonormal basis

of the (complex) Hilbert space L2(e−x
2/2dx) of square-integrable functions, i.e., the space of function f

such that ∫ ∞

−∞
|f(x)|2e−x2/2dx <∞. (10.7)

The inner product on L2(e−x
2/2dx) is

〈f, g〉 =

∫ ∞

−∞
f(x)g(x)e−x

2/2dx. (10.8)

Since the product
∏
i<j |λi − λj | is squared for GUE, we can write

∏

i<j

|λi − λj |2 = det(ATA),

where A is the n× n matrix with elements

Aij = pi−1(λj) (10.9)

With this notation we have that ATA is of the form

[ATA]ij =

n−1∑

k=0

pk(λi)pk(λj).

This has the form of a projection kernel. More precisely, when integrating a function f in L2 over this
kernel over one variable, it projects the function f on the first n polynomials.

We note for later use the following general properties of the Hermite polynomials.

Lemma 10.1. The Hermite polynomials satisfy

pk+1(x) = xpk(x)− p′k(x), (10.10)

xpk(x) = pk+1(x) + kpk−1(x), (10.11)

p′′k(x)− xp′k(x) = −kpk(x), (10.12)

and for x 6= y
n−1∑

k=0

pk(x)pk(y)

k!
=
pn(x)pn−1(y)− pn−1(x)pn(y)

(n− 1)!(x− y)
. (10.13)

Proof. Equation (10.10) follows from differentiating (10.5). (10.11) follows from expanding xpk(x) in
terms of the basis formed by all of the Hermite polynomials and using (10.4). Equation (10.12) follows
by differentiating (10.10) and then using (10.11). (10.13) follows from multiplying Kn by x− y and
then using (10.11); it is a special case of a general formula known as the Christoffel-Darboux Theorem,
which goes back to Christoffel in 1858 (for more on this see, for example, [So75]).

Note that, applying L’Hôpital’s rule, it follows from (10.13) that

n−1∑

k=0

p2
k(x)

k!
=
p′n(x)pn−1(x)− p′n−1(x)pn(x)

(n− 1)!
. (10.14)
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It is convenient for the analysis to incorporate the reference density e−x
2/2 as well as the normalization

constants in the definition of the kernel. By the properties of the determinant, we have

∏

i<j

|λi − λj |2e−
∑n
j=1 λ

2
j/2 =

∣∣∣∣∣∣∣∣∣∣∣∣

p0(λ1)e−
1
4λ

2
1 p0(λ2)e−

1
4λ

2
2 . . . p0(λn)e−

1
4λ

2
n

p1(λ1)e−
1
4λ

2
1 p1(λ2)e−

1
4λ

2
2 . . . p1(λn)e−

1
4λ

2
n

p2(λ1)e−
1
4λ

2
1 p2(λ2)e−

1
4λ

2
2 . . . p2(λn)e−

1
4λ

2
n

...
...

. . .
...

pn−1(λ1)e−
1
4λ

2
1 pn−1(λ2)e−

1
4λ

2
2 . . . pn−1(λn)e−

1
4λ

2
n

∣∣∣∣∣∣∣∣∣∣∣∣

2

. (10.15)

Therefore, adding the normalization constants c(2)
n and κi’s, we get that the joint PDF of GUE given

in Equation (9.5) is

ρn(λ1, . . . , λn) = c(2)
n

(
n−1∏

i=1

κ2
i

)
(
detATA

)
(10.16)

where A is now the n× n matrix with elements

Aij =
1

κj−1
pj−1(λi)e

− 1
4λ

2
i . (10.17)

The functions φk(x) := κ−1
k pk(x)e−x

2/4 are called the Hermite functions. They satisfy the differential
equation

− d2Ψ

dx2
+

1

4
x2Ψ = (k +

1

2
)Ψ (10.18)

which is the Schrödinger equation of the simple harmonic oscillator.
In the above notation, we now have

[
ATA

]
ij

=

n∑

k=1

AikAjk =

n−1∑

k=0

φk(λi)φk(λj). (10.19)

The function

Kn(x, y) =

n−1∑

k=0

φk(x)φk(y) =
1√
2π

n−1∑

k=0

1

k!
pk(x)pk(y)e−(x2+y2)/4 (10.20)

is known as the Christoffel-Darboux kernel in the theory of orthogonal polynomials. It is the kernel of
the projection onto the span of φ0, . . . , φn−1.

In terms of the Christoffel-Darboux kernel, we have that the right-hand side of (10.16) can be
written as

ρn(λ1, . . . , λn) = Cn · det ([Kn(λi, λj)]) , (10.21)

for some normalization constant Cn to be determined.
We have from (10.13) that for x 6= y

Kn(x, y) =
√
n
φn(x)φn−1(y)− φn−1(x)φn(y)

x− y (10.22)

and that
Kn(x, x) =

√
n
(
φ′n(x)φn−1(x)− φ′n−1(x)φn(x)

)
. (10.23)

It follows from the orthonormality of the Hermite polynomials that
∫ ∞

−∞
Kn(x, y)Kn(y, z)dy = Kn(x, z). (10.24)

This allows us to apply the following general lemma
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Lemma 10.2 (Gaudin’s lemma). Consider a n× n matrix Jn of the form

Jn = (Jij)1≤i,j≤n =
(
k(xi, xj)

)
1≤i,j≤n

, (10.25)

where k(x, y) is a kernel satisfying
∫ ∞

−∞
k(x, y)k(y, z)dy = k(x, z). (10.26)

Then for r =
∫∞
−∞ k(x, x)dx, we get

∫ ∞

−∞
det(Jn)dxn = (r − n+ 1) det(Jn−1). (10.27)

Proof. We note first that expanding the determinant gives
∫ ∞

−∞
det(Jn)dxn =

∫ ∞

−∞

∑

σ∈Sn

sgn(σ)k(x1, xσ(1)) . . . k(xn, xσ(n))dxn

=

∫ ∞

−∞

n∑

m=1

∑

σ:σ(n)=m

sgn(σ)k(x1, xσ(1)) . . . k(xn, xm)dxn. (10.28)

In the term m = n, σ runs over all permutations in Sn−1 and so the integral evaluates to r det(Jn−1),
because the sign of σ as a permutation in Sn−1 is the same as it is in Sn.

When m < n, let j = σ−1(n), and take σ̂ ∈ Sn−1 to be given by

σ̂(i) =

{
σ(i), if i 6= j

m, if i = j.
(10.29)

The map {σ ∈ Sn : σ(n) = m} −→ Sn−1, σ 7→ σ̂, is straightforwardly seen to be a bijection, and
sgn(σ̂) = −sgn(σ), because the two permutations differ by a transposition (mn). Therefore

∫ ∞

−∞

∑

σ:σ(n)=m

sgn(σ)k(x1, xσ(1)) . . . k(xn, xm)dxn

=

∫ ∞

−∞

∑

σ:σ(n)=m

sgn(σ)k(x1, xσ(1)) . . . k(xn−1, xσ(n−1))k(xj , xn)k(xn, xm)dxn

=
∑

σ̂∈Sn−1

−sgn(σ̂)k(x1, xσ̂(1)) . . . k(xn−1, xσ̂(n−1))

= −det Jn−1. (10.30)

Finally, using the fact that this last equality holds independently of the value of m, the equation in the
statement of the theorem is established.

We now return to our goal of computing the correlations functions for GUE using (10.21). From
Definition (9.6), this means integrating out n − k variables, to get the k-point correlation function.
Lemma 10.2 is thus obviously the right tool

Theorem 10.3. Let k ∈ N. Then the k-point correlation function of a n× n GUE matrix is

R(k)
n (λ1, . . . , λk) = det

([
Kn(λi, λj)

]
1≤i,j≤k

)
, (10.31)

where Kn(x, y) is the projection kernel defined in (10.20) in terms of the Hermite functions.
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This is remarkable!

It asserts that integrating an n× n determinant, involving a kernel evaluated at all pairs drawn from n
variables, over n − k of those variables, gives a k × k determinant involving the same kernel. Point
processes with this property are called determinantal point processes.

Proof. Applying Gaudin’s lemma, and using the fact that r = n for this kernel, because the Hermite
functions are orthonormal, we have immediately that

∫ ∞

−∞
ρn(λ1, . . . , λn)dλn = Cn det (Kn(λi, λj)1≤i,j≤n−1) . (10.32)

Applying Gaudin’s lemma a second time now gives
∫ ∞

−∞

∫ ∞

−∞
ρn(λ1, . . . , λn)dλn−1dλn = 2Cn det (Kn(λi, λj)1≤i,j≤n−2) . (10.33)

Repeated applications of Gaudin’s lemma therefore give
∫ ∞

−∞
· · ·
∫ ∞

−∞
ρ(λ1, . . . , λn)dλk+1 . . . dλn = (n− k)!Cn det (Kn(λi, λj)1≤i,j≤k) . (10.34)

In the case when k = 0, this reduces to
∫ ∞

−∞
· · ·
∫ ∞

−∞
ρ(λ1, . . . , λn)dλ1 . . . dλn = n!Cn (10.35)

and so we see that Cn = 1/n!.

