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Recommended books and resources

There are a large variety of good textbooks and lecture notes on general relativity. This

course borrows from a number of them, in various different places, chiefly among them is the

book by Sean Carroll [1], the book by Schutz [2] and the book by Wald [3]. Some useful

lecture notes for the black hole part of the lectures are by Harvey Reall and by Fay Dowker.

For the gravitational waves see grav waves notes.

For the background material one can read the GR1 lecture notes. This should cover all the

necessary prerequisites that one would need to know about general relativity, for convenience

a summary is provided in appendix A.
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Conventions

• We will use the god-given signature convention of mostly plus (−,+,+,+). This may differ

with the convention you have used in other courses, especially field theory courses. This

convention is preferable when thinking about geometry as it gives positive spatial distances.

For quantum field theory the other convention is preferable since it ensures that energies

and frequencies are positive. You may map between the two conventions through Wick

rotation, essentially allowing the coordinates to become complex.

• Spacetime indices will be taken to be greek letters from the middle of the alphabet: µ, ν, ρ, ...

and run over 0, 1, 2, 3. Latin indices i, j, k, .. run over the spatial directions and take values

1, 2, 3.

• We employ Einstein summation convention, repeated indices are summed over, unless oth-

erwise stated.

• We work in units where the speed of light c is set to 1. Occasionally it is instructive to

reintroduce c which can be done by dimensional analysis.

• The Minkowski metric will be denoted by ηµν = diagonal(−1, 1, 1, 1)µν .

• After introducing curvature we will take the metric to be gµν and the determinant will be

det(gµν) ≡ g.

• The set of all vector fields on a manifold M is X (M).

Useful formulae

• The Lagrangian for the geodesic equation of a massive test particle is

L
(dxµ
dλ

, xµ
)
=

√
−gµν(x)

dxµ

dλ

dxν

dλ
,

with λ an arbitrary parameter along the worldline.

• The geodesic equation for an affinely parametrised massive particle is

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 , gµν(x)

dxµ

dτ

dxν

dτ
= −1 ,

where τ is the proper time. For light, the first equation takes the same form just replacing

τ with an affine parameter. The second is modified by −1→ 0.
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• The Christoffel symbols (Levi–Civita connection) are

Γµνρ =
1

2
gµσ
(
∂νgσρ + ∂ρgσν − ∂σgνρ

)
.

• The Riemann tensor is

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµρλΓ

λ
νσ − ΓµσλΓ

λ
νρ . (0.1)

– Symmetries

Rµνρσ = −Rµνσρ ,

Rµνρσ = Rσρµν .

– Bianchi identity 1

Rµνρσ +Rµρσν +Rµσνρ = 0 .

– Bianchi Identity 2

∇µRσλνρ +∇νRσλρµ +∇ρRσλµν = 0 .

• Ricci tensor

Rµν = Rρµρν

• Ricci scalar

R = Rµνg
µν .

• Einstein tensor

Gµν = Rµν − 1

2
Rgµν .

• Einstein–Hilbert action plus cosmological constant,

S =
1

16πG

∫
d4x
√
−g
(
R+ Λ

)
.

• Under a variation gµν → gµν + δgµν we have

δgµν = −gµρgνσδgρσ ,

δg = ggµνδgµν ,

δRµν = ∇ρδΓρµν −∇µδΓρρν .
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• The Levi–Civita symbol is defined to be

ϵµ1....µp =


1 µ1....µp even permutation of Sp

−1 µ1....µp odd permutation of Sp

0 otherwise

with Sp the permutation group of p elements. It satisfies:

ϵµ1...µpϵ
µ1...µkνk+1...νp = k!δ

νk+1....νp
µk+1...µp

where the indices are raised with the Kronecker delta not the metric! This arises because

this is not a tensor but a tensor density. Recall that the volume form vol(M) =
√
|g|dnx is

invariant under coordinate transformations. Introducing a set of coordinates we have that

the components

vol(M)µ1....µn =
√
|g|ϵµ1....µn ,

must transform as a rank (0, n) tensor. The determinant transforms as a scalar density

and therefore we see that the Levi–Civita symbol must also transform as a tensor density

of opposite weight.

To see this more clearly it is useful to note that the Levi–Civita symbol can be used to

compute the determinant:

ϵµ1...µpA
µ1
ν1 .....A

µp
νp = det(A)ϵν1....νp .

7



1 Introduction

These are lecture notes for the second course of General Relativity following on from the C7.5.

A summary of some of the material covered in GR1 that will be useful is given in appendix

A. We will begin this course by studying gravitational waves and linearised gravity before

moving on to studying black holes in more detail. We will study the formation of black holes

from stellar collapse, introduce the Kerr and Reissner–Nordstrom black holes and use these

to study black hole thermodynamics.
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2 Linearised gravity and Gravitational waves

In GR 1 we have studied a theory we claim describes gravity, as a first step it should be

possible to take a limit in which we recover Newtonian gravity. We know that Newtonian

gravity works well for slowly moving fields in weak gravitational backgrounds, if GR does

not reduce to this then something must be wrong. We will first study the Newtonian limit

of Einstein gravity before using our results to study gravitational waves. Both require us to

linearise gravity around the Minkowski vacuum. What this means in practice is that we take

the metric to be the Minkowski metric with a small perturbation, and then plug this ansatz

into the Einstein equations keeping only the linear terms in our perturbation. We will see

that we correctly reproduce Newtonian gravity after taking a suitable limit.

As an application of our linearised theory we will consider gravitational waves propagating

in space. We begin by considering plane wave gravitational waves, these come in from infinity

and go back out to infinity. They are vacuum solutions in that they do not require any energy

momentum tensor, so are not particularly physical, however they exhibit all the interesting

properties in a simple setting. We will then study more physical gravitational waves arising

from a rotating binary pair before discussing briefly observations of gravitational waves.

There are many resources on gravitational waves. In writing the notes I have pulled

material from a variety of sources. A non-exhaustive list is: [2, 4–6]. For some work on

gravitational waves in astrophysics and cosmology, which are topics beyond this course, see

[7].

2.1 Linearised Gravity

We want to consider weak gravitational fields, this means that the metric is roughly Minkowski,

or nearly flat. The weakness of the gravitational field is then expressed by decomposing the

metric as a perturbation around the Minkowski metric1

gµν = ηµν + hµν , (2.1)

with |hµν | ≪ 1 small everywhere in spacetime. That is each of the components of the metric

is small everywhere. This assumption allows us to ignore anything that is higher than first

order in h. i.e. we will drop h2 and higher order terms. In the solar system, for example, we

1One could choose to expand around another metric, for example Schwarzschild or include a cosmological

constant. The linearisation around Minkowski is much simpler since the Riemann tensor of the Minkowski

metric vanishes. For metrics which are not flat one obtains additional contributions. For those interested see

[8] for example. We will in fact require some higher order terms later on, but we will come to this problem

when it arises.
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have |hµν | ∼ |ϕ|c−2 ∼ 10−6. Here ϕ is the Newtonian potential of the sun as measured by the

Earth.

The inverse metric (to first order) is then

gµν = ηµν − hµν , (2.2)

where hµν = ηµρηνσhρσ. We can now raise and lower indices with η since the corrections would

be of higher order in the perturbation. We can think of this linearised theory as describing

a theory of a symmetric tensor field hµν propagating on a flat background spacetime. If we

instead perform a perturbation around some other background metric, then the theory is that

of the symmetric tensor field propagating on said curved background.

We want to consider the equations of motion for the perturbations, which come from

examining Einstein’s equations to linear order in h. We ultimately need to find the Einstein

equations and so to begin, we should work out the Christoffel symbols:

Γρµν =
1

2
gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
=

1

2
ηρσ
(
∂µhσν + ∂νhσµ − ∂σhµν

)
+O(h2) .

(2.3)

Since the Riemann tensor is of the form R ∼ ∂Γ+ ΓΓ the first order contributions will come

from the derivative terms and not the ‘squared’ terms. We have

Rσρµν = ∂µΓ
σ
νρ − ∂νΓσµρ +O(h2)

=
1

2
ησλ
(
∂µ∂ρhνλ − ∂µ∂λhνρ − ∂ν∂ρhµλ + ∂ν∂λhµρ

)
+O(h2) .

(2.4)

It follows that the Ricci tensor is

Rµν =
1

2

(
∂σ∂νhσµ + ∂σ∂νhµσ −□hµν − ∂µ∂νh

)
+O(h2) , (2.5)

where h = hµµ is the trace and □ = ∂µ∂µ. Moreover the Ricci scalar is

R = ∂µ∂νhµν −□h+O(h2) . (2.6)

Putting all of this together into the Einstein tensor we end up with

Gµν =
1

2

[
∂σ∂νhµσ + ∂σ∂µhνσ −□hµν − ∂µ∂νh− ηµν

(
∂ρ∂σhρσ −□h

)]
+O(h2) . (2.7)
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Aside
As an aside the Einstein tensor can be obtained by varying the following Lagrangian with

respect to hµν ,

L =
1

2

[
(∂µh

µν)∂νh+
1

2
∂µhρσ∂µhρσ − ∂µhρσ∂ρhµσ + ∂µh∂µh

]
. (2.8)

The full linearised equations of motion are then

1

2

[
∂σ∂νhµσ + ∂σ∂µhνσ −□hµν − ∂µ∂νh− ηµν

(
∂ρ∂σhρσ −□h

)]
= 8πGNTµν , (2.9)

where Tµν is assumed to be small also. Note that the energy-momentum tensor must satisfy

∂µT
µν = 0 , (2.10)

which is the linearised version of the conservation equation.

Before we can proceed we must deal with gauge invariance. We have demanded that

gµν = ηµν + hµν however this does not completely fix the coordinate system on spacetime.

Let us consider an infinitesimal change of coordinates

xµ → xµ − ξµ (2.11)

with ξ assumed to be small. The metric undergoes the infinitesimal change

δgµν(x) = g̃µν(x)− gµν(x) = ξλ∂λgµν + gµρ∂νξ
ρ + gνρ∂µξ

ρ . (2.12)

This is precisely the Lie derivative of the metric. If we act with an infinitesimal diffeomorphism

along the curve with tangent ξ then the metric changes as

δgµν = (Lξg)µν = ∇µξν +∇νξµ . (2.13)

When the metric takes the linearised form this should be understood as a transformation of

hµν . Since we assume that both h and ξ are small2 it follows that we may replace covariant

derivatives of g with covariant derivatives of η where the Christoffel symbols vanish. Therefore

under an infinitesimal diffeomorphism we have that hµν changes as:

hµν → hµν + (Lξη)µν = hµν + ∂µξν + ∂νξµ . (2.14)

2If we did not restrict to small ξ then we could go to a region where hµν is not small by a coordinate

transformation, clearly we do not want this as it would render our approximation incorrect.
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Example 2.1: Gauge freedom in Electromagnetism
For those who have seen gauge theories this is precisely the form of a gauge transformation

of Maxwell theory. There we shift the one-form A as A → A + dΛ which leaves the

field strength (or curvature of the gauge bundle) F = dA invariant. Similarly the above

transformation leaves the linearised Riemann tensor invariant, this is the curvature of the

bundle in this case.

When we do computations in gauge theories we typically pick a gauge to work in. The

most common gauge to take is the Lorentz gauge

∂µAµ = 0 , (2.15)

which reduces the Maxwell equation d ⋆ F = ⋆J with source to the wave equation

□Aν = Jν . (2.16)

There is a similar kind of gauge here called de Donder gauge. The gauge condition is

∂µhµν −
1

2
∂νh = 0 . (2.17)

Aside
To see that this is always possible, suppose that you are given a metric where

∂µhµν −
1

2
∂νh = fν , (2.18)

then after a gauge transformation we have

∂µhµν −
1

2
∂νh+□ξν = fν , (2.19)

and it amounts to finding ξ such that □ξν = fν . With suitable conditions this is always

possible.

The de Donder gauge greatly simplifies our linearised equations of motion leading to

□hµν −
1

2
□hηµν = −16πGNTµν . (2.20)

To further simplify it is useful to define

h̄µν = hµν −
1

2
hηµν , (2.21)
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so that the linearised Einstein equation becomes

□h̄µν = −16πGNTµν , (2.22)

and the de Donder gauge condition is

∂µh̄µν = 0 . (2.23)

To see that this is a sensible definition we see that from h̄µν we can recover hµν since by

taking the trace on both sides we have

h̄ = ηµν h̄µν = −h , (2.24)

and so we can reconstruct hµν as

hµν = h̄µν −
1

2
h̄ηµν . (2.25)

Note that de Donder gauge does not fix all the gauge freedom. In terms of h̄ a coordinate

transformation acts as

δh̄µν = ∂µξν + ∂νξµ − ∂ρξρηµν , (2.26)

and any ξν such that □ξν = 0 will preserve the de Donder gauge, as can be seen from (2.19).

The de Donder gauge reduces the 10 independent components of the symmetric hµν matrix

to only 6 independent components which must satisfy (2.22).

2.2 Newtonian Limit

We are now in a position to take the Newtonian limit of GR. Newtonian gravity is valid

when the gravitational fields are too weak to produce velocities near the speed of light, and

general relativity must give the same results as Newtonian gravity. The requirement of the

velocities to be small is equivalent to placing bounds on the distribution of energy momentum.

Typically this places bounds on the Energy momentum tensor so that the components of the

energy momentum tensor obey |T 00| ≫ |T 0i|, |T ij |. When T 0i is non-zero we also require that

it is bigger than the components of the purely spatial pieces.

We require a low-density slowly moving distribution of matter. For simplicity we will

take a stationary matter configuration (independent of time) so that the Energy-momentum

tensor is

T00 = ρ(x⃗) , (2.27)
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with all other components vanishing. Via the stationary assumption we may replace the wave

operator □ with the 3d Euclidean Laplacian □ = −∂2t + ∂2i = −∂2t +∇2 = ∇2, since nothing

depends on the time coordinate. Einstein’s equations then become

∇2h̄00 = −16πGNρ(x⃗) , ∇2h̄0i = 0 , ∇2h̄ij = 0 . (2.28)

With suitable boundary conditions the solutions are

h̄00 = −4Φ(x⃗) h̄0i = h̄ij = 0 , (2.29)

where Φ is identified with the Newtonian potential obeying

∇2Φ(x⃗) = 4πGNρ(x⃗) . (2.30)

Translating back to hµν we find

h00 = −2Φ(x⃗) , hij = −2Φ(x⃗)δij , h0i = 0 . (2.31)

The final metric is then

ds2 = −
(
1 + 2Φ(x⃗)

)
dt2 +

(
1− 2Φ(x⃗)

)
dx⃗ · dx⃗ . (2.32)

One can now compute the geodesic equations with this metric to find the same equations

of motion as in the Newtonian theory. You will do this in problem sheet 1, and conclude that

general relativity reduces to Newtonian gravity. If one takes the Schwarzschild solution and

expands around large r it takes the form (2.32) with Φ(x⃗) = −GNM
r , this is the metric one

would then expect far away from a point mass.

2.3 Gravitational waves without sources

One can also study gravitational waves using the linearised equations of motion. Gravitational

waves are modulations in the spacetime that propagate at the speed of light and induce

variations in the length of objects they pass through. Moreover they carry energy away from

their sources. As you must be away gravitational waves have had a lot of recent experimental

interest due to the observations of gravitational waves by LIGO (and also Virgo in Italy and

KAGRA in Japan).3 Theorists have also taken an interest in these experimental results with

3LIGO (Laser Interferometer Graviational-wave Observatory) is a gravitational wave detector built in the

USA. There are two sites, one in Washington and the other in Louisiana. Both are Michelson interferometers.

These work by merging two sources of light to create an interference pattern. A light beam is split with the

two beams each travelling down a 4km long arm which are perpendicular to each other and exactly the same

14



the hope that extra precision tests of GR and its quantum gravity extension can be performed

using this data, though this latter hope is probably some way off with current technology.

One can also combine gravitational waves and cosmology to also probe cosmological models!

The first detection consisted of the merger of a 30 solar mass black hole and 35 solar

mass black hole to produce a 62 solar mass black hole. The astute reader should observe that

30 + 35 = 65 ̸= 62, some of the mass, 3 solar masses worth, must have been radiated away.

This is an astonishing amount of energy and was emitted in a tiny fraction of a second. In

those milliseconds this was more energy than emitted by all the stars in all the galaxies in

the observable universe! This energy was radiated away through gravitational waves.

2.3.1 Transverse Traceless Gauge

Before we solve the equations of motion we will consider using the remaining gauge freedom

to simplify the metric as much as possible. We are interested in studying the propagation of

gravitational waves and their interaction with test masses. As such we are interested in the

wave outside the source where the energy momentum tensor vanishes: Tµν = 0. The equation

of motion outside the source is then

□h̄µν = 0 . (2.33)

We can greatly simplify the form of the metric outside the source by using the remaining

gauge degrees of freedom. We have already imposed the de Donder gauge however we can

still perform a gauge transformation with parameters ξµ such that □ξµ = 0 whilst preserving

our gauge choice. Recall that the gauge transformation is

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂ρξρηµν ≡ h̄µν + ξµν . (2.34)

We can choose the four components of ξµ to impose four conditions on h̄µν . We can choose

ξ0 such that h̄ = 0, which implies that h̄µν = hµν . We can then choose the three components

length. The light reaches the end of the arms and is reflected back by mirrors to the beam splitter where the

light is combined again and one finds an interference pattern. LIGO is designed so that the two beams of

light totally destructively interfere upon reaching the beam splitter and this is observed by a photodetector.

The default observation is that no light is detected by the photodetector. When a gravitational wave passes

it stretches space in one direction and simultaneously compresses it in the perpendicular direction and vice

versa. This means that one arm becomes longer and one becomes shorter and when the beams of light reach

the beam splitter they no longer totally destructively interfere, instead a signal is detected. As the wave passes

each arm oscillates in length and the beams oscillate in and out of phase. The idea behind this is therefore

very simple, however the difference can be as little as 1/1000th of the width of a proton and it is a wonder of

engineering that we can do this. The first detection of gravitational waves was on the 14th September 2015,

which was the merger of two ∼ 30 solar mass black holes merging about 1.3 billion light years from Earth.

Since then there have been many other detections, including neutron star-neutron star mergers and a neutron

star-black hole merger.
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ξi such that h0i = 0. The de Donder gauge condition for µ = 0 implies

∂0h00 + ∂ih0i = 0 , (2.35)

and therefore with h0i = 0 we have:

∂0h00 = 0 , (2.36)

and is therefore time independent. Since it is time-independent it corresponds to the static

part of the gravitational interaction, that is the Newtonian potential term of the source

which generated the gravitational wave. From the point of view of the gravitational wave

∂0h00 implies that h00 = 0. Therefore we have used the remaining gauge degrees of freedom

to set h0µ = 0 and we are left with only the spatial parts hij which satisfy the gauge choice

∂ihij = 0 and the trace condition hii = 0. Thus we have

h0µ = 0 , hii = 0 , ∂ihij = 0 . (2.37)

This is known as the transverse-tracelss gauge or TT gauge. By using the de Donder gauge

and now our transverse-traceless gauge we have reduced the 10 independent components to

only 2 physical degrees of freedom! We will denote the metric in TT gauge by hTTij .

We emphasise that the TT gauge cannot be chosen when Tµν ̸= 0. This would render

the equation of motion unsolvable, one can only perform this gauge transformation if it is

consistent with the energy momentum tensor!

Aside
There is a nice way of obtaining the TT gauge by using a projector. Given a plane wave

solution hµν(x) propagating in the (unit) direction n⃗ outside sources and in de Donder

gauge, one can put the wave in TT gauge as follows. First one introduces the symmetric

transverse tensor

Pij(n⃗) = δij − ninj . (2.38)

Since we take n⃗ to be unit norm we have that niPij(n⃗) = 0 and moreover that it is a

projector and satisfies PijPjk = Pik. Using the projector P one can construct

Λij,kl(n⃗) = PikPjl −
1

2
PijPkl . (2.39)

This satisfies

Λij,klΛkl,mn = Λij,mn , (2.40)

and is transverse in all indices. Furthermore it is traceless with respect to the (i, j) indices

and the (k, l) indices and symmetric under (i, j)↔ (k, l). Given a plane wave solution hµν
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in de Donder gauge, the gravitational wave in TT gauge is given by

hTTij = Λij,klhkl . (2.41)

One can show, by using the de Donder gauge condition and the properties of the projector

that this solves the TT gauge condition and the wave equation.

2.3.2 Plane wave solutions

Let us now consider a solution to the source free linearised equations of motion. We will

consider plane wave solutions. They are somewhat unphysical, describing waves coming from

infinity and heading back out, however they exhibit many of the features that we want to

study and will allow us to build up to considering more physical processes which create

gravitational waves.

We need to solve (2.22) with Tµν = 0,

□h̄µν = 0 . (2.42)

This is nothing but the wave equation, which admits plane wave solutions. For the moment

we will not impose the TT gauge and see how it arises. Let

h̄µν(x) = Re
[
Hµνe

ikσxσ
]
, (2.43)

with Hµν a complex constant symmetric matrix, which we call the polarisation matrix, and

kµ a real vector which is called the wave vector. The wave equation reduces to

kµk
µ = 0 , (2.44)

and therefore the wave vector is null. This implies that the gravitational waves move at the

speed of light relative to the background Minkowski metric. There is still more to do, we still

need to impose the de Donder gauge condition, (2.17), this implies:

kνHνµ = 0 , (2.45)

which is the condition that the waves are transverse to the direction of propagation. We still

have our residual gauge freedom when ξ satisfies □ξµ = 0 that we used above to go to TT

gauge. We can take ξµ = lµe
ikρxρ which satisfies the required harmonic condition. This shifts

the polarisation matrix to:

Hµν → Hµν + i(kµlν + kν lµ − kρlρηµν) . (2.46)
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We can now choose lµ such that we can take our TT gauge

H0µ = 0 , and Hµ
µ = 0 . (2.47)

After all the gauge has been fixed we have two remaining independent polarisations of Hµν .

We can orientate our coordinate system so that the wave travels along the z direction,

and therefore the wave vector is

kµ = (ω, 0, 0, ω) . (2.48)

The transverse gauge condition and our gauge freedom implies that the polarisation matrix

Hµν takes the form

Hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 (2.49)

with both h+ and h× complex. These are the two independent polarisation states. We

could also consider the superposition of waves with different frequencies travelling along the

z direction. The form of the polarisation matrix does not change, though the functions h+

and h× now depend on the different frequencies. The superposition of waves coming from

different directions would ruin this nice splitting into a 2 × 2 block. The final metric for a

plane wave gravitational wave propagating along the z direction is then

ds2 = −dt2 + dz2 + (1 + Re[h+e
iω(z−t)])dx2 + (1− Re[h+e

iω(z−t)])dy2 + 2Re[h×e
iω(z−t)]dxdy

(2.50)

Aside
Light also has two polarization states. Recall that when considering light there is

something called helicity, this is a projection of the spin onto the direction of momentum.

We can also consider the helicity here, consider a rotation about the z-axis. Let Rθ be the

matrix rotation by an angle of θ. The polarization states transform as

H ′
µν = (Rθ)

σ
µ (Rθ)

ρ
ν Hσρ . (2.51)

We have that

Rθ =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 (2.52)
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We then have that

H ′
11 = cos 2θH11 + sin 2θH12 ,

H ′
12 = − sin 2θH11 + cos 2θH12 .

(2.53)

If we define

H± = H11 ∓ iH12 , (2.54)

then

H ′
± = e±2iθH± , (2.55)

and we see that the polarization states H± have helicity ±2.

We have now constructed the metric for our gravitational wave, it remains to understand

how we can detect it. The answer to this question is tidal forces, or more concretely geodesic

deviation. We will deviate temporarily from our linearized gravity discussion to study/recall

geodesic deviation.

2.3.3 Geodesic deviation

In Euclidean space or in Minkowski spacetime, geodesics which are initially parallel will

remain parallel forever. On a general curved manifold this notion of parallel is not possible,

instead we can study whether nearby geodesics move together or apart, and characterise their

relative acceleration.

Consider a one-parameter family of geodesics with coordinates xµ(τ : σ). Here τ is the

affine parameter along the geodesics, all of which are tangent to the vector field X. Thus,

along the surface spanned by xµ(τ : σ) we have

∂xµ

∂τ

∣∣∣
σ
= Xµ . (2.56)

The parameter σ labels the different geodesics, see figure 1. We can compute the tangent

vector in the σ direction to be generated by a second vector field S so that

Sµ =
∂xµ

∂σ

∣∣∣
τ
. (2.57)

This tangent vector is known as the deviation vector, its job is to take us from one geodesic

to a nearby geodesic with the same affine parameter τ . The family of geodesics sweep out a

2d surface embedded in the manifold. We have freedom to choose coordinates so that on the

surface S = ∂
∂σ and X = ∂

∂τ consequently we have [X,S] = 0.
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Figure 1: The black lines are geodesics generated by X while the red lines label constant τ

and are generated by S with [X,S] = 0.

We can ask how neighbouring geodesics behave, do they converge, diverge, or remain the

same distance apart? Consider a torsion free connection so that

∇XS −∇SX = [X,S] . (2.58)

Since [X,S] = 0, we have

∇X∇XS = ∇X∇SX = ∇S∇XX +R(X,S)X , (2.59)

where we have used the expression for the Riemann tensor in (0.1), or in coordinate free

notation:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (2.60)

Since X is tangent to geodesics we have ∇XX = 0 and therefore we find

∇X∇XS = R(X,S)X . (2.61)

In index notation we have

Xν∇ν
(
Xρ∇ρSµ

)
= RµνρσX

νXρSσ . (2.62)

If we take an integral curve γ associated to X as before we have

D2Sµ

Dτ2
= RµνρσX

νXρSσ , (2.63)

with D/Dτ the covariant derivative along the curve γ, D/Dτ ≡ ∂xµ

∂τ ∇µ. The left hand side

tells us how the deviation vector S changes as we move along the geodesic and it measures

20



the relative acceleration of neighbouring geodesics. From (2.63) we see that the relative

acceleration of neighbouring geodesics is measured by the Riemann tensor. This is nothing

other than tidal forces, recall that these showed up when we wanted to test the equivalence

principle. Recall the thought experiment of people locked in a box, either accelerating in

a rocket or on the Earth’s surface. There is no local experiment we can do to tell these

situations apart: however studying the non-local tidal forces does distinguish between these

two setups.

Note that the relative acceleration vanishes for all families of geodesics if and only if the

Riemann tensor vanishes, that is the manifold is flat. This is why geodesics which are initially

parallel in Minkowski space remain parallel, because the manifold is flat.

2.3.4 The passing of a gravitational wave

The Physics behind the TT frame We now want to understand how geodesic deviation

can be used to understand the passing of a gravitational wave. Effectively what we want to do

is place a set of test particles and measure the separation between them as the gravitational

wave passes. Mathematically this requires us to study the effect the gravitational waves have

on neighbouring geodesics as it passes. Before we study this we will try to better understand

physically what it means to be in the TT frame.

First let us look at the geodesic equation in the TT frame. Consider a test particle at

rest at τ = 0. The spatial components of the geodesic equation at τ = 0 satisfy

d2xi

dτ2

∣∣∣∣
τ=0

= −Γiνρ(x)
dxν

dτ

dxρ

dτ

∣∣∣∣
τ=0

= −Γi00
(
dx0

dτ

)2∣∣∣∣
τ=0

,

(2.64)

where in going to the second line we used that the mass is initially at rest. Expanding our

Christoffel symbols as before we find that

Γi00 =
1

2
(2∂0h0i − ∂ih00) . (2.65)

Note that in TT gauge this vanishes! Therefore if at time τ = 0 the particle is stationary

then it remains stationary for all time! Particles which were at rest in the TT frame before

the arrival of the wave remain at rest even after the wave has arrived. Strictly speaking

this is only true to linear order in hµν , if we include second order terms we do get a non-

trivial contribution to Γi00. However, for the gravitational waves we expect on Earth from

distant sources we have h = O(10−21) and therefore going beyond linear order is of no interest

whatsoever.
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The TT frame coordinates are such that they stretch themselves in response to the

arrival of the gravitational wave in such a way that the position of free test masses initially

at rest do not change. This also means that the coordinate distance between two test masses

initially at rest will not change as the wave passes either! You may be surprised about this

fact at first, but this just illustrates in a nice way the fact that in GR the physical effects

are not expressed by what happens to the coordinates since the theory is reparametrisation

invariant. The gravitational wave does have a physical effect, we just chose coordinates such

that they do not change as the wave passes. Physical effects can be detected by studying

invariant quantities such as proper lengths, proper times and tidal forces. For example the

proper distance does change with time, whereas the coordinate distance does not. This is

the difference between using coordinate dependent observables and coordinate independent

ones. The gravitational wave can be detected unambiguously with the coordinate independent

observable but not the coordinate dependent one.

Measuring the passing of the wave To detect the wave we will using the geodesic

deviation introduced above, using the family of geodesics xµ(τ : σ) introduced there. Recall

that τ is the affine parameter and σ labels the geodesic. For simplicity consider the situation

where, in the absence of the gravitational waves, the family of geodesics are in a rest frame,

thus the tangent vector to the geodesic is Xµ = (1, 0, 0, 0). As the gravitational wave passes

the geodesic will change as Xµ = (1, 0, 0, 0) + O(h), but this effect will not concern us as it

results only in sub-subleading effects. We can now input on the right-hand side of (2.63) our

expression for the Riemann tensor (2.4). Recall that this is of order h already and it is for

this reason the modification of Xµ is immaterial. Next observe that on the left-hand side of

(2.63) we may replace the covariant derivative along the curve with derivative with respect

to the affine parameter. Moreover since we are in the rest frame we can replace the proper

time with the coordinate time.4 We therefore have:

d2Sµ

dt2
= Rµ00νS

ν . (2.66)

It remains to insert the Riemann tensor from equation (2.4) into the equation. We obtain

d2Sµ

dt2
=

1

2

d2hµν
dt2

Sν , (2.67)

where we impose the TT gauge condition. From the form of the polarisation vector, (2.49),

we see that the gravitational wave affects neither S0 nor S3. The only effect is in the plane

4If one considers higher orders in the perturbation one cannot perform all these replacements with such

impunity but at this linearised level this is all fine.
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transverse to the direction of propagation. The result is remarkably simple and we see that

the action on the separation vector is of the form of a Newtonian force acting on the particle.

To make our lives easier we can solve this in the z = 0-plane, though it is not difficult to

track the z dependence. First consider the h+ polarisation, setting h× = 0. We have:

d2S1

dt2
= −ω

2

2
Re
[
h+e

−iωt
]
S1 ,

d2S2

dt2
=
ω2

2
Re
[
h+e

−iωt
]
S2 . (2.68)

Since h+ is small we can solve this perturbatively, we have

S1(t) ≈ S1(0)
(
1 +

1

2
Re
[
h+e

−iωt
]
+ ...

)
, S2(t) ≈ S2(0)

(
1− 1

2
Re
[
h+e

−iωt
]
+ ...

)
. (2.69)

From this we can determine the way in which the geodesics are affected by the passing wave.