10.2 Asymptotics of the correlation functions of GUE in the bulk
We are now ready to compute statistics of the eigenvalues of GUE as n→∞.

We start with the 1-point correlation function. From (9.18), we expect to be able to recover the
semicircle law by rescaling the eigenvalues properly. If we rescale the eigenvalues by 1/

√
n and normalise

the 1-point correlation function by 1/n as before, we should get for x ∈ [−2, 2],

lim
n→∞

1√
n
R1(
√
nx) = lim

n→∞

1√
n
Kn(
√
nx,
√
nx) =

1

2π

√
4− x2, (10.36)

and for the limit to give 0 if |x| > 2. This can be shown to be true using asymptotic formulae for the
Hermite polynomials when n→∞, leading to yet another proof of the semicircle law for the GUE.

Specifically, let us define
Ξn+p(x) = n

1
4φn+p(x

√
n) (10.37)

for p = −2,−1, 0. It follows from the properties of the Hermite polynomials (Lemma 10.10) that

1√
n
Kn(
√
nx,
√
nx) = Ξ2

n−1(x)−
√
n− 1

n
Ξn−2(x)Ξn(x). (10.38)

The asymptotic formulae we need16 are as follows. First, setting x = 2 cosφ with 0 < φ < π, when
n→∞

Ξn+p(x) ∼ 1√
π sinφ

cos

[
n

(
φ− 1

2
sin(2φ)

)
+

(
p+

1

2

)
φ− π

4

]
(10.39)

16These go under the general name Plancherel-Rotach asymptotic formule and can be established via a WKB analysis
of (10.18).
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uniformly for φ in a compact subset of (0, π). Second, setting |x| = 2 coshφ with 0 < φ,

Ξn+p(x) ∼ e(p+1/2)φ

√
2π sinhφ

e−
n
2 (e2φ+1−2φ) (10.40)

uniformly for φ in a compact subset of (0,∞)17. Substituting (10.39) into (10.38) gives the semicircle
law in |x| < 2. Since the semicircle law has a total mass of one in (−2, 2), there can be no limiting
mass at x = 2 or in |x| > 2. When |x| > 2 this also follows by substituting (10.40) into (10.38).

Note that (10.23) gives that

1√
n
R1(
√
nx) = φ′n(

√
nx)φn−1(

√
nx)− φ′n−1(

√
nx)φn(

√
nx) (10.41)

which gives an exact formula for the expectation of the empirical spectral density of a GUE matrix in
terms of the Hermite functions. We illustrate this by showing in Figure 8 the results of a numerical
experiment. This involved generating 10,000 random matrices from the GUE with n = 10, plotting a
histogram of the eigenvalues, and comparing with the exact formula (10.41). For ease of visualisation,
the eigenvalues have each been divided by 2, so the support of the rescaled semicircle that emerges
when n→∞ is |x| ≤ 1.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: The spectral density of 10,000 GUE matrices of dimension 10 compared to (10.41).

The semicircle law describes the limiting eigenvalue distribution when the eigenvalues are scaled by
1/
√
n. There are then n scaled eigenvalues lying between -2 and 2, and so their mean separation is

of order 1/n. We now want to look at correlations on the scale of the mean eigenvalue spacing. We
therefore need to scale the eigenvalues so that they have constant mean spacing. There are n eigenvalues
lying roughly between −2

√
n and 2

√
n. They therefore have a mean separation that scales like 1/

√
n

and so we need to rescale them by
√
n to achieve a constant mean spacing. This is the correct rescaling

in the bulk of the spectrum. We will say more about other rescaling in Section 11.2.
More precisely, setting yi =

√
nλi, we need to consider the n→∞ asymptotics of

det
[
n−1/2Kn(yi/

√
n, yj/

√
n)
]r
i,j=1

:= det
[
K̂n(yi, yj)

]r
i,j=1

(10.42)

17Note that when φ > 0, e2φ + 1− 2φ > 0.
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where, when yi 6= yj ,

K̂n(yi, yj) =
φn(yi/

√
n)φn−1(yj/

√
n)− φn−1(yi/

√
n)φn(yj/

√
n)

yi − yj
, (10.43)

and
K̂n(y, y) = φ′n(y/

√
n)φn−1(y/

√
n)− φ′n−1(y/

√
n)φn(y/

√
n). (10.44)

The important result that we now establish is the following one.

Theorem 10.4. For any fixed x, y, we have

lim
n→∞

K̂n(x, y) =
sin(π(x− y))

π(x− y)
. (10.45)

The theorem means that in the limit when n→∞ the k-point correlation function of the scaled
eigenvalues at the centre of the spectrum is simply given by the k × k determinant involving the kernel

sin(π(x− y))

π(x− y)
. (10.46)

This is known as the sine kernel. It is a fundamental object in random matrix theory (and number
theory. . . ). The theorem is an immediate consequence of the following lemma.

Lemma 10.5. For any fixed x and any fixed l

lim
n→∞

∣∣∣n1/4φn−l(x/
√
n)− π−1/2 cos (x− (n− l)π/2)

∣∣∣ = 0. (10.47)

Proof. Let us set m = n− l. Note that

(−1)mex
2/2 dm

dxm
e−x

2/2 = (−1)mex
2/2 dm

dxm

∫ ∞

−∞
e−ixz−z

2/2 dz√
2π

=
1√
2π
ex

2/2

∫ ∞

−∞
(iz)me−ixz−z

2/2dz (10.48)

and so
n1/4φm(x/

√
n) = (2π)−3/4(m!)−1/2ex

2/4nn1/4

∫ ∞

−∞
(iz)me−ixz/

√
n−z2/2dz. (10.49)

Using Stirling’s formula to evaluate the prefactor and Laplace’s method18 to evaluate the integral when
n→∞ proves the lemma. (See, for example, Chapter VIII in [So75].)

Substituting the asymptotic estimate in the lemma into the formula for K̂n, and using (10.10) and
(10.11) to evaluate the asymptotics of the derivative of φ, then leads to the formula in the theorem.

We can now compute the asymptotics of the 2-point correlation functions. Applying Theorem 10.4,
we get

lim
n→∞

R(2)
n (
√
nx,
√
ny) = 1−

(
sin(π(x− y))

π(x− y)

)2

. (10.50)

So, for example, for f(x, y) such that the sum and integral converge, we get (as in (9.19))

lim
n→∞

∑

i 6=j

f(
√
nλi,
√
nλj) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

(
1−

(
sin(π(x− y))

π(x− y)

)2
)

dxdy. (10.51)

18One can also use the method of steepest descent; there are two saddle points and the contributions from each have
to be summed.
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Note that the quadratic repulsion manifest in Theorem 9.3 is clear here in (10.50). If we set x− y = w,
the integrand vanishes like w2 as w → 0. We also remark that for the Poisson point process, the
corresponding formula is obtained by replacing the two-point correlation function (10.50) by 1, because
the points are, by definition, uncorrelated.

We have shown that at the centre of the spectrum (i.e., at the centre of the semicircle) the limiting
correlations are determined by the sine kernel. In fact, the sine kernel can be shown to describe the
local correlations at any point in (−2, 2) provided one normalizes the mean spacing to be unity using
the semicircle density.

10.3 Correlation functions of CUE
The method of orthogonal polynomials extends straightforwardly to the CUE. Indeed, in this case it is
considerably simpler, because the functions that are orthogonal with respect to the uniform weight on
the unit circle are simply the Fourier functions eimθ, m ∈ N. All that is involved is the manipulation of
Fourier series and the asymptotic analysis is elementary.

Theorem 10.6. Let k ∈ N. Then the k-point correlation function of a n× n CUE matrix is

R(k)
n (eiθ1 , . . . , eiθk) = det

([
Sn(θi, θj)

]
1≤i,j≤k

)
, (10.52)

where Sn(x, y) is the projection kernel defined by

Sn(θ, θ′) =
1

2π

1
2 (n−1)∑

p=− 1
2 (n−1)

eip(θ−θ′) =
1

2π

sin(n(θ − θ′)/2)

sin((θ − θ′)/2)
. (10.53)

Proof. The Vandermonde factor in the Weyl integration formula in Theorem 9.4 can be written as
∏

j<k

|eiθj − eiθk |2 =
∏

j<k

(
eiθj − eiθk

)∏

j<k

(
e−iθj − e−iθk

)

= det
(

[eimθj ]
)

det
(

[eimθj ]
)
. (10.54)

In these determinants, the rows are indexed by m = 0, 1, . . . , n− 1, and the columns by j = 1, 2, . . . , n.
Hence, we get ∏

j<k

|eiθj − eiθk |2 = (2π)n det
(

[Sn(θj , θk)]j,k=1,...,n

)
. (10.55)

We have by direct computation (this is just Fourier series) that
∫ 2π

0

Sn(θj , θk)Sn(θk, θl)dθk = Sn(θj , θl). (10.56)

We can therefore apply Gaudin’s Lemma 10.2, but now with integrals over [0, 2π). We have trivially
∫ 2π

0

S̃n(θ, θ)dθ = n (10.57)

and so the lemma yields that the k-point correlation function is det
([
Sn(θi, θj)

]
1≤i,j≤k

)
.

The asymptotics of the kernel are now almost trivial. What is the right scaling for CUE? Since
there are n eigenvalues on the circle, we expect that the mean spacing is 2π/n. To make this precise,
note that the 1-point correlation function is

R1(θ) = Sn(0) =
n

2π
. (10.58)
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Figure 9: The two-point correlation function of the eigenvalues of 200 CUE matrices of dimension 200
compared to the 2× 2 determinant involving the sine kernel. (Plot kindly provided by Johannes Forkel.)

It is the analogue of the semicircle law in this setting after normalizing by 1/n. The eigenvalues have a
constant average density around the unit circle so the ESM is the uniform probability on [0, 2π]. This
was to be expected (Why?).

The 2-point correlation function is more interesting. We get

R2(θ1, θ2) =
( n

2π

)2

− (Sn(θ1, θ2))
2
. (10.59)

Now crucially, observe that if we scale the eigenvalues to have unit mean spacing, this corresponds to
setting ϕk = n

2π θk. Making this substitution in Sn and rescaling by 2π/n, we see that

lim
n→∞

1

n
Sn(2πϕj/n, 2πϕk/n) = lim

n→∞

sin(π(ϕj − ϕk)

n sin(π(ϕj − ϕk)/n)
=

sin(π(ϕj − ϕk)

π(ϕj − ϕk))
. (10.60)

The limit gives precisely the sine kernel we found for the GUE! Hence, even though the statistics are
different when n is finite, in the limit when n→∞ the local statistics of the GUE and CUE are the
same. We illustrate this by showing in Figure 9 the results of a numerical experiment. This involved
generating 200 random matrices from the CUE with n = 200, plotting a histogram of the distances
between all pairs of eigenvalues, and comparing with the 2× 2 determinant involving the sine kernel.

The above is (yet) another instance of universality. Given that the GUE and the CUE exhibit the
same local statistics on the scale of the mean eigenvalue spacing in the limit n → ∞ one might ask
whether other random matrix ensembles also fall into the same class. Does the result depend on having
simple measures, for example? Or does it rely on having nice formulae for the measure in terms of the
eigenvalues, expressed via Vandermonde determinants? The answer is that in the large-matrix limit

53



the results are independent of the measure, provided we have matrices that are essentially complex and
Hermitian (unitary matrices can be thought of as the exponentials of complex Hermitian matrices). So
complex Hermitian Wigner random matrices all have the same limit, once some mild conditions are
satisfied, no matter what the measure one applies to the matrix elements, and for most measures one
doesn’t have nice expressions in terms of the eigenvalues.

Similarly, real-symmetric matrices form a different universality class, characterised by linear repulsion
between the eigenvalues as opposed to quadratic repulsion. The GOE falls into this class, along with
other real-symmetric Wigner matrices, irrespective of the measure.

Proving universality has been a major theme of research in Random Matrix Theory over the past
15 years. We will say a bit more about this in Part III.

11 A General Method
In this section, we explain how the method we have developed can be applied to get statistics beyond
the correlation function and at the edge of the spectrum.

11.1 Counting statistics
The definition of the Poisson point process 9.1 gives the complete joint distribution of the random
variables N(A) for countably many subsets A’s. This completely characterizes the counting measure in
the Poisson case. We want to achieve the same level of precision for the eigenvalue process defined by
the counting measure

νn =

n∑

i=1

δΛi , (11.1)

where (Λ1, . . . ,Λn) are the eigenvalues of a n× n eigenvalues with real spectrum.
Fix a measurable subset B ⊆ R. Recall that νn(B) is the number of eigenvalues lying in B. We

want to determine
P(νn(B) = m), m = 0, 1, 2, . . . (11.2)

Let 1B(x) denote the indicator function on B, so

1B(x) =

{
1 if x ∈ B
0 if x /∈ B. (11.3)

Then, we have

P(νn(B) = 0) = E

[
n∏

i=1

(1− 1B(λi))

]
. (11.4)

We define for t ∈ R the generating function

GB(t) = E

[
n∏

i=1

(1− t1B(Λi))

]
, (11.5)

so that P(νn(B) = 0) = GB(1). It is easy to see that −G′B(1) = P(νn(B) = 1), and that more generally

P(νn(B) = m) =
(−1)m

m!
G

(m)
B (1). (11.6)

GB(t) can therefore be seen the generating function for P(νn(B) = m).

Proposition 11.1. Let νn be the counting measure (11.1). Then for any measurable subset B ⊆ R,
we have

GB(t) = 1 +

∞∑

k=1

(−t)k
k!

∫

B

· · ·
∫

B

R(k)
n dx1 . . . dxk.
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Proof. We expand the product over the eigenvalues to get

GB(t) = 1− tE
∑

i

1B(Λi) + t2E
∑

i≤j

1B(Λi)1B(Λj)− . . .

= 1− t
∫

I

R1(x1)dx1 +
t2

2

∫

B

∫

B

R2(x1, x2)dx1dx2 −
t3

3!

∫

I

∫

I

∫

I

R3(x1, x2, x3)dx1dx2dx3 + . . .

= 1 +

∞∑

k=1

(−t)k
k!

∫

B

· · ·
∫

B

R(k)
n dx1 . . . dxk. (11.7)

In particular, if the point process is determinantal, that is, its corrrelation functions are given in
terms of the determinant of a kernel Kn, we get

GB(t) = 1 +

∞∑

k=1

(−t)k
k!

∫

B

· · ·
∫

B

det ([Kn(xi, xj)]1≤i,j≤k) dx1 . . . dxk. (11.8)

The last equation can be viewed as defining the Fredholm determinant of the operator with kernel
Kn(x, y) acting on L2(B, dx):

det (I− tKn(x, y)) := 1 +

∞∑

k=1

(−t)k
k!

∫

B

· · ·
∫

B

det (Kn(xi, xj))1≤i,j≤k dx1 . . . dxk. (11.9)

In the theory of Fredholm determinants19 an operator with kernel K(x, y) acts on a function f according
to (Kf)(x) =

∫
K(x, y)f(y)dy. When Tr(K) =

∫
K(x, x)dx <∞, then K is called trace class and one

can calculate the Fredholm determinant in a number of (equivalent) ways:

det (I− tKn(x, y)) = exp

(
−
∞∑

m=1

tm

m
TrKm

)
(11.10)

where Km is to be understood as an m-fold convolution of K. Alternatively, denoting the eigenvalues
of K by βj ,

det (I− tKn(x, y)) =
∏

(1− tβj). (11.11)

We also have that then
∫
K(x, x)dx =

∑
j βj .

Many quantities can be computed from the Fredholm determinant. An important example is the
PDF Pn of the spacing distribution between nearest-neighbouring eigenvalues. We claim that for the
GUE in the bulk we have

Pn(s) =
d2GBs(t)

ds2

∣∣∣∣
t=1

, (11.12)

where Bs is an interval of length s. To see this, recall that the probability that this interval contains
no eigenvalues is P(νn(Bs) = 0). Let’s denote this probability by F (s). Now extend the interval by ds
at one end. The probability that this extended interval has no eigenvalues in it is F (s+ ds). Hence
F (s)− F (s+ ds) is the probability that there is no eigenvalue in the original interval, but at least one
in the extended interval. Extending the interval at the other end one gets (11.12) When the eigenvalues
are scaled by

√
n, then when n → ∞ the limiting spacing distribution is the second derivative of

19We limit ourselves to stating results in the theory of Fredholm determinants without proof, and without setting out
the theory systematically. For an introductory exposition see, for example, [McK11].

55



0.00

0.25

0.50

0.75

0 1 2 3
spacing

de
ns
it
y

Figure 10: The spacing distribution between neighbouring eigenvalues of 10,000 GUE matrices of
dimension n = 10 compared to the the Fredholm determinant of the sine kernel. (Plot kindly provided
by Johannes Forkel.)

the Fredholm determinant of the sine kernel20. This distribution is often called the Gaudin-Mehta
distribution

We illustrate this by showing in Figure 10 the results of a numerical experiment. This involved
generating 10,000 random matrices from the GUE with n = 10, plotting a histogram of the normalized
distances between neighbouring pairs of eigenvalues, and comparing with the Fredholm determinant of
the sine kernel.