We can think of the displacement vector as the distance from the origin to a neighbouring

geodesic. Consider a collection of particles arranged around a circle of radius r in the x-y

plane. The initial condition is such that S1(0)2 + S2(0)2 = r2. We can now evaluate the

position as the wave passes by. We see that due to the relative minus sign between the S1

and S2 term if the geodesic move outwards in one direction it necessarily moves inwards in

the other orthogonal direction. We may now plot the circle as the wave passes by, the result

is pictured in figure 2.

Figure 2: The displacement of a circle as a h+ polarised gravitational waves passes.

Next consider the other choice of polarisation setting h+ = 0 this time. Now the geodesic

deviation equations are

d2S1

dt2
= −ω

2

2
Re[h×e

−iωtS2] ,
d2S2

dt2
= −ω

2

2
Re[h×e

−iωtS1] , (2.70)

which again admits a perturbative solution, in this case:

S1(t) = S1(0) +
1

2
S2(0)Re[h×e

−iωt] + ... , S2(t) = S2(0) +
1

2
S1(0)Re[h×e

−iωt] + ... . (2.71)

The difference between the previous case is a 45-degree rotation, one can easily see this by

defining S1±S2, i.e. taking the axes to be different 45-degree rotated, the resultant diagram

is given in figure 3.
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Figure 3: The displacement of a circle as a h× polarised gravitational waves passes.

Before we conclude this section recall that the metric in (2.50) is an approximation since

we performed a linearization around Minkowski space. One can in fact find an exact plane

wave solution inspired by the above perturbative solution. Suppose that the wave is travelling

in the z-direction as before. We see that the perturbative solution depends only on u = t− z,
this suggests we should use an ansatz which depends only on u. It is also convenient to define

the coordinate v = t + z, both of u and v define null coordinates, and in these coordinates

the Minkowski metric becomes:

ds2 = −dudv + dx2 + dy2 . (2.72)

For simplicity let us consider only the + polarisation, in which case, in analogy to the per-

turbed metric we have the ansatz:

ds2 = −dudv + f(u)2dx2 + g(u)2dy2 . (2.73)

Exercise 1:

• Show that the metric (2.73) satisfies the vacuum Einstein equations if

f̈

f
+
g̈

g
= 0 . (2.74)

• Show that if g is nearly 1 then this agrees with the +-polarisation solution above.

• Show that even in the non-linear case that a particle initially at rest in these coordinates

remains at rest.

This solution is one of a class called plane-fronted waves with parallel rays.

2.4 The energy of Gravitational waves

We now want to understand the energy and momentum carried by gravitational waves. Since

we observed that the gravitational waves do some work on the test masses of the previous
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section they must carry some form of energy which they impart on the background. This is

quite a subtle question to answer for a number of reasons.

• Firstly in GR there is no local definition of energy density for the gravitational field. Since

the equivalence principle allows is to eliminate gravitational forces at any point (we can

always introduce normal coordinates so that the metric at that point is the Minkowski

metric), we could always go to such coordinates and we would find that there is no energy

at that point.

• The second problematic point is that according to GR any source of energy generates

curvature via a stress tensor. We have introduced our plane waves as a perturbation

around flat space which is not curved. We therefore need to generalise the concept of a

Gravitational wave as a perturbation of a generic background, not necessarily flat space.

There are two different roots that one can use to get an explicit expression for the energy-

momentum tensor of gravitational waves. One is more geometrical while the other is more

field theoretical.

1. Since General Relativity says that any form of energy induces curvature of spacetime

we can work out whether gravitational waves source spacetime curvature. This will be

through an energy-momentum tensor which we associated to the wave, and from this we

can define the energy carried by the wave.

2. We can treat linearised gravity as a classical field theory of the field hµν and use Noether’s

theorem to compute the conserved quantity. This will again fix for us an energy momen-

tum tensor.

We will look at the first option in these lectures, for those interested in the second method

see [6]. To understand whether gravitational waves curve the background we need to generalise

our starting point. Until now we have linearised the Einstein equations around the flat

metric. This is insufficient to understand whether gravitational waves curve the background

spacetime since by assumption we exclude that possibility from the beginning. We need to

allow the background metric to be dynamical and then we can define the gravitational waves

as perturbations over this curved dynamical metric. We write

gµν(x) = ḡµν(x) + hµν(x) , |hµν | ≪ 1 . (2.75)

However this is kind of dumb! How do we decide which part of gµν is the background and

which are the fluctuations due to the gravitational wave? We could move pieces between
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the two with impunity. In the linearised theory where the background metric was uniquely

fixed this was not a problem. A simple analogy one can make is trying to isolate what part

of the vertical movement of a body of water is from a wave and which part belongs to the

background.

There is a natural splitting between the spacetime background and the gravitational

waves when there is a clear separation of scales. For example, if in some coordinate system

we can write the metric as in (2.75), where ḡµν has a typical scale of spatial variation LB on

top of which small amplitude perturbations are superimposed with a characteristic wavelength

such that

λ̄≪ LB , (2.76)

where λ̄ = λ/(2π) is the reduced wavelength. In this case hµν has the interpretation of small

ripples on a smooth background and is called the short wave expansion. Alternatively one

could make a distinction in frequency space. In this case ḡµν has frequencies up to a maximum

value fB while hµν is peaked around a frequency f such that

f ≫ fB . (2.77)

In this case hµν is a high-frequency perturbation of a static or slowly varying background. It

turns out in this case that in a suitable gauge that hµν obeys a wave equation and therefore

its characteristic wavelength and frequency are related by λf = c. On the other hand the

scales LB and fB that characterise the background are a priori unrelated and therefore the

two conditions above are independent. It suffices to impose one of them.

Having devised a method of splitting the two pieces we can ask the following questions:

• How does the high-frequency/short wavelength perturbation propagate through the back-

ground spacetime with metric ḡµν

• How does the perturbation affect the background metric? This will allow us to assign an

energy momentum tensor to the gravitational wave and therefore give us a way of defining

the energy of the gravitational wave.

Typically the separation of the metric uses the short-wave expansion however for detectors

it is the second condition that is fulfilled. Ground based detectors have a size which is much

smaller than the wavelength of the gravitational waves they are searching for. The reduced

wave length of the typical wave that is detected is λ̄ ∼ 50 − 500 km. The detectors do not

measure the spatial variations of the gravitational field but rather the temporal variations in

their output as a gravitational wave passes.
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2.4.1 How gravitational waves curve the background

We will now consider the situation in which in some reference frame we can make a splitting

of the metric according to (2.75). This separation is then based on the fact that there is a

clear distinction in scales either in space, in which case (2.76) applies, or in time in which

case (2.77) applies. We begin by expanding the Einstein equations around the background

ḡµν . In the expansion we have two small parameters: one is the amplitude h ≡ O(|hµν |) and
the second is either λ̄/LB or fB/f , depending on which of (2.76) or (2.77) applies.

We will expand the Einstein equations to quadratic order in hµν . It is convenient to

recast the Einstein equations in the form

Rµν = 8πGN

(
Tµν −

1

2
gµνT

)
, (2.78)

where Tµν is the energy momentum tensor of matter and T its trace. We then expand the

Ricci tensor to O(h2) as
Rµν = R̄µν +R(1)

µν +R(2)
µν +O(h3) . (2.79)

Here R̄µν is constructed with ḡµν only and the superscript denotes the power of h appearing

in the expression. The crucial observation is to note the scales of the different terms. Since

R̄µν is constructed from ḡµν it contains only low frequency modes. One the other hand R
(1)
µν

is linear in hµν and therefore contains only high-frequency modes. The second order term

R
(2)
µν contains both high and low frequency modes. For instance in the quadratic term hµνhρσ

a mode with high wave vector k1 can combine with a mode with high wave vector k2 ∼= k1

so that the result is a low wave vector mode. One can therefore split the Einstein equations

into two separate equations for the high and low frequency parts:

R̄µν = −[R(2)
µν ]

Low + 8πGN

[
Tµν −

1

2
gµνT

]Low
, (2.80)

R(1)
µν = −[R(2)

µν ]
High + 8πGN

[
Tµν −

1

2
gµνT

]High

. (2.81)

The superscript “low” denotes projection onto long wavelengths or low frequencies depending

on which of (2.76) or (2.77) applies. Similarly the “High” superscript denotes projection onto

short wavelengths or high frequency depending on which of (2.76) or (2.77) applies.

One can compute the explicit expressions for R
(1)
µν and R

(2)
µν . Let ∇̄µ be the covariant

derivative on ḡµν then one finds that R
(1)
µν is given by

R(1)
µν =

1

2
(∇̄ρ∇̄µhνρ + ∇̄ρ∇̄νhµρ − ∇̄ρ∇̄ρhµν − ∇̄µ∇̄νh) . (2.82)
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At quadratic order one finds:

R(2)
µν =

1

2
gρσgαβ

[
1

2
∇̄µhρα∇̄νhσβ + ∇̄ρhνα∇̄[σhβ]µ

+ hρα(∇̄ν∇̄µhσβ + ∇̄β∇̄σhµν − ∇̄β∇̄νhµσ − ∇̄β∇̄µhνσ)

+
(1
2
∇̄αhρσ − ∇̄ρhασ

)
(∇̄νhµβ + ∇̄µhνβ − ∇̄βhµν)

]
.

(2.83)

After some work it turns out that (2.81) is equivalent to ∇̄ρ∇̄ρh̄µν = 0 away from sources,

which is nothing but the wave equation in curved space. In addition, the de Donder gauge

condition should be replaced by ∇̄ν h̄νµ = 0. We will not say much more about this since it

is not the interesting part, that comes next, but you can read more about this in [6].

Let us now consider (2.80). When there is a clear cut separation between the length

scales λ̄ of the gravitational waves and the length scale LB of the background there is a

simple method to perform the projection onto the long-wavelength modes. One begins by

introducing a scale l such that λ̄≪ l ≪ LB and we average over a spatial volume with sides

of length l. In this way modes with wavelength LB remain unaffected since they are basically

constant over the volume used for averaging, while modes with reduced wavelength of order

λ̄ are oscillating very fast and average to 0. Similarly if hµν is a high frequency perturbation

of a quasi-static background we can introduce a timescale t which is much larger than the

period 1/f and much smaller than the typical time scale 1/fB of the background and the

average over this time t. We can write (2.80) as

R̄µν = −
〈
R(2)
µν

〉
+ 8πGN

〈
Tµν −

1

2
gµνT

〉
. (2.84)

Here ⟨..⟩ denotes the spatial average over many wavelengths λ̄ if (2.76) applies and a temporal

average over several periods 1/f if (2.77) applies.

Example 2.2: Averaging

As an example imagine we had the function f(t) = cos(ωt). The frequency of this is

f = 2π/ω and we could average this over a number of multiples of this period. The average

of this would then be:

⟨f(t)⟩ = 1

T

∫ T

0
dtf(t) . (2.85)

For the example function above we would have that the average vanishes! For half the

period cos gives a positive contribution while for the other half it gives an equal negative

contribution which cancel out over a period and so the average over many of these periods

is 0. If instead we had f(t) = cos2(ωt) the average would be ⟨cos2(ωt)⟩ = 1
2 .
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Aside
This averaging is nothing but a renormalization group transformation. One starts

with the fundamental equations of the theory and integrates out the fluctuations that take

place on a length scale smaller than l in order to obtain an effective theory that describes

the physics at the length scale l. One can perform this in coordinate space, as above; in

momentum space to integrate out the high momentum modes in order ot get a low energy

effective action; or in frequency space in order to eliminate the fast temporal variations

and to obtain the effective dynamics of the slowly varying degrees of freedom.

We can now define an effective energy momentum tensor Tµν from〈
Tµν −

1

2
gµνT

〉
= Tµν −

1

2
ḡµνT , (2.86)

with T ≡ Tµν ḡµν . By construction T
µν

is a purely low-frequency quantity and is the smoothed

form of the energy momentum tensor Tµν . We also define the quantity tµν as

tµν = − 1

8πGN

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, (2.87)

where R(2) = ḡµνR
(2)
µν and we define the trace as

t = ḡµνtµν

=
1

8πGN
⟨R(2)⟩ .

(2.88)

We may plug all this into (2.80) to obtain

R̄µν −
1

2
ḡµνR̄ = 8πGN (T̄µν + tµν) . (2.89)

This is the coarse-grained form of the Einstein equations and determine the dynamics of ḡµν

which is the long wave-length (low-frequency) part of the metric in terms of the long-wave-

length (low frequency) part of the matter energy-momentum tensor Tµν and a tensor tµν

which does not depend on external matter but only on the gravitational field itself and is

quadratic in hµν .

In summary:

• At a microscopic level there is no fundamental distinction between a background metric and

fluctuations over it. The gravitational field is described by all its modes and its dynamics

is fully determined by Einstein’s equations.
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• If some fluctuations hµν are clearly distinguishable from the background because their

typical length scale λ̄ is much smaller than the typical length scale LB that characterises

the spatial variations of the background it is useful to introduce a macroscopic level of

description which is valid at some length scale l such that λ̄ ≪ l ≪ LB. This effective

theory is obtained by integrating out the short wavelength degrees of freedom which can

be obtained by performing a spatial integral of the Einstein equations over a box of size

l. Alternatively if the separation between fluctuations and background is based on the

condition fB ≪ f we can integrate out the fast varying degrees of freedom, performing a

temporal average over several periods 1/f and we are left with the effective theory of the

slowly varying degrees of freedom.

• The result of this procedure is (2.89). The left-hand side is the Einstein tensor for the

slowly varying metric ḡµν . On the right-hand side we have the smoothed version of the

matter energy momentum tensor. In addition we have a term tµν which is proportional to

h2. This shows that the effect of the gravitational waves on the background curvature is

formally identical to that of matter with energy momentum tensor tµν . We can therefore

assign an energy momentum tensor to the gravitational waves!

• The gravitational waves energy momentum tensor tµν comes out automatically in an av-

eraged form. This is because to the derive the effect of the gravitational waves on the

background one is passing from the microscopic description to a macroscopic description.

2.4.2 The energy momentum tensor of gravitational waves

We now want to explicitly compute tµν and work out how to define the energy. We are going

to be interested in the energy and momentum carried by the gravitational waves at large

distances from the source. Since we are far away from the source we can approximate the

background metric to be flat. In equation (2.83) we may therefore replace ∇̄µ → ∂µ and ḡµν =

ηµν . As we saw earlier the 4×4 symmetric matrix hµν has 10 degrees of freedom, of which only

two were physical modes. Therefore tµν can in principle have contributions from both physical

modes and gauge modes. This is not a contradiction since the Einstein tensor also depends on

the coordinate system. The issue is how do we distinguish the contributions from the physical

modes and those which are pure gauge? The former give the energy momentum tensor of the

gravitational waves and describe physical effects while the latter will be associated to ripples

in spacetime which are due to our coordinate choice and can be made to vanish by a better

coordinate system.
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The simplest method is to first impose the de Donder gauge. This immediately eliminates

four of the spurious degrees of freedom. This leaves us with the two physical modes in hTTij

and the four gauge modes ξµ which satisfy ∇ξµ = 0. We can then fix one degree of freedom in

ξ such that h = 0 and therefore h̄µν = hµν (see section 2.3.1). We may further simplify R
(2)
µν

by noticing that inside the average the spacetime derivative ∂µ can be integrated by parts

neglecting the boundary term.5 Performing this and using the wave equation one finds the

succinct result

⟨R(2)
µν ⟩ = −

1

4
⟨∂µhαβ∂νhαβ⟩ , (2.90)

and that ⟨R(2)⟩ vanishes. Therefore the final result is:

tµν =
1

32πGN
⟨∂µhαβ∂νhαβ⟩ . (2.91)

One can check that this is gauge invariant and therefore depends only on the physical

modes hTTij and therefore we can simply replace hµν → hTTij . The gauge invariant energy

density is

t00 =
1

32πGN
⟨ḣTTij ḣTTij ⟩ . (2.92)

Example 2.3: Energy of a plane wave
Let us see how this works for our plane wave solutions in section 2.3.2. We have

hTTij = cos(ω(t− z))

h+ h× 0

h× −h+ 0

0 0 0


ij

(2.93)

where we have taken h+ and h× to both be real. We have

t00 =
1

32πGN
[2ω2(h2+ + h2×)]⟨sin2(ω(t− z))⟩ (2.94)

We now need to perform the average. We will choose to perform an average over time.

The frequency of the plane wave is 1/ω and so our characteristic time scale will be T =

n2π/ω ≫ 2π/ω, where n≫ 1. We have

⟨sin2(ω(t− z))⟩ ≡ 1

T

∫ T

0
sin2(ω(t− z)) = 1

2
, (2.95)

5On generic functions an integration by parts of ∂t is only possible if we have performed an integral over

time, while integration by parts of ∂i is only possible if we have integrated over space. Recall that in the de

Donder gauge outside the source hµν satisfies the wave equation □hµν = 0. For a solution propagating in the

z direction all quantities are functions of t − z and therefore one can replace ∂tf(t − z) with −∂zf(t − z). If

the integral is then over z we can use this to replace time derivatives with z derivatives, use integration by

parts and then replace with time derivatives. Thus for solutions of the wave equation a spatial average allows

us to integrate by parts over all directions not just spatial directions and similarly for a time average.
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and therefore we find

t00 =
1

32πGN
ω2(h2+ + h2×) . (2.96)

Now we should ask what does this compute!

Aside
Note from (2.89) that the left-had side is covariantly conserved with respect to ∇̄:

∇̄µ(R̄µν − 1
2 ḡµνR) = 0 and therefore we have:

∇̄µ(Tµν + tµν) = 0 . (2.97)

The fact that it is the sum of the two terms that is covariantly conserved rather than the

individual terms reflects the fact that there is an exchange of energy between the matter

sources and the gravitational waves. Since at large distances the metric becomes flat space

and Tµν = 0 we have that far from the sources

∂µtµν = 0 . (2.98)

The energy flux With the energy momentum tensor of the gravitational waves in hand we

can compute the corresponding energy flux. This is the energy of gravitational waves flowing

per unit time through a unit surface at a large distance from the source. The conservation of

the energy momentum tensor ∂µtµν = 0 implies that∫
V
d3x(∂0t00 + ∂iti0) = 0 , (2.99)

with V a spatial volume in the far region bounded by some surface S. The gravitational

energy inside the volume is

EV =

∫
V
d3x t00 , (2.100)

and therefore we have

dEV
dt

= −
∫
V
d3x ∂it

0i

= −
∫
S
dA nit

0i ,

(2.101)

where ni is an outward pointing normal to the surface and dA the surface element. Let S be

a spherical surface at large distance r from the source. Its surface element is dA = r2dΩ and

its normal is n⃗ = r⃗ in the radial direction. We have

dEV
dt

= −
∫

dA t0r , (2.102)
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with

t0r =
1

32πGN
⟨∂0hTTij ∂rhTTij ⟩ . (2.103)

At sufficiently large distances a gravitational wave propagating radially outward has pertur-

bation of the form

hTTij (t, r) =
1

r
fij(t− r) , (2.104)

where fij is some function of the retarded time tret = t − r. At large distances this implies

that t0r = t00 and the energy satisfies

dEV
dt

= −
∫

dA t00 . (2.105)

This implies that the total energy inside the region decreases and therefore the outward

propagating gravitational wave carries away and energy flux:

dE

dAdt
= t00

=
1

32πGN
⟨ḣTTij ḣTTij ⟩ .

(2.106)

or

dE

dt
=

r2

32πGN

∫
dΩ⟨ḣTTij ḣTTij ⟩ . (2.107)

Momentum flux One can similarly compute the momentum of the gravitational waves

inside a spherical shell V at large distances from the source to be

P kV =

∫
V
d3xt0k . (2.108)

Considering, once again, a radially propagating gravitational wave one finds

∂tP
k
V = −

∫
S
dAt0k , (2.109)

and therefore the momentum flux carried away by the outward propagating gravitational

wave is
dP k

dAdt
= t0k , (2.110)

and therefore

dP k

dt
= − r2

32πGN

∫
dΩ⟨ḣTTij ∂khTTij ⟩ . (2.111)
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The loss of linear momentum through GW emission for a Black hole binary merging to form

another BH can lead to an astrophysically significant recoil velocity. This can lead to the

merged BH being ejected from the host galaxy. This leads to important consequences on

BH’s mass growth through hierarchical mergers.

In conclusion we have found that in separating out Einstein’s equations into low and

high frequency parts that the low frequency part describes the effect of gravitational waves

and the external matter on the background spacetime. The high frequency part gives a wave

equation in curved space which describes the propagation of hµν .

2.5 Gravitational waves from a source

The gravitational waves that we have constructed so far are plane wave solutions in the

absence of a source. These come in from infinity and head back out to infinity. For something

astrophysical this is not quite what we want, rather we would want gravitational waves that

arise from a source (a merger for example) and then radiate out. With matter the equation

to solve is (2.22), (we set GN = 1 for now)

□h̄µν = −16πTµν . (2.112)

For those of you who have seen some quantum field theory and the Klein–Gordon equation or

Electromagnetism this should not look too alien to you. We can solve this using a (retarded)

Green’s function. The Green’s function satisfies

□xG(x, y) = −4πδ(x− y) , (2.113)

and is given by:

G(x, y) =
1

|x⃗− y⃗|
δ
(
y0 −

(
x0 − |x⃗− y⃗|

))
. (2.114)

Here the combination x0 − |x⃗ − y⃗| is called the retarded time. Reinstating the factor of the

speed of light one sees that this is the speed at which information spreads at the speed of

light.

Aside
To compute the Green’s function we first assume that there is some spherical symmetry

(though this is not strictly necessary) so that the Green’s function depends only on the

quantities:

R = |x⃗− y⃗| , T = |x0 − y0| . (2.115)
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Recall that the delta function has the Fourier expression:

δ(T ) =
1

2π

∫ ∞

−∞
dωe−iωT , (2.116)

and that we may expand the Green’s function in Fourier modes as

G(T,R) =
1√
2π

∫ ∞

−∞
dωG̃(ω,R)e−iωT . (2.117)

Substituting this into the defining equation we have

□

[
1√
2π

∫ ∞

−∞
dωG̃(ω,R)e−iωT

]
=

1√
2π

∫ ∞

−∞
dω(∇2 + ω2)G̃(ω,R)e−iωT

= −4πδ(R) 1

2π

∫ ∞

−∞
dωe−iωT ,

(2.118)

from which it follows that∫ ∞

−∞
dω
[
(∇2 + ω2)G̃(ω,R) + 2

√
2πδ(R)

]
e−iωT = 0 . (2.119)

Inverting the Fourier transformation we have

(∇2 + ω2)G̃(ω,R) + 2
√
2πδ(R) = 0 . (2.120)

Solutions are given by

G̃(ω,R) =
1√
2π

e±iωR

R
. (2.121)

We now need to unwind the transformations to obtain an expression for G. We have

G±(T,R) =
1√
2π

∫ ∞

−∞
dωG̃(ω,R)e−iωT

=
1

2π

∫ ∞

−∞
dωG̃(ω,R)e−iω(T∓R)

=
1

R
δ (T ∓R) .

(2.122)

These are the retarded and advanced Green’s functions respectively. The retarded includes

a time delay by the amount of time it takes for the wave to propagate from x⃗ to y⃗. To see

this assume that y0 > x0 (and reinstate factors of c) then we may write

G−(x, y) =
1

|x⃗− y⃗|
δ

(
y0 −

(
x0 − |x⃗− y⃗|

c

))
. (2.123)

The delta function is non-zero precisely when the wave has propagated from x⃗ to y⃗.
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We can now use the Green’s function to solve (2.22) in general, we have

h̄µν(x) = 4

∫
d4yG(x, y)Tµν(y)

= 4

∫
d3y⃗

1

|x⃗− y⃗|
Tµν(t− |x⃗− y⃗|, y⃗) .

(2.124)

The integral is over the past light-cone of the event x at which h̄µν is evaluated. Outside of

the source we can once again put this solution into the TT gauge similarly to section 2.3.1

and equation (2.39). We have that

hTTij (t, x⃗) = 4Λij,kl(n⃗)

∫
d3y

1

|x⃗− y⃗|
Tkl(t− |x⃗− y⃗|, y⃗) . (2.125)

We have used the notation n⃗ = x⃗/|x⃗|.
So far everything holds in general, however let us now assume that matter is confined to

a compact region near the origin with a sphere of radius ∆ centred on the origin containing

all of the matter. Far away from the source, r ≡ |x⃗| ≫ |y⃗| ∼ ∆ we may expand,

|x⃗− y⃗|2 = r2 − x⃗ · y⃗ + y⃗2 = r2
(
1− 2

r
n⃗ · y⃗ +O(∆2r−2)

)
, (2.126)

with n⃗ the unit norm vector such that rn⃗ = x⃗. We therefore have:

|x⃗− y⃗| = r − n⃗ · y⃗ +O(∆2r−1) ,

Tµν(t− |x⃗− y⃗|, y⃗) = Tµν(t− r, y⃗) + n⃗ · y⃗ ∂0Tµν(t− r, y⃗) + ... ,
(2.127)

From expanding the energy–momentum tensor we can in principle obtain two terms. The

latter term is the time-scale on which the energy-momentum tensor is varying. We will assume

a slowly varying source where the matter is moving non-relativistically, this allows us to drop

the second term.6

There is a further simplification that we can make by using our gauge invariance. We

saw that we can, without loss of generality, impose the gauge condition (2.23). Therefore the

components involving a time index are not independent of the purely spatial components.

We may thus focus on the purely spatial components and extract out the components with

time legs by using the gauge fixing condition. Expanding our formula for hTTij we find

hTTij (x) ≈ 4

r
Λij,kl(n⃗)

∫
d3y Tkl(t− r, y⃗) . (2.128)

6One can generalise to rapidly varying sources while still imposing weak sources. It is then useful to replace

Tµν with its Fourier transformation with respect to time and work with this. We will ignore this possibility

here, the interested reader can look at section 5.5.2 of [5].
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We now want to evaluate the above integral to obtain an expression for hTTij . To do this we use

the conservation of the energy-momentum tensor, which to this order, is simply ∂µT
µν = 0.7

We therefore have the two relations:

∂tT
00 + ∂iT

i0 = 0 , ∂tT
0i + ∂jT

ji = 0 . (2.129)

From these we obtain

∂2t T
00 = ∂m∂nT

mn . (2.130)

Multiplying both sides by xixj we have

∂2t (x
ixjT 00) = xixj∂m∂nT

mn

= ∂m∂n(x
ixjTmn)− 2∂m(x

jT in + xiT jn) + 2T ij .
(2.131)

We may use this identity to eliminate T ij from our expression. We have

hTTij (x) ≈ Λij,kl(n⃗)
4

r

∫
d3y Tkl(t− r, y⃗)

= Λij,kl(n⃗)
2

r

∫
d3y

[
∂2t (y

kylT tt) + 2∂m(y
kT lm + ykT lm)− ∂m∂n(ykylTmn)

]
=

2

r
Λij,kl(n⃗)∂

2
t

∫
d3y ykylT tt ,

(2.132)

where we have dropped total derivative terms in the last step. To this order we are considering

what is called the quadrupole radiation.

Definition 1 Second moment of the energy density

The second moment of the energy density is

M ij(t) =

∫
d3yyiyjT00(t, y⃗) . (2.133)

This is a tensor in the usual Cartesian sense, transforming under rotations of the coordinates.

We can also define the 0’th and 1’st moments, these are

M =

∫
d3yT00 , and M i =

∫
d3yyiT00 , (2.134)

respectively. These are both conserved quantities which reflects the conservation of the mass

and total momentum of the source.

7We will be raising and lowering the spatial indices with impunity in the following paragraphs. This is fine

because at this order the metric is just the 3d identity matrix. We will still keep the usual raised and lowered

index structure to make clear the Einstein summation convention.
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In terms of the second moment of the energy density we have

hTTij (t, x⃗) =
2

r
Λij,kl(n⃗)M̈

kl(t− r) , (2.135)

to quadrupole order. To work out the final result we want to eliminate Λ. When the direction

of propagation n⃗ is along the z-axis the projector Pij is just the diagonal matrix diag(1, 1, 0).

Therefore for an arbitrary 3× 3 matrix one has:

Λij,klAkl =
1

2

A11 −A22 2A12 0

A21 A22 −A11 0

0 0 0


ij

(2.136)

One can then read off the two polarisations when n⃗ points in the z direction to be

h+ =
GN
r

(M̈11 − M̈22) ,

h× =
2GN
r

M̈12 ,

(2.137)

where it is understood that the right-hand side is evaluated at the retarded time t − r.

To compute the amplitudes for a wave that in a frame with axes (x, y, z) propagates in a

generic direction n⃗ we begin by introducing two additional unit vectors u⃗ and v⃗ which are all

mutually orthogonal. In this (x′, y′, z′) frame we can take u⃗ = x⃗, v⃗ = y⃗ and n⃗ = z⃗ and the

wave propagates along the z′ axis. Using the above we have that the physical polarisations

are

h+ =
GN
r

(M̈ ′
11 − M̈ ′

22) ,

h× =
2GN
r

M̈ ′
12 ,

(2.138)

where these are the components evaluated in the (x′, y′, z′) frame. We can write this in

the (x, y, z) frame by observing that in the (x′, y′, z′) frame the vector n⃗ has coordinates

n′i = (0, 0, 1) while in the (x, y, z) frame it has coordinates

ni = (sin θ sinϕ, sin θ cosϕ, cos θ) . (2.139)

The two vectors are related by a rotation ni = Rijn
′
j with

R =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 . (2.140)

A tensor with two indices transforms as

Aij = RikRjlA
′
kl , (2.141)
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and from this one can obtain the transformed results. In general the two polarisations are

given by:

h+(t; θ, ϕ) =
1

r

[
M̈11(cos

2 ϕ− sin2 ϕ cos2 θ) + M̈22(sin
2 θ − cos2 ϕ cos2 θ)− M̈33 sin

2 θ

− M̈12 sin 2ϕ(1 + cos2 θ) + M̈13 sinϕ sin 2θ + M̈23 cosϕ sin 2θ
]
, (2.142)

h×(t; θ, ϕ) =
1

r

[
(M̈11 − M̈22) sin 2ϕ cos θ

+ 2M̈12 cos 2ϕ cos θ − 2M̈13 cosϕ sin θ + 2M̈23 sinϕ sin θ
]
. (2.143)

This allows us to compute the angular distribution of the quadrupole radiation once the

second moments of the energy density are given.

The second moment is a symmetric matrix and therefore we can decompose it in terms

of its irreducible representations (the symmetric traceless part and the trace part):

Mkl =

(
Mkl − 1

3
δklMii

)
+

1

3
δklMii . (2.144)

The first term is traceless by construction and since the Lambda tensor gives zero when

contracted with δkl only the traceless part contributes. We let T 00 = ρ and to the order we

are working this is just the mass density. We define the quadrupole moment to be

Qij ≡M ij − 1

3
δijMkk

=

∫
d3x ρ(t, x⃗)

(
xixj − 1

3
r2δij

)
.