11.2 Scaling at the edge of the spectrum
Having seen how the sine kernel describes correlations in the bulk of the spectrum for GUE, we now
consider how the eigenvalues are distributed near the edges.

By the semicircle law, we should have, when ε is small, that

#{Λi : Λi/
√
n ≥ 2− ε} ≈ n

2π

∫ 2

2−ε

√
4− x2dx ≈ 2

3π
nε3/2. (11.13)

We might therefore expect to get a nice limit if we set ε ∝ n−2/3, i.e., if we rescale the distance
between the eigenvalues and the edge by n−2/3. If we want to find a limiting distribution for the
eigenvalues close to the upper edge of the spectrum, this suggests setting λi/

√
n = 2 + αin

−2/3, or

20The Fredholm determinant of the sine kernel is equal to exp
(∫ πs

0
σ(x;t)
x

dx
)
where σ is the solution of the Painlevé

V equation (xσ′′)2 + 4(xσ′ − σ)(xσ′ − σ + (σ′)2) = 0 with σ(x; t) ∼ − t
π
x as x→ 0, but showing this is beyond the scope

of the present course.
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λi = 2
√
n+ αin

−1/6 and looking at correlations between the values taken by α1, . . . , αn. This involves
studying the asymptotics of

det

([
n−1/6Kn(2

√
n+ αin

−1/6, 2
√
n+ αjn

−1/6)
]
i,j≤n

)
, (11.14)

where Kn is the GUE kernel given in (10.20). Defining

K̃n(x, y) = n−1/6Kn(2
√
n+ xn−1/6, 2

√
n+ yn−1/6), (11.15)

we have the following theorem describing the n→∞ asymptotics.

Theorem 11.2. For any fixed x, y

lim
n→∞

K̃n(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

(x− y)
(11.16)

where
Ai(x) =

1

π

∫ ∞

0

cos(t3/3 + xt)dt (11.17)

is the Airy function.

This is an immediate consequence of the following lemma

Lemma 11.3. For any fixed x

lim
n→∞

∣∣∣n1/12φn(2
√
n+ x/n1/6)−Ai(x)

∣∣∣ = 0. (11.18)

We only sketch the proof of this lemma. This starts with (10.49). One again seeks to evaluate the
integral by the method of steepest descent. The difference is that in this case the two saddle points lie
so close together that one cannot treat them separately. Instead of expanding to quadratic order, one
has to expand to cubic order. This leads to the Airy function, rather than the usual Gaussian integral.
The Airy function is plotted in Figure 11.

Substituting the asymptotic estimate in the lemma into the formula for K̃n in terms of φ, and using
(10.10) and (10.11) to evaluate the asymptotics of the derivative of φ, then leads to the formula in the
theorem.

The kernel representing the n → ∞ limit of K̃n is known as the Airy kernel. Far away from the
edge on the inside of the semicircle, it reduces to the sine kernel. Away from the edge on the outside of
the semicircle, it decays exponentially.

The analysis of the counting statistics of Section 11.1 extends immediately to the edge of the
spectrum, with the kernel in GB(t), see (11.9), being the Airy kernel. Rather than the spacing
distribution, the natural question in this case is: what is the distribution of the largest eigenvalue of a
GUE matrix? Let λmax denote the largest eigenvalue and set

F (max)
n (t) = P(Λmax ≤ t). (11.19)

Then from the scaling at the edge we have that

F (max)(s) = lim
n→∞

F (max)
n (2

√
n+ s/n1/6) (11.20)

exists. Clearly P(λmax ≤ t) is simply the probability that the interval (t,∞) contains no eigenvalues,
and so

F (max)(s) = det(I−KAiry), (11.21)
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Figure 11: The Airy function Ai(x).

where

KAiry =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

(x− y)
. (11.22)

This kernel now acts on L2((s,∞)).
In this case, the CDF F (max)(s) can be expressed in terms of a solution of a second order nonlinear

ODE, which is a Painlevé equation. Specifically,

F (max)(s) = exp

(
−
∫ ∞

s

(x− s)q(x)2dx

)
(11.23)

where q is a solution of the Painlevé II equation q′′(x) − xq(x) + 2q(x)3 = 0 with q(x) ∼ Ai(x) as
x→∞. This is called the Tracy-Widom distribution.

We illustrate this by showing in Figure 12 the results of a numerical experiment, which involved
generating 10,000 random matrices from the GUE with n = 1000, plotting a histogram of (λmax −
2
√
n)n1/6, and comparing with the Tracy-Widom distribution.

11.3 Applications
The local spectral statistics of random matrices in the bulk of the spectrum have many applications.
For example, they describe fluctuation statistics in complex quantum systems, including quantum
chaotic systems, atomic spectra and nuclear spectra, and in other complex wave problems, such as
lasers, elastic vibrations, and acoustics etc. They also provide the main method for modelling statistical
properties of quantum dynamics in complex systems, such as in conductivity through disordered media.

Remarkably, GUE spectral statistics also appear to describe correlations between the positions of
parked cars in London, and arrival times of buses in the Mexican city of Cuernavaca.

Knowing the distribution of largest and smallest eigenvalues is important in many contexts in
numerical linear algebra in determining bounds on the efficiency and convergence of algorithms. In
Wishart random matrices the ratio of the extremal eigenvalues determines how errors in the input data
get magnified in solving systems of linear equations, as measured by the condition numbers of the
matrices appearing.
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Figure 12: (λmax − 2
√
n)n1/6 for 10,000 GUE matrices of size n = 1000.

For more on these applications, see the respective chapters in The Oxford Handbook of Random
Matrix Theory [ABDF11].
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Part III

Towards Universality
We saw in Part III that the some ensembles (for example GUE and CUE) share the same eigenvalue
statistics when looking at the correct scale of the spectrum. This universality phenomenon is very
intriguing and has kept mathematicians and physicists busy in trying to prove it.

One can surmise for example that the correlation functions in the bulk of every complex Wigner
matrix should be given in the limit n→∞ by the sine kernel, as for the GUE and the CUE. And in a
similar fashion, correlation functions at the edge should be controlled by the Airy kernel. There has
been tremendous progress in addressing these questions in the last twenty years. We refer to [EoY17]
for a survey of the results and the techniques. The key to universality turns out to be a dynamical
approach known as Dyson Brownian motion. We explain the basics of the theory in Section 12.

It turns out that random matrix statistics appear in other seemingly unrelated mathematical and
physical problems. This is a fascinating area of research! We give some puzzling examples in Section 13.

12 A Dynamical Approach
We start by definition the Dyson Brownian motion. We then explain its relation with the Stieltjes
measure.

12.1 Dyson Brownian motion
We can express the GOE and GUE measures in terms of the eigenvalues, as embodied in Theorem 9.3,
in the form

c(β)
n e−βH(λ1,...,λn), (12.1)

where

H(λ1, . . . , λn) =
1

4

n∑

j=1

λ2
j −

∑

i<j

ln |λi − λj |. (12.2)

One can think of this as a Boltzmann weight (in statistical mechanics), with H(λ1, . . . , λn) representing
the potential energy associated with particles located at positions λ1, . . . , λn, and with β playing the
role of the inverse temperature. Hence computing expectations with respect to the RMT measures
in this case is the same as determining the equilibrium thermodynamics of particles moving in one
dimension with interactions described by this energy function.

We now construct the dynamics on the eigenvalues with (12.1) as its equilibrium (or stationary)
measure. This means that we need to define a matrix-valued stochastic process (M(t), t ≥ 0). We
start with GOE. For t ≥ 0, consider the n × n symmetric matrix B(t) where Bij are IID standard
Brownian motions, see Definition D.1. The dynamics of the entry Mij(t) is given the following stochastic
differential equation (SDE):

dMij(t) = σijdBij(t)− kijMijdt, i ≤ j, (12.3)

with kij = 1/2 for all i, j and

σij =

{
1 if i < j,√

2 if i = j,

and initial condition M(0) = M0. This is the SDE of an Ornstein-Uhlenbeck process, see Definition D.4.
As t→∞, we have that the distribution of Mij(t) approaches N (0, 1) if i 6= j and N (0, 2) if i = j. For
GUE, we can define a similar dynamics on the real part and imaginary part of Mij(t). We then have
σij = 1/

√
2 for the real and imaginary part or i 6= j, and σii = 1/

√
2 with kij = 1/2 in all cases.
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The question we seek to address is: if the matrix M evolves in time according to (12.3), what is
the induced dynamics on the eigenvalues Λ1(t),Λ2(t), . . . ,Λn(t)? First, one might wonder about the
labelling of the eigenvalues if they become degenerate or exchange positions. In fact, if we assume
that the eigenvalues at t = 0 are non-degenerate and if we label them in order of increasing size,
Λ1(0) < Λ2 < (0) < · · · < Λn(0), then as time evolves it can be shown that the eigenvalues remain
simple and are continuous functions of t, and so the labelling makes sense and is preserved for all t > 0.

The equation governing the time evolution of the eigenvalues might be expected to involve the
eigenvalues and eigenvectors vj(t) ∈ Rn. However, remarkably, this turns out not to be the case: the
eigenvalues satisfy an autonomous system of stochastic differential equations that do not involve the
eigenvectors. The solution of this equation is known as Dyson Brownian motion with parameter β,
after Freeman Dyson, who introduced it in a seminal paper in 1962.

Theorem 12.1 ( [Dys62]). Let M(t), t ≥ 0 be a n × n random matrix evolving with the dynamics
(12.3). Then its eigenvalue process satisfies the SDE

dΛi(t) =
√

2dB̃i(t) +


−Λi(t)

2
+
∑

j 6=i

1

Λi(t)− Λj(t)


 dt, 1 ≤ i ≤ n, (12.4)

where B̃(t) = (B̃1(t), . . . , B̃n(t)) is a n-dimensional standard Brownian motion. The same holds for
GUE and the other Gaussian β-ensembles by replacing the volatility

√
2 by

√
2/β.

As noted above, it can be proved (see, for example, section 4.3 in [AGZ10]) that there exists a
unique solution (in the strong sense) of this equation in the space of continuous functions. Moreover, if
the initial conditions are such that all of the eigenvalues are simple at t = 0, then this remains true for
all t > 0, i.e., none of the eigenvalues intersect.

Proof. The proof is an application of Itô’s formula (Theorem D.2). We focus on the GOE case. We
denote the eigenvalues of the n× n matrix M(t) by (Λm(t))1≤m≤n and the corresponding eigenvectors
by (v(m)(t))1≤m≤n. We will sometimes omit the dependence on t for conciseness. The starting point is
the equation

D = OTMO,

where the m-th column of O is v(m), and the m-th diagonal entry of D is Λm. This is an equation
between random variables. And clearly, the eigenvalues on the right are a function of the Ornstein-
Uhlenbeck processes on the left. We write this explicitly as

Λi(t) = fi(M(t)) = v(i)T
Mv(i), i ≤ n. (12.5)

It is convenient to index the entries of the matrix M by α = (α1, α2) with α1 ≤ α2 to lighten the
notation. This index α only runs over entries with i ≤ j since i > j is determined by symmetry. We
write ∂αf(M) for the derivative of the function f with respect to the α-entry of M. Itô’s formula (D.3)
gives

dΛi(t) =
∑

α

∂αfi(M(t)) dMα(t) +
1

2

∑

α,β

∂α∂βfi(M(t)) dMα(t)dMβ(t). (12.6)

We compute the first and second derivatives. Differentiating (12.5) with respect to Mα yields

∂αΛi(t) = v(i)T
(∂αM)v(i).

This is because the relation v(i)T
v(i) = 1 implies v(i)T

(∂αv
(i)) = 0. The differentiated matrix ∂αM is

for k 6= l, [∂αM]kl = δα1kδα2l + δα2kδα1l (remember the symmetry!). This is simply a matrix a 0 with 1
at the entry α1α2 and α2α1. For the diagonal, we get [∂αM]kk = δα1kδα2k. Thus, this leads to

∂αΛi(t) = (2− δα1α2)v(i)
α1
v(i)
α2

=

{
v

(i)
α1v

(i)
α2 if α1 = α2

2v
(i)
α1v

(i)
α2 if α1 < α2.

(12.7)
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The first term of (12.6) becomes

∑

α

∂αfi dMα(t) =
∑

α1≤α2

(2− δα1α2)v(i)
α1
v(i)
α2

(
σαdBα(t)− 1

2
Mα(t)dt

)
.

Summing the second term in the parenthesis yields

− 1

2

∑

α1≤α2

(2− δα1α2
)v(i)
α1
v(i)
α2
Mα(t)dt =

−1

2
Λi(t)dt. (12.8)

For the first term, we define
√

2 dB̃i(t) :=
∑

α1≤α2

(2− δα1α2)v(i)
α1
v(i)
α2
σαdBα(t).

The process (B̃i(t), t ≤ n) is actually a n-dimensional standard Brownian motion. This can be seen by
calculating dB̃i(t)dB̃j(t) using the rules of stochastic calculus (Equation (D.1)). It is equal to δijdt.
Thus it must be a Brownian motion by Lévy’s characterization theorem of Brownian motion (Theorem
D.5).

It remains to compute the term second-order derivatives in (12.6). The good news is that
dMα(t)dMβ(t) = 0 whenever α 6= β by the rules of stochastic calculus applied with the SDE (12.3).
Therefore we are left with computing

∂2
αfi(M(t)) = ∂α

(
(2− δα1α2)v(i)

α1
v(i)
α2

)
= (2− δα1α2)

{
(∂αv

(i)
α1

)v(i)
α2

+ v(i)
α1

(∂αv
(i)
α2

)
}
. (12.9)

We need to evaluate ∂αv(i), that is the derivative with respect to Mα for each of the component of v(i).
Since the eigenvectors form an orthonormal basis of Rn, we compute v(j)T

(∂αv
(i)) for every 1 ≤ j ≤ n.

We apply ∂α to the eigenvalue equation Mv(i) = Λiv
(i):

(∂αM)v(i) + M(∂αv
(i)) = (∂αΛi)v

(i) + Λi(∂αv
(i)).

Projecting on v(j), i 6= j gives

v(j)T
(∂αM)v(i) + Λjv

(j)T
(∂αv

(i)) = Λi v
(j)T

(∂αv
(i)),

and thus
v(j)T

(∂αv
(i)) =

1

Λi − Λj
v(j)T

(∂αM)v(i).

The relation v(i)T
v(i) = 1 implies v(i)T

(∂αv
(i)) = 0. The above then gives the decomposition

∂αv
(i) =

∑

j 6=i

( 1

Λi − Λj
v(j)T

(∂αM)v(i)
)
v(j).

Proceeding as in (12.7) yields

∂αv
(i) =

∑

j 6=i

(v(j)
α1 v

(i)
α2 + v

(i)
α1v

(j)
α2 (1− δα1α2

)

Λi − Λj

)
v(j).

Finally, putting this back in (12.9) leads us to

∂2
αfi(M(t)) = (2− δα1α2)

∑

j 6=i

(v(j)
α1 v

(i)
α2 + v

(i)
α1v

(j)
α2 (1− δα1α2

)

Λi − Λj

)
(v(i)
α2
v(j)
α1

+ v(i)
α1
v(j)
α2

).
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Figure 13: A simulation of GOE Dyson Brownian motion when n = 10. (Plot kindly provided by
Johannes Forkel.)

Note that the expression is symmetric in α1, α2. In particular when summing over α, we can remove
the restriction α1 ≤ α2. Also, the rules of stochastic calculus imply dMα(t)dMα(t) = σ2

αdt. This is dt
for α1 < α2 and 2dt for α1 = α2. All in all, we get

1

2

∑

α1≤α2

∂2
αfi(M(t))σ2

αdt =
1

2

∑

α1,α2

∑

j 6=i

1

Λi − Λj
(|v(j)

α1
|2|v(i)

α2
|2 + |v(i)

α1
|2|v(j)

α2
|2)dt.

It remains to use the orthonormality of the eigenvectors to conclude the proof of the theorem.

The properties of the Ornstein-Uhlenbeck process implies that if we start at t = 0 from some fixed
matrix M0, then at a later time t, M(t) is equal in distribution to the sum of e−t/2M0, and

√
1− e−tG,

where G is a GOE matrix when β = 1 or a GUE matrix when β = 2. Hence for sufficiently large t,
the GOE/GUE is the equilibrium solution which the dynamics reaches, no matter what M0 is taken
to be. Put another way, the GOE/GUE measure is invariant under Dyson Brownian motion, and is
the attractor for the dynamics. It was conjectured by Dyson that this equilibrium is actually reached
very quickly, on time scales of the order of 1/n, and this has subsequently been proved. This fact plays
a key role in the proof of the universality of the spectral statistics. We illustrate this by showing in
Figures 13, 14 and 15 the results of a numerical simulation of the Ornstein-Uhlenbeck process with,
respectively, n = 10, n = 20 and n = 50 for GOE matrices. The invariance of the GOE under this
process is illustrated in Figures 16, 17 and 18, where M0 is taken to be a GOE matrix in each case,
again with, respectively, n = 10, n = 20 and n = 50.
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Figure 14: A simulation of GOE Dyson Brownian motion when n = 20. (Plot kindly provided by
Johannes Forkel.)