(2.145)

Our final result is that the transverse traceless components of the quadrupole metric pertur-

bation are given by

[hTTij (t, x⃗)]quad =
2GN
r

Λij,kl(n⃗)Q̈kl(t− r) . (2.146)

Where recall that the Lambda tensor was constructed using the projector

Pij = δij − n⃗in⃗j , (2.147)

which eliminates the vector components parallel to n⃗, leaving only the transverse components

and

Λij,kl(n⃗) = PikPjl −
1

2
PijPkl . (2.148)
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We can now compute the power radiated away by the gravitational waves per unit solid

angle. From (2.107) we have that the radiated power per unit solid angle is:(
dP

dΩ

)
quad

=
r2

32πGN
⟨ḣTTij ḣTTij ⟩

=
G

8π
Λij,kl(n⃗)⟨

...
Q ij

...
Qkl⟩ .

(2.149)

We have used that hTTij is given by (2.146) and that the Lambda tensor satisfies (2.40). As

before the average is a temporal average over several characteristic periods of the gravitational

waves and it is understood that
...
Q is evaluated at the retarded time t − r. We can perform

the angular integral by using the following identities:

1

4π

∫
dvol(S2) = 1 ,

1

4π

∫
dvol(S2)n⃗in⃗j =

1

3
δij ,

1

4π

∫
dvol(S2)n⃗in⃗jn⃗kn⃗l =

1

15
(δijδkl + δikδjl + δilδjk) ,

(2.150)

with n⃗i a unit norm vector pointing out of the sphere along the i’th Cartesian direction. One

finds ∫
dΩΛij,kl =

2π

15
(11δikδjl − 4δijδkl + δilδjk) . (2.151)

The total radiated power8 in the quadrupole approximation is

Pquad =
GN
5
⟨
...
Q i(t− r)

...
Q ij(t− r)⟩ , (2.152)

where
...
Q ij is again evaluated at the retarded time. This is the quadrupole formula for energy

loss via gravitational wave emission, valid far from a non-relativistic source. For explicit

computations it is more practical to use the second moment Mij rather than the quadrupole

moment it is given by

Pquad =
GN
5

〈
...
M ij

...
M ij −

1

3
(
...
Mkk)

2

〉
. (2.153)

We can also compute the radiated angular momentum per unit time following a similar

procedure as above and our energy momentum tensor for the gravitational wave. The final

result is (
dJ i

dt

)
quad

=
2GN
5

ϵikl⟨Q̈km
...
Q lm⟩ , (2.154)

8In astrophysics this is called the gravitational luminosity.
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where the derivatives are once again evaluated at the retarded time.

These formulae have been verified experimentally. In 1974 Hulse and Taylor identified a

binary Pulsar. This is a neutron star binary in which one of the stars is a pulsar, emitting

a beam of radio waves in a certain direction like a light-house. The star rotates rapidly and

the beam periodically points in our direction. We therefore receive pulses of radio waves with

the period being very reliable. These pulses have been measured to very high accuracy and

act like a clock. This can be used to determine the orbital period of the binary system. One

can now check how the period is decreasing due to the energy loss by gravitational waves and

finds that it is about 7µs per year. This small effect has been measured and agrees with the

quadrupole formula to an accuracy of 0.3%. This gives very strong indirect evidence for the

existence of gravitational waves and Hulse and Taylor received the Nobel prize in 1993 for

their work.

Summary A lot has just happened, let us take a quick step back to review what we have

done. We have shown that far away from a slowly moving source the perturbations of the

metric to leading order are encoded in the second moment of the energy density M ij and its

derivatives. From here we can compute various things, one interesting observable is the total

power radiated by the gravitational waves. We can also see that

2.5.1 Binary merger

We now want to apply everything we have learnt in the past few lectures to understand the

gravitational waves emitted by a binary pair and their merger. Strictly speaking the estimates

we have made about slowly moving objects and weak gravitational forces do not allow us to

fully describe the binary pair in the later stages of a merger however it will give us a good

upper bound on the time to coalesce.

Consider a binary system with masses m1 and m2 and positions r⃗1 and r⃗2 respectively.

Define the reduced mass and total mass to be

µ =
m1m2

m1 +m2
, m = m1 +m2 , (2.155)

respectively. In the Newtonian approximation and working in the centre of mass frame the

dynamics reduces to a one-body problem with mass given by the reduced mass µ and equation

of motion

¨⃗r = −Gm
r3

r⃗ , (2.156)

where r⃗ = r⃗2−r⃗1 is the relative coordinate. We will consider the simpler case of circular orbits

though this can be generalised to elliptic orbits, see section 4 of [6]. The orbital frequency ω
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is related to the orbital radius R by Rv2 = GNm with v = ωR and therefore we have Kepler’s

law:

ω2 =
GNm

R3
. (2.157)

We assume that the orbital motion is given by the usual Newtonian trajectory and neglect any

back reaction due to the gravitational wave emission. By choosing coordinates appropriately

we will take the motion to be in the x, y-plane. Then we have that the motion is given by

x0(t) = R cos(ωt+ π
2 ) ,

y0(t) = R sin(ωt+ π
2 ) ,

z0(t) = 0 .

(2.158)

The phase π
2 is a useful choice of the origin of time. The 00 component of the energy-

momentum tensor is given by

T 00 = µδ(z)δ(x− x0(t))δ(y − y0(t)) . (2.159)

The second moment of the energy density is given by

M ij =

∫
d3y yiyjT00(t, y⃗) , (2.160)

and it is simple to find

M11 = µR2 1− cos(2ωt)

2
,

M22 = µR2 1 + cos(2ωt)

2
,

M12 = −
µR2

2
sin(2ωt) ,

(2.161)

with all the other components vanishing. Therefore we have

M̈11 = −M̈22 = 2µR2ω2 cos(2ωt) ,

M̈12 = 2µR2ω2 sin(2ωt) .
(2.162)

We can plug these expressions into the equation for hTTij in equation (2.135):

hTTij (t, x⃗) =
2

r
Λij,kl(n⃗)M̈

kl(t− r) . (2.163)

Before we proceed it is useful to recall what we want. We are interested in the polarisations

as they are the ones that appear in the formulae for the energy and we have from equations
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(2.142) and (2.143) their forms in terms of the simplified moments. We find:

h+ =
4GNµω

2R2

r

1 + cos2 θ

2
cos(2ω(t− r) + 2ϕ) ,

h× =
4GNµω

2R2

r
cos θ sin(2ω(t− r) + 2ϕ) .

(2.164)

Notice that the quadrupole frequency radiation is at twice the frequency of the source. It

is also interesting to observe that the dependence on ϕ appears only in the combination

2ω(t− r) + 2ϕ. This can be understood from the fact that the source is not invariant under

rotations around the z-axis since at any given value of t the mass µ is at a specific position

along the orbit which changes by a rotation around the z-axis. Thus the polarisations have

a dependence on ϕ. Moreover, since a rotation of the source by an angle ∆ϕ is the same as a

time translation ∆t with ω∆t = ∆ϕ it must appear in the combination ω(t− r) + ϕ.

From an observational point of view we only have access to the radiation which points

from the system to our direction. The angle θ is therefore the angle of incident and measures

the angle between the normal to the orbit and the line of sight. The distance r is to all

practical purposes a constant for astrophysical sources. As long as we can neglect the proper

motion of the source (this need not be the case), the angle ϕ is fixed. If we see the binary

pair on edge θ = π
2 then we only see the plus polarisation and the cross polarisation vanishes.

We can get a feel for the expected strength of these binary gravitational waves. Replacing

the frequency by using (2.157) we have

|hij | ∼
G2
NM

2

Rr
. (2.165)

The largest signal will be obtained by increasing the mass M and making the binary pair

orbit as closely as possible. The densest objects are black holes with Schwarzschild radius

Rs = 2GNM , for a solar mass black hole we have that Rs ∼ 10km. We can then make them

orbit as close as possible with R > 2Rs. We then have

|hij | ∼
GM

r
. (2.166)

It remains to give a distance from these black holes. If they were orbiting in the nearest galaxy

Andromeda, which is roughly 2.5 million light years away we would have |hij | ∼ 10−17. This

is an incredibly small number, yet this sensitivity, and better, has been achieved!

Let us now compute the radiated power in the quadrupole approximation. We have

dP

dΩ
=

r2

16πGN
⟨ḣ2+ + ḣ2×⟩ . (2.167)
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Inserting our polarisations we find

dP

dΩ
=

4GNµ
2ω6

π

〈(
1 + cos2 θ

2

)2

sin2(2ω(t− r)) + cos2 θ cos2(2ω(t− r))
〉
. (2.168)

The average was a time average and we have

⟨sin2(2ωt)⟩ = ⟨sin2(2ωt)⟩ = 1

2
, (2.169)

and therefore we find that the radiation power is

dP

dΩ
=

2GNµ
2ω6

π
g(θ) , (2.170)

where

g(θ) =

(
1 + cos2 θ

2

)2

+ cos2 θ . (2.171)

We can integrate over the solid angle to find that the total radiated power is

Pquad =
32

5
GNµ

2R4ω6 . (2.172)

It is useful to define the chirp mass via

Mc = µ3/5m2/5 , (2.173)

and to define the gravitational wave frequency ωgw = 2ω. The total radiated power then

takes the form:

P =
32

5GN

(
GNMcωgw

2

)10/3

. (2.174)

We have used the polarisations assuming that the motion of the sources is on a given

fixed, circular Keplerian orbit. However we have seen that the emission of gravitational waves

costs energy. The source for the radiated energy is the sum of the kinetic plus potential energy

of the orbit, which is

Eorbit = Ekin + Epot

= −GNm1m2

2R
.

(2.175)

To compensate the loss of energy due to the emission of gravitational waves the separation R

must decrease, and therefore Eorbit becomes more and more negative.9 According to Kepler’s

9In our idealised setting of point-like particles the masses have no internal degrees of freedom from which

energy can be extracted and the only possible source of energy is the orbital energy of the system. For a

more realistic system of two stars, at least early in the coalescence the orbital frequency is much smaller

than the frequencies of the normal modes of the the star and therefore the internal dynamics of the stars is

decoupled from the orbital motion and all the energy supplied comes from the orbital energy of the system.

For compact objects corrections that depend on the internal structure of the bodies enters at very high order

in the expansion and only at very late times in the coalescence.
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law if we decrease R then ω must increase. On the other hand if ω increases then the power

radiated in gravitational waves increases as one can see from (2.174). We then have a runaway

process which on a sufficiently long time-scale, leads to the coalescence of the binary system.

When ω̇ ≪ ω2 we are in the so-called quasi-circular regime. Using Kepler’s law we have

Ṙ = −2

3
(ωR)

ω̇

ω2
, (2.176)

and one sees that so long as we are in the quasi-circular regime then the change in the radius is

much smaller than the tangential velocity ωR and the approximation of a circular orbit with a

slowly varying radius is applicable. We will study the backreaction of the gravitational waves

in this regime. Outside of this one must take into account further orders in the expansion.

We may use Kepler’s law to write the energy of the orbit as

Eorbit = −
(
G2
NM

5
c ωgw

32

)1/3

. (2.177)

At fixed ωgw the dependence on the masses is again only through the chirp mass. Equating

the radiated power with minus the change in the orbital energy we find

ω̇gw =
12

5
21/3(GNMc)

5/3ω11/3
gw . (2.178)

It is convenient to write it in terms of fgw = ωgw/(2π) and then to solve finding

fgw(τ) =
1

π

(
5

256τ

)3/8

(GMc)
−5/8 . (2.179)

Here we have introduced the variable t = tcoal − t which measures the time to coalescence.

We find that the total time to coalescence is given by

τ0 =
5

256

R4
0

G3
Nm

2µ
. (2.180)

The divergence is cut off since when their separation becomes smaller than a critical distance

the two star merge. This now tells you the frequency of the gravitational wave as a function

of the time to merge! You can plug in various numbers and see what happens.

Example 2.4: Time to coalescene
For two objects with mass 1.4M⊙ the chirp mass is 1.21M⊙. At 10 Hz we get radiation

emitted at about τ = 17 min to coalescence. At 100 Hz we get radiation from the last

2 seconds and at 1 kHz we get radiation from the last few milliseconds. From Kepler’s

law we find that fgw = 1 kHz then the separation is R ≃ 33 km. Such a small separation

can be reached only for very compact bodies like neutron stars and black holes. Since the
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radius of a neutron star with m = 1.4M⊙ is about 10 km our point-like approximation at

this stage is inaccurate, though not meaningless.

We have already seen that the orbital radius shrinks. We have that

Ṙ

R
= −2

3

ω̇gw

ωgw
= − 1

4τ
. (2.181)

Integrating we find

R(τ) = R0

(
tcoal − t
tcoal − t0

)
, (2.182)

where R0 is the initial value of R at the initial time t0. We plot this in figure 4.

t

R(t)

tcoal

Figure 4: The change in the separation of the two masses.

We see that there is a long phase where R decreases smoothly before a plunge phase where

our approximation breaks down. In this case our flat space approximation also breaks down.

So far we have only studied how the gravitational wave frequency evolves in time. We

can now consider how the waveform changes. A particle that moves on a quasi-circular orbit

in the (x, y) plane with a radius R(t) and an angular velocity ω(t) has Cartesian coordinates

x(t) = R(t) cos(Φ(t)/2) , y(t) = R(t) sin(Φ(t)/2) , (2.183)

where

Φ(t) = 2

∫ t

t0

dt′ ω(t′) =

∫ t

t0

dt′ ωgw(t
′) . (2.184)

We can now compute the gravitational wave production in the quadrupole approximation

using the above. There are three difference
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1. In the argument of the trigonometric functions ωgwt must be replaced by Φ(t).

2. In the factors in front of the trigonometric factors ωgrav is replaced by ωgrav(t).

3. We should include derivatives of R(t) and ωgrav.

However as we have seen the radial velocity Ṙ is negligible as long as ω̇ ≪ ω2. The only

changes are therefore the replacement of ωgwt by Φ(t) in the argument of the trigonometric

functions and of ωgw by ωgw(t) in the prefactor evaluated at the retarded time. Then one

finds that the polarisations are

h+(t) =
4

r
(GNMc)

5/3(πfgw(tret))
2/3 1 + cos2 θ

2
cos
(
Φ(tret)

)
,

h×(t) =
4

r
(GNMc)

5/3(πfgw(tret))
2/3 cos θ sin

(
Φ(tret)

)
,

(2.185)

where

Φ(t) = −2(5GNMc)
−5/8τ5/8 +Φ0 , (2.186)

where Φ0 is the integration constant equal to the value of Φ at coalescence. The final result,

in terms of the time to coalescence time is

h+(t) =
1

r
(GNMc)

5/4

(
5

τ

)1/4 1 + cos2 θ

2
cos
(
Φ(τ)

)
,

h×(t) =
1

r
(GNMc)

5/4

(
5

τ

)1/4

cos θ sin
(
Φ(τ)

)
.

(2.187)

Plotting this we find figure 5.

t

h

Figure 5: The time evolution of the gravitational wave amplitude in the inspiral phase of a

binary system.
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We see that both the frequency and amplitude increase as the coalescence is approached.

This behaviour is known as chirping.

One can now do the same computations for a binary pair in elliptic orbits. The analysis

is more difficult, see section 4.1.2 in [6] for example. One finds that the radiated power is

P =
32G4

Nµ
2m3

5a5
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (2.188)

where e is the eccentricity (e = 0 for the circular orbit). One finds that the change in the

period, T is given by
Ṫ

T
= −96

5
G

5/3
N µm2/3(2π)8/3T−8/3f(e) . (2.189)

This equation is the basis of the first experimental evidence for gravitational radiation. One

can show that the radiation spectrum depends on the eccentricity, which allows for the de-

termination of the eccentricity of the binary given the spectrum of gravitational waves. Fur-

thermore the eccentricity of the binary pair decreases as the gravitational waves are emitted

and the orbit becomes more circular. Unless some external interaction perturbs the binary

system long before the two bodies approach the coalescence phase the ellipticity has become

zero to high accuracy and the two bodies move on a circular orbit which shrinks adiabatically.

For one of the original works on this understanding this circularisation see [9, 10].

2.6 Sources of gravitational waves

We have seen that for gravitational waves to be produced we require a time dependent

quadrupole moment tensor. Astronomers and physicists have studied the various sources

of gravitational waves in the universe. Four common groups of sources are: binary systems,

spinning neutron stars, gravitational collapse and the Big Bang. Discussing each of these in

detail is beyond the scope of the course however they each have important lessons for us.

Binary Systems This is the classic example of producing gravitational waves, and it is

binary pairs that have been observed by LIGO. There is a lot of information that can be

extracted from the gravitational waves emitted by a binary pair. The predicted waveforms

from numerical simulations can be compared with the observed waveforms and gives a unique

test of general relativity in the strongest possible gravitational fields. It also gives a way of

studying black holes directly. After a merger of black holes or neutron stars has lead to a

single black hole it will oscillate for a short time until it radiates away all its deformities and

settles down to a smooth Kerr (see section 3) black hole. This ringdown radiation carries
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a distinctive signature that will distinguish the black holes from any neutron star or other

possible origin.

A remarkable binary system was discovered by Hulse and Taylor in 1974. One of the

stars is a pulsar with a period of 59 ms. The orbital period of the binary pair is 7.75 hours

with the separation between the two stars about the radius of the Sun. The other star is

not a pulsar and its presence has only been inferred rather than detected. A pulsar can

be used as a very accurate clock and from observations the five parameters classifying the

orbit can be obtained. These are the inclination angle of the orbit, the longitude of the

ascending node, the argument of the periastron, the orbital period and the eccentricity. Two

more parameters, defining the advance of the perihelion and the Doppler shift of the pulse

period. The seven parameters allow a complete determination of the masses and orbital

parameters. The orbital period changes slowly with time, shortening in duration as the two

stars gradually approach each other. The inspiral is caused by the loss of orbital energy that

has been carried off by the gravitational waves, you will calculate this in problem sheet 1.

Therefore by monitoring the precise arrival times of the pulsar signals coming from the slowly

decaying orbit the existence of gravitational radiation can be quantitatively confirmed and

the quadrupole formula verified. This is despite the radiation itself not being visible.

Over 20 years of measurements the plots for the cumulative shift of the periastron are

given in figure 6. The dots are the cumulative change in the time for the of periastron due

to the progressively more rapid orbital period as the neutron stars inspiral due to the loss of

energy due to the emission of gravitational waves. Plotting the observed values against the

predictions from general relativity one finds excellent agreement. The line is not a fit to the

data but the exact prediction from general relativity.
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Figure 6: The change in the cumulative shift of periastron over a period of 30 years.

Cosmological gravitational waves In the early beginnings of the universe it is probable

that there was a source of a random sea of gravitational radiation that forms a background

that we observe today. The radiation originated in a host of individual events. The waves, now

superimposed, have a very similar character to random noise. The expansion of the universe

has cooled down the original radiation, the intensity of this radiation is still unknown. With

more sensitive detectors it is expected that they will encounter a background noice which

is isotropic in the sky. This is similar to the cosmic background radiation. For example

gravitational waves from the Big Bang may lead to interesting tests of quantum gravity and

the earliest moments of the universe if we can detect them. For the interested reader see [11]

and references therein.

2.7 Laser Interferometers

Laser interferometry is based on the Michelson interferometer. Laser light is used to measure

changes in the difference between two lengths of two perpendicular arms. Besides all manner

of different sources of noise, such differences are induced by the strain of the a gravitational

wave passing through the instrument. For LIGO the two arms have lengths of 4 km. Light
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sent from the laser light source to the beam splitter is divided evenly between the two arms.

Having traversed the arms the light is reflected back to the splitter by mirrors at their far

ends. On the return journey to the photodetector the roles of reflection and transmission in

the splitter are interchanged for the two beams and the phase is inverted. The recombined

beams heading towards the photodetector interfere destructively, while the beams heading

back to the light source interfere constructively. The interference arms are adjusted so that

the photodetector sees no light in general. A sufficiently strong gravitational wave passing

through the interferometer can disturb this perfect balance and causes the two beams to

no longer interfere destructively. One then measures a light signal which has the profile of

the amplitude of the passing gravitational wave. This is an unbelievable feat of engineering.

There are many sources of noise that must be dealt with, from vibrations from passing trucks

to limitations in performing measurements due to quantum effects.
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3 Spherical cold stars and stellar collapse

Birkhoff’s theorem proves that the Schwarzschild solution is the unique asymptotically flat,

spherically symmetric solution of Einstein’s equations in the absence of matter and cosmo-

logical constant. As such, away from any spherically symmetric static object such as a star,

planet or black hole the metric is the Schwarzschild metric. There are a few questions we may

want to ask at this point. What is the metric inside a star where the Schwarzschild solution

is no longer valid (since there is now a non-trivial contribution from the energy momentum

tensor)? Does GR tell us anything about the different types of stars: hot stars, white dwarfs,

neutron stars? In this section we answer these questions by studying the extension of the

Schwarzschild solution to describe a cold star.

As opposed to a hot star, where there is a thermal source of pressure generated by nuclear

reactions in its core, a cold star must be supported from collapse by a non-thermal pressure

source. When a star forms by condensation of a dust cloud due to gravitational attraction

the pressure increases which leads to an increase in temperature. When the dust cloud has

collapsed far enough and has reached a critical temperature, nuclear fusion in the core begins.

The dominant process is the conversion of four protons to form a helium-4 nucleus. The

emission of photons and neutrinos at this stage provides a thermal radiation which balances

against the collapse of the star due to gravity. As the Hydrogen fuel is depleted a helium core

builds up and the pressure from thermal radiation decreases and the star begins to collapse

again.

If the star is massive enough as the core contracts it once again heats up and if a crit-

ical temperature is reached, helium can be fused, giving a thermal pressure which halts the

collapse. If the star is not big enough, the temperature which allows Helium to fuse is not

reached and the star uses up its remaining fuel becoming a red dwarf. This process of a

period of equilibrium followed by collapse can keep repeating with the formation of heavier

nuclei in the core such as nickel and iron.

The crucial issue governing how far along this evolutionary sequence a star goes is whether

electron degeneracy pressure becomes sufficient to support the star from further collapse.

There is a critical mass MC , (??), below which the collapse is halted by the electron degen-

eracy pressure. The Pauli exclusion principle states that two or more identical fermions10

cannot occupy the same quantum state within a quantum system simultaneously.11 Due to

10A fermion is a particle with half integer spin. Fermions obey Fermi–Dirac statistics. Quarks and leptons

(electrons, muons and tau-ons and their neutrino versions) are examples of fermions.
11To get a feel of why this is true one needs to recall some facts about the wave-function in quantum
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this a gas of cold fermions resists compression, producing a pressure known as degeneracy

pressure. If the mass of the star is below the critical mass no further nuclear fusion will occur

and the star will simply cool down forever in a stable white dwarf configuration. This is the

fate of our sun. A white dwarf is much denser than a regular star: a matchbox sized piece

of white dwarf material would weigh roughly the same as an elephant. Newtonian gravity

is still applicable here and shows that a white dwarf cannot have a mass greater than the

Chandrasekhar limit, 1.4 M⊙ with M⊙ the mass of the Sun. A star more massive than this

cannot end its life as a white dwarf unless it sheds some of its mass.

If M is greater than MC then after a core of nickel and iron of mass ∼ MC has formed

it will be unable to support itself, electron degeneracy pressure is insufficient and no further

nuclear fusion occurs. The core will undergo gravitational collapse once again. When the

density of the core reaches nuclear density, the density of the nucleus of an atom, neutron

degeneracy pressure and nuclear forces provide a significant cold matter pressure. At such

high pressure one finds that beta decay is reversed, protons combine with electrons to produce

neutrons. If the mass of the star is below the critical limit for cold matter Mcritical 2M⊙

then the collapse will be halted leading to a neutron star. At this stage the Newtonian

approximation is no longer applicable and one must use general relativity.

When the collapse of the core is halted or slowed at nuclear densities a shock wave is

produced and this is expected to lead to the outer envelope of the star producing a supernova.

The presence of pulsars (neutron stars with a hot spot rotating at high speed) at the sites

of the Crab and Vela supernova remnants provides strong evidence that this supernovae are

produced in conjunction with the collapse of the core of a star at the end-point of stellar

evolution.

The final option is to have a star which has a mass larger than the critical mass Mcritical.

Equilibrium can never be achieved and complete gravitational collapse will occur. The end-

point of such a collapse will be a Schwarzschild black hole. We find that for a massive enough

star gravitational collapse into a black hole is inevitable.12

mechanics. We construct a state by acting on the ground state with operators. Operators which give bosons

(integer spin field) satisfy commutation relations, while operators which give rise to fermions satisfy anti-

commutation relations. If we want to insert the same (all quantum numbers the same) fermion at the same

point we must act with the same operator but due to the anti-commutator relations this vanishes and therefore

the wave-function vanishes.
12One can formulate this more concretely following Penrose and Hawing that collapse becomes inevitable

once a trapped surface forms. A trapped surface is a two-dimensional surface for which both the out-going and

in-going future directed geodesics orthogonal to the surface converge. For example consider spheres with r, t

constant in the Schwarzschild metric, these are trapped surfaces for r < RSchwarzschild.
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In this section we will show that general relativity predicts a maximum mass for a cold

star. To reach this conclusion we will assume that the star is spherically symmetric and static,

recall that this is one of the assumptions that goes into Birkhoff’s theorem. The interior of

the star can be modelled by a perfect fluid and we then need to solve Einstein’s solutions

with a perfect fluid source and match onto the Schwarzschild solution outside the star.

3.1 Tolman–Oppenheimer–Volkoff equations

Since we have a static spacetime we have a timelike Killing vector field K with which we can

foliate our spacetime with the surfaces Σt which are orthogonal to K. The orbits of SO(3)

through a point p ∈ Σt lie within Σt. This allows us to define coordinates (r, θ, ϕ) such that

the most general metric with our given assumptions takes the form

ds2 = −e2Φ(r)dt2 + e2Ψ(r)dr2 + r2ds2(S2) . (3.1)

We now need to specify the energy-momentum tensor. Outside the star this vanishes and

it remains to come up with a suitable ansatz within the star. We can describe this as a static

perfect fluid. The energy momentum tensor for a perfect fluid takes the form

Tµν = (p+ ρ)uµuν + pgµν , (3.2)

with uµ the four-velocity of the fluid, normalised to uµu
µ = −1, ρ the energy density and p the

pressure measured in the fluid’s local rest frame. Since we are interested in time-independent

and spherically symmetric stars the fluid should be at rest thus u points in the time-direction

only and therefore the correctly normalised vector field u is

u = e−Φ(r)∂t . (3.3)

Moreover the time-independence and spherical symmetry imply that ρ and p only depend on

r while the vanishing of the energy-momentum tensor outside of the star implies that ρ, p

vanish when r > Rc with Rc the radius of the star.

A fluid’s equations of motion are determined by the conservation of the energy momen-

tum tensor. This follows from the Einstein equations, ergo we need only consider the Einstein

conditions in the following. Since the Einstein equations inherit the symmetries of the space-

time it follows that there are only three non-trivial independent conditions arising from the

Einstein equations. We may take these to be the tt, rr, θθ components, (see the mathematica

file in moodle which does this computation.)
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The independent Einstein equations are

Ett =
e2Φ

r2

[ d
dr

(
r(1− e−2Ψ)

)
− 8πr2ρ

]
= 0 ,

Err =
1

r

[
e−2Φ∂re

2Φ − e2Ψ − 1

r
− 8πre2Ψp

]
= 0 ,

Eθθ = e−2Ψr

[
eΨ−Φ∂r

(
re−Ψ∂re

Φ
)
− ∂rΨ− 8πre2Ψp

]
= 0 .

(3.4)

To proceed it is useful to introduce m(r) via

e2Ψ(r) =

(
1− 2m(r)

r

)−1

, (3.5)

with 2m(r) < r. With this definition the tt component of the Einstein equation becomes

dm(r)

dr
= 4πr2ρ(r) . (3.6)

Furthermore the rr component reduces to

dΦ(r)

dr
=
m(r) + 4πr3p(r)

r(r − 2m(r))
. (3.7)

In the Newtonian limit we have r3p(r)≪ m(r) and m(r)≪ r so (3.7) reduces to

dΦ(r)

dr
≈ m(r)

r2
, (3.8)

this is just the spherically symmetric version of Poisson’s equation for the Newtonian gravi-

tational potential. We can see the other terms in (3.7) as relativistic corrections.

The final non-trivial component of the Einstein equations is the θθ component given

above, however rather than using that equation, it is simpler to derive the final equation from

the r-component of energy momentum conservation. This gives

dp(r)

dr
= −

(
p(r) + ρ(r)

)m(r) + 4πr3p(r)

r(r − 2m(r))
. (3.9)

One can check that this is implied by Eθθ = 0 above, see the mathematica file. In the

Newtonian limit (p ≪ ρ,m(r) ≪ r) it reduces to the Newtonian hydrostatic equilibrium

equation
dp(r)

dr
≈ −ρ(r)m(r)

r2
. (3.10)

Note that general relativity has little effect on the equilibrium configurations of stars with

p≪ ρ and m(r)≪ r. a Newtonian treatment is sufficient.
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We have four unknown functions
(
m(r),Φ(r), ρ(r), p(r)

)
and only three equations so the

system is currently underdetermined. The one remaining condition comes from the fact that

we are interested in a cold star, one which has a vanishing temperature. Thermodynamics

implies that T, ρ, p are not independent, and therefore we may write p = p(ρ). Moreover,

we should take ρ > 0 and p > 0 and that p(ρ) is an increasing function of ρ.13 The three

equations (3.6), (3.7) and (3.9) are known as the Tolman–Oppenheimer–Volkoff equations.

Outside the star We know that in the absence of matter and with the imposed constraints,

that the unique solution is the Schwarzschild solution:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−2

dr2 + r2ds2(S2) , (3.11)

with the constant M the total mass of the star. Recall that Rs = 2M is the Schwarzschild

radius where an event horizon is located. We must therefore take the star to have a radius

larger than the Schwarzschild radius: Rc > Rs. Regular stars have Rc ≫ Rs, for the Sun

Rs ≈ 3km while Rc ≈ 7 × 105km. We define the location of the surface of the star, Rc as

the point where p = 0. Since the outside is described by the Schwarzschild solution and we

require that the metrics patch together smoothly, we have that

M ≡ m(Rc) . (3.12)

Inside the star We now want to consider the interior of the star, and patch it with the

exterior solution above such that the full metric is smooth at the patching surface at r = Rc.

We can integrate (3.6) to give

m(r) = 4π

∫ r

0
ρ(r′)r′2dr′ +m∗ , (3.13)

with m∗ an integration constant.

At r = 0 the solution should be smooth and look like flat Minkowski space, the net

gravitational attraction at the centre is zero and is therefore equivalent to Minkowski space.

This implies that as r → 0 we have e2Ψ(0) = 1. Comparing with (3.5) we see that this is

equivalent to m(0) = 0. From our integrated solution, (3.13) we see that this implies that

the integration constant vanishes, m∗ = 0.