Figure 15: A simulation of GOE Dyson Brownian motion when n = 50. (Plot kindly provided by
Johannes Forkel.)
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Figure 16: A simulation of GOE Dyson Brownian motion when n = 10, starting from a GOE matrix.
(Plot kindly provided by Johannes Forkel.)

Figure 17: A simulation of GOE Dyson Brownian motion when n = 20, starting from a GOE matrix.
(Plot kindly provided by Johannes Forkel.)
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Figure 18: A simulation of GOE Dyson Brownian motion when n = 50, starting from a GOE matrix.
(Plot kindly provided by Johannes Forkel.)

13 Connections with other areas of mathematics
We have already mentioned some of the applications of Random Matrix Theory, for example to data
science, quantum mechanics, mathematical finance, population dynamics etc. There are also many
beautiful and deep connections with other problems in mathematics, and we mention a few examples
here.

13.1 Longest increasing subsequences
As discussed in the introduction, let Sn be the group of permutations of 1, 2, . . . , n. If π ∈ Sn,
π(i1), . . . , π(ik) is an increasing subsequence in π if i1 < i2 < · · · < ik and π(i1) < π(i2) < · · · < π(ik).
Let ln(π) be the length of the longest increasing subsequence. For example, if n = 5 and π is the
permutation 5 1 3 2 4, then the longest increasing subsequences are 1 2 4 and 1 3 4, and ln(π) = 3.
Equip Sn with uniform distribution,

P(ln ≤ m) =
#{π ∈ Sn : ln(π) ≤ m}

n!
. (13.1)

Then it was proved by Baik, Deift and Johansson in 1998 [BDJ99] that

lim
n→∞

P

(
ln − 2

√
n

n1/6
≤ s
)

= F (max)(s) = det(I−KAiry) (13.2)

where

KAiry =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

(x− y)
(13.3)
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acting on L2((s,∞)). Or equivalently,

lim
n→∞

P

(
ln − 2

√
n

n1/6
≤ s
)

= exp

(
−
∫ ∞

s

(x− s)q(x)2dx

)
(13.4)

where q is a solution of the Painlevé II equation q′′(x) − xq(x) + 2q(x)3 = 0 with q(x) ∼ Ai(x) as
x → ∞. That is, ln has the same limiting distribution as the largest eigenvalue of a random GUE
matrix.

13.2 Stochastic growth models, random tilings, and random paths
There has been a considerable focus in the past few years on the geometrical properties of structures
grown or generated by simple random processes. One example involves random tilings of Aztec
diamonds, and a second involves randomly grown surfaces, such as by a random deposition of atoms.
These are generated by simple probabilistic rules. We do not give the details, but show an example of
a random tiling in Figure 19. The outside can be thought of as a ‘frozen’ phase, and the interior a
‘liquid’ phase. The boundary of the liquid phase is a random curve whose fluctuations are again the
same as those found in the largest eigenvalue of a GUE matrix. This models laboratory experiments
involving growing interfaces of liquid-crystal turbulence, where the fluctuations of the interface are
found to match those of the largest eigenvalue of a GUE matrix rather well. For more details (and a
movie) see [TSSS11]. For more about random growth models and random tilings, see the article by
P. Ferrari and H. Spohn [FS11].

One finds the same again in models of random paths. For example, the Hammersley process refers
to the following stochastic model. In the unit square mark in points uniformly at random according to
a Poisson point process with intensity α. We call a path from (0, 0) to (1, 1) through these random
points up/right if the points it passes through have coordinates xk ≤ xk+1 and yk ≤ yk+1 for each k.
Let L(α) denote the maximum number of points on such a path. Then for all s ∈ R,

lim
α→∞

P

(
L(α)− 2

√
α

α1/6
≤ s
)

= F (max)(s) = det(I−KAiry). (13.5)

13.3 Zeros of the Riemann zeta-function
The Riemann zeta-function, ζ(s) is defined when Re s > 1 by

ζ(s) =

∞∑

n=1

1

ns
=
∏

p

(
1− 1

ps

)−1

, (13.6)

where the product runs over all primes p. It has an analytic continuation to the rest of the complex
plane, except for a pole at s = 1. It is important because it encodes information about the distribution
of the primes. The zeta function has trivial zeros at s = −2n for n ∈ N, and infinitely many other
nontrivial zeros. The Riemann Hypothesis asserts that the nontrivial zeros all lie on the line Res = 1/2;
that is, they are all of the form 1/2 + itn with tn ∈ R.

Let us assume that the Riemann Hypothesis is true and so the numbers tn are all real. The theory
of the zeta function then implies that

#{n : 0 < tn ≤ T} =
T

2π
log

(
T

2π

)
+O(log T ). (13.7)

Therefore, setting

wn =
tn
2π

log

( |tn|
2π

)
, (13.8)
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Figure 19: A random tiling, generated by P. Ferrari.
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density of the ∞j ’s increases with height t up the critical line as

d(t) ª 1

2º
log

t

2º
. (2.1)

It is the fluctuation of the positions of the zeros around this average density that is of
interest, and so often it is useful to scale away the eÆect of the increasing density. We define
a new set of points

wj = ∞j
1

2º
log

∞j

2º
, (2.2)

which on average have a consecutive separation distance of one.
In the early 1970’s Hugh Montgomery [57] studied two-point statistics of the Rie-

mann zeros and conjectured that, for an appropriate test function f(x),

Conjecture 2.1 (Montgomery, 1973)

lim
W!1

1

W

X

1∑n,m∑W
n6=m

f(wn ° wm) =

Z 1

°1
f(x)R2(x)dx, (2.3)

where

R2(x) = 1 °
µ

sin(ºx)

ºx

∂2

. (2.4)

He also proved that (2.3) holds true for f(x) such that

f̂(ø) =

Z 1

°1
f(x)e2ºixødx (2.5)

has support in (°1, 1). Numerical evidence suggests that Montgomery’s conjecture is correct
[58], see Figure 1.
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Figure 1: Two-point correlation function of the scaled Riemann zeros plotted using 106

zeros around the 1020th zero, computed by A. Odlyzko, and compared with R2(x) from
(2.4).

Shortly after Montgomery completed this work he was introduced to Freeman Dyson.
After hearing about Montgomery’s latest results Dyson [34] recognized in R2(x) the two-
point correlation function of eigenvalues of random unitary matrices defined, for a suitable
test function f(x, y), as:

2

Figure 20: The 2-point correlation function for the Riemann zeros, computed by A. Odlyzko for zeros
near to the 1020th, compared to the GUE 2-point correlation function (13.11).

we have that the mean density of the numbers wn is asymptotically 1, in that

lim
W→∞

1

W
#{n : 0 < wn ≤W} = 1. (13.9)

Consider now the pair correlation function of the scaled zeros wn, defined, assuming the limit exists,
by

lim
N→∞

1

N

∑

1≤n<m≤N

f(wn − wm) =

∫ ∞

−∞
f(x)R2(x)dx (13.10)

It is a theorem due to Montgomery in 1973 [Mon73] that, assuming the Riemann Hypothesis, for
functions f(x) whose Fourier transform has support in (−1, 1) the limit in the left hand-side exists and
then

R2(x) = 1−
(

sinπx

πx

)2

(13.11)

which is precisely the GUE/CUE 2-point correlation function. Montgomery conjectured that this
remains true for all functions f for which the sums converge. This has since been extended to all
k-point correlation functions, where the result and conjecture lead to the k × k determinant of the sine
kernel. It is therefore currently the belief that that all local statistics of the zeros coincide with those of
the GUE/CUE, and this is supported by extensive numerical computations – see for example Figure 20.
Assuming this is true, many interesting properties of the zeta function and the primes can be calculated
using random matrix theory. For more on connections between number theory and random matrix
theory, see [KS11]. This remains a highly active area of research.
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A Linear Algebra
The spectral theorem is a central result in linear algebra. A common example is given by real symmetric
matrices. If M is symmetric, then M is diagonalizable in the sense that we can write

M = ODOT,

where D is a diagonal matrix with the eigenvalues of M as its entries. The matrix O is orthogonal and
is constructed by putting the eigenvectors of M as its columns. The j-th column of O is the eigenvector
of the eigenvalues appearing in the j-th entry of D. Note that the decomposition is unique up to
permutation of the eigenvectors. In words, the decomposition means that we can find an orthonormal
basis of Rn where the operator M is diagonal (so it acts as a multiplication operator). It turns out that
the spectral theorem applies more generally to matrices that commute with their conjugate transpose.

Theorem A.1 (The Spectral Theorem. See for example Theorem 2.5.3 in [HJ85]). Let M be normal
matrix, that is

M†M = MM†.

Then M is diagonalizable, that is, there exists a unitary matrix U and a diagonal matrix D such that

M = UDU†.

Note that the theorem applies in particular to real symmetric matrices, Hermitian matrices and
unitary matrices. A simple consequence of the spectral theorem is the so-called functional calculus.
Indeed, if M is diagonalizable, we have that Mk = UDkU† for any integer k. And therefore applying
Mk to an eigenvector v with eigenvalue λ simply gives λkv. We can therefore make sense of the operator
f(M) by taking that f(M) on v gives f(λ)v for any reasonable f . This point of view generalizes very
nicely to infinite-dimensional space. For an introduction to this, see [Hal63].

The eigenvalues of a Hermitian matrices and the ones of its minors have this important relation.

Theorem A.2 (Cauchy’s Interlacing Theorem). Let A be an n× n Hermitian matrix with eigenvalues
α1 ≤ α2 ≤ · · · ≤ αn, and let B be an (n − 1) × (n − 1) principal submatrix of A with eigenvalues
β1 ≤ β2 ≤ · · · ≤ βn−1. Then α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αn−1 ≤ βn−1 ≤ αn.

See for example Theorem 4.3.17 in [HJ85].

B Probability Framework

B.1 Basic Concepts
We refer to [Dur10] for more information on probability theory.

In probability theory, a random experiment is modelled by a probability space (Ω,F ,P). The set Ω
is the sample space, i.e., the set of outcomes. Events are subsets of Ω. Here, F is called a sigma-field
or sigma-algebra. It is a collection of events that contains Ω, and is closed under complement and
countable union. A probability or probability measure P is a function that associate to an event A ∈ F
a number in [0, 1]. This function is such that P(Ω) = 1 and P(∪n≥1An) =

∑
n≥1 P(An) whenever An

is a countable sequence of disjoint events.
A random variable X is a function from Ω → R. To ensure that the probability of the events

{ω ∈ Ω : X(ω) ∈ B} = {X ∈ B} for any open set B is well defined, we ask that X is a measurable
function meaning that {X ∈ B} ∈ F for any open set B. The distribution of a random variable X is a
probability µX on R defined by

µX(B) = P(X ∈ B).
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The distribution is well-defined on any B ⊂ R contained in B(R), the smallest sigma-algebra of R
containing the open sets. The distribution of X is determined by its Cumulative Distribution Function
(CDF) defined by

FX : R→ R
x 7→ FX(x) = µX((−∞, x]) = P(X ≤ x).

The CDF is by definition non-decreasing and right-continuous. If it is continuous at all points, we say
that X has a continuous distribution. In the case where FX is of the form

FX(x) =

∫ x

−∞
f(y)dy,

for some non-negative function f , we say that X has a density and the function f is called the probability
density function (PDF) or density for short. In this case, we have that

P(X ∈ B) =

∫

B

f(y)dy E[g(X)] =

∫

R
g(y)f(y)dy,

for any measurable function g : R→ R such that the expectation of g is well-defined.

Example B.1. We say that X has a normal or Gaussian distribution with mean m and variance σ2 if
it has a PDF f given by

f(x) =
1√

2πσ2
e−(x−m)2/(2σ2).

We then sometimes write X ∼ N (m,σ2). The distribution is said to be standard if m = 0 and σ2 = 1.
Note that if X is N (m,σ2) then (X −m)/σ is a standard Gaussian random variable.

A simple yet important property (it is in fact a defining property) is the following

Lemma B.2. : Let Z by a standard Gaussian random variable. Consider a function differentiable
function g : R→ R such that E[g′(Z)] and E[Zg(Z)] is well-defined. Then

E[Zg(Z)] = E[g′(Z)].

The above property is easily generalized to multivariate Gaussians.

A d-dimensional random vector X = (X1, . . . , Xd) is a random point in Rd. More precisely, it is a
measurable function from Ω→ Rd. One can think of the random variables Xi as the i-th coordinate of
X. The distribution of X is a probability measure on (R,B(Rd) defined as in the one-dimensional case
by µX(B) = P(X ∈ B). We say that the random vector has a PDF f if

µX(B) =

∫

B

f(x)dx1 . . . dxd,

where B ∈ B(Rd) and x = (x1, . . . , xd).

Example B.3. A d-dimensional random vector X = (X1, . . . , Xd) is said to be Gaussian or have a
multivariate normal distribution with mean vector m and covariance matrix C if it has a PDF of the
form

f(x) =
1

(2π)d/2(detC)1/2
e−

1
2 (x−m)TC−1(x−m), x = (x1, . . . xd).

The covariance matrix is Cij = Cov(Xi, Xj) and the mean vector is mi = E[Xi]. Note that the PDF is
defined only if det C 6= 0. We then say that the vector is non-degenerate. It is not hard to prove that a
Gaussian vector is non-degenerate if and only if its coordinates are linearly independent (i.e., some
rigid linear relations between coordinates).
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A useful result is the following IID decomposition of Gaussian vectors. This is the generalization of
the standardization in the d = 1 case.

Lemma B.4. Let X be a non-degenerate Gaussian random vector with mean 0 and covariance matrix
C. Then there exists an invertible matrix A : Rd → Rd and IID standard Gaussians Z = (Z1, . . . Zd)

T

such that
X = AZ.

Moreover, C = AAT. The identity C = AAT is called the Cholesky decomposition. Note that the matrix
A is not unique.

Let X be some d-dimensional random vector with PDF fX. Suppose we construct another random
vector Y by taking Y = g(X) for some measurable function g : Rd → Rd. Then the expectation of Y
is given by

E[g(X)] =

∫

Rd
g(x)f(x)dx1 . . . dxn.

If g is smooth and with a well-defined inverse g−1, then Y also has a density. Indeed, we have with the
change of variable y = g(x) that

µY(B) =

∫

{x∈Rd:g(X)∈B}
fX(x)dx =

∫

B

fX(g−1(y))

∣∣∣∣
∂x

∂y

∣∣∣∣dy,

where we write the Jacobian matrix of the transformation g as
[
∂x
∂y

]
ij

= ∂xi
∂yj

. We deduce that the PDF

of Y is
fY(y) = fX(g−1(y))

∣∣∣∣
∂x

∂y

∣∣∣∣ . (B.1)

Note that we need to be careful when using this formula as g might be invertible only locally.

B.2 Limit Theorems
We are often interested in sequences of random variables defined on the same probability space. There
are several notions of convergence in this case.

Definition B.5. Let (Xn, n ≥) be a sequence of random variables defined on the same probability
space (Ω,F ,P).

• Xn converges almost surely (a.s., for short) to a random variable X if and only if

P({ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

In other words, this is pointwise convergence on a set of probability one.

• Xn converges in probability if and only if for any ε > 0, we have

lim
n→∞

P(|Xn −X| > ε) = 0.

• Xn converges in L2 (or in mean-square) to a random variable X if and only if

lim
n→∞

E[(Xn −X)2] = 0.

• Xn converges in distribution to a random variable X if and only if for any bounded continuous
function f : R→ R

lim
n→∞

E[f(Xn)] = E[f(X)].
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Note that for convergence of distribution the requirement that the random variables are defined on
the same space is not necessary. There is also equivalent definition of this convergence in terms of the
CDF and the characteristic function. A fundamental example of convergence in distribution is:

Theorem B.6 (Central Limit Theorem). Let (Xn, n ≥ 1) be IID random variables with E[X1] = 0
and E[X2

1 ] = 1. We have

lim
n→∞

1√
n

n∑

j=1

Xj = Z in distribution,

where Z is a standard Gaussian random variable.

The Central Limit Theorem is a perfect example of a universality result. It is a limit theorem of a
functional of random variables where the limiting random variables depend minimally on the specificity
of their distribution.

The notions of convergence are obviously not equivalent. There are some implications though.
Convergence in L2 is easily seen to imply convergence in probability by Chebyshev’s inequality. Moreover,
convergence almost surely implies convergence in probability by the following important theorem

Theorem B.7 (Dominated Convergence Theorem). Let (Xn, n ≥ 1) be a sequence of random variables
defined on the same probability space (Ω,F ,P) such that limn→∞Xn = X almost surely for some
random variable X. Suppose that there exists a random variable Y with E[|Y |] <∞ such that |Xn| ≤ Y
(with probability one). Then

lim
n→∞

E[Xn] = E[X].

Convergence in probability does not imply convergence almost surely in general. However, it can be
the case with some extra conditions. The main tool here is:

Lemma B.8 (Borel-Cantelli Lemma I). Let (En, n ≥ 1) be a sequence of (measurable) events in Ω
such that

∑
n≥1 P(En) <∞. Then

P
(
{ω : ω ∈ En for infinitely many n}

)
= 1.