13If this were not the case then the star would be unstable since a fluctuation in some region that led to an

increased energy density would lead to a decrease in pressure. This would cause the fluid to more into this

region which would lead to a further increase in ρ and the fluctuation would continue to grow.
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At r = Rc, for our interior solution to match with the Schwarzschild solution, we need

to impose the boundary condition

M = 4π

∫ Rc

0
ρ(r)r2dr . (3.14)

Aside
There is a slight subtlety here in that the total energy of the matter should include the

correct volume measure when integrating over a spacelike hypersurface, the energy for the

spacelike hypersurface Σt is defined to be

E =

∫
Σt

ρ(r)dvol(Σt) =

∫
Σt

ρ(r)eΨ(r)r2 sin θdr ∧ dθ ∧ dϕ = 4π

∫ Rc

0
ρ(r)eΨ(r)r2dr . (3.15)

Note that this differs with the total mass of the star due to the eΨ(r) factor. Since eΨ(r) > 1

it follows that E > M and one can associate the positive difference E − M to be the

gravitational binding energy of the star. This would be the amount of energy needed to

disperse the matter to infinity, for spherical stars this is a well-defined concept but does

not always make sense in GR.

Note that due to the constraint that 2m(r) < r for all r, which imposes that eΨ(r) > 0

it follows that there is an upper bound on the possible mass of the star: 2M < Rc. There

is no Newtonian analogue of this condition. Reinstating the factors of c and GN we have

2GNM < c2Rc and in the c → ∞ limit this is trivial, hence why this constraint is not seen

in the Newtonian theory.

In order to solve the TOV equations we should use numerical integration. We view (3.6)

and (3.9) as a coupled set of ODEs for m(r) and ρ(r) for some given equation of state.

These can be solved, at least numerically on a computer once initial conditions for the mass

and density are given. We have that m(0) = 0 and therefore we ned only specify a density

ρc = ρ(0) at the centre of the star.

Given these initial conditions we can numerically solve (3.6) and (3.9). Since the latter

equation shows that p decreases with r there must be some point where the pressure vanishes,

this is the surface of the star and the radius is determined by p(Rc) = 0. We can invert this

to determine Rc as a function of ρc. From (3.14) we can determine M as a function of ρc.

Finally we may determine Φ(r) inside the star by integrating (3.7) from the surface of the star

with initial condition that 2Φ(Rc) = log(1− 2M/Rc), i.e. it gives the Schwarzschild solution
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potential. Hence for a given equation of state, static, spherically symmetric cold stars are

form a 1-parameter family of solutions labelled by the central density ρc.

3.2 Buchdahl’s limit

We will now, using Einstein’s equations, find bounds on the compactness of stars. We define

the compactness of a spherically symmetric configuration to be the quotient of twice the total

mass of the object with the stars radius:

C(Rc) =
2M

Rc
. (3.16)

Typical Neutron stars have compactness around C(Rc) ∼ 0.4 while at the extreme end

C(Rc) = 1 is a black hole. We will derive the Buchdahl limit which states that C(Rc) < 8/9.

Buchdahl proved this by making no strong hypothesis about the equation of state except that

the matter is barotropic (density a function of pressure only).

Theorem 1 Buchdahl’s theorem

Consider a solution to the TOV equations assuming a perfect fluid with an equation of

state that fulfils the two following properties:

1. The function e2Φ(r) is at least a C1 function while e2Ψ(r) is at least C0. At r = Rc the

solution matches with the Schwarzschild solution.

2. The density is a monotonically decreasing function. Continuity and monotonicity as-

sumptions along with the boundary conditions require that ρ(r) ≥ 0.

For any such solution the compactness satisfies the inequality C(Rc) < 8/9.

Demanding that the solution is well defined immediately enforces 2M/Rc ≤ 1 since

C(Rc) = 1 would lead to a diverging pressure. This is of course just the black hole limit.

To proceed we will take suitable combinations of the Einstein equations and then inte-

grate. Notice that because of the isotropic pressure both the rr and θθ Einstein equations

depend only on p and therefore by taking a suitable linear combination we can eliminate the

pressure. We take

0 = Eθθ − r2e−2ΨErr

= r3e−Φ−Ψ

[
∂r

(
e−Ψ

r
∂re

Φ

)
− eΨ+Φ

2
∂r

(
1− e−2Ψ

r2

)]
.

(3.17)

Plugging in our redefinition of Ψ we have

∂r

(
e−Ψ

r
∂re

Φ

)
= eΦ+Ψ∂r

(
m(r)

r3

)
. (3.18)
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We now use our second assumption that ρ is monotonically decreasing. The right-hand side

is the derivative of the average density and therefore it must be non-positive since the average

density should also be a monotonically decreasing function. This implies that the left-hand

side must be non-positive, hence

∂r

(
e−Ψ

r
∂re

Φ

)
≤ 0 . (3.19)

We can integrate this inequality from the surface into the star to some smaller radius r which

gives (
e−Ψ

r
∂re

Φ

) ∣∣∣∣
Rc

−
(
e−Ψ

r
∂re

Φ

) ∣∣∣∣
r

≤ 0 . (3.20)

Rearranging and using the replacement for Ψ and Φ on the surface we find(
e−Ψ

r
∂re

Φ

) ∣∣∣∣
r

≥ M

R3
c

, (3.21)

where we have used the continuity conditions on the surface to write the right-hand side. We

can now multiply both sides by reΨ and integrate again, this time from the surface to the

centre at r = 0. One finds

eΦ
∣∣∣
r=Rc

− eΦ
∣∣∣
r=0
≥ M

R3
c

∫ Rc

0
reΨdr . (3.22)

We know the matching condition for Φ on the surface and also that eΦ must be positive

everywhere and therefore we have

eΦ(0) ≤
√
1− C(Rc)−

M

R3
c

∫ Rc

0
dr

r√
1− 2m(r)

r

. (3.23)

Since we assumed monotonicity on the density the smallest value of m(r) is then the value it

would have for a uniform density function thus we have the inequality

m(r) ≥ Mr3

R3
c

. (3.24)

The best upper bound is then achieved by inserting the uniform density value of m(r) finding

eΦ(0) ≤ 3

2

√
1− C(Rc)−

1

2
. (3.25)

We know that eΦ(0) > 0 and therefore we find:

C(Rc) <
8

9
. (3.26)

This is called the Buchdahl limit.
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Remarks

• We began with a perfect fluid and an isotropic distribution of pressures. In the anisotropic

case in which pressures in the angular directions are allowed to grow without bound there

is no limit on the compactness of the object.

• The proof tells us which density profile saturates the bound, it is the uniform density

profile.

• The proof required the monotonicity condition on the density. If this is lifted then the

bound is not as sharp (or absent) depending on what other conditions one imposes. See

[12] for examples where these assumptions are lifted and different bounds found.

Suppose we manage to construct a star in equilibrium with a radius Rc = 9M/4 and gave

it a spherically symmetric push inward. It has no choice but to collapse inwards and can never

reach a static state again. During the collapse the metric outside is just the Schwarzschild

metric and therefore once it has fully collapsed the remaining metric is just the Schwarzschild

solution in a vacuum, the metric of a black hole!

One can improve the bound further. Part of the issue is knowing the equation of state

inside a high density star in thermal equilibrium. This is a strongly coupled theory and we are

ignorant as to the exact details. Instead, we may know the equation of state in some region

(envelope) r0 < r < Rc connected to the outside. The core is then the region 0 < r < r0

where the exact equation of state is unknown to us. At r = r0 we know that the density is

ρ0 and inside the core we have ρ > ρ0 and in the envelope ρ < ρ0.

Exercise 2:
From equation (3.9) after some algebra, which you will do in sheet 2 and assuming ρ ≥ 0

and ρ′(r) ≤ 0, one finds that

m(r)

r
≤ 2

9

[
1− 6πr2p(r) +

√
1 + 6πr2p(r)

]
. (3.27)

Evaluating on the radius of the star where p = 0, one finds

Rc ≥
9M

4
. (3.28)

Note that this is actually independent of the equation of state and so it applies equally to

hot stars and cold stars which satisfy these assumptions. Stars of uniform constant density

can get arbitrarily close to saturating the bound but as they get closer to the bound the

pressure at the centre diverges.
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We may then use (3.27) and evaluate it on the envelope boundary to the core. The mass of

the core is m0 = m(r0) with r0 the boundary of the envelope. We thus find:

Since the density in the core is bigger than the density on the boundary with the envelope

we must have that

m0 ≥
4πr30ρ0

3
. (3.29)

Note that Newtonian gravity would also predict this inequality, however in GR we also have

the additional constraint (3.27) which we should evaluate at r = r0 where we know the

equation of state and may therefore determine p0 = p
(
ρ(r0)

)
:

m0

r0
<

2

9

[
1− 7πr20p0 +

√
1 + 6πr20p0

]
. (3.30)

Since the RHS is a decreasing function of p0 evaluating at p0 = 0 we get the weaker bound

m0 <
4r0
9
. (3.31)

These two inequalities define a finite region in the m0 − r0 plane. Hence, even though we

are ignorant of the equation of state within the core, GR predicts that its mass cannot be

arbitrarily large.

Using (3.29) to eliminate r0 and plugging this into (3.31) we have

m0 <
4

9
√
3πρ0

. (3.32)

Hence, even though we do not know the equation of state inside the core, GR predicts that its

mass cannot be indefinitely large. Experimentally we know the equation of state of cold matter

at densities much higher than the density of atomic nucei so we take ρ0 = 5 × 1014g/cm3.

Plugging this into the above gives the bound m0 < 5M⊙.

If we are given a core with mass m0 and radius r0 we can solve (numerically) for the

envelope region using the known equation of state and the equations for m(r) and p(r) with

the initial conditions given by the core. If one plugs this into a computer programme one

finds that the maximal mass M as a function of ρ0,m0. One can then vary this over the

allowed region for (m0, r0) one finds that the largest mass is attained for the maximum of m0.

At this maximum the envelope contributes less than 1% of the total mass so the maximum

mass of M is at almost the same as the maximum of m0 and we have M ≤ 5M⊙.

This is an upper bound for any physically reasonable equation of state for ρ > ρ0. Any

equation of state will have a smaller upper bound than the one given here. One may put

further constraints on what we call a physically reasonable equation of state. A natural

demand is that the speed of sound through the mass should not exceed the speed of light, so

that dp
dρ ≤ 1, then the upper bound is further reduced to about 3M⊙.
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3.3 Summary

What have we learnt from this exercise? Firstly we see once again that GR predicts something

that Newtonian gravity cannot, we find an upper bound on the maximal size of any cold star,

independent of its composition. Secondly, this has an extremely important consequence for

the ultimate fate of a star. Ordinary hot starts are supported against collapse under their

own weight by ideal gas pressure resulting from their high temperature. This pressure is much

higher than the pressure that can be produced by cold matter at comparable densities and so

the above upper limits do not apply. However, since a hot star radiates energy, just look out

the nearest window during the day, if this energy is not replenished hydrostatic equilibrium

cannot be maintained. As the fuel source is used up the hydrostatic equilibrium is lost and it

begins to contract until the cold matter pressure dominates the remaining thermal pressure. If

the star was small enough a stable equilibrium may be reached using cold matter pressure and

will remain like this forever. However if the mass is greater than the cold matter upper limit,

equilibrium can never be achieved and the star would have to undergo complete gravitational

collapse unless they shed some of their mass to bring their total mass below the upper bound.

This is a very active area of research. Trying to understand the equation of state of

neutron stars remains an open problem. There are bounds on the possible equation of state,

and with these bounds on the maximum mass a neutron star can have, see for example

[13]. The core of the neutron star is described by a strongly coupled field theory: quantum

chromodynamics (QCD) which is not amenable to perturbation techniques you are familiar

with. Neutron stars occupy the low temperature, large chemical potential region of the QCD

phase diagram. One technique that has had some success recently is to use holography: see

[14] for a review.
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Figure 7: The equilibrium configurations of cold matter. Given an equation of state the

equilibrium configuration is uniquely determined by the central density ρc. The radii and

masses of these configurations are shown for values of ρc ranging from ≈ 105g cm−3 at point

A to ≈ 1017g cm−3 beyond point D. In the white dwarf regime the values of M and Rc
depend somewhat on the assumed composition of the star. The neutron star regime is far

more dependant on the assumptions that go into the equation of state, and interactions

between the fundamental constituents of the matter. In the latter regime this is just a rough

sketch of the qualitative features. The point B is the Chandrasekhar limit and beyond this

the white dwarf must undergo further gravitational collapse to become a neutron star. It

is at this point that the electron degeneracy pressure is insufficient to prevent gravitational

collapse and therefore the equation of state changes past this point.

Figure taken from Wald based on a figure by Harrison, Thorne, Wakano and Wheeler.
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4 What is a black hole: Causality and Penrose Diagrams

What is a black hole? From studying the Schwarzschild solution we can say some abstract

words about the existence of a horizon, light not being able to escape and so forth. However

these are just words and what we really want is a mathematical definition of what a black

hole is. In this section we will answer this question.

We will begin by understanding how we can draw finite diagrams of our four-dimensional

spaces in order to probe the causal structure of the spacetime. To do this we will conformally

compact our spacetime and from this draw a so-called Penrose diagram. We will then turn our

attention to investigating what singularities we are allowed and how we can detect them. We

know that there are singularities in the Schwarzschild metric in Schwarzschild coordinates, the

singularity at r = 0 is physical while the one at r = 2M is not physical. We understand that

the second singularity is a coordinate singularity and by performing a change of coordinates

to Eddington–Finkelstein coordinates it may be removed. We want to understand is how we

can detect such singular points and understand what type of singularity they are.

4.1 Conformal compactification

Let us consider a spacetime M . One of the postulates that we demand General Relativity

satisfies is that it is causal. A signal can be sent between two distinct points if and only if

the points can be joined by a non-spacelike curve. Our goal in this section is to investigate

the properties of causality on spacetime. Given that our spacetimes are generically infinite

in extent this can be difficult to understand on a piece of paper. There is a useful way of

resolving this issue called conformal compactification.

Definition 2 Conformal transformation A conformal transformation is a map from a space-

time (M, g) to a spacetime (M, g̃) such that

g̃µν(x) = Ω(x)2gµν(x) , (4.1)

where Ω(x) is a smooth function of the spacetime coordinates and Ω(x) ̸= 0 for all x ∈M .

One reason why conformal transformations are useful is because they preserve the causal

structure of spacetime. Consider a vector V µ on M , not necessarily a geodesic. Then since

Ω(x)2 > 0 it follows that

gµνV
µV ν > 0 ⇔ g̃µνV

µV ν > 0 ,

gµνV
µV ν = 0 ⇔ g̃µνV

µV ν = 0 ,

gµνV
µV ν < 0 ⇔ g̃µνV

µV ν < 0 .

(4.2)
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Hence curves which are timelike, null or spacelike with respect to one metric remain timelike,

null or spacelike respectively in the conformally rescaled metric. Moreover one can show that

two spacetimes whose metrics are related by a conformal transformation have the same null

geodesics. However, timelike and spacelike geodesics in one metric will not necessarily be

geodesics in the other.

Exercise 3:
Problem sheet 1.

• Show that under a conformal transformation null geodesics remain null geodesics.

• Show that timelike geodesics need not be geodesics in the conformally transformed met-

ric.

We may use this to our advantage when studying the causal structure of spacetime.

By using a suitably chosen conformal factor we may bring “infinity” to a finite coordinate

distance. This allows us to draw the causal structure on a finite piece of paper. This object

is known as a Penrose diagram and encodes the causal structure of the spacetime.

The general procedure for drawing a Penrose diagram is to perform the following steps.

• First change coordinates on (M, g) such that “infinity” is brought to finite coordinate

distance. This then allows us to draw the spacetime on a finite piece of paper. The points

at “infinity” will become the edges of the finite diagram. Typically the metric will diverge

at these points.

• To remedy the divergences we perform a conformal transformation on g to obtain g̃ which is

regular on the edges. The new pair (M, g̃) is a good representation of the original spacetime

(M, g) for understanding the causal structure: they have the exact same causal structure.

• It is customary to add the points at infinity to the spacetime to form a new manifold

M̃ (with boundary now). The resulting spacetime (M̃, g̃) is often called the conformal

compactification of (M, g).

Note that this has some limitations. Conformal transformations generically change the

curvature tensors so that R̃µνρσ ̸= Rµνρσ, R̃µν ̸= Rµν , R̃ ̸= R ... and so forth, therefore,

the conformally compactified spacetime is unphysical, it does not satisfy the Einstein field

equations anymore. Moreover, as you saw from problem sheet 1, timelike and spacelike

geodesics of (M, g) are not geodesics in (M, g̃). The utility of the conformal compactification

is for understanding the causal structure.
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To understand this better let us consider some examples.

4.1.1 Minkowski Space in two-dimensions

Our first example is Minkowski space in two-dimensions. The metric in rectangular coordi-

nates is given by

ds2 = −dt2 + dx2 , (4.3)

where −∞ < t, x <∞. The null geodesics are given by t± x =constant. We may introduce

light-cone coordinates u = t− x and v = t+ x which makes the null geodesics pretty simple.

In these coordinates the metric becomes

ds2 = −dudv . (4.4)

The coordinates are still infinite and so we have not really done much yet. To proceed we

want to shrink infinity down to a finite distance away. Define

u = tan ũ , v = tan ṽ , (4.5)

where −π
2 < ũ, ṽ < π

2 . Note that the range is open because strictly u, v → ±∞ are not in the

spacetime. The line-element with these coordinates is now

ds2 = − 1

cos2 ũ cos2 ṽ
dũdṽ . (4.6)

It diverges as ũ, ṽ → ±π
2 . We can now define a new metric conformally related to the one

above. The obvious conformal factor to use is chosen to remove the prefactor. We take

g̃ = cos2 ũ cos2 ṽg = −dũdṽ . (4.7)

This metric is now regular at the points at infinity where either ũ ṽ are equal to ±π
2 . Since

it is regular there we may now add these points to the spacetime. The resulting spacetime

(M̃, g̃) is the conformal compactification of (M, g). We may now draw this, see figure 8

The two points (ũ, ṽ) = (−π
2 ,−

π
2 ) and (ũ, ṽ) = (π2 ,

π
2 ) are denoted by i∓ respectively.

All past and future directed timelike curves end up at i∓ so we refer to i−/i+ as past/future

timelike infinity. Future directed null geodesics either end up at ṽ = π
2 with constant |ũ| < π

2

or at ũ = π
2 with constant |ṽ| < π

2 . This set of points is denoted by I + (called scri-plus)

and referred to as future null infinity. An analogous definition holds for past null infinity I −

(scri-minus). Spacelike infinity, i0 denotes the set of end-points of spacelike geodesics, which

correspond to (ũ, ṽ) = (π2 ,−
π
2 ) and (ũ, ṽ) = (−π

2 ,
π
2 ).
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Figure 8: Left: On the left we have Minkowski space, (M, g) in (ũ, ṽ) coordinates. The

boundaries ũ, ṽ = ±π
2 are not part of M and g diverges there. Lines with r = const are given

by dashed lines, while the solid lines are those with t = const. Right: On the right is the

Penrose diagram of the conformally compactified spacetime. Future past timelike infinity i±,

future/past null infinity is denoted J ± while spacelike infinity is denoted i0.

4.1.2 Minkowski Space in d > 2

We have just seen the Penrose diagram for d = 2, it turns out that this is some-what special

in dimension, Minkowski space in d > 2 is somewhat different. Consider Minkowski space in

d > 2 dimensions. We may use the “rectangular” metric

ds2 = −dt2 +
d−1∑
i=1

(dxi)2 , (4.8)

where the coordinates have ranges t ∈ (−∞,∞), xi ∈ (−∞,∞). To proceed we may a change

of coordinates going to spherical polar coordinates so that the spacelike part of the metric is

equivalent to
d−1∑
i=1

(dxi)2 = dr2 + r2ds2(Sd−2) , (4.9)

with Sd−2 the unit (d − 2)-dimensional sphere and ds2(Sd−2) the round metric on it. This

exhibits the spacetime as a cone centred at xi = 0. We take r ≥ 0. In these coordinates the

Minkowski metric is

ds2 = −dt2 + dr2 + r2ds2(Sd−2) . (4.10)

We can define light-cone coordinates

u = t− r , v = t+ r , (4.11)
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which puts the metric into the form

ds2 = −dudv + (v − u)2

4
ds2(Sd−2) . (4.12)

Note that since r ≥ 0 we have u ≤ v. We now want to bring infinity to finite coordinate

length, to do this we change coordinates to

u = tan ũ , v = tan ṽ , (4.13)

where

ũ ∈
(
− π

2
,
π

2

)
, ṽ ∈

(
− π

2
,
π

2

)
. (4.14)

Note that the range is open since the points at ±∞ in the original coordinates are not part

of the spacetime. We still need to impose that ũ ≤ ṽ. In these coordinates the metric reads

ds2 = − 1

4 cos2 ũ cos2 ṽ

[
− 4dũdṽ + sin2(ṽ − ũ)ds2

(
Sd−2

)]
. (4.15)

We may now use a conformal transformation to remove the overall pre-factor and we are left

with

g̃ = 4 cos2 ũ cos2 ṽg = −4dũdṽ + sin2(ṽ − ũ)ds2
(
Sd−2

)
. (4.16)

As before, after the conformal transformation ũ, ṽ = ±π
2 is no longer a problem and we may

compactify the space by including these points. We therefore have the coordinate ranges

−π
2 ≤ ũ ≤ ṽ ≤ π

2 . At fixed point on the sphere the metric is the same as that of 2d

Minkowski space, the difference is in the ranges of ũ, ṽ. We only include the half which is

right of the vertical line. Every point on the sphere represents a d− 2 dimensional sphere of

radius sin(ṽ − ũ). The Penrose diagram is drawn in figure 9

In 4d, we can picture this differently. Define the coordinates T = ṽ + ũ and χ = ṽ − ũ.
The coordinate ranges are then −π < T < π and 0 < χ < π, with the added constraint

|T |+ χ ≤ π. The metric reads

ĝ = −dT 2 + dχ2 + sin2 χds2(S2) . (4.17)

The spatial part is just the round metric of a three-sphere. This therefore represents a static

universe with spherical spatial slices corresponding to a finite portion of the Einstein static

universe. See the right-hand side of figure 9 there this is plotted. Note that the vertical

direction of the cylinder is T while the angular direction is χ. At each point there is a
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Figure 9: Left: On the left we have Minkowski space in general dimension > 2. Each

point represents a d − 2-dimensional sphere. As the null geodesic passes through r = 0

it emerges on another copy of the Penrose diagram whose points represent the anti-podes

(diametrically opposite point) on the spheres. Right: The right digram shows the conformal

compactification for d = 4 as a portion of the Einstein static universe. The curved line

represents that same null geodesic as on the left-hand-side.

two-sphere with radius sin2 χ. We have

i+ = future timelike infinity (T = π, χ = 0) ,

i0 = spatial infinity (T = 0, χ = π) ,

i− = past timelike infinity (T = −π, χ = 0) ,

I + = future null infinity(T = π − χ, 0 < χ < π) ,

I − = past null infinity(T = −π + χ, 0 < χ < π) .

(4.18)

Note that i±, i0 are actually points since χ = 0 and χ = π are the north and south poles of

S3. Meanwhile I ± are null surfaces with the topology of R× S2.

There are a number of features to observe. Radial null geodesics are at ±45◦ in the

diagram. All timelike geodesics begin at i− and end at i+. All null geodesics begin at I −

and end at I +.
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4.1.3 Rindler spacetime in 1+1 dimensions

Rindler space is a subregion of Minkowski space associated with observers who are eternally

accelerated at a constant rate. It appears often when looking at the near-horizon region of

black holes. Consider the two-dimensional Minkowski metric and an observer moving at a

uniform acceleration of magnitude α−1 in the x-direction. Their trajectory is

t(τ) = α sinh
( τ
α

)
, x(τ) = α cosh

( τ
α

)
, (4.19)

which has constant acceleration α,

aµaµ = α2 , aµ =
d2xµ

dτ2
. (4.20)

Note that the trajectory of the observer satisfies

x2(τ)− t2(τ) = ξ2 , (4.21)

which describes a hyperboloid asymptoting to null paths x = −t in the past and x = t in the

future. The accelerated observer travels from past null infinity to future null infinity, rather

than timelike infinity as would be reached by geodesic observers. The region x ≤ t is forever
hidden to them which makes the line x = t a horizon to these observers. This horizon is of

a different flavour to the Schwarzschild horizon since that is an observer independent object

while this horizon is associated with a special family of observers, see figure 10.

Rindler space corresponds to the right wedge x > |t| foliated by the worldlines of the

accelerated observers.

We can choose new coordinates (η, ξ) on 2d Minkowski space that is adapted to uniformly

accelerated motion. Let

t = ξ sinh(η) , x = ξ cosh(η) , (4.22)

with coordinate range 0 < ξ < ∞ and −∞ < η < ∞. In these coordinates the Minkowski

metric in (η, ξ) coordinates is

ds2 = −ξ2dη2 + dξ2 . (4.23)

The proper time measured by an accelerated observer, i.e. a stationary (ξ =constant) observer

in Rindler coordinates is τ = ξη. Since Rindler space is just a subregion of Minkowski space

the Penrose diagram is just a piece of figure 8.
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Figure 10: Eternally accelerating observers in Minkowski space. Their worldlines are in blue

and labelled by ξ. Events in the shaded region such as the black dot are hidden to them. The

Rindler horizon is the boundary between the shaded and unshaded regions. Rindler space is

the right wedge bounded by the dashed black lines which are null. The straight lines are lines

of constant Rindler time.

Exercise 4:
Consider the Schwarzschild metric in Schwarzschild coordinates. Let the horizon be at

r = rh and make the change of coordinates:

r = rh +
1

4rh
ρ2 . (4.24)

Expand the metric around small ρ (keeping only the terms which are leading for each dx2

term) to show that one obtains:

ds2 =
[
−κ2ρ2dt2 + dρ2 + (4M2)ds2(S2)

]
(1 +O(ρ2)) . (4.25)

The near-horizon geometry is therefore the direct product of 2d Minkowski with a two-

sphere with the metric on Minkowski space being in Rindler coordinates. Here κ is the

surface gravity which is given by

κ =
1

4M
. (4.26)
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4.1.4 Kruskal Space

Recall that we could extend the Schwarzschild solution beyond the horizon by using Kruskal

coordinates. The metric in these coordinates reads

ds2 = −32M3

r
exp

(
− r

2M

)
dUdV + r2ds2(S2) . (4.27)

Recall that the range of the coordinates is −∞ < U, V <∞. We need to define a new set of

null coordinates to bring infinity to a finite coordinate distance. We transform as

U = tan Ũ , V = tan Ṽ , (4.28)

such that −π
2 < Ũ, Ṽ < π

2 . The line element becomes

ds2 =
1

4 cos2 Ũ cos2 Ṽ

[
− 128M3

r
exp

(
− r

2M

)
dŨdṼ + r2 cos2 Ũ cos2 Ṽ ds2(S2)

]
. (4.29)

We perform the usual conformal transformation

g̃ = 4 cos2 Ũ cos2 Ṽ g = −128M3

r
exp

(
− r

2M

)
dŨdṼ + r2 cos2 Ũ cos2 Ṽ ds2(S2) . (4.30)

The curvature singularity at r = 0 is at UV = 1 in U, V coordinates and now corresponds to

1 = UV = tan Ũ tan Ṽ ⇔ sin Ũ sin Ṽ − cos Ũ cos Ṽ = 0 ⇔ cos(Ũ + Ṽ ) = 0 . (4.31)

This implies that it is located at Ũ + Ṽ = ±π
2 . To make this simpler it is useful to define

Ũ = T − X and Ṽ = T + X. The Penrose diagram includes the points at infinity and the

singularity, we draw it in figure 11.

In contrast to the conformal compactification of Minkowski space the conformally related

metric is singular at i±. Lines of constant r meet at i± and this includes the curvature

singularity at r = 0. Less obviously, it turns out that one cannot choose Ω to make the

conformally rescaled metric smooth at i0.

We can also plot the Penrose diagram of a spherically symmetric collapsing star. The

interior of the star is excluded since the stress energy tensor does not vanish there. We end

up with only the two regions 1 and 3 of Kruskal spacetime, there is no white hole region

anymore.

4.2 Asymptotic flatness

The Schwarzschild solution is an asymptotically flat spacetime. Somewhat colloquially we

define an asymptotically flat spacetime to be one that “looks like Minkowski spacetime at

infinity”. The remainder of this section is to give more rigour to this statement.
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Figure 11: Left: The Penrose diagram for Kruskal spacetime. The possible trajectory of

the surface of a collapsing star is plotted, the parts to the left correspond to the interior of

the star and is described by a metric (at fixed time slice) to the metric we constructed in

section 3. Right: The Penrose diagram for a collapsing star. The curved surface represents

the surface of the star with the shaded area corresponding to the interior of the star. The

horizon corresponds to the dashed line and appears in spacetime once the star has collapsed

sufficiently.

Infinity in Minkowski spacetime consists of the regions I ±, i± and i0. The points i±

are singular points in the conformal compactification of Kruskal spacetime. Since we want

to include the latter as asymptotically flat we cannot use i± in our definition of asymptotic

flatness. Moreover i0 is not smooth in Kruskal spacetime so we will not include i0 either.14

We are then left with I ± to define an asymptotically flat spacetime.

Recall that a manifold with a boundary is defined in a similar way to a manifold without

boundary, the only difference is that the charts are now maps φ :M → Rn/Z2 = {(x1, ...xn) :
x1 ≥ 0}. The boundary ∂M is defined to be the set of points which have x1 = 0 in some

chart.

Definition 3 Asymptotically flat at null infinity

A time-orientable spacetime (M, g) is asymptotically flat at null infinity if there exists a

spacetime (M̃, g̃) such that

1. There exists a positive function Ω on M such that (M̃, g̃) is an extension of (M,Ω2g).

14One can refine the definition of asymptotic flatness to include i0, however for simplicity we will just remove

it.
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2. Within M̃ , M can be extended to obtain a manifold with a boundary M ∪ ∂M .

3. Ω can be extended to a function on M̃ such that Ω = 0 and dΩ ̸= 0 on ∂M .

4. ∂M is the disjoint union of two components I + and I −, each diffeomorphic to R×S2.

5. No past (future) directed causal curve starting in M I + (I −).

6. I ± are complete (see below).

Let us unpack this definition slightly. Conditions 1-3 are just the requirement that we

can perform a conformal compactification of the spacetime. The requirement that dΩ ̸= 0 on

∂M just means that Ω has a first order singularity on ∂M , note that this is the case of the

examples considered above. This is necessary to make sure the metric approaches Minkowski

space at the appropriate rate near I ±. The remaining conditions 4-6 ensure that infinity has

the same structure at null infinity as Minkowski spacetime. Condition 4 says that i0 should

exist, condition 5 says we can define a future and a past.

Then

g = −2dudr + r2(dθ2 + sin2 θdϕ2) + .... , (4.32)

for large r. The ellipses denote subleading terms at large r. The leading terms are simply

the Minkowski metric. If one converts to the inertial frame coordinates (t, r, θ, ϕ) so that

the leading order metric is diag(−1, 1, 1, 1) then the correction terms are of the form r−1 and

suppressed in the large r limit. We see that the metric of an asymptotically metric approaches

the Minkowski metric at I +.

We can finally understand condition 6 of the definition of an asymptotically flat spacetime.

Definition 4 Complete

I + is complete if the generators of I + are complete. The generators are complete if

the affine parameter extends to ±∞. A similar definition holds for I −.

4.3 Singularities

We have seen that a spherically symmetric gravitational collapse results in the formation of

a singularity. One can ask whether this is an artefact of the spherical symmetry or if it is

something more generic? In Newtonian gravity the collapse of a spherically symmetric ball of

matter produces a singularity with infinite density at the origin, however a tiny perturbation

of the spherical symmetry does not lead to a singularity, rather a bouncing solution which

removes the singularity periodically. One could ask whether this is the same in GR. Work by
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Roger Penrose answered this question and showed that singularities are a generic prediction

of general relativity.15

4.3.1 Different types of singularities

We have seen two different types of singularity when we considered the Schwarzschild solution.

We have defined a metric singularity to arise in some basis if its components are not smooth

or the determinant vanishes (so that it is not invertible at that point). We learnt that a

coordinate singularity can be eliminated by a change of coordinates, for example r = 2M in

the Schwarzschild spacetime in Schwarzschild coordinates. These singularities are unphysical

since they can be removed by a better choice of coordinates. If it is not possible to remove the

singularity by a change of coordinates then we have a physical singularity. A scalar curvature

singularity is a singularity where some scalar constructed from the Riemann tensor blows up.

Since it is a scalar it is diffeomorphism invariant and thus if it diverges in one coordinate

system it diverges in all.

Conical singularities Not all physical singularities are curvature singularities. Consider

the manifoldM = R2 and introduce plane polar coordinates (r, ϕ) with ϕ ∼ ϕ+2π and define

the Riemannian metric

g = dr2 + λ2r2dϕ2 , (4.33)

with λ > 0. The metric determinant vanishes at r = 0, however for λ = 1 this is just

Euclidean space in polar coordinates. We can convert to Cartesian coordinates to see that

r = 0 is just a coordinate singularity. However for λ ̸= 1 this is no longer the case. Define

ϕ′ = λϕ, then the metric is

g = dr2 + r2dϕ′2 , (4.34)

which is locally isometric to Euclidean space and therefore curvature singularity free. How-

ever, it is not globally isometric to Euclidean space because the period of ϕ′ is 2πλ rather

than 2π. Consider a circle with radius r = ϵ, this has

circumference

radius
=

2ϕλϵ

ϵ
= 2πλ , (4.35)

which does not tend to 2π as ϵ→ 0. Recall that any smooth Riemannian manifold is locally

flat, i.e. one recovers results of Euclidean geometry on sufficiently small length scales. The

above shows that this is not true for the above metric for small circles around r = 0 and
15It is sometimes said that GR predicts its own downfall. This is because GR predicts singularities but is

ill equipped to deal with them. To fully understand them we need a theory of quantum gravity, which GR is

not.
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therefore the metric cannot be extended smoothly to r = 0. This is an example of a conical

singularity.

A problem in defining singularities is that they are not places, they do not belong to

the spacetime manifold because we define spacetime as the pair (M, g) where g is a smooth

Lorentzian metric. This is the reason we remove r = 0 from the Kruskal spacetime, the

metric is no longer smooth there. Similarly in the above example if we want to have a smooth

manifold we should take M = R2/(0, 0) so that r = 0 is not part of the spacetime M . In

both of these examples the existence of the singularity implies that some geodesics cannot be

extended to arbitrarily large affine parameter because they end at the singularity (in these

case both at r = 0). We will use this property to define what we mean by a singular spacetime.

First eliminate the trivial case where a geodesic ends because we haven’t taken the range

of its affine parameter to be large enough. A curve is a smooth map γ : (a, b)→M . Sometimes

a curve can be extended, that is it is part of a bigger curve. If this happens then the first

curve will have an endpoint, which is defined as follows.

Definition 5 Future endpoint

The point p ∈ M is a future end-point of a future-directed causal curve γ : (a, b) → M

if, for any neighbourhood O of p there exists t0 such that γ(t) ∈ O for all t > t0. We say that

γ is future inextendible if it has no future endpoint. Similarly for past endpoints and past

in-extendibility. The curve γ is in-extendible if it is both future and past in-extendible.

Example 4.1: An in-extendible spacetime

Let (M, g) be Minkowski spacetime and let γ : (−∞, 0)→M be γ(t) = (t, 0, 0, 0). Then the

origin is a future end-point of γ. However if we instead let (M, g) be Minkowski spacetime

with the origin removed then γ is future in-extendible.

Definition 6 Complete

A geodesic is complete if an affine parameter for the geodesic extends to ±∞. A spacetime

is geodesically complete if all in-extendible causal geodesics are complete.

Example 4.2: Geodesically complete and incomplete spacetimes
Minkowski spacetime is geodesically complete as is the spacetime describing a spherically

symmetric star. Kruskal spacetime on the other hand is geodesically incomplete because

some geodesics reach r = 0 in finite affine parameter and hence cannot be extended to

infinite affine parameter.

A spacetime which is extendible, like the Schwarzschild solution in Schwarzschild coor-
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dinates, is also incomplete. The incompleteness arises because we are not considering the

full spacetime. One should therefore consider the maximal extension of spacetime.

Example 4.3: Rindler is geodesically incomplete
Consider the Rindler metric

ds2 = −ξ2dη2 + dη2 , (4.36)

which has a singularity at ξ = 0. Null geodesics for this metric satisfy:

d

dλ
(ṫξ2) = 0 ,

ξ̇2 − ξ2ṫ2 = 0 .
(4.37)

We may solve the first using that it defines a conserved quantity: thus

E = ṫξ2 . (4.38)

We therefore find that

ξ̇ = ±E
ξ
, (4.39)

which has solution:

ξ =
√
c± 2Eλ . (4.40)

We see that ξ = 0 is reached within finite affine parameter and therefore Rindler is geodesi-

cally incomplete. We may extend Rindler space to obtain Minkowski space which is of

course geodesically complete.

We define a spacetime to be singular if it is:

Definition 7 Singular

A spacetime is singular if it is both geodesically incomplete and in-extendible.

This is true for the Kruskal spacetime, and the Kruskal extension of the RN and Kerr–

Newman black holes that we will study later in the course.

4.4 Null hypersurfaces

Definition 8 Hypersurface

A hypersurface is a d− 1 dimensional space living within a d-dimensional spacetime. It

can be defined in terms of a single real equation.
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Example 4.4: Sphere as a hypersurface

We may define a sphere as a hypersurface within Rd as:

Sd−1 = {xi ∈ Rd :
d∑
i=1

x2i = R2} . (4.41)

Definition 9 Hypersurface-orthogonal

Let Σ be a hypersurface in M specified by the equation f(x) = 0, with f : M → R a

smooth function. We require df ̸= 0 on Σ, then df is normal to Σ.16 The dual vector to df ,

let us call it ξ, is said to be hypersurface orthogonal.

Definition 10 Timelike, spacelike and null hypersurfaces

Let ξ be the dual vector to the normal of the hypersurface. Then we have:

• If ξ is timelike then the hypersurface is a spacelike hypersurface.

• If ξ is spacelike then the hypersurface is a timelike hypersurface.

• If ξ is null then the hypersurface is a null hypersurface.

Aside
Given a normal to a hypersurface if follows that any other normal to the hypersurface can

be written as n = gdf + fn′ with g a smooth function which does not vanish anywhere on

Σ, and n′ a smooth one-form.Therefore we necessarily have

dn = dg ∧ df +df ∧ n′ + fdn′ ⇒ dn
∣∣
Σ
= (dg− n′)∧ df ⇒ n∧ dn

∣∣
Σ
= 0 . (4.42)

Conversely Frobenius’ theorem implies.

Theorem 2 Frobenius:

If n is a non-zero one-form such that n ∧ dn = 0 everywhere, then there exist functions f, g

such that n = gdf and therefore n is normal to the surfaces defined by f(x) =constant, and

therefore hypersurface-orthogonal.

Example 4.5: Null hypersurface in Schwarzschild
Consider surfaces of constant r in Schwarzschild spacetime. The one-form n = dr is normal

16To see this consider a curve γ(λ) ⊂ Σ. By definition f(γ(λ)) = 0 for all λ, thus, 0 = ∂λf(γ(λ)) =

γ̇µ(λ)∂µf(γ(λ)) = df(γ̇(λ)). The latter is equivalent to df being normal to the hypersurface.
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to such surfaces. The norm is

n2 = 1− 2M

r
. (4.43)

We see that the hypersurface r = 2M is a null hypersurface.

Definition 11 Killing horizon

A null hypersurface Σ is a Killing horizon of a Killing vector ξ if ξ is normal to Σ on Σ.

For every Killing horizon we can associate a quantity called the surface gravity. Given the

Killing horizon we have an associated Killing vector, ξ which is null on the horizon. In an

asymptotically flat spacetime ξ is normalised so that asymptotically it goes to ξ2 → −1. Since
ξ is a normal vector to the Killing horizon it obeys the geodesic equation

ξµ∇µξν = κξν . (4.44)

It turns out that κ is constant over the horizon. It parametrises how far away the Killing

vector ξ is from being an affinely parametrised geodesic.

Example 4.6: Schwarzschild Killing horizon
Since the horizon corresponds to a coordinate singularity in Schwarzschild coordinates we

need to work in coordinates which extend beyond the horizon. The easiest to use are the

ingoing Eddington–Finkelstein coordinates. We have that the metric takes the form

ds2 = −f(r)dv2 + 2dvdr + r2ds2(S2) , f(r) = 1− 2M

r
. (4.45)

The inverse metric, in matrix form is

gµν =


0 1 0 0

1 f(r) 0 0

0 0 r−2 0

0 0 0 1
r2 sin2 θ

 (4.46)

The hypersurface is defined to be r = 2M and therefore the most general normal is given

by

n = hdr + (r − 2M)n′ , (4.47)

with h(r = 2M) ̸= 0 and n′ an arbitrary one-form smooth on r = 2M . We will continue

to work with the simpler dr for this computation however when considering more general

black holes it can be useful to consider the function h and one-form n′. Then we have that

the

ξµ = gµνnν = (1, f(r), 0, 0) . (4.48)
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On r = 2M this reads

ξ = ∂v , (4.49)

which is indeed a Killing vector. It has norm

|ξ|2 = −f(r) , (4.50)

and therefore it is time-like outside the horizon and null on it.

We can compute the surface gravity on the horizon. We have

ξµ∇µξν = ξµ∂µξ
ν + ξµΓνµσξ

σ = Γvvv . (4.51)

We can compute this component of the Levi–Civita connection simply as

Γvvv =
1

2
gvσ(2∂vgσv − ∂σgvv)−

M

r2
. (4.52)

Therefore we have

∇ξξν =
1

4M
ξν , (4.53)

and thus

κ =
1

4M
. (4.54)

This will later be understood as the temperature of the black hole.

Let nµ be normal to a null hypersurface N . Then any (non-zero) vector Xµ tangent to

the hypersurface obeys nµX
µ = 0. Therefore, either Xµ is spacelike or Xµ is parallel to nµ.

In particular note that nµ is tangent to the hypersurface, since it is null, hence on N the

integral curves of nµ lie within N .

Proposition: The integral curves of n are null geodesics. We call them the generators of N .

Proof: Let N be given by the equation f =constant for some function f with df ̸= 0 on

N . Then we have n = hdf for h some function which does not vanish on f =constant. Let
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N = df , the integral curves of n and N are the same up to a choice of reparametrisation.17

Since N is null we have that NµNµ = 0 on N which implies that the gradient of this function

is normal to N :

∇µ(NνNν)
∣∣∣
N

= 2αNµ , (4.55)

with α some function on N . Now since ∇µNν = ∇µ∇νf = ∇ν∇µf = ∇νNµ we have

Nν∇µNν = Nν∇νNµ ⇒ Nν∇νNµ

∣∣∣
N

= αNµ . (4.56)

This is nothing but the geodesic equation for a non-affinely parametrised geodesic. Hence on

N the integral curves of N , and therefore also n are null geodesics.

Example 4.7: Kruskal

Consider Kruskal spacetime, with metric (A.69). Let N = dU , this is null everywhere (since

gUU = 0) and is normal to a family of null hypersurfaces defined by U =constant. Since

N2 = 0 everywhere it follows that N is tangent to affinely parametrised null geodesics.

Raising an index gives

Nµ = − r

16M3
e
r

2M

(
∂

∂V

)µ
. (4.57)

Let N be the surface U = 0. Since U = 0 corresponds to r = 2M on N we have that N is

simply a constant multiple of ∂
∂V . Thus V is an affine parameter for the generators of N .

Similarly U is an affine parameter of for the generators of the null hypersurface V = 0.

Black holes are characterised by the fact that you can enter them but never exit. The

most important feature is therefore not the singularity but rather the event horizon. An event

horizon is a hypersurface separating those spacetime points that are connected to infinity by a

timelike path from those that are not. In the following section we want to make this statement

more mathematically rigorous.

4.5 Definition of a black hole and the event horizon

It remains to understand mathematically what a black hole is.

17To see this consider the integral curves defined by nµ:

nµ =
dx̃µ(λ̃)

dλ̃
.

We have that the integral curves for N are then

Nµ =
dxµ

dλ
= h−1nµ = h−1 dx̃

µ

dλ̃
=

[
h−1 dλ

dλ̃

]
dx̃µ

dλ
.

By choosing the parameter λ(λ̃) so that dλ

dλ̃
= h we may make the bracket in the last term become unity and

therefore we have shown that the integral curves are the same up to a choice of reparametrisation.
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Definition 12 Causal curve

A causal curve is any path which is timelike or null everywhere.

Definition 13 Causal future, chronological future

Given any subset S of a manifold M , we can define the causal future of S denoted J+(S)

to be the set of points that can be reached from S following a future directed causal curve.

The chronological future I+(S) is the set of points that can be reached by following a

future directed timelike curve. A point p will always be in its causal future J+(S) but not

necessarily its own chronological future I+(p), though it could be.

The causal past J− and chronological past I− are defined analogously.

We can now define a black hole and its event horizon. Consider a manifold with metric

(M, g) and its conformal compactification (M̄, ḡ). Recall that the causal past J− of a region

is the set of all points we can reach from that region by moving along a past-directed timelike

paths. We can define the causal past of scri-plus J−(I +) ⊂ M̄ . The set of points of M

that can send a signal to I + is M ∩ J−(I +). We define the black hole region to be the

complement of this region, and the future event horizon to be the boundary of the black hole

region:

Definition 14 Black hole region, future event horizon

Let (M, g) be a spacetime that is asymptotically flat at null infinity. The Black hole region is

B =M\[M ∩ J−(I +)] , (4.58)

where J−(I +) is defined using the unphysical spacetime (M̄, ḡ). The future event horizon is

H+ = ∂B.

Definition 15 White hole region, past event horizon Similarly the white hole region is

W =M\[M ∩ J+(I −)] , (4.59)

and the past event horizon is H− = ∂W.

Theorem 3 Hawking 1972

In a stationary, analytic, asymptotically flat vacuum black hole spacetime, H+ is a Killing

horizon.
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Definition 16 Naked Singularity

A naked singularity is a singularity from which signals can reach I +, i.e. one that is not

hidden behind an event horizon.

Conjecture Strong cosmic conjecture

Naked singularities cannot form in gravitational collapse from generic initially non-singular

states in an asymptotically flat spacetime obeying the dominant energy conditions.
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5 Charged Black holes

At this point we have almost beaten to death the Schwarzschild solution, we need some

new solutions to play with. There is a generalisation to the Schwarzschild solution that we

can study: we can give it some electric and magnetic charges. This will retain the static

and spherically symmetric properties of the Schwarzschild solution but introduce a gauge

field which couples gravity with electromagnetism. This charged black hole is known as the

Reissner–Nordström (RN) black hole.

In nature large imbalances of charge do not occur, it is favourable for the charged object to

attract particles of opposite charge and gradually lose its charge. We would therefore expect

matter undergoing gravitational collapse to be neutral and so the presence of charged black

holes in nature does not seem particularly relevant. Nevertheless the solution exhibits some

interesting features. Moreover, for those doing string theory, RN black holes occasionally

appear, though probably not in your course.

5.1 Einstein gravity coupled to electromagnetism

We want to couple Einstein gravity to Electromagnetism. Recall that the general prescrip-

tion for coupling matter to gravity is through minimal coupling.18 Minimal coupling says

we replace the Minkowski metric with the curved metric of spacetime, we replace regular

derivatives with covariant derivatives and add in the correct volume measure.

Electromagnetism in terms of forms

Recall that Electromagnetism is governed by Maxwell’s equations:

∇× B⃗ − ∂tE⃗ = J⃗ ,

∇ · E⃗ = ρ ,

∇× E⃗ + ∂tB⃗ = 0 ,

∇ · B⃗ = 0 .

(5.1)

Here B⃗ and E⃗ are the electric and magnetic field 3-vectors, J⃗ is a current, ρ is the charge

density. These equations are invariant under Lorentz transformations, even though they

do not look invariant. We can write these in a manifestly invariant way by introducing

the two-form field strength F and its one-form potential A.

18One can also add non-minimal terms but we will not consider these here.
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Writing the Maxwell’s equations in component notation we have

ϵijk∂jBk − ∂0Ei = J i ,

∂iE
i = J0 ,

ϵijk∂jEk + ∂0B
i = 0 ,

∂iB
i = 0 .

(5.2)

We have introduced the current 4-vector J = (ρ, J⃗) to rewrite the first two conditions.

Let us define the field strength tensor Fµν to be

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


µν

(5.3)

We have

F 0i = Ei , F ij = ϵijkBk . (5.4)

Therefore the first two equations in (5.3) can be rewritten as

∂jF
ij − ∂0F 0i = J i ,

∂iF
0i = J0 ,

(5.5)

which may be rewritten as

∂µF
µν = −Jν . (5.6)

Similarly the bottom two equations in (5.3) may be rewritten as

∂[µFνλ] = 0 . (5.7)

Writing F as a two-form we have the two equations

d ⋆ F = −J , dF = 0 . (5.8)

The first equation is known as the Maxwell equation, while the second is the Bianchi

identity. Since dF = 0 this means that locally F can be written as a closed form,

F = dA , Fµν = ∂µAν − ∂νAµ . (5.9)

The one-form A is known as the gauge field. Note that it is not unique, A+dΛ gives the

same field strength F when Λ is a smooth function. Adding the term dΛ to the potential

is known as a gauge transformation, it is a redundancy/symmetry in our description

of the the theory. Physical quantities will generally be expressed in terms of the field
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strength F . On the other hand we view the gauge field as the dynamical field of the

theory, i.e. the field we vary an action with respect to.

We can write an action for electromagnetism by using the gauge field A and defining

the field strength F to be F = dA. Then the action giving rise to Maxwell’s equations

with sources is

SMaxwell =

∫
d4x LEM =

∫
d4x
[
− 1

4
FµνF

µν +AµJ
µ
]
. (5.10)

We have
∂LEM
∂Aν

= Jν , (5.11)

and
∂LEM
∂(∂µAν)

= −Fµν . (5.12)

Putting everything together, the Euler Lagrange equations give

∂µF
µν = −Jν , (5.13)

as we found above from Maxwell’s equations. The Bianchi identity arises because we

define F = dA and by using that d2 = 0.

The Lagrangian for electromagnetism in the absence of sources in flat space is

LEM = −FµνFρσηµρηνσ . (5.14)

To couple this to gravity we will replace the Minkowski metric with the curved metric, add

the volume measure and replace derivatives with covariant derivatives. Derivatives appear in

the field strength as

Fµν = ∂µAν − ∂νAµ −→ ∇µAν −∇νAµ = ∂µAν − ∂νAµ , (5.15)

where the latter follows when using the Levi–Civita connection. The action for Einstein–

Maxwell theory is then

S =
1

16π

∫
d4x
√
−g
(
R− FµνFρσgµρgνσ

)
≡ 1

16π

∫
d4x
√
−g
(
R− FµνFµν

)
. (5.16)

The equations of motion derived from the variation of the Einstein–Maxwell action are

Rµν −
1

2
Rgµν = 2

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
,

∇µFµν = 0 ,

(5.17)

and should be accompanied by the Bianchi identity dF = 0. Note that the second equation

of motion is called the Maxwell equation and is equivalent to

d ⋆ F = 0 . (5.18)
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Exercise 5:
Check the equations of motion are indeed those derived from the action.

5.2 Reissner–Nordström black hole

There is a generalisation of Birkhoff’s theorem for four-dimensional Einstein–Maxwell theory.

Theorem 4 The Unique spherically symmetric solution of the Einstein–Maxwell equations

with non-constant area radius function r is the Reissner–Nordström solution:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2ds2(S2) ,

A = −Q
r
dt− P cos θdϕ ,

f(r) = 1− 2M

r
+
e2

r2
, e2 = Q2 + P 2 .

(5.19)

The solution has three parameters: M,P,Q. We will show later that these are the mass,

magnetic charge and electric charge of the solution. Note that there is no evidence for the

existence of magnetic monopoles (which the P describes) in nature, however it is a valid

solution of the equations of motion.

Aside
Note that there is a statement that the area function should be non-constant. If this

is relaxed there is an additional solution which corresponds to AdS2 × S2. This is the

near-horizon limit of the extremal Reissner–Nordstrom solution.

There are several properties which are similar to the Schwarzschild solution. The solution

is static with the timelike Killing vector ∂t. It is also asymptotically flat, like the Schwarzschild

solution and has a curvature singularity at r = 0. Note that we may smoothly recover the

Schwarzschild solution by sending Q,P → 0 which turns the gauge field off.

To discuss the properties of the solution we need to study the possible degenerations of

the metric. To do this it is convenient to define

∆(r) = r2f(r) = r2 − 2Mr + e2 = (r − r+)(r − r−) , r± =M ±
√
M2 − e2 . (5.20)

The metric then takes the form

ds2 = −∆(r)

r2
dt2 +

r2

∆(r)
dr2 + r2ds2(S2) . (5.21)

One can check that the Kretschmann scalar is

RµνρσR
µνρσ =

8(7e3 − 12e2Mr + 6M2r2)

r8
, (5.22)
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and clearly r = 0 is a genuine curvature singularity. Following the string cosmic censorship

conjecture we would like to hide the singularity behind a horizon, much in the same way that

the curvature singularity is hidden in the Schwarzschild solution behind a horizon. From our

discussion on black hole horizons we must look for a Killing horizon. This will be determined

by having a root of ∆(r) so that the hypersurface normal to dr at the root is a Killing horizon.

From the form of the metric it is clear that metric has (at least) a coordinate singularity at

this point. There are then three distinct behaviours for the metric depending on the possible

roots r±, which in turn are determined by the sign of M2 − e2.

5.2.1 Super extremal RN: e2 > M2

IfM2−e2 < 0 the roots r± are complex and therefore ∆(r) does not have any real zeros. Thus

the curvature singularity is not hidden behind a horizon and we have a naked singularity.

There is no obstruction to an observer travelling to the singularity, studying it and then

returning to us to tell us all about it. If one studies the geodesics one finds that the naked

singularity is repulsive, timelike geodesics never intersect r = 0, rather they approach r = 0

but reverse course and move away. Null geodesics can reach the singularity as can non-geodesic

timelike curves.

As r →∞ the solution approaches flat spacetime and the causal structure looks normal

everywhere. The conformal diagram will therefore be just like that of Minkowski space, except

now r = 0 is a singularity. The nakedness of the singularity should be offensive to you. We

should never expect to find a black hole with M2 < e2 as a result of gravitational collapse.

Roughly, the condition states that the total energy of the hole is less than the contribution

to the energy of the electromagnetic fields alone, and therefore we must have something with

negative mass. We consider this unphysical. The Penrose diagram is given in figure 12.

Constructing the Penrose diagram proceeds in much the same way as for the Schwarzschild

black hole with negative mass in problem sheet 2.

5.2.2 Sub-extremal RN: M2 > e2

In this case ∆ has two real simple roots and there are consequently two coordinate singu-

larities. The surfaces defined by r = r± are both null hypersurfaces and are both Killing

horizons. The singularity at r = 0 is a timelike line (contrast this with Schwarzschild where

it was spacelike).

To see that they are coordinate singularities we can proceed in a similar manner as we did

for the Schwarzschild solution and define tortoise like coordinates. Let us begin with r > r+
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Figure 12: The Penrose diagram for the super-extremal Reissner–Nordström solution.

and define

dr∗ =
r2

∆(r)
dr . (5.23)

This is the usual trick of defining a new coordinate in which the null radial geodesics are

straight lines and is the generalisation of the Tortoise coordinate for the RN solution. Inte-

grating gives

r∗ = r +
1

2κ+
log

r − r+
r+

+
1

2κ−
log

r − r−
r−

+ const , (5.24)

where

κ± =
r± − r∓
2r2±

, (5.25)
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and we have added constants (the r± denominators in the log terms) for later simplicity. Now

define the Eddington–Finkelstein coordinates

u = t− r∗ , v = t+ r∗ . (5.26)

In ingoing Eddington–Finkelstein coordinates the RN metric is

ds2 = −∆(r)

r2
dv2 + 2dvdr + r2ds2(S2) . (5.27)

This is now smooth for any r > 0 hence we can analytically continue the metric into the

new region 0 < r < r+. There remains a curvature singularity at r = 0 and, as we will see

momentarily, there are null hypersurfaces at r = r±.

Null hypersurfaces In the ingoing-Eddington–Finkelstein coordinates it is not obvious

that the surfaces r = r± are null hypersurfaces, in fact they are Killing horizons. First

consider the normal to these hypersurfaces defined by r = r±, we may take

n = dr . (5.28)

Recall that the normals are not uniquely defined. In fact we may take a more general normal

such that n = hdr+ (r− r±)n′ where h(r±) ̸= 0 and n′ is a smooth one-form. Working with

the simple normal n = dr we can compute the dual vector field to be

ξ = gµνnν∂µ = ∂v +
∆(r)

r2
∂r . (5.29)

It follows that the norm is given by

|ξ|2 = ∆(r)

r2
, (5.30)

which vanishes for r = r± and thus the hypersurface is null. Moreover, on the null hyper-

surface we have ξ|Σ = ∂v which is a Killing vector. Therefore both r = r± define Killing

horizons. No point in the region r < r+ can send a signal to I +, hence it describes a black

hole. This behaves in the same way as the Schwarzschild horizon. The black hole region is

r ≤ r+ and the future event horizon is the null hypersurface r = r+.

Maximal extension of sub-extremal RN Though the outer horizon behaves in the same

way to Schwarzschild, the inner horizon and singularity at r = 0 behave differently. Between

r− < r < r+ we have that ∂t is space-like, as in Schwarzschild, but becomes time-like again

between 0 < r < r−. This means that once you have gone past r = r+ you are forced towards
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r = r− since it lies in your future. However, once you have passed through r = r− there is no

longer a requirement to go towards r = 0, this is a time-like line and therefore not necessarily

in your future: it can be avoided. This is different to Schwarzschild where the singularity was

space-like and you must hit it.

To understand the global structure better we need to define Kruskal-like coordinates for

our spacetime. We define

U± = −e−κ±u , V ± = ±eκ±v , (5.31)

Starting in the region r > r+ we use coordinates (U+, V +, θ, ϕ) to obtain the metric

ds2 = −r+r−
κ2+r

2
e−2κ+r

(
r − r−
r−

)1+κ+/|κ−|
dU+dV + + r2ds2(S2) , (5.32)

where r(U+, V +) is defined implicitly by

−U+V + = e2κ+r
(
r − r+
r+

)(
r−

r − r−

)κ+/|κ−|
. (5.33)

Notice that the metric is ill-defined at r = r− and therefore we should keep U+ and V + so

that r > r−. The RHS of (5.33) is a monotonically increasing function of r from r > r−,

to see this use that κ+ > |κ−|. Initially we have U+ < 0 and V + > 0 which gives r > r+,

but now we can analytically continue to U+ ≥ 0 or V + ≤ 0. In particular the metric is

smooth and non-degenerate when U+ = 0 or V + = 0. We obtain a diagram very similar to

the Kruskal diagram we had for Schwarzschild, see figure 13.

Just as for Kruskal we have a pair of null hypersurfaces (r = r+) which intersect in the

bifurcation 2-sphere located at U+ = V + = 0. Surfaces of constant t are Einstein–Rosen

bridges which connect regions I and IV. The major difference to the Schwarzschild solution is

that we no longer have a curvature singularity in regions II and III because r(U+, V +) ≥ r−.
However we know from our ED coordinates that it is possible to extend our metric into the

r < r− region, hence the above spacetime must be extendable. Indeed, radial null geodesics

reach r = r− in finite proper affine time and therefore the spacetime is extendible. To extend

our metric further we need another change of coordinates.

To do this we should start in region II and use ingoing EF coordinates (v, r, θ, ϕ), since

we know that these cover regions I and II. We can now define a retarded time coordinate u

in region II. Define the time coordinate t = v − r∗ in region II with r∗ as defined in (5.24).

The metric in coordinates (t, r, θ, ϕ) takes the static RN form given above with r− < r < r+.

Now define u = t − r∗ = v − 2r∗. Having defined u in region II we can now define Kruskal
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Figure 13: The Reissner–Nordström solution in (U+, V +) coordinates.

coordinates U− < 0 and V − < 0 in region II using the formula above in equation 5.31. In

these coordinates the metric is

ds2 = −r+r−
κ2−r

2
e2|κ−|r

(
r+ − r
r+

)1+|κ−|/κ+
dU−dV − + r2ds2(S2) , (5.34)

where r(U−, V −) < r+ is given implicitly by

U−V − = e−2|κ−|r
(
r − r−
r−

)(
r+

r+ − r

)|κ−|/κ+
. (5.35)

Notice that the metric is ill defined at r = 0 and r = r+. The former is our singularity and

the latter is just the outer horizon which is a coordinate singularity in these coordinates. We

may as before analytically continue U− and V − so that U− ≥ 0 and V − ≥ 0 which gives the

diagram 14.

We now have the regions V and VI in which 0 < r < r−. These regions contain the

curvature singularity at r = 0 (U−V − = −1)19 which is timelike. Region III’ is isometric to

region III and so by introducing new coordinates (U+′, V +′) this can be analytically continued

to the future to give further new regions I’, II’, and IV’ as shown in figure 15. In this diagram

19In Schwarzschild the singularity was at UV = 1.
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Figure 14: The Reissner–Nordström solution in (U−, V −) coordinates.

the regions I’ and IV’ are new asymptotically flat regions isometric to I and IV. We may repeat

this procedure indefinitely to the future and past, so that the maximal analytic extension of

the RN solution contains infinitely many regions. The resulting Penrose diagram is given in

figure 16. It extends to infinity in both the past and future.

This seems a bit crazy, infinite universes, what is happening here? Notice that if you are

an observer falling into the black hole from far away, r+ is just like the Schwarzschild horizon.

At this radius r switches from being a spacelike coordinate to a timelike one and therefore

you necessarily move in the direction of decreasing r. Witnesses outside the black hole see

the same phenomena that they would for the Schwarzschild solution, the infalling observer is

seen to move more and more slowly and is increasingly redshifted.

The inevitable fall from r+ to ever-decreasing radii only lasts until you reach the null

surface at r = r− where r switches from being a timelike coordinate back to being spacelike.

You need not continue travelling on a trajectory of decreasing r and therefore your inevitable

doom of hitting the singularity can be stopped. Indeed r = 0 is a timelike line and you are

therefore and therefore not necessarily in your future. At this point you can continue on to

r = 0 or begin to move in the direction of increasing r back through the null surface at r = r−.
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Figure 15: The regions I’, II’, IV’ of the Reissner–Norström solution.

Then r will once again be a timelike coordinate, however now the orientation is reversed and

you must travel in the direction of increasing r until you are spat out of the event horizon at

r = r+. This is like emerging from a white hole into the rest of the universe. From here you

can choose to go back into the black hole, this time a different one to the one you initially

entered. You may then repeat this over and over again to your hearts content.

How much of this story is actually science over science fiction? Well, not much. Viewing

the universe from the point of an observer inside the black hole who is about to cross the

event-horizon at r = r− you notice that the observer can look back in time to see the entire

history of the external universe, at least as seen from the black hole. They see this infinitely

long history in a finite proper time thus any signal that gets to them as they approach r = r− is

infinitely blue-shifted. Therefore it is likely that any non-spherically symmetric perturbation

that comes into an RN black hole will violently disturb the geometry. For this reason it is

difficult to say exactly what the actual geometry inside the horizon looks like, but there is no

good reason why it must contain an infinite number of asymptotically flat regions connecting
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Figure 16: The Penrose diagram of the RN black hole.

to each other via various wormholes.
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5.2.3 Extremal RN: M2 = e2

Finally let us consider the extremal RH when the two roots become equal and we obtain a

double root. The metric of the RN extremal solution is

ds2 = −
(
1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2ds2(S2) , (5.36)

which has a coordinate singularity at r = r+ = r− =M .

The coordinate r is never time-like, it becomes null on the horizon at r = r+ = r− but

is spacelike either side of the horizon. The singularity at r = 0 is once again a timelike line

and as in the previous cases may be avoided. You may avoid the singularity and continue to

move to the future to extra copies of the asymptotically flat region, the singularity is always

to the “left”. The Penrose diagram is given in figure 17.

Aside
Multiple Extremal RN black holes

Extremal black holes appear frequently when considering supergravity theories (grav-

ity plus supersymmetry). A rule of thumb, with some exceptions, is that supersymmetry

implies extremal. As we will see extremal implies that the temperature of the black hole

vanishes. The solution seems unstable since adding a little matter will take us to the sub

extremal solution. In the extremal case the mass is balanced by the charge, this can be

reformulated when considering a supersymmetric theory as saturating the Bogomol’nyi–

Prasad–Sommerfield bound. Two extremal black holes with the same sign charges will

attract each other gravitationally but repel each other electromagnetically and the two

forces precisely cancel. We can find exact solutions to the coupled Einstein–Maxwell equa-

tions representing any number of such black holes in a stationary configuration.

To see this it is useful to first rewrite the RN solution and to focus on just electric

charges for simplicity. Define the radial coordinate

ρ = r −M (5.37)

then the metric takes the isotropic form

ds2 = −H(ρ)−2dt2 +H(ρ)2
[
dρ2 + ρ2ds2(S2)

]
, (5.38)

where

H(ρ) = 1 +
M

ρ
. (5.39)
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Figure 17: The Penrose diagram of the extremal RN black hole.
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Since the bracketed part of the metric is just the metric on R3 we may rewrite the metric

as

ds2 = −H(x⃗)−2dt2 +H(x⃗)2
[
dx2 + dy2 + dz2

]
, (5.40)

with

H(x⃗) = 1 +
M

|x⃗|
. (5.41)

In the original components the electric field of the extremal solution can be expressed in

terms of a vector potential A as

Frt =
Q

r2
= ∂rAt , At = −

Q

r
. (5.42)

We may rewrite this as

At = H−1 − 1 . (5.43)

We can now forget that H takes the form above and just plug the metric into the field

equations and we find that we have a solution provided

∇2H = 0 , (5.44)

with ∇2 the Laplacian on R3. It is straightforward to write down all solutions that are well

behaved at infinity, they take the form

H = 1 +
N∑
a=1

Ma

|x⃗− x⃗a|
, (5.45)

for some set of N spatial points x⃗a. These are the locations of the N extremal RN black

holes with masses Ma and electric charges Qa =Ma.

5.3 Cauchy surfaces and horizons

We have now seen the Penrose diagrams of the RN black hole and observed that the max-

imal extension has some very distinct features compared to the maximal extension of the

Schwarzschild black hole: most obviously from the Penrose diagrams one sees that there is an

infinite tower of these diagrams glued together. One should wonder how physical the max-

imal extension really is. A second worrying feature is that one can follow an ingoing radial

geodesic towards the singularity and end up in the region between r = 0 and r = r− but not

be destined to hit r = 0. There, one can either carry on travelling towards the singularity or

exit via the white-hole region. There is no way of ensuring, in advance of entering the black

hole, what the final outcome is. We are used to classical theories being fully deterministic.
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If I throw a pen in your direction you can in principle work out exactly where it will end

up if you know the initial conditions. GR seems to give rise to something which is not fully

deterministic.

Many physical questions can be rephrased as an initial value problem. Given the state

of a system at some moment in time what will the state of the system be at some later time.

The fact that this has a definitive answer is due to causality: future events can be understood

as consequences of initial conditions plus the laws of physics. Initial value problems are as

common in GR as in Newtonian physics or special relativity, however the dynamical nature

of the spacetime background introduces new ways in which an initial value formulation could

break down. The reason for this lack of determinism in the RN black hole is because the

horizon at r = r− is a Cauchy horizon.

Definition 17 Achronal, Future domain of dependence

A subset S ⊂ M is called achronal if no two points in S are connected by a time-like

curve. For example any edgeless spacelike hypersurface in Minkowski space is achronal. Given

a closed (the complement is open) achronal set we define the future domain of dependence of

S, D+(S) to be the set of all points p such that every past moving inextendible causal curve

through p must intersect S.
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Figure 18: Past directed curves passing through p. The dark blue lines denote the past light

cone. The light blue curve is an inextendible causal curve, the aqua curve is causal but can

be extended. The purple curve is not causal. When considering the domain of dependence

we only consider curves of the light blue type. We see that all past directed causal curves

passing through p intersect S and therefore p is in the domain of dependence of S.

Remark
Recall that by inextendible we mean that the curve goes on forever (in affine parameter)

and does not end at some finite point. It follows that elements of S are elements of D+(S).

A similar definition of the past domain of dependence, D−(S) holds by replacing future

with past.

Definition 18 Future/past Cauchy horizon

We define the boundary of D+(S) to be the future Cauchy horizon H+(S) and likewise

the boundary of D−(S) to be the past Cauchy horizon H−(S).

Remark
It follows that these boundaries are necessarily null surfaces.

We have sketched these different objects in figure 19.

S

Σ H+(S ) D+(S )

H−(S ) D−(S )

Figure 19: A depiction of the domains of dependence of the set S on the achronal surface

Σ.
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If nothing moves faster than light, signals cannot propagate outside the lightcone of any

point p. Therefore if every curve that remains inside the lightcone must intersect S then

information specified on S should be sufficient to predict what the situation is at p. That is,

initial data for matter fields on S can be used to solve for the matter fields at p.

Definition 19 Domain of dependence

The set of all points for which we can predict what happens by knowing what happens on

S is the union D(S) = D+(S) ∪D−(S) is called the domain of dependence.

Definition 20 Cauchy surface

A closed achronal surface Σ is said to be a Cauchy surface if the domain of dependence

D(Σ) is the entire manifold.

Remark
Information given on the Cauchy surface can be used to predict what happens throughout

all of spacetime. If a spacetime has a Cauchy surface (it need not) it is said to be globally

hyperbolic.

Having defined a lot of things let us see some examples.

Example 5.1: A line in 2d Minkowski
Consider a bounded achronal line in 2d Minkowski space. The resultant domain of influence

is compact.

101



Figure 20: The domain of dependence of a surface S in 2d Minkowski space. The line S

is spacelike everywhere. The dark blue lines are at 45 degrees giving rise to the lightcones

at the end-points of S. Note that there are Cauchy horizons.

Example 5.2: Unbounded line
In this example consider the unbounded hyperboloid:

S :=
{
(t, x) ∈ R2

∣∣∣t = −√1 + x2
}
. (5.46)

Observe that as |x| → ∞ the line S asymptotes to the past lightcone t = −|x|. The domains

are therefore:

D+(S) =
{
(t, x) ∈ R2

∣∣∣−√1 + x2 ≤ t < −|x|
}
,

D−(S) =
{
(t, x) ∈ R2

∣∣∣t ≤ −√1 + x2
}
.

(5.47)

Note that D+(S) is not closed since lightlike curves on t = −|x| do not meet S. The future

domain of dependence is sketched in figure 21.
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Figure 21: The domain of dependence of a surface S in 2d Minkowski space.

Example 5.3: Removing a point on the surface
So far we have taken a nice continuous line for S. Consider removing a point from the

line S. This leads to the future domain of dependence being further restricted. To see why

consider the lightcone emanating from the removed point. Any points within this lightcone

have to be removed from the domain of dependence. We therefore end up with a figure

such as figure 22.
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Figure 22: The domain of dependence of a surface S in 2d Minkowski space with a point

removed from S. This should be compared with figure 20. By removing a point from S we

must remove a large region from the future domain of dependence.

Example 5.4: Removing a point from spacetime
Above we have considered moving a point from S. We have a similar restriction

when removing a point from spacetime. We see that there will be causal curves where the

removed point is in their past or future. These will never reach S and therefore they cannot

be included in the domain of dependence, see figure 22 for an example.
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Figure 23: The domain of dependence of a surface S in 2d Minkowski space. The yellow

dot denotes a point that has been removed from spacetime. This drastically changes the

domain of dependence. One should compare to figure 20.

None of the examples above were Cauchy surfaces. For Minkowski we can simply take a

spatial hypersurface, for example t = 0 which is a Cauchy surface, clearly this is not unique.

Example 5.5: Cauchy surfaces in Kruskal

Slightly more non-trivially Kruskal spacetime (the maximally extended Schwarzschild so-

lution) also admits and infinite family of Cauchy surfaces. See figure 24.

Figure 24: Two distinct choices of Cauchy surface for the Kruskal spacetime.

Example 5.6: Cauchy horizons in Reissner–Nordstrom
The Reissner Nordstrom solution does not admit a Cauchy surface and has Cauchy horizons

at the inner horizon.
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Figure 25: Some wannabe Cauchy surfaces are drawn in dark blue, however all of them

admit the same Cauchy horizons drawn in purple. We can see that there are causal curves

which are not in the domain of dependence in region V and V I, drawn in yellow.

What are we to make of this lack of determinism and the Cauchy horizon? The maximal

extension corresponds to an eternal black hole as opposed to an astrophysical black hole

since it would not arise in the collapse of matter to form a black hole. The Cauchy horizon
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is believed to turn into a curvature singularity under small perturbations, including even

an observer trying to cross it. This is a major point in favour of Penrose’s strong cosmic

censorship hypothesis. Penrose’s argument for instability of the Cauchy horizon uses a blue-

shift effect. There is an infinite blue-shift. Imagine two observers, Alice and Bob. Bob has

the misfortune of falling past the black hole horizon, and arrives at the Cauchy horizon in

finite proper time. A signal sent by Alice at constant frequency into the horizon will be

infinitely blue-shifted when received by Bob as Bob approaches his Cauchy horizon crossing

time. In terms of geometric optics this is an instability in the behaviour of linear wave

equations like the scalar wave equation on a fixed background. One can view the scalar

Laplace equation as a naive linearisation of the vacuum equations (recall our linearisation of

GR). The Cauchy horizon leads to a solution which is unstable, and one may presume once the

non-linear effects are taken into account the instability forces spacetime to break down before

the Cauchy horizon. This has lead to the expectation that upon small perturbations not only

is the Cauchy horizon unstable but rather it a spacelike singularity is generated across which

the metric is inextendible, i.e. new physics beyond GR is needed. What happens with these

horizons is still a very active topic of research.

5.4 Charges in curved spacetime

We have constructed a black hole which is electromagnetically charged, it should therefore

carry some form of charge: we want to understand how to compute electric and magnetic

charges in gravity. We expect that in the RN black hole the parameters Q and P should be

interpreted as the electric and magnetic charges respectively. Consider Maxwell’s equation in

the presence of a current density J . The equations of motion are:

d ⋆ F = −4π ⋆ J , dF = 0 . (5.48)

The first implies that d ⋆ J = 0, which in components is equivalent to ∇µJµ = 0. This is the

definition of a conserved current.

Consider a spacelike hypersurface Σ, for example t = 0 in RN. We define the total electric

charge on Σ to be

Q = −
∫
Σ
⋆J . (5.49)

Using Maxwell’s equations we can write

Q =
1

4π

∫
Σ
d ⋆ F , (5.50)

107



and if we assume that Σ has a boundary ∂Σ, then Stoke’s theorem gives

Q =
1

4π

∫
∂Σ
⋆F . (5.51)

This is the analogue of Gauss’ law Q ∼
∫
E⃗ · dS⃗. It is telling us about the amount of flux

going out of Σ.

Example 5.7: Minkowski space
Consider the Minkowski spacetime in spherical polar coordinates and choose the orientation

so that the volume form is

dvol = r2 sin θdt ∧ dr ∧ dθ ∧ dϕ . (5.52)

Take Σ to be the surface at fixed t = 0.a We may view Σ as the boundary of the region t ≤ 0

then Stoke’s theorem fixes the orientation of Σ as r2 sin θdr∧dθ∧dϕ. Let ΣR be the region

of Σ with r ≤ R, the boundary is then the two-sphere with radius R: S2
R. Stokes’ theorem

fixes the orientation of the two-sphere to be dθ ∧ dϕ. Consider the Coulomb potential

A = −q
r
dt , F = − q

r2
dt ∧ dr . (5.53)

Taking the Hodge dual gives

⋆F = q sin θdθ ∧ dϕ , (5.54)

and hence the charge on ΣR is

S[ΣR] =
1

4π

∫
S2
R

⋆F =
1

4π
q sin θdθ ∧ dϕ = q . (5.55)

Our definition of Q gives the expected result.

aWe could of course choose any value of t, there is no reason to take this but for it being notationally

simpler.

For an asymptotically flat hypersurface in Minkowski spacetime we can take the limit

R → ∞ to express the total charge on Σ as an integral at infinity. Motivated by this we

define the charges at asymptotic infinity to be

Q =
1

4π
lim
r→∞

∫
S2
r

⋆F , P =
1

4π
lim
r→∞

∫
S2
r

F , (5.56)

where S2
r is the sphere with radius r.

Note that even when there is no charged matter, J = 0 we can still obtain a non-trivial

charge, for example the RN solution above. The total charge on a spacelike hypersurface
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vanishes, since J = 0, however when we convert the integral to a surface integral at infinity

we obtain two terms because the surface has two asymptotically flat ends. The charges on each

of these boundary pieces can be non-zero, so long as they cancel each other when summed.

It remains to be seen why we call this a conserved charge. Consider two spacelike surfaces

Σ1 and Σ2. Consider the cylindrical surface, V which is bounded by Σ1 and Σ2, and large

enough to contain all of the sources, see figure 26. From this latter condition it follows that

J = 0 on the boundaries and outside V . We then have

0 =

∫
V
d ⋆ J

=

∫
∂V
⋆J

=

∫
Σ1

⋆J −
∫
Σ2

⋆J

=
1

4π

∫
∂Σ1

⋆F − 1

4π

∫
∂Σ2

⋆F

= Q[Σ1]−Q[Σ2] .

(5.57)

We can also define magnetic charges similarly. Since they are already defined on the

spacelike hypersurface we just need to integrate F , as opposed to ⋆F . A similar argument

for showing that it is conserved holds too.

Charges for RN black hole Let us compute the charges for the RN black hole. We have

F =
Q

r2
dr ∧ dt+ P sin θdθ ∧ dϕ . (5.58)

The magnetic charge is defined to be

P [S2] =
1

4π

∫
S2

F =
P

4π

∫
S2

dvol(S2) = P . (5.59)

For the electric charge we need the Hodge dual. We have

⋆F =
1

r2
dt ∧ dr +Q sin θdθ ∧ dϕ . (5.60)

Therefore the electric charge is

Q[S2] =
1

4π

∫
S2

Q sin θdθ ∧ dϕ = Q . (5.61)

We find that indeed the parameters Q and P are the electric and magnetic charges.

This is one type of conserved charge that we can compute. We will see another example

in the following section which allows us to compute the mass and angular momentum of a

black hole.
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Σ1

Σ2

∂Σ1

∂Σ2

V

Sources

B

Figure 26: A schematic picture of the region V containing all the soources bounded by

the two spacelike hypersurfaces Σi and also B. We require that the current vanishes on the

black vertical boundary B or alternatively send this to infinity and impose suitable boundary

conditions there.

110



6 Rotating black holes

All the solutions we have seen so far have been static and spherically symmetric, though

these are nice testing grounds for us to learn things from they are not likely to be objects

that we will see in our universe. Observational evidence seems to suggest that black holes

should rotate. In this section we will study rotating black holes, in particular the Kerr black

hole. This is arguably the most important solution of general relativity, largely because of

the no-hair theorem, according to which all stationary black holes in the universe are Kerr

black holes.

Since the black holes are rotating we must give up our spherical symmetry, they can

however be axisymmetric: symmetric under rotations about an axis. Moreover, we must give

up our metric being static, and reduce to the weaker stationary class of metric.

Definition 21 Stationary

A spacetime is stationary if it admits an everywhere timelike Killing vector K.

Definition 22 Static

A spacetime is static if it admits a hypersurface-orthogonal timelike Killing vector field.

Remark
Note: Static implies stationary, but the converse is not true.

This follows since if we were to run time in the opposite direction we must see rotation

in the opposite direction, clearly this cannot be static, we should then impose the weaker

stationary condition. These generalisations make the metric a lot more complicated. Al-

though the Schwarzschild solution and Reissner–Nordström solutions were discovered shortly

after general relativity was invented, the metric we will study, known as the Kerr(–Newman)

metric was first found in 1963. Kerr originally found the rotating metric without any charges

but was later extended by Newman to include charges.

6.1 The Kerr–Newman solution

The Kerr–Newman solution in Boyer-Lindquist coordinates is

ds2 = −∆(r)− a2 sin2 θ
ρ(r, θ)2

dt2 − 2a sin2 θ(r2 + a2 −∆(r))

ρ(r, θ)2
dtdϕ

+
(r2 + a2)2 − a2 sin2 θ∆(r)

ρ(r, θ)2
sin2 θdϕ2 +

ρ(r, θ)2

∆(r)
dr2 + ρ2(r, θ)dθ2 ,

A = − 1

ρ(r, θ)2

(
Qr(dt− a sin2 θdϕ) + P cos θ(adt− (r2 + a2)dϕ)

)
.

(6.1)
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The functions are

ρ(r, θ)2 = r2 + a2 cos2 θ , ∆(r) = r2 − 2Mr + a2 + e2 , e2 = Q2 + P 2 . (6.2)

At large r the above coordinates reduce to the spherical polar coordinates in Minkowski

spacetime, θ, ϕ have the usual interpretation as angles on S2, so we have 0 < θ < π and

ϕ ∈ [0, 2π]. Notice that there is no problem with taking r ∈ (−∞,∞), in contrast with the

other black holes we have considered, the surface r = 0 is no longer a singularity.

The Kerr–Newman solution depends on 4 parameters, a, M , Q and P . You may guess

thatM is the mass, Q the electric charge, P the magnetic charge and a related to the angular

momentum. We will show how to compute the angular momentum and mass soon, but for

the moment let us just give the result. The parameter a is the angular momentum per unit

mass,

a =
J

M
, (6.3)

with J the Komar angular momentum. This is the unique stationary black hole solution of

the Einstein–Maxwell theory. An equilibrium black hole in the presence of an electromagnetic

field is therefore fully characterised by the four numbers M , J , Q and P . This goes by the

name of the no hair theorem.

Note that the metric can be rearranged into the form

ds2 = − ∆(r)

ρ2(r, θ)

(
dt− a sin2 θdϕ

)2
+
ρ2(r, θ)

∆(r)
dr2+

sin2 θ

ρ2(r, θ)

(
adt− (r2 + a2)dϕ

)2
+ ρ2(r, θ)dθ2 ,

(6.4)

which makes clear that the a = 0 limit recovers the Reissner–Nordstrom solution of the

previous section.

6.2 The Kerr solution

Since all of the essential phenomena persist in the absence of charge we will set Q = P = 0

in the remainder of this section. If we set a → 0 the metric reduces to the Schwarzschild

solution as one would expect.

Remark
If instead we keep a fixed but set M → 0 then we recover flat space, but in funky coordi-

nates:

ds2 = −dt2 + r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2 . (6.5)

The spatial part of the metric is flat three-dimensional space written in ellipsoidal coordi-

nates, see figure 27. They are related to Cartesian coordinates in three-dimensional space
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by

x =
√
r2 + a2 sin θ cosϕ ,

y =
√
r2 + a2 sin θ sinϕ ,

z = r cos θ .

(6.6)

Constant θ

Constant r

r = 0

Figure 27: The structure of the ellipsoidal coordinates of the Kerr metric. The region

r = 0 is a two-dimensional disc with length 2a.

The Kerr spacetime is asymptotically flat. For r →∞ we have that the asymptotics are

the same as Schwarzschild with mass M . Conversely for r → −∞ we have that it approaches

Schwarzschild with a negative mass.

The metric admits two Killing vectors: both of which are manifest since the metric is

independent of both t and ϕ. The Killing vectors are K = ∂t and R = ∂ϕ, which are necessary

for the spacetime to be stationary and axis-symmetric. In contrast to Schwarzschild K is not

orthogonal to t =constant hypersurfaces, this is why the metric is stationary and not static.

Intuitively this makes sense since the black hole is rotating, so not static, but it is spinning

in exactly the same place at all times so it is stationary. R expresses the axial symmetry of
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the solution, this is the symmetry around the axis of rotation.

Remark
Besides the Killing vectors the Kerr metric also has a Killing tensor. A Killing tensor is

any symmetric (0, n) tensor σµ1...µn satisfying

∇(νσµ1...µn) = 0 . (6.7)

For the Kerr geometry we can define the (0, 2) tensor

σµν = 2ρ2l(µnν) + r2gµν , (6.8)

where

lµ =
1

∆
(r2 + a2,∆, 0, a) , nµ =

1

2ρ2
(r2 + a2,−∆, 0, a) . (6.9)

Both vectors are null and satisfy

lµlµ = 0 , nµnµ = 0 , lµnµ = −1 . (6.10)

One can use this to show that the geodesic equation is integrable, that is we can solve ex-

actly the geodesic equations using integrals of motion. For Schwarzschild we have the three

conserved quantities associated to the energy, angular momentum and the Lagrangian after

taking an affine parameter. Each of these three conserved quantities exist in the Kerr back-

ground too. However, when considering Schwarzschild we can use the spherical symmetry

to further constrain the motion in a plane, this makes geodesics in a Schwarzschild back-

ground integrable. Such an argument is no longer possible since we do not have spherical

symmetry, intuitively we expect there to be some difference between geodesics in the equa-

torial plane and those following a more general path. The additional conserved quantity

associated to the Killing tensor replaces the role of restricting to planar motion.

The coordinates have been chosen so that the event horizons occur at those fixed values

of r for which grr = 0. Since grr = ∆/ρ2 we have zeroes when

∆(r) = r2 − 2Mr + a2 = 0 . (6.11)

We may then write

∆ = (r − r+)(r − r−) , r± =M ±
√
M2 − a2 . (6.12)
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Similar to the Reissner–Nordstrom black hole the solution has three branches depending on

the roots of ∆(r).

• M2 − a2 < 0 or |J | < 1 is the slowly rotating/ underspinning case.

• M2 − a2 = 0 or |J | = 1 is the extremal case.

• M2 − a2 > 0 or |J | > 1 is the rapidly rotating/ over spinning case.

The over-spinning solution has a naked singularity while the extremal solution is unstable.

We will just study the slowly rotating case where M2 > a2 from now on.

6.2.1 Singularities

Let us analyse the various singularities appearing in the metric. As an indicator of singularities

we compute the Kretschmann tensor:

RµνρσR
µνρσ =

48M2

ρ12
(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ) . (6.13)

Clearly this only diverges when ρ = 0 which implies r = 0 and θ = π
2 . There are also the

usual singularities associated to θ = 0, π but these are just the usual coordinate singularities

arising from using spherical polar coordinates and so we will ignore these. The final possible

singularities are at the two roots r±.

First let us show that r = r± are just coordinate singularities. To do this we define Kerr

coordinates (v, r, θ, χ) for r > r+ by

dv = dt+
r2 + a2

∆(r)
dr , dχ = dϕ+

a

∆(r)
dr . (6.14)

In the new coordinates we have χ ∼ χ+ 2π and the Killing vectors are

K =
∂

∂v
, R =

∂

∂χ
. (6.15)

The new metric in these coordinates is

ds2 = −∆(r)− a2 sin2 θ
ρ2

dv2 + 2dvdr − 2a sin2 θ(r2 + a2 −∆(r))

ρ2
dvdχ

− 2a sin2 θdχdr +
(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θdχ2 + ρ2dθ2 .

(6.16)

This change of coordinates shows that the metric is non-degenerate at r = r±. We can

analytically continue through the surface r = r± into a new region with −∞ < r < r±.
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The surfaces r = r± are null hypersurfaces with normal

ξµ± = Kµ +Ω±R
µ , (6.17)

where

Ω± =
a

r2± + a2
, (6.18)

is the angular velocity.

Note that one-form

ξ =
ρ(r, θ)

r2 + a2
dr , (6.19)

vanishes on the r = r± surfaces and is therefore normal to these hypersurfaces. The dual

vector field is

ξ = ∂v +
∆(r)

r2 + a2
∂r +

a

r2 + a2
∂χ , (6.20)

which agrees with ξ± above on the horizon where ∆(r±) = 0. The norm of ξ is

ξµξµ =
ρ2(r, θ)∆(r)

(r2 + a2)2
, (6.21)

which clearly vanishes at r = r± and therefore the vector ξ± is a null Killing vector on r = r±.

The region r ≤ r+ part of the black hole region of this spacetime with r = r+ the future

event horizon H+. In Boyer–Lindquist coordinates the Killing vector is

ξ =
∂

∂t
+Ω+

∂

∂ϕ
. (6.22)

Observe that ξµ∂µ(ϕ − Ω+t) = 0 and therefore ϕ = Ω+t + const on integral curves of ξµ.

Conversely, integral curves of K have ϕ = const. We see that particles moving on orbits

of ξ rotate with angular velocity Ω+ with respect to a stationary observer (someone on an

orbit of K). In particular they rotate with this angular velocity with respect to a stationary

observer at infinity. Since ξ is tangent to the generators of H+ (the null geodesics defined

as normal to the surface), these generators also rotate with angular velocity Ω+ with respect

to a stationary observer at infinity. Therefore we interpret Ω+ as the angular velocity of the

black hole.

The remaining singular point is now where ρ = 0, i.e. at the point

r = 0 , θ =
π

2
. (6.23)

To understand the singularity at this point we should fix ourselves to a constant time slice

and go to the point where ρ = 0. Working in Kerr coordinates we have:

ds2
∣∣∣
v,r,θ Fixed

=
(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θdχ2 (6.24)
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We see that as we take r → 0 we are left with

ds2
∣∣∣
v,r,θ Fixed

= a2 sin2 θdχ2. (6.25)

This then defines a disc parametrised by θ and χ. When we also take θ = π
2 we end up with

the metric ds2 = a2dχ2 which is the metric on a ring of radius a. Therefore, in the Kerr

metric, the curvature singularity has the structure of a ring. The rotation has softened the

Schwarzschild singularity, spreading it out over a ring. If you travel towards r = 0 from any

other angle other than θ = π
2 you will not encounter the singularity and will instead pass

through and enter a new asymptotically flat region, i.e. r → −∞. This is not an identical

copy of the spacetime you came from though, instead it is described by the Kerr metric with

r < 0 (effectively M → −M). As a result ∆ never vanishes and there are no horizons in this

space.

This spacetime with r < 0 has an unusual feature. One finds that R = ∂ϕ becomes

time-like near the singularity, the metric at fixed t, r < 0 and θ = π
2 is

ds2 =
(
r2 + a2 +

2Ma

r

)
dχ2 , (6.26)

which close enough to the singularity is negative. Since χ is 2π-periodic we end up with

closed timelike curves CTCs. You may sometimes hear these referred to as time-machines.

It is a curve that is everywhere timelike and that eventually returns to where it started in

spacetime. You can then travel on this CTC and meet yourself in the past!

This region is unphysical. Much like in the case of sub-extremal RN the inner horizon

at r = r− is a Cauchy horizon and becomes a curvature singularity in the presence of the

smallest perturbations to the Kerr metric: at the inner horizon perturbations are infinitely

blueshifted, which leads to divergences in the curvature scalars.

When we considered Schwarzschild we saw that it describes the metric outside a spherical

star. This was a consequence of Birkhoff’s theorem. In contrast the Kerr solution does not

describe the spacetime outside a rotating star. This solution is expected to describe only

the final state of gravitational collapse. One can’t obtain a solution describing gravitational

collapse to form a Kerr black hole by simply gluing in a ball of collapsing matter as was

possible for Schwarzschild. Additionally, the spacetime during collapse would not even be

stationary as gravitational waves must be emitted.

Theorem 5 Carter 1971, Robinson 1975
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If (M, g) is a stationary, axisymmetric, asymptotically flat vacuum spacetime suitably

regular on, and outside a connected event horizon then (M, g) is a member of the 2-parameter

Kerr family of solutions. The parameters are the angular momentum and mass.

This result says that the final state of gravitational collapse is generically a Kerr black

hole and is fully characterised by just 2 numbers. In contrast the initial state can be arbitrarily

complicated. Nearly all information about the initial state is lost during gravitational collapse:

either by radiation to infinity, or by falling into the black hole, and just 2 numbers are required

to describe the final state on and outside the event horizon. There is an extension of this

theorem for the 4-parameter Kerr–Newman solution.

6.3 Maximal extension of Kerr and its Penrose diagram

We now want to understand the Penrose diagram for the Kerr solution. It is now more difficult

to draw the Penrose diagram because the metric is no longer spherically symmetric. Since

the curvature singularity will appear only for θ = π
2 the Penrose diagram will look different

for θ ̸= π
2 and θ = π

2 . To represent both cases it is customary to draw a Penrose diagram that

is an amalgamation of the Penrose diagram for an observer falling in from the north pole and

along the equatorial plane at fixed χ in Kerr coordinates. Notice that χ = const means that

ϕ is not constant so the observer falling in at θ = π
2 rotates about the polar axis. See figure

28 for the Penrose diagram.

6.4 Komar Integrals and conserved quantities along geodesics

In the above we have claimed that the Kerr black hole is rotating and has angular momentum

J = aM , we would like to back up this claim. This relies on us defining a Komar integral,

which is essentially a charge associated to a Killing vector.

We have seen that we can define conserved electric and magnetic charges given a gauge

field, one can understand the need for a charge associated to a Killing vector by playing

a little game with Kaluza–Klein reduction.

Consider Einstein gravity in five-dimensions without a cosmological constant. Let us

take an ansatz for the metric of the form

ds2 = ϕ2(x)
(
dψ +Aµdx

µ
)2

+ gµνdx
µdxν , (6.27)

where ∂ψ is a Killing vector and the one-form A is defined only on the base with coor-

dinates x. Note that gauge transformations are just coordinate transformations in this

formalism.

We can now plug this into the five-dimensional vacuum Einstein equations. One
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Figure 28: The Penrose diagram for sub-extremal Kerr. There are and infinite number of

copies of the region outside the black hole. The singularity at r = 0 only appears for θ = π
2

and is absent for other values of θ. The regions beyond the singularity are where we have

CTCs.

finds that there are three conditions one must impose in order for the metric to satisfy
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the five-dimensional Einstein vacuum equations:

□ϕ =
1

4
ϕ3FµνFµν ,

∇µ
(
ϕ3Fµν

)
= 0 ,

Rµν −
1

2
gµνR =

1

2
ϕ2
(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
)
+

1

ϕ
(∇µ∇νϕ− gµν□ϕ) ,

(6.28)

where Fµν = ∂µAν − ∂νAµ and everything is a four-dimensional object defined by the

metric gµν . For a constant ϕ we can see the Maxwell equation and Einstein equation of

the Einstein–Maxwell theory, of course setting ϕ =constant imposes a non-trivial relation

on the F but let us forget about this for the moment.

We see that if 5-dimensional spacetime has a circle which is small, then we see a

four-dimensional spacetime which is Einstein gravity plus electromagnetism. Now we

know that in the four-dimensional theory we can define electric (and magnetic) charges,

but there should be some remnant of these electric charges in the five-dimensional theory.

In the five-dimensional theory it must enter through the gauge field A and therefore it is

connected to the Killing vector ∂ψ: there must be a way of defining a conserved charge to

a Killing vector which is the analogue of the electric charge in the dimensionally reduced

theory.

6.4.1 Lie derivative recap

Let (M, g) be a Lorentzian manifold with metric g. Given a smooth vector-field X on M we

define an integral curve γ(λ) : R → M to be a curve whose tangent vector is equal to X at

every point p ∈ γ. That is we demand

Xµ
∣∣∣
p
=

d

dλ
xµ(λ)

∣∣∣
p
. (6.29)

This is equivalent to solving a set of first order ODEs with fixed initial conditions, and

therefore there is a unique solution at least locally.

Let γ(λ, p) be the integral curve of X which passes through the point p when λ = 0. The

map γ : R ×M → M defines the flow generated by X. The flow defines an abelian group

since one can show that σ(λ1, σ(λ2, p)) = σ(λ1 + λ2, p). Let σλ(p) = σ(λ, p) then

σλ
(
στ (p)

)
= σλ+τ (p) ,

σ0 = Unit element ,

σ−λ = (σλ)
−1 .

(6.30)

This allows us to move points along the curve, in particular by using the flow we can

move tensors from one point on the flow to another, recall that this goes by the name of
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push-forward or pull back depending on what object we are acting on.20 This allows us to

define the Lie derivative along the vector field X. For a vector Y we have

LXY |p = lim
ϵ→0

1

ϵ

[(
σ−ϵ(p)

)
∗Y
∣∣
σϵ(p)

− Y
∣∣
p

]
. (6.31)

One can show that

LXY = [X,Y ] , (6.32)

with [ , ] : X (M)×X (M)→ X (M) the Lie bracket

[X,Y ] =
(
Xν∂νY

µ − Y ν∂νX
µ
)
∂µ . (6.33)

The Lie derivative can be extended to any tensor with appropriate generalisation. For

tensors one must use a combination of the push-forward and pull-back. Of primary interest

to us here is the Lie derivative of the metric. We have

LXg = lim
ϵ→0

1

ϵ

[
(σϵ(p))

∗g|σϵ(p) − g|σϵ(p)
]
. (6.34)

Note that the pull back uses σϵ rather than σ−ϵ, this is not a typo. In coordinates we have

(LXg)µν = Xσ∂σgµν + gσν∂µX
σ + gµσ∂νX

σ , (6.35)

which by using the Levi–Civita connection can be rewritten as

(LXg)µν = ∇µXν +∇νXµ . (6.36)

More generally, let T be a tensor of rank (q, r), then the Lie derivative along the vector field

X in local coordinates is

LXT
µ1...µq

ν1...νr = Xσ∂σT
µ1...µq

ν1...νr −
(
∂σX

µ1
)
T
λ...µq

ν1...νr − ...−
(
∂σX

µq
)
Tµ1...σν1...νr

+
(
∂ν1X

σ
)
T
µ1...µq

σ...νr + ...+
(
∂νrX

σ
)
T
µ1...µq

ν1...σ .

(6.37)

To make this more manifestly tensorial one can replace the partial derivatives with any

torsion free connection21, not necessarily the Levi–Civita connection. One can show that the

Lie derivative satisfies

LX(T + S) = LXT + LXS ,

LX(T ⊗ S) =
(
LXT

)
⊗ S + T ⊗

(
LXS

)
,

L[X,Y ] = LXLY − LY LX ,

LXf = X[f ] ,

(6.38)

where X,Y are vector fields, T and S are arbitrary tensors, and f is a function.

20Given a smooth function f : M → N the push forward f∗ : Tp(M) → Tf(p)(N) acts on a vector field V as

(f∗V )[g] = V [g ◦ f ]. The pullback f∗ : T ∗
f(p)(N) → T ∗

p (M), acts as ⟨f∗ω, V ⟩ = ⟨ω, f∗V ⟩.
21Recall that a connection is torsion free if the connection coefficients satisfy Γµ

νρ = Γµ
ρν .
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6.4.2 Killing vectors

Recall that under a diffeomorphism generated by the vector field X,

xµ → x̃µ = xµ −Xµ . (6.39)

the change in the metric is given by the Lie derivative of the metric under the vector field:

δgµν(x) = g̃µν(x)− gµν(x) =
(
LXg

)
µν
. (6.40)

Aside
To see this let us transform the metric under the above coordinate transformation and

expand working to linear order.

gµν(x)→ g̃µν(x̃) ≡
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ(x) . (6.41)

Then we have
∂xρ

∂x̃µ
= δρµ +

∂

∂x̃ρ
Xµ = δρµ +

∂

∂xρ
Xµ +O(X2) , (6.42)

and therefore to leading order

g̃µν(x̃) = gµν(x) + ∂µX
ρgρν + ∂νX

ρgµρ (6.43)

Now since we are interested in g̃µν(x) and not g̃µν(x̃) we have

g̃µν(x) = g̃µν(x̃+X) = g̃µν(x̃) +Xρ∂ρgµν +O(X2) . (6.44)

Plugging this expansion in we find

δgµν(x) = g̃µν(x)− gµν(x)

= Xσ∂σgµν + gσν∂µX
σ + gµσ∂νX

σ .
(6.45)

One can now lower the index on Xσ

δgµν(x) = gσρXρ∂σgµν + ∂µXν − ∂µgσνXσ + ∂νXµ − ∂νgσµXσ

= ∂µXν + ∂νXµ −Xρg
σρ(∂νgσµ + ∂µgσν − ∂σgµν)

= ∇µXν +∇νXµ ,

(6.46)

with ∇ the Levi–Civita connection.

The Lie derivative on a rank (2, 0)-tensor acts as

(LXg)µν = Xσ∂σgµν + gσν∂µX
σ + gµσ∂νX

σ . (6.47)
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Using the aside above we see that the Lie derivative of the metric along X can be rewritten

as

(LXg)µν = ∇µXν +∇νXµ . (6.48)

There are special vector fields, known as Killing vectors, which preserve the form of the metric

after the coordinate transformation, i.e. δgµν = 0. We can define Killing vectors to be vector

fields that obey:

∇µXν +∇νXµ = 0 . (6.49)

They are vectors which define flows along which the metric does not change. We say that it

generates an isometry of the spacetime and that the metric has a symmetry.

There is an upper limit on the number of Killing vectors a manifold can have. In n

dimensions the maximum number of linearly independent (by constant coefficients) Killing

vectors is
n(n+ 1)

2
. (6.50)

Spaces which admit the maximum number of Killing vectors are known as maximally sym-

metric spaces.

Definition 23 Maximally symmetric space

An n-dimensional space with the maximum number of Killing vectors, n(n+1)
2 , is called a

maximally symmetric space.

Not examinable To prove this one needs to use that for a Killing vector K we have

∇µ∇νKσ = RσνµρK
ρ . (6.51)

Then we view the Killing equation (6.49) as a set of first order PDEs for the n functions

Kµ. We can now find a solution as a series expansion around some arbitrary point p in

the manifold. We would have

Kµ(x) = Kµ(p) + (xν − pν)∂νKµ
∣∣∣
x=p

+
1

2
(xν − pν)(xσ − pσ)∇ν∇σKµ

∣∣∣
x=p

+ .... (6.52)

However since (6.51) allows us to express the second derivative of K at p in terms of K(p)

and ∂µK(p) it follows that we may eliminate second derivative terms from the expansion.

In fact we may go further, whacking (6.51) with another derivative allows us to express

the third derivative of K in terms of Kν(p) and ∇µKν(p) too. We can do this infinitely

many times to obtain expressions for all higher derivative terms. Therefore the solution is

determined uniquely by the initial conditions Kµ(p) and ∇µKν |x=p. The general solution
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is then of the form

Kµ(x) = A ν
µ (x, p)Kν(p) +B νρ

µ (x, p)∇νKρ

∣∣∣
x=p

, (6.53)

where A and B are complicated functions depending on the initial point p and the metric

and its derivatives but independent of the initial data of the Killing vector. Therefore we

have shown that every Killing vector can be determined in terms of the initial conditions

Kµ(p) and ∇µKν

∣∣
x=p

. There are n-independent components of Kµ(p) and n(n−1)
2 inde-

pendent components of ∇µKν

∣∣
x=p

. The latter comes about because the initial conditions

must satisfy the Killing equation, which fixes ∇µKν

∣∣
x=p

to be a n × n anti-symmetric

matrix which has n(n−1)
2 independent components. This gives the claimed total of n(n+1)

2

Killing vectors.

If a manifold is maximally symmetric it means that the curvature is the same in all

directions. The Riemann tensor can in fact be fixed in terms of the constant Ricci scalar and

takes the form

Rµνρσ =
R

n(n− 1)

(
gµρgνσ − gµσgνρ

)
. (6.54)

This means that locally the space is determined by the Ricci scalar.22

Example 6.1: Maximally symmetric spaces
Examples of maximally symmetric Euclidean spaces are flat Euclidean plane, spheres and

hyperbolic space. Lorentizan maximally symmetric spaces include Minkowski space and

(anti-) de-Sitter space.

6.4.3 Conserved quantities along geodesics

We have seen when studying the geodesics of Schwarzschild that there are some conserved

quantities. The underlying mathematics behind why these quantities are conserved is lacking,

here we remedy that.

Consider the action

S =

∫
dλ

√∣∣∣gµν(x(λ))dxµ(λ)
dλ

dxν(λ)

dλ

∣∣∣ . (6.55)

For simplicity let us assume that λ is an affine parameter which allows us to consider the

action with the square root removed. From GR1 we know that geodesics are the curves which

extremise the action, that is geodesics are curves, xµ(λ), which when deformed by a small

amount δxµ(λ), the change in the action vanishes.

22For example both a torus and the Euclidean plane are flat, and hence the Riemann tensor vanishes, however

they are very different spaces, one is compact while the other is non-compact. The Ricci scalar therefore does

not capture the global difference of the two spaces.
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Consider deforming the curve via

xµ → xµ + ϵXµ . (6.56)

The change in the action is

δS = S(xµ + ϵXµ)− S(xµ)

= ϵ

∫
dλ

[
xρ∂ρgµν ẋ

µẋν + gµν
(
Ẋµẋν + ẋµẊν

)]
+O(ϵ2)

= ϵ

∫
dλ ẋρẋσ

[
Xµ∂µgρσ + gνσ∂ρX

ν + gνρ∂σX
ν
]
+O(ϵ2)

= ϵ

∫
dλ ẋρẋσ

[
∇ρXσ +∇σXρ

]
+O(ϵ2) .

(6.57)

We have used that Ẋµ = ẋρ∂ρX
µ. We see that if X is a Killing vector field then we have a

symmetry of the action. We know from Noether’s theorem that there must be a conserved

charge.

Given an action S with Lagrangian density L,

S =

∫
dλ L

(
x(λ)

)
, (6.58)

define the conjugate momentum pµ to be

pµ =
∂L
∂ẋµ

. (6.59)

Then for any Killing vector X,

Q = Xµpµ , (6.60)

is a conserved quantity along the geodesic.

Proof: Consider a small variation δxµ = ϵXµ generated by the Killing vector field X as

above. As shown above such variations leave the action invariant: δS = 0, which is equivalent

to
∂L
∂xµ

Xµ +
∂L
∂ẋµ

Ẋµ = 0 . (6.61)

Along a geodesic the Euler–Lagrange equations are satisfied:

∂L
∂xµ

− d

dλ

∂L
∂ẋµ

= 0 . (6.62)

Therefore along the geodesic (6.61) implies

0 =
( d

dλ
pµ

)
Xµ + pµ

d

dλ
Xµ =

d

dλ

(
pµX

µ
)
=

d

dλ
Q . (6.63)

Note that Q is conserved only along the geodesic, for a path which is not a geodesic this is

not conserved. We can see immediately why this must be the case in the derivation above

since we used the Euler–Lagrange equations.
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Example 6.2: Kerr conserved quantities
Kerr has two Killing vectors and so each will give rise to a conserved quantity. The two

Killing vectors are K = ∂t and R = ∂ϕ. We therefore have that there are two conserved

quantities: E = −pt and l = pϕ. Explicit computation gives

E = −Kµp
µ = m

[(
1− 2Mr

ρ2

) dt
dτ

+
2Mar

ρ2
sin2 θ

dϕ

dτ

]
,

l = Rµp
µ = m

[
− 2Mar

ρ2
sin2 θ

dt

dτ
+

(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θ

dϕ

dτ

]
.

(6.64)

It is interesting to note that one can set the angular momentum to vanish but still have a

rotation. Observe that l = 0 fixes:

ρ2
dt

dλ
=
E

∆
(ρ2(r2 + a2) + 2a2mr sin2 θ) ,

ρ2
dϕ

dλ
=

2amrE

∆
.

(6.65)

So we find that on the geodesic:

dϕ

dλ
=

2amr

ρ2(r2 + a2) + 2a2mr sin2 θ
. (6.66)

Hence for a geodesic with zero angular momentum about the symmetry axis has a rotational

motion around that axis. Moreover it is independent of the geodesics characteristics, the

mass, energy and so forth. This is a manifestation of the Lense–Thirring effect, also known

as the dragging of inertial frames or frame dragging.

One can also define Killing tensors. These are symmetric tensors which satisfy

∇(µXν1...νq) = 0 . (6.67)

If X is such a tensor then

Q = pν1 ...pνqXν1...νq , (6.68)

is conserved along the geodesic. The existence of such Killing tensors is non-trivial and very

special.23

23What we really mean is Killing tensors which are distinct with the metric and products of Killing vectors.

Each of these satisfies (6.67) but confers no additional information.
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6.4.4 Komar integrals

Let k be a Killing vector, and recall that this implies ∇(µkν) = 0. Therefore ∇µkν is anti-

symmetric. We can define the two-form

Kµν = ∇µkν , K = dk , (6.69)

were we have abused notation to write k for the form and also the vector field. For any vector

X recall that we have

(∇µ∇ν −∇ν∇µ)Xσ = RσρµνX
ρ . (6.70)

Let us use this with the Killing vector and contract the σ and µ indices, we have

∇µ∇νkµ −∇ν∇µkµ = Rρνk
ρ

= ∇µ∇νkµ

= ∇µKνµ ,

(6.71)

and therefore we have

Exercise 6:
∇µKµν = −Rνµkµ . (6.72)

In form notation we have

d ⋆ dk = 8πGN ⋆ J = 2 ⋆ Rµνk
µdxν . (6.73)

This should look reminiscent of how we defined electric charges in the previous section. We

may rewrite the above using Einstein’s equations:

Rµν = 8πGN

(
Tµν −

1

2
T ρρgµν

)
, (6.74)

to find the current

Jµ = 2
(
Tµν −

1

2
T ρρgµν

)
kν . (6.75)

Thus d ⋆ J = 0. In analogy to how we defined a charge in electromagnetism, on a spatial

hypersurface Σ, we may define the conserved charge

Qk(B) = −
∫
Σ
⋆J =

1

8π

∫
Σ
d ⋆ dk =

1

8π

∫
∂Σ
⋆dk (6.76)

We define the charge to be taken at asymptotic infinity.

127



Definition 24 Komar mass

Let Σ be a spacelike hypersurface with boundary S2
r in an asymptotically flat stationary

spacetime, with time-like Killing vector k. The Komar mass (or Komar energy) is

MKomar = −
1

8π
lim
r→∞

∫
S2
r

⋆dk . (6.77)

This is a measure of the total energy of the spacetime. This energy comes from both matter

and the gravitational field. You have seen in GR1 exercises that even when computing the

Komar mass for the Schwarzschild solution, which is a vacuum solution with no matter, we

find a non-zero Komar mass which is equal to M .

Since the only property of k we used was that it is a Killing vector we can also define the

angular momentum in a similar way.

Definition 25 Komar angular momentum

Let Σ be a spacelike hypersurface with boundary S2
r in an asymptotically flat stationary

spacetime with killing axisymmetric vector k. Then the Komar angular momentum is

JKomar =
1

16π
lim
r→∞

∫
S2
r

⋆dk . (6.78)

Example 6.3: Komar mass and angular momentum of the Kerr solution
Let us now put our new conserved quantities to the test for the Kerr solution. For the

Komar mass the relevant Killing vector is k = ∂t. We first need to lower an index, which

gives:

k = −∆(r)

ρ2
(dt− a sin2 θdϕ) + a sin2 θ

ρ2
(adt− (r2 + a2)dϕ) . (6.79)

We now need to take the exterior derivative, giving

dk =
2M

ρ4
(
(r2 − a2 cos2 θ)(dt− a sin2 θdϕ) ∧ dr − 2ar cos θ sin θ(adt− (r2 + a2)dϕ) ∧ dθ

)
.

(6.80)

Computing the Hodge star we have:

⋆dk = −2M

ρ4

(
2ar cos θ(dt−a sin2 θdϕ)∧dr+(r2−a2 cos2 θ) sin θ(adt− (r2+a2)dϕ)∧dθ

)
.

(6.81)

We now want to pull this form back to the two-sphere at infinity, this just means extracting

out the piece with legs dθ ∧ dϕ. We have

⋆dk|S2
r
= −2M(a2 + r2)(r2 − a2 cos2 θ) sin θ

ρ4
dθ ∧ dϕ . (6.82)
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We now want to integrate this over the sphere at infinity. We can either try to integrate

this brute force and then take the limit or we can take the limit here and then perform the

integration. For either method we find:

MKomar =M , (6.83)

which is of course what we expected.

For the angular momentum we have that the Killing vector is R = ∂ϕ. Lowering the

index we find:

R = − 1

ρ2

(
a sin2 θ∆(dt− a sin2 θdϕ)− (r2 + a2) sin2 θ(adt− (r2 + a2)dϕ)

)
. (6.84)

Computing the exterior derivative we find:

dR =
2

ρ4

[
aM sin2 θ

(
r2 − a2 cos2 θ

)
dr ∧ dt+ 2aMr sin θ cos θ

(
a2 + r2

)
dt ∧ dθ

+ sin2 θ
(
a4 cos4 θ(r −M) + a2 cos2(θ)

(
a2M + r2(M + 2r)

)
− a2Mr2 + r5

)
dr ∧ dϕ

+ sin θ cos θ
(
(a2 + r2)3 +∆

(
ρ4 − (a2 + r2)2

))
dθ ∧ dϕ

]
,

(6.85)

and taking the Hodge dual we find:

⋆dR =
2

ρ4

[(
2Mr(a2 + r2)− 2Mrρ2 + ρ4

)
cos θdt ∧ dr + 2aMr sin4 θ cos θdr ∧ dϕ

+ (2Mr2(a2 + r2)−M(a2 + r2)ρ2 + (M − r)ρ4) sin θ3dt ∧ dθ

+ aM(2r2(a2 + r2) + (r2 − a2)ρ2) sin θ3dθ ∧ dϕ

]
.

(6.86)

As before we extract out the term which has legs along the two-sphere and integrate this

over the two-sphere before sending r →∞. The relevant term is

⋆dR
∣∣∣
S2
r

=
2aM(2r2(a2 + r2) + (r2 − a2)ρ2)

ρ4
sin θ3dθ ∧ dϕ . (6.87)

Integrating we find:

J =
1

16π
lim

∫
S2
r

dR = aM . (6.88)

This justifies our earlier claim, (6.3), that a is the reduced angular momentum. It also makes

more clear the three different regimes for the roots. The slowly rotating case corresponds to

the angular momentum satisfying 0 < |J | < 1, the extremal case is |J | = 1 and the rapidly

rotating case is |J | > 1. Here we should reinstate factors of the speed of light where there

is a 1, showing that the extremal case is when the black hole rotates with at the speed of

light.
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6.5 Ergosphere and Penrose process (or how to steal energy from a black hole)

By definition a black hole is a region of space where no matter nor light can escape from.

It may come as a surprise that we can extract energy from a black hole if it has something

called an ergosphere. To better understand what an ergosphere is it is instructive to first

consider stationary observers. Recall that a stationary observe is someone who remains

stationary with respect to infinity. This means that they do not allow the spatial coordinates

to vary at all. Since we are considering a black hole, in order for these stationary observers

to remain stationary a force must be applied to stop them from falling into the black hole.

Given a sufficiently powerful force, a stationary observer can hover arbitrarily close to the

Schwarzschild horizon. For a rotating black hole there is a limit to how close a stationary

observer can get. The four-velocity of a stationary observer is, by definition, Xµ = (ṫ, 0, 0, 0).

The condition for the four-velocity to be timelike and parametrised by proper time is

−1 = XµXµ = gttṫ
2 = −

(
1− 2Mr

ρ2

)
ṫ2 .

Where this condition is satisfied this determines ṫ. For Schwarzschild this is valid arbitrarily

close to the horizon, though if you pass the horizon you can no longer be stationary. In

contrast, for the Kerr black hole, on the surface

r = re(θ) =M +
√
M2 − a2 cos2 θ , (6.89)

gtt = 0 and therefore we cannot solve (6.5). Note that this is not the horizon, we can still

cross this surface and emerge back out to infinity if we want. Worse still, for r+ < r < re(θ),

it is not hard to see that gtt > 0 and therefore (6.5) cannot be solved there either! This

implies that no stationary observer can exist in this region: however much force you apply.

An alternative, but complimentary way of seeing this, is by studying the norm of the

time-like Killing vector at infinity. The norm of the Killing vector K = ∂t is

KµKµ = − 1

ρ2
(∆− a2 sin2 θ) , (6.90)

which we see does not vanish on the horizon, instead on the horizon it is spacelike. This

Killing vector is already spacelike at the outer horizon, except at the north and south poles

at θ = 0, π where it is null. The locus of points where KµKµ = 0 is called the stationary limit

surface24 and is given by

(r −M)2 =M2 − a2 cos2 θ , (6.91)

24From our earlier discussion the name stationary limit surface makes sense since it is the surface beyond

which a stationary observer r = θ = ϕ = const can no longer exist. Passing through the ergosphere the

observer must necessarily rotate, and therefore ϕ is no longer constant.
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while the outer event horizon is given by

(r+ −M)2 =M2 − a2 . (6.92)

Thus there is a region between these two surfaces, which is called the ergosphere, where K

is spacelike, see figure 29. Therefore since in the ergosphere ∂t is not time-like one cannot

travel along its integral curves and remain stationary with respect to observers at infinity. A

stationary observer is someone whose 4-velocity is parallel to K, since this is spacelike in the

ergosphere they cannot be stationary. Recall that in order to be timelike we need to satisfy

gµν ẋ
µẋν = −1 inside the ergosphere. However each of the terms of the metric are positive

definite inside the ergosphere except the term gtϕ, and therefore ϕ̇ ̸= 0 and so must rotate.

Since ṫ > 0 for a future directed worldline, we must have ϕ̇ > 0 and therefore the timelike

worldline is dragged around in the direction of the rotation of the black hole. This effect is

an example of frame dragging.

Figure 29: The horizon structure around the Kerr solution. The event horizons are null

surfaces that separate points past which it is impossible to return to a certain region of space.

The stationary limit surface, is timelike everywhere except where it is tangent to the event

horizon at the poles. It represents the place past which it is impossible to be a stationary

observer. The ergosphere between the stationary limit surface and the outer event horizon is

a region in which it is possible to enter and leave again but not to remain stationary.

We may exploit this to obtain energy from the black hole. Consider a particle with 4-

momentum pµ = mẋµ with m the rest of the particle. Recall that the existence of Killing

vectors implies the existence of conserved quantities along geodesics. We have the two con-
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served quantities:

E = −Kµp
µ = m

[(
1− 2Mr

ρ2

) dt
dτ

+
2Mar

ρ2
sin2 θ

dϕ

dτ

]
,

l = Rµp
µ = m

[
− 2Mar

ρ2
sin2 θ

dt

dτ
+

(r2 + a2)2 −∆(r)a2 sin2 θ

ρ2
sin2 θ

dϕ

dτ

]
.

(6.93)

These differ slightly with the definitions before where we had energy and angular momentum

per unit mass, here we have multiplied by the mass of the particle. They are of course still

conserved. The minus sign in E is because at infinity both K and p are timelike and so their

inner product is negative and we want energy to be positive.

Let the particle approach a Kerr black hole along a geodesic. The energy of the particle

according to a stationary observer at infinity is conserved along the geodesic. Inside the

ergosphere, since K becomes spacelike we can imagine particles for which

E = −Kµp
µ < 0 . (6.94)

This may bother you slightly that there is a particle with negative energy however, one can

find that all particles have positive energy outside the ergosphere, those with negative energy

must remain in the ergosphere or be accelerated until its energy is positive if it is to escape.

This allows for a way of extracting energy from a rotating black hole. Let us start away

far from the black hole and throw something into the black hole along a geodesic. Let us

denote the 4-momentum to be p0, then its total energy that we measure is

E0 = −pµ0Kµ , (6.95)

which is conserved. Let the object enter the ergosphere. We arrange for the object to eject a

mass, in a smart way, whilst in the ergosphere. Conservation of momentum gives

p0 = p1 + p2 , (6.96)

with p1 the momentum of the object and p2 the momentum of the ejected mass. Contracting

with the Killing vector K we have the expected relation

E0 = E1 + E2 . (6.97)

If we arrange for E2 < 0 by a clever choice of way of ejecting the mass, then we must have

E1 > E0. Penrose showed that the ejected mass with negative energy must fall into the black

hole, while the object can now escape with more energy than it initially began with. This is
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the Penrose process and is a method for extracting energy from a rotating black hole. The

energy imparted to the particle that escapes to infinity is drawn from the rotational energy

of the black hole.

So can a rotating black hole be used as an infinite source of energy? There is no such

thing as a free lunch (though cafe pi occasionally has free lunch samples), so the energy must

comes from somewhere, and the only candidate is that it comes from the black hole. The

Penrose process extracts energy from the black hole by decreasing the black holes angular

momentum. When the mass is ejected we need to it to be ejected with opposite direction

rotation compared to the black hole’s rotation. Recall that we saw that the event horizon

was a Killing horizon with Killing vector

ξµ = Kµ +Ω+R
µ . (6.98)

On the outer event horizon this indeed becomes null and is future directed and tangent to

the generators of the horizon. The statement that the object with momentum p2 crosses the

event horizon by moving forward in time, is simply that

pµ2ξµ < 0 . (6.99)

Plugging in the definitions of E and l, we see that this is equivalent to

l2 <
E2

Ω+
. (6.100)

Since E2 is negative and Ω+ positive it follows that l2 < 0 and therefore the particle has

negative angular momentum, it is moving against the rotation of the black hole.

Once our object has escaped the ergosphere and the mass has fallen inside the event

horizon the mass and the angular momentum of the black hole are changed. They are now

the initial values plus the negative contributions from the in-falling mass:

δM = E2 , δJ = l2 , (6.101)

with J =Ma the angular momentum of the black hole. The inequality (6.100) then translates

into a limit on the amount the angular momentum can decrease

δJ < δMΩ−1
+ . (6.102)

The ideal process would be when we have equality, in this case the mass thrown into the black

hole becomes more and more null (since in this limit we have pµ2ξµ → 0).
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There is now a slight curiosity that appears, we can use the Penrose process to reduce the

mass of the black hole, however there is a non-decreasing quantity: the area of the horizon.

Let us compute the area of the event horizon at r = r+. To do this we look at the induced

metric on the horizon by setting t =const r = r+. The induced metric is

ds2(horizon) = γijdx
idxj = ds2(dt = 0 , dr = 0 , r = r+)

(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θdϕ2 + (r2+ + a2 cos2 θ)dθ2 ,

(6.103)

The area of the horizon is then simply

A =

∫
dvol(horizon) . (6.104)

For the metric at hand the determinant is

det(γ) =
(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θ × (r2+ + a2 cos2 θ) = (r2+ + a2)2 sin2 θ ,

dvol(horizon) = (r2+ + a2) sin θdθ ∧ dϕ .

(6.105)

The area is then

Ahorizon = (r2+ + a2)

∫
sin θdϕdθ = 4π(r2+ + a2) . (6.106)

To show that this does not decrease we work with the so called irreducible mass defined by

M2
irreducible =

A

16π
. (6.107)

Then we have

M2
irreducible =

r2+ + a2

4

=
1

2

(
M2 +

√
M4 −M2a2

)
=

1

2

(
M2 +

√
M4 − J2

)
.

(6.108)

We can differentiate to obtain how Mirreducible is affected by changes in the mass or angular

momentum:

δMirreducible =
a

4Mirreducible

√
M2 − a2

(Ω−1
H δM − δJ) . (6.109)

We see that the inequality (6.102) becomes

δMirreducible > 0 . (6.110)
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The irreducible mass can never be reduced, hence the name. It follows that the maximum

amount of energy that can be extracted from the black hole is

max(E) =M −Mirreducible =M − 1√
2

√
M2 +

√
M4 − J2 . (6.111)

The result after a complete extraction of this amount of energy is a Schwarzschild solution

with mass Mirreducible. The most efficient process is to start with an extremal Kerr black hole

and then one can extract out approximately 29% of its total energy.

The irreducibility ofMirreducible immediately shows that the surface area is non-decreasing.

We have

δA =
8πa

ΩH
√
M2 − a2

(
δM − ΩHδJ

)
. (6.112)

This may be recast as

δM =
κ

8π
δA+ΩHδJ , (6.113)

where κ is

κ =

√
M2 − a2

2M(M +
√
M2 − a2)

. (6.114)

The quantity κ is the surface gravity of the Kerr solution. This is the force that an observer

at infinity would have to exert in order to keep a unit mass at the horizon.

Recall that for every Killing horizon we can associate a quantity called the surface gravity.

Given the Killing horizon we have an associated Killing vector, ξ which is null on the

horizon. Since ξ is a normal vector to the Killing horizon it obeys the geodesic equation

ξµ∇µξν = κξν . (6.115)

It turns out that κ is constant over a Killing horizon.

Equation (6.113) first started people thinking about a correspondence between the laws

of thermodynamics and black holes. The first law of thermodynamics is

dE = TdS − pdV , (6.116)

where T is the temperature, S the entropy, p the pressure and V the volume, thus pdV is the

work done on the system. It is then natural to think of the term ΩHδJ as the work we do on

the black hole by throwing our mass into the black hole. It is then natural to construct the

dictionary

E ↔M , S ↔ A

4GN
, T ↔ κ

2π
. (6.117)

This observation leads nicely on towards studying black hole thermodynamics.
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7 Laws of black hole thermodynamics

In 1973 Bardeen, Carter and Hawking (BCH) wrote a paper, [15], in which they considered

Figure 30: The BCH paper.

stationary, axisymmetric black holes. They found that black holes obeyed laws reminiscent

of the laws of thermodynamics. At the time they thought it was just an analogy. There

seem to be some glaring flaws in this analogy: since nothing can escape from a black hole

the temperature must vanish, secondly, the entropy is dimensionless whereas the horizon area

is a length squared, a final perceived flaw is that the area of every black hole is separately

non-decreasing, whereas only the total entropy is non-decreasing in thermodynamics. The

resolution to all these flaws lies in a theory of quantum gravity which GR is not. Recall that

going to a quantum theory was also the resolution for apparent paradoxes in thermodynamics,

for example black body radiation. We will not study quantum gravity, this is an active area

of research and even after decades of research we do not know what the correct theory is,

though that is not to say that progress has not been made. Instead, we will present the

classical laws of black hole thermodynamics and a little semi-classical analysis.

7.1 The four laws of (black hole) themrodynamics

There are four laws of black hole thermodynamics which should be contrasted with the laws

of thermodynamics, see table 1.
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Law Thermodynamics Black holes

0th
The temperature T is constant

throughout a system in thermal equi-

librium.

The surface gravity κ is constant over

the event horizon of a stationary black

hole.

1st dE = TdS +
∑

i µidNi dM = 1
8πκdA+ΩHdJ +ΦHdQ

2nd dS ≥ 0 dA ≥ 0

3rd
T cannot be reduced to zero by a finite

number of operations.

κ cannot be reduced to zero by a finite

number of operations.

Table 1: The four laws of black hole thermodynamics and the four laws of thermodynamics.

It may seem strange to say that a black hole has a temperature since nothing can escape

from a black hole and therefore they cannot radiate. This would also mean that they cannot

have a physical entropy. Once quantum effects are taken into account it turns out that a

black hole can have a temperature. Moreover, as pointed out by Jacob Bekenstein the second

law of thermodynamics would be violated if black holes did not have an entropy. One could

throw in arbitrary objects into the black hole which have a large entropy and thus lower the

entropy of the exterior universe. In order to save the 2nd law of thermodynamics it is essential

for a black hole to have an entropy and moreover it must be proportional to the surface area

of the horizon. Bekenstein’s generalised second law states that

dStotal = d
(
Sexternal + SBH

)
≥ 0. (7.1)

In 1974 Hawking announced that black holes are hot (and people studying them even

more) and radiate just like any hot body with a temperature

TH =
ℏκ

2πckB
, (7.2)

from which it follows that a black holes has an entropy, which was later shown to be given by

SBH =
Ac3

4GNℏ
. (7.3)

which is known as the Bekenstein–Hawking entropy.

In the remainder of the course our goal is to understand the laws of black hole thermo-

dynamics as presented above. We will not present proofs for each of the laws, indeed not all

have proofs, just overwhelming evidence.

7.2 Zeroth law of black hole mechanics

Proposition

Consider a null geodesic congruence that contains the generators of a Killing horizon N .

Then θ = σ = ω = 0 on N .
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Proof: We have already seen that ω = 0 since the generators are hypersurface orthogonal.

Let ξ be a Killing vector field normal to N . On N we can write ξµ = hUµ where Uµ is

tangent to the affinely parametrised generators of N and h is a function on N . Le N be

specified by an equation f = 0. Then we can write Uµ = h−ξµ + fV µ where V µ is a smooth

vector field. We can then calculate

Bµν = ∇νUµ = (∂νh
−1)ξµ + h−1∇νξµ + ∂νfVµ + f∇νVµ , (7.4)

evaluating on N and using Killing’s equation gives

B(µν)

∣∣∣
N

=
[
ξ(µ∂ν)h

−1 + V(µ∂ν)f
]∣∣∣∣

N
. (7.5)

Since both ξµ and ∂µf are parallel to Uµ on N when we project onto T⊥ both terms are

eliminated and we have

B̂µν

∣∣∣
N

= 0 (7.6)

and thus θ = σ = 0 on N .

Theorem 6 Zeroth law of black hole mechanics

The surface gravity κ is constant on the future event horizon of a stationary black hole space-

time obeying the dominant energy condition.

Proof: Using Hawking’s theorem we have that H+ is a Killing horizon with respect to some

Killing vector ξ. We know that θ = 0 along the generators of H+, and therefore dθ
dλ = 0 along

these generators. Moreover, we have just seen that on H+ we have σ = ω = 0. Therefore

Raychaudhuri’s equation gives

0 = Rµνξ
µξν
∣∣∣
H+

= 8π

(
Tµν −

1

2
gµνT

ρ
ρ

)
ξµξν

∣∣∣
H+

= 8πTµνξ
µξν
∣∣∣
H+

(7.7)

where we have used Einstein’s equation and that ξ is null on H+. This implies

Jµξ
µ
∣∣∣
H+

= 0 , where Jµ ≡ −Tµνξν . (7.8)

Since ξ is a future-directed causal vector field, then by the dominant energy condition, so is

Jµ (unless it is zero). Thus, Jµ is parallel to ξµ on H+ and consequently

0 = ξ[µJν]

∣∣∣
H+

= −ξ[µTν]ρξρ
∣∣∣
H+

= − 1

8π
ξ[µRν]ρξ

ρ
∣∣∣
H+

, (7.9)

where we have used Einstein’s equation in the final step. One problem sheet 4 you are asked

to show that this is equivalent to

0 =
1

8π
ξ[µ∂ν]κ . (7.10)
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Therefore ∂νκ is proportional to ξν and therefore for any vector field T̃ tangent to H+ it

follows that T̃µ∂µκ = 0. Therefore κ is constant on H+ provided H+ is connected.

Let us identify what we need for proving that the surface gravity is constant on the

horizon. We must be very careful with the formulae we use for the surface gravity and

acting on them with derivatives since some only hold on the horizon. Since ξ2
∣∣
H+ = 0

we have that ∇µ
(
ξ2
)
is normal to the horizon and therefore there is a function κ on the

horizon such that

∇µ(ξ2) = −2κξµ . (7.11)

We may rewrite this as

ξµ∇νξµ = −ξµ∇µξν = −κξν , (7.12)

which is just the geodesic equation in a non-affine parametrisation. The above derivation

of the expression for the surface gravity makes clear that it holds on the Killing surface.

This means that applying derivatives to the above expression is somewhat subtle, we

can only differentiate on the Killing surface and not normal to it. Instead observe that if

ϵµνρσ is the 4d volume element then ϵµνρσξσ is tangent to the horizon since ϵµνρσξσξρ = 0.

Therefore we may use this to project the differential operator onto the horizon by acting

with ϵµνρσξρ∇σ and then this may be applied to any object defined on the horizon.

Equivalently we may act with ξ[µ∇ν] on any object. Now applying this to (7.12) we

obtain

ξ[ρ∇σ](κξν) = ξνξ[ρ∇σ]κ+ κξ[ρ∇σ]ξν
= ξ[ρ∇σ]

(
ξµ∇µξν

)
=
(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
+ ξµξ[ρ∇σ]∇µξν

=
(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
+ ξµR τ

µν[ρ ξσ]ξτ

(7.13)

We may simplify the first term by using the condition that ξ is hypersurface orthogonal

and hence satisfies ξ[µ∇νξρ] = 0. We find

(
ξ[ρ∇σ]ξµ

)(
∇µξν

)
= −1

2

(
ξµ∇ρξσ

)
∇µξν

= −1

2
κξν∇ρξσ

= κξ[ρ∇σ]ξν

(7.14)

This cancels the second term of the first row of (7.14). We therefore have

ξνξ[ρ∇σ]κ = ξµR τ
νµ[σ ξρ]ξτ (7.15)
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Since ξ is hypersurface orthogonal we have

ξρ∇µξν = −2ξ[µ∇ν]ξρ , (7.16)

and acting on this with with ξ[σ∇τ ] we obtain(
ξ[σ∇τ ]ξρ

)
∇µξν + ξρξ[σ∇τ ]∇µξν = −2

(
ξ[σ∇τ ]ξ[µ

)
∇ν]ξρ − 2

(
ξ[σ∇τ ]∇[νξ|ρ|

)
ξµ] . (7.17)

Application of (7.16) results in

−ξρR λ
µν[τ ξσ]ξλ = 2ξ[µR

λ
ν]ρσ ξρξλ . (7.18)

Contracting over the ρ and τ indices gives

−ξ[µR λ
ν] ξλξσ = ξ[µR

λ
ν]ρσ ξρξλ , (7.19)

with the right-hand-side being the expression we required above. We therefore find

ξ[µ∇ν]κ = −ξ[µR
ρ

ν] ξρ . (7.20)

Plugging this into the formulae above gives the required result. You are asked to perform

these steps in problem sheet 4.

7.3 First law

We have already seen a form of the first law when we considered the irreducible mass of the

Kerr solution. We will give a somewhat heuristic argument here of the first law and then check

it in more detail for the black holes we have studied previously. Consider the Killing vector

associated to the Killing horizon, it takes the form ξ = K + ΩHR where K generates time

translations and R generates the axisymmetry. The corresponding charge is a combination

of the mass and the angular momentum:

Qξ = −
1

8π

∫
S2
∞

⋆dξ = − 1

8π

∫
S2
∞

⋆dK − ΩH
8π

∫
S2
∞

⋆dR =M − 2ΩHJ . (7.21)

We can also evaluate Qξ in another way. Let Σ be a spacelike hypersurface intersecting the

horizon H+ on a two-sphere S2
H which together with the two-sphere S2

∞ at spatial infinity

forms the boundary of Σ. Using Stoke’s theorem we have:

Qξ = −
1

8π

∫
S2
H

⋆dξ − 1

8π

∫
Σ
d ⋆ dξ

= − 1

8π

∫
S2
H

⋆dξ + 2

∫
Σ

(
Tµν −

1

2
gµνT

ρ
ρ

)
ξν ⋆ dxµ ,

(7.22)
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where in the last step we used

⋆d ⋆ dξ = 8πJ , J = 2
(
Tµν −

1

2
gµνT

ρ
ρ

)
ξνdxν (7.23)

The integral over S2
H may be regarded as the contribution from the black hole while the one

over Σ is a combination of the mass and angular momentum of the matter and radiation

outside the horizon. In order to treat the integral over S2
H we observe that the volume form

on S2
H , can be written as

dvol(S2
H) = ⋆(n ∧ ξ) , (7.24)

evaluated at the horizon. Here nµ is another null vector normal to S2
H , normalised so that

nµξµ = −1. Therefore ∫
S2
H

⋆dξ =

∫
S2
H

dvol(S2
H)
(
⋆
(
n ∧ ξ

))µν
(⋆dξ)µν

= 2

∫
S2
H

dvol(S2
H)n

νξµ∇µξν

= −2κ
∫
S2
H

dvol(S2
H)

= −2κAH .

(7.25)

Plugging this into (7.22) we arrive at

M =
κAH
4π

+ 2ΩHJ + 2

∫
Σ

(
Tµν −

1

2
gµνT

ρ
ρ

)
ξν ⋆ dxµ (7.26)

If we are in pure GR, then Tµν = 0 and our spacetime is the Kerr black hole and the formula

reads

M =
κA

4π
+ 2ΩHJ . (7.27)

This is Smarr’s formula for the mass of a Kerr black hole. A formula for δM in the vacuum

case can be obtained by varying (7.27)

δM =
1

4π

(
AHδκ+ κδAH

)
+ 2
(
JδΩH +ΩHδJ

)
. (7.28)

An alternative computation gives

δM = − 1

4π
AHδκ− 2JδΩH . (7.29)

Adding the two equations gives

δM =
1

8π
κδAH +ΩHδJ . (7.30)
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In the case where there is an electric charge, we need to define the electric potential

ΦH = ξµAµ

∣∣∣
H+
− ξµAµ

∣∣∣
∞
. (7.31)

For asymptotically flat spacetimes we have that Aµ → 0 as we tend to ∞ and so the second

term drops out. The 1st law with electric charge is then

δM =
1

8π
κδAH +ΩHδJ +ΦHδQ (7.32)

Aside
A cute way of seeing that this must be true in GR in a vacuum is to use the uniqueness

theorems for the Kerr solution which say that M = M(A, J) (in the absence of charge).

Now in the units we are using both A and J have dimensions of M2 so that the function

M(A, J) must be homogeneous of degree 1/2. The Euler theorem of homogeneous functions

then implies that

A
∂M

∂A
+ J

∂M

∂J
=

1

2
M

=
κ

8π
A+ΩHJ ,

(7.33)

where in the second line Smarr’s formula has been used. Rearranging one finds

A

(
∂M

∂A
− κ

8π

)
+ J

(
∂M

∂J
− Ω+

)
= 0 . (7.34)

Since A and J are free parameters, we can tune then however we want we must have:

∂M

∂A
=

κ

8π
,

∂M

∂J
= Ω+ , (7.35)

which proves the statement.

Example 7.1: Kerr–Newman
Let us check this for the electrically charged Kerr–Newman solution:

ds2 = −∆(r)− a2 sin2 θ
ρ(r, θ)2

dt2 − 2a sin2 θ(r2 + a2 −∆(r))

ρ(r, θ)2
dtdϕ

+
(r2 + a2)2 − a2 sin2 θ∆(r)

ρ(r, θ)2
sin2 θdϕ2 +

ρ(r, θ)2

∆(r)
dr2 + ρ2(r, θ)dθ2 ,

A = − 1

ρ(r, θ)2

(
Qr(dt− a sin2 θdϕ)

)
.

(7.36)

The functions are

ρ(r, θ)2 = r2 + a2 cos2 θ , ∆(r) = r2 − 2Mr + a2 + e2 , e2 = Q2 + P 2 . (7.37)
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Recall that the Kerr–Newman solution is the unique stationary black hole solution of the

Einstein–Maxwell theory. Let us compute the quantities that we will need to check the

relation. The outer Killing horizon is at r = r+ with

r± =M ±
√
M2 − a2 −Q2 . (7.38)

First let us consider the surface area of the horizon. We fix an arbitrary time t = t0

and look at the induced metric on the intersection t = t0 and r = r+, we find

ds2(H) = γµνdx
µdxν = ρ(r+, θ)

2dθ2 +
r2+ + a2

ρ(r+, θ)2
sin2 θdϕ2 . (7.39)

The volume form is

dvol(γ) = (r2+ + a2) sin θdθ ∧ dϕ , (7.40)

and so the surface area is

AH =

∫
H+

dvol(γ) =

∫ 2π

0
dϕ

∫ π

0
dθ(r2+ + a2) sin θ = 4π(r2+ + a2) . (7.41)

Next let us consider the surface gravity. We first need to find the Killing vector which

is null on the horizon and then use this to compute the surface gravity. Since the horizon

is a Killing horizon we know that it must be of the form

ξ = K +Ω+R , (7.42)

where K and R are the generators of time translations and the axis symmetry respectively.

Note that since a Killing vector remains a Killing vector under a constant rescaling there

is an arbitrariness in how we pick such a Killing vector. We normalise such that K has

coefficient 1, this is so that at asymptotic infinity the norm of the Killing vector is −1 in

accordance with K being a timelike Killing vector. Now this needs to have zero norm on

the horizon. The norm is

ξ2
∣∣∣
N+

=
a2 sin2 θ

r2+ + a2 cos2 θ
−

2a sin2 θ(r2+ + a2)

r2+ + a2 cos2 θ
ΩH +

(r2+ + a2)2

r2+ + a2 cos2 θ
sin2 θΩ2

H

=
sin2 θ

r2+ + a2 cos2 θ

(
a2 − 2a(r2+ + a2)ΩH + (r2+ + a2)2Ω2

H

)
,

(7.43)

and for this to vanish we need

Ω+ =
a

r2+ + a2
. (7.44)

This is the angular velocity of the black hole.
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We can now try to compute the surface gravity. In order to use the formula

∇µ(ξ2) = −2κξµ . (7.45)

we need to use coordinates in which the horizon is not a coordinate singularity. Rather

than changing coordinates we will instead use an alternative formula for the surface gravity

κ2 = lim
r→r+

gµν∂ν(ξ
2)∂µ(ξ

2)

4ξ2
. (7.46)

After a slightly painful computation we find

κ =
r+ − r−

2(r2+ + a2)
. (7.47)

Consider the electric potential. We have

ΦH = ξµAµ

∣∣∣
H+

=
Qr+

r2+ + a2 cos2 θ
(1− Ω+a sin

2 θ)

=
Qr+

r2+ + a2
.

(7.48)

Finally let us remember that the electric charge is Q and the angular momentum is

J = aM . Putting everything together we have

AH = 4π
((
M +

√
M2 − a2 −Q2

)2
+ a2

)
= 4π

(
2M2 −Q2 + 2M

√
M2 −Q2 − a2

)
.

(7.49)

Since M , Q and J are independent parameters this implies

δA =
∂A

∂M
δM +

∂A

∂Q
δQ+

∂A

∂J
δJ . (7.50)

After some explicit computation (which you will do in problem sheet 4) and a little rear-

ranging we find

δM =
1

8π
κδA+ΩHδJ +ΦHδQ . (7.51)

We see that the proof is deceptively simple, all the hard work goes into proving the

uniqueness theorems. You need to know that the black hole settles down to another Kerr–

Newman black hole and not some other spacetime. It is worth noting that there exist proofs

of the first law known as physical process proofs that do not assume this.
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7.4 Second law

The second law states that in any physical process the area of the event horizon can never

decrease. This is a very surprising feature of these complicated nonlinear PDEs which Hawking

proved using just the Einstein equation, the weak energy condition and cosmic censorship.

Let us give a sketch of the proof. Consider the congruence of the horizon and take a

cross sectional area AH at some value of the affine parameter λ along the geodesics. Then

the expansion θ satisfies
dAH
dλ

= θAH . (7.52)

If we imagine the theorem is violated so that the area decreases then we must have θ < 0

somewhere on the event horizon. Since the generators are geodesics the evolution of the

expansion is governed by Raychaudhuri’s equation. Recall that if θ < 0 and the null energy

condition is satisfied then θ → −∞ in finite λ. This causes a caustic, see figure 31. Since the

points p and q are timelike separated, this contradicts the assumption that the null curves

are the generators of an event horizon, as no two points on the event horizon can be timelike

separated. Thus by contradiction the cross sectional area of an event horizon cannot decrease.

Note that the proof assumes Einstein’s equations, they are not used in an essential way.

Example 7.2: Splitting black holes
The second law has some profound implications for what physical processes can occur.

Consider a Schwarzschild black hole of mass M . We could ask whether a black hole can

split into two black holes of smaller mass? The second law forbids this.

Let the masses of the new black holes be m1 and m2. Conservation of energy implies

M = m1+m2. The surface area of a Schwarzschild black hole is A = 4πM2. We have that

the entropy of the final state is Af = A1+A2 = 4π(m2
1+m

2
2) and the entropy of the initial

state is Ai = 4πM2 = 4π(m1 +m2)
2 = 4π(m2

1 +m2
2 + 2m1m2). It is clear that Ai > Af

and therefore this process violates the second law. Black holes cannot split in two!

Example 7.3: Merging black holes
Consider the opposite scenario: two Schwarzschild black holes merging. After the

merger they will form another Schwarzschild black hole but may also emit gravitational

waves. Is there an upper-bound on the amount of gravitational waves that can be emitted?

The 2nd law provides such a bound.

Let the mass of the two initial black holes be M1 and M2 and the final black hole have

mass M3. Let the energy of the radiated gravitational waves be m. Then conservation of
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Figure 31: A family of null geodesics with θ < 0 initially will form a caustic; the dotted curve

connecting p and q lies within the local light cone, so these points are timelike separated.

energy gives:

M1 +M2 =M3 +m. (7.53)

The second law implies that

M2
3 ≥M2

1 +M2
2 . (7.54)

Therefore the ratio between the energy of the emitted radiation and the initial energy is

m

M1 +M2
=
M1 +M2 −M3

M1 +M2
= 1− M3

M1 +M2
. (7.55)

The second law allows us to eliminate M3 for an inequality, thus

m

M1 +M2
= 1− M3

M1 +M2
≤ 1−

√
M2

1 +M2
2

M1 +M2
. (7.56)

This is maximised when the entropy does not change, that is

M2
3 =M2

1 +M2
2 , (7.57)
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and therefore the maximum possible amount radiated is

m

M1 +M2
= 1−

√
M2

1 +M2
2

M1 +M2
. (7.58)

We can now extremise this with respect to the two masses to see what the optimal mass

distribution is to produce the most efficient conversion of energy to gravitational waves.

Given the symmetry it is not hard to see that this is preciselyM1 =M2. The most efficient

process occurs for colliding black holes of the same mass and the ratio becomes

m

M1 +M2

∣∣∣
max

= 1− 1√
2
∼ 0.29. (7.59)

7.5 Third law

Of all the laws this is on the least firm ground. When the surface gravity of a black hole

vanishes it is called extremal. For the Kerr–Newman the extremal condition is equivalent to

M2 = a2 +Q2 +P 2. For Kerr and electrically charged Kerr black holes one can try to throw

matter into the black hole and make it extremal. One finds that it gets harder and harder

for the matter to make the black hole become closer to being an extremal black hole.

7.6 Why should black holes carry an entropy?

We see that we need to accept that black holes have an entropy for the mathematics to hold,

but what are physical grounds for the existence of black hole entropy?

Black holes are formed from the collapse of matter which carries entropy. However the

matter that has contributed to form a black hole is not visible from an observer watching from

outside the event horizon. So the observer must conclude either that the entropy disappears in

the formation and growth of black holes and thus that the second principle of thermodynamics

is violated or that the black holes themselves carry entropy.25

In general relativity, black hole solutions are fully characterised by few conserved quan-

tities such as the mass, the angular momentum and the electric charge. Black holes do not

have hair. However there are many ways of forming a black hole with assigned values of

these charges. From this perspective black holes are macroscopic thermodynamic objects

with many microstates, corresponding to the different possible ways of forming the same

macroscopic solution. Enumerating these microstates leads to an entropy.

25Famously Bekenstein’s advisor Wheeler, asked “what happens if we throw a cup of tea into a black hole?”
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8 The black hole information paradox: short version NOT EXAMINABLE

This has been a challenge since Hawking’s original paper detailing the Hawking temperature.

This remains an active area of research with different approaches used to try to resolve the

paradox, despite this there still remains much for us to understand. The big question is what

is quantum gravity? String theory gives a good solution to the renormalizability problem,

along with many other good things, however it is only a perturbative expansion in powers

of the coupling. We know that quantum theories exhibit many fascinating and important

phenomena that are not visible in perturbation theory: for example quark confinement, chiral

symmetry breaking, electroweak baryon and lepton number violation all occur in the Standard

model. Quantum gravity should also have interesting aspects not accessible from perturbation

theory. Similar questions in QFT ’were resolved‘ by considering the path integral defined via

the renomalization group. A partial answer for string theory can be obtained by using the

AdS/CFT duality. This relates string theory in certain backgrounds (AdS) to quantum field

theories. The latter we know how to define and so this duality gives a window into studying

quantum gravity. However this has limitations, for example it cannot be used to describe

cosmological spacetimes. We are still missing some things.

8.1 A short introduction to Hawking radiation

We want to better understand how a black hole can emit radiation. Consider an inertial

observer falling through the future horizon of a Schwarzschild black hole. This takes a finite

amount of proper time, but from the viewpoint of an asymptotic observer they never see them

on the horizon. Consider the Schwarzschild metric

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2ds2(S2) , (8.1)

and consider the dynamics close to the horizon: r = rs + δ. The small δ behaviour is

ds2 ≃ − δ

rs
dt2 +

rs
δ
dδ2 + r2sds

2(S2) . (8.2)

Defining 4rsδ = ρ2 this becomes:

ds2 ≃ − ρ2

4r2s
dt2 + dρ2 + r2sds

2(S2) . (8.3)

The first two terms are just Minkowski space. Defining

X = ρ cosh
t

2rs
, T = ρ sinh

t

2rs
, (8.4)
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the metric is

ds2 ≃− dT 2 + dX2 + r2sds
2(S2)

=− dUdV + r2sds
2(S2) ,

(8.5)

with

U = T −X = −ρe−t/(2rs) , V = T +X = ρet/(2rs) . (8.6)

The Schwarzschild coordinates t, r only cover the region X > |T |, that is U < 0 < V . This

can then be extended into the black hole with the analogue of Kruskal coordinates.

In terms of the coordinates U, V introduced above, V is approximately constant while U

goes through the zero linearly in the proper time τ . Thus

dτ ≈ e−t/rsdt . (8.7)

Therefore, while the coordinate τ smoothly crosses the ingoing horizon at U = 0, V = const,

the coordinate t stops at the horizon. An observer using the τ coordinate will cross the horizon

freely while the observer using the coordinate t will interpret space as ending at the horizon.

Hawking radiation essentially arises because of the relation between these two coordinates.

An infalling observer will expand a quantum field in modes of frequency ν with respect

to τ , while an outside observer will use t to expand their fields with t-frequency ω. This is

not the same expansion and it leads to positive and negative frequency modes getting mixed.

Consider foliating the near-horizon geometry with smooth slices by taking U +V as the time

coordinate. In this foliation the geometry is changing adiabatically on a time scale r−1
s but

the modes we are discussing have a much higher frequency and therefore the geometry is

changing slowly compared to ν. The adiabatic principle implies that this mode must be in

the ground state to high accuracy in the modes of the infalling observer. (If the Hamiltonian

for a quantum system is changing at a rate slow compared to the spacing between energy

levels then the probability for the system in become excited is exponentially small.)

To simplify our lives let us drop the S2, though it can be included quite simply. We will

treat it as a 1 + 1 dimensional system with a massless scalar propagating in the background

with metric:

ds2 = −
(
1− rs

r

)
dudv

= −4r2s
r

e−r/rsdUdV .

(8.8)

The coordinates u, v are only valid in quadrant 1 and are the null coordinates for the asymp-

totic observer. The Klein–Gordon equation becomes:

∂u∂vϕ = 0 = ∂U∂V ϕ , (8.9)
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which have solutions ϕ = f(u)+g(v), and similar for U, V , which are the left and right moving

part. We only consider the right-moving part and expand in modes:

ϕR =

∫ ∞

0

dν

2π
√
2ν

(
aνe

−iνU + a†νe
iνU
)

=

∫ ∞

0

dω

2π
√
2ω

(
bωe

−iωu + b†ωe
iωu
)
.

(8.10)

The non-zero commutators are

[aν , a
†
ν′ ] = 2πδ(ν − ν ′) , [bω, b

†
ω′ ] = 2πδ(ω − ω′) . (8.11)

The coordinate U is smooth across the horizon and therefore the aν modes are good for

infalling observers. For the asymptotic observer they want to use the bω modes of definite

frequency with respect to the time translation symmetry. The relation between these is:

bω =

∫ ∞

0

dν

2π
(αω νaν + βω νa

†
ν) , (8.12)

where

αω ν = 2rs

√
ω

ν
(2rsν)

2irsωeπrsωΓ(−2irsω) ,

βω ν = 2rs

√
ω

ν
(2rsν)

2irsωe−πrsωΓ(−2irsω) ,
(8.13)

By the adiabatic principle the horizon crossing modes approach the black hole vacuum state

and satisfy aν |0⟩ = 0. The eternal modes (b’s) satisfy

⟨0|b†ωbω′ |0⟩ = 2
√
ωω′

∫ ∞

0

dν

2π
√
2ν

dν ′

2π
√
2ν ′

β∗ω νβω′ ν′⟨0|aνa†ν′ |0⟩

= 2
√
ωω′

∫ ∞

0

dν

4πν
β∗ω νβω′ ν′

=
2π

e4πrsω − 1
δ(ω − ω′)

=
2π

eω/TH − 1
δ(ω − ω′) .

(8.14)

This is a black body spectrum of the expected temperature.

Pair production One has neglected to use that the b’s are only defined in the first quadrant,

so the ϕR that we construct is only valid outside the horizon in region 1 of the Penrose diagram.

While the expression for b’s in terms of a’s is compete the inverse relation will not be, it also

involves other operators b̃ω which have support only inside the black hole (region 2). One has

aν =

∫ ∞

0

dω

2π

(
α∗
ω νbω − β∗ω νb

†
ω + α̃∗

ω ν − β̃∗ω ν b̃
†
ω

)
. (8.15)
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One can use this to write the a vacuum as

|0⟩a ∝ exp

[∫ ∞

0

dω

2π
e−ω/(2TH)b†ω b̃

†
ω

]
|0⟩b,b̃ . (8.16)

The role of the b†ω operator is to raise the energy while that of the b̃†ω is to lower the energy:

[H, b†ω] = ωb†ω , [H, b̃†ω] = −ωb̃†ω . (8.17)

This negative energy arises because what we are calling energy is really the conserved charge

associated to the Killing vector that looks like time translation outside the horizon. On the

horizon this changes signature, and once inside it labels a momentum for the interior modes,

therefore either signs are permitted.

In the 1+1 dimensional model the massless scalar field separates into right-moving and

left-moving modes. These can scatter into one another and this can be an important effect.

One then has

bω = Rω + Tω

∫ ∞

0

dν

2π
(αω νaν + βω νa

†
ν) , (8.18)

where cω are the left-moving modes coming in from spatial infinity I −, Rω is the amplitude

for them to reflect before reaching the horizon and Tω is the transmission amplitude, with

|Rω|2 + |Tω|2 = 1. The Hawking flux is then reduced by a greybody factor,

⟨0|b†ωbω′ |0⟩ = |Tω|2
2π

eω/TH − 1
δ(ω − ω′) . (8.19)

Above 1+1 dimensions the transmission amplitude falls exponentially with the angular mo-

mentum.

This description gives rise to the interpretation of the Hawking emission process as par-

ticle pair creation close to the horizon with a negative energy particle falling into the black

hole and a positive energy particle escaping to infinity.

8.2 Information Paradox

Black hole evaporation leads to a serious problem with unitarity. Imagine throwing quantum

bits into the black hole at a rate such that their energy just equals that of the outgoing

radiation. The black hole’s mass and its horizon area stay constant. The number of possible

states of the black hole grows without bound and we lose connection with the area being

the entropy. To recover it we somehow need that the bits deep inside can escape with the

Hawking radiation, or at least imprint their state on it. This is forbidden by causality though,

once it passes through the horizon it cannot affect anything outside.
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This is not quite