As a corollary, we get

Corollary B.9. Consider a sequence of random variables (Xn, n ≥ 1) that converges to X in probability
so fast that for any ε > 0, ∑

n≥1

P(|Xn −X| > ε) <∞.

Then Xn → X almost surely.

B.3 Method of Moments
We say that the distribution of a random variable X is determined by its moments if we can write its
characteristic function (or its moment generating function (MGF)) as a sum over its moments, that is,

E[eiλX ] =
∑

k≥0

ikE[Xk]

k!
.

Note that this equality is not obvious since we are interchanging an infinite sum and an expectation!
However, if the moments grow not too fast, then one can invoke the dominated convergence theorem to
get the inequality.

To prove convergence in distribution of a sequence of random variables, the following is very useful.
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Theorem B.10 (Method of Moments, see for example Section 30.2 in [Bil95]). Let (Xn, n ≥ 1) be a
squence of random variables, and consider X a random variable whose distribution is determined by its
moments. Then, if for every k ∈ N we have

lim
n→∞

E[Xk
n] = E[Xk],

then Xn converges to X in distribution.

The Gaussian distribution is determined by its moments (check!). Therefore, a common way (robust
but not the most straightforward) to prove the Central Limit Theorem is by the method of moments.

C Concentration of Measure
The phenomenon of concentration of measure is now a fundamental concept in probability, analysis,
and mathematical physics. It pertains to probability measures in high dimensions. Michel Talagrand
was awarded the 2024 Abel Prize for major advances in this topic. For more on the subject, we suggest
Ledoux’s fascinating monograph [Led01]. We cite only two important concentration inequalities.

Theorem C.1. Let Z = (Z1, . . . , Zn) be IID standarc Gaussian random variables. Consider h : Rn → R
a Lipshitz function with constant σ := ‖h‖Lip. Then

P(|h(Z)−E[h(Z)]| > u) ≤ 2e−u
2/4σ2

.

Note that the smaller the Lipshitz constant is, the better is the concentration. In some sense, the
smaller the Lipshitz constant, the more h contracts its values.

Theorem C.2 (McDiarmid’s inequality). Let X1, . . . , Xn be independent random variables taking
values in ranges R1, . . . , Rn and let F : R1 × · · · ×Rn → C be a function having bounded differences,
so that, there exist constants c1, . . . , cn such that for all i,

|F (x1, . . . , xn)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci (C.1)

for all xi, x′i ∈ Ri. Then for any κ > 0

P
(
|F (X1, . . . , Xn)−EF (X1, . . . , Xn)| ≥ κσ

)
≤ C exp(−cκ2) (C.2)

for some C > 0 and c > 0, independent of F and n, where σ2 =
∑n
i=1 c

2
i .

D Brownian Motion
We refer to [Arg22] for more on Brownian motion and stochastic calculus in general. For the fascinating
history of Brownian motion in mathematics and physics, see [Nel67].

Definition D.1. A standard Brownian motion (B(t), t ≥ 0) is a R-valued stochastic process such that

• B(0) = 0 with probability 1;

• for any n ∈ N and choices of 0 ≤ t1 < t2 < · · · < tn, the increments Btj+1 −Btj , 0 ≤ j ≤ n− 1,
are independent with Gaussian distribution of mean 0 and variance tj+1 − tj .

• the function t 7→ Bt is continuous with probability 1.

A d-dimensional standard Brownian motion (B(t), t ≥ 0) is the Rd-valued processB(t) = (B1(t), . . . , Bd(t))
where Bj(t), 1 ≤ j ≤ d, are IID standard Brownian motions.
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It is not a trivial fact that such a process exists! The first proof was given by Wiener, and sometimes
Brownian motion is sometimes called the Wiener process. The Brownian paths are continuous functions
with probability one, but they are quite rough. It is possible to prove that they are nowhere differentiable.
It is therefore hard to make sense of integration the usual way using Riemann sums

lim
n→∞

n∑

j=1

f(tj)(Btj+1
−Btj ) =

∫ T

0

f(t)dB(t).

If the Brownian paths were differentiable, we would have Btj+1
−Btj ≈ B′tj (tj+1− tj). Wiener gave the

first construction of the integral over Brownian motion, and Itô generalized it substantially to include
random integrands. This theory is now known as Itô stochastic calculus. The fundamental theorem of
classical calculus states that ∫ b

a

f ′(t)dt = f(b)− f(a),

or df(t) = f ′(t)dt in differential notation. For Itô calculus, the theorem takes the following form:

Theorem D.2 (Itô’s Formula). Let f ∈ C2(R) and (B(t), t ≥ 0), a standard Brownian motion. Then
the process (f(Bt), t ≥ 0) satisfies

df(B(t)) = f ′(B(t))dB(t) +
1

2
f ′′(B(t))dt.

The proof follows from a Taylor expansion to second order. It is necessary to go to second order
since the Brownian paths have infinite variation but finite quadratic variation. In integral form, the
theorem says that

f(B(t))− f(B(0)) =

∫ t

0

f ′(B(s))dB(s) +
1

2

∫ t

0

f ′′(B(s))ds.

The good way to remember Itô’s formula is to apply the differential to f(B(t)) as we would do in the
classical case, but do it to the second order. This explains the appearance of the 1/2. We then apply
the rules of stochastic calculus:

dB(t)dB(t) = dt dtdB(t) = 0 dtdt = 0. (D.1)

(This makes sense in terms of quadratic variation.)
Itô’s formula has a nice interpretation. The process (f(B(t)), t ≥ 0) constructed from a Brownian

motion varies in time as follows

f(B(t+ ∆t))− f(B(t)) ≈ f ′(B(t))(B(t+ ∆t))−B(t)) +
1

2
f ′′(B(t))∆t.

The local variation is due to a drift given by 1
2f
′′(B(t)) and a noisy term with normal distribution of

mean 0 and variance ∆t times the volatility f ′(B(t)).
We can generalize this by constructing processes whose drift and volatility (or diffusion coefficient)

is a function of the position of the process itself at time t.

Definition D.3. A process (X(t), t ≥ 0) constructed from a Brownian motion is called a (time-
homogeneous) diffusion if it satisfies the following stochastic differential equation (SDE)

dX(t) = σ(X(t))dB(t) + µ(X(t))dt.

The functions σ : R→ (0,∞) and µ : R→ R are called the diffusion/volatility and the drift, respectively.

75



Itô’s formula can be generalized to diffusions (and Itô processes more generally) by taking for a
smooth function f

df((X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t)) dX(t)dX(t), (D.2)

and applying the rules of stochastic calculus to compute dX(t)dX(t).
An important example of diffusion is the Ornstein-Uhlenbeck process.

Definition D.4. An Ornstein-Uhlenbeck process (O(T ), t ≥ 0) with constant parameter σ > 0 and
k > 0 is a stochastic process with SDE

dO(t) = σdB(t)− kO(t)dt,

If O(0) = x0, it is not hard to show that the distribution of O(t) at a fixed t is Gaussian with mean
x0e
−t and variance σ2

2k (1− e−2kt). More generally, the process (O(t), t ≥ 0) is a Gaussian process of
mean x0e

−t and covariance Cov(O(s), O(t)) = σ2

2k (e−k(t−s)−e−k(t+s)). We see two important properties.
First, in the limit of large times, the process converges to a Gaussian process of mean 0 and covariance
σ2

2k e
−k(t−s). This is the invariant distribution of the process. Moreover, when starting at time 0 from

the invariant distribution, the process is then stationary since the whole process distribution is invariant
under a time-shift.

Itô’s formula easily generalizes to the case of d-dimensional diffusions constructed from Brownian
motion X(t) = (X1(t), . . . , Xd(t)) where Xj , j ≤ d, are diffusions (not necessarily independent)
constructed from a d-dimensional standard Brownian motion B(t) = (B1(t), . . . , Bd(t)). We get for a
function f ∈ C2(R)d that the process (f(X(t)), t ≥ 0) satisfies

df((X(t)) =
∑

1≤i≤d

∂if(X(t))dBi(t) +
1

2

∑

1≤i,j≤d

∂i∂jf(X(t)) dXi(t)dXj(t), (D.3)

where ∂i stands for the partial derivative with respect to the i-th coordinate.
We have the following important characterization of Brownian motion.

Theorem D.5 (Lévy’s Characterization Theorem). Let (X(t), t ≥ 0) be a process constructed from a
d-dimensional Brownian motion (B(t), t ≥ 0) of the form

dX(t) =
∑

j≤d

Yj(s)dBj(s),

where the Y (s)’s may depend on the Brownian motion before time s. If dX(t)dX(t) = dt, then X(t) is
also a Brownian motion.
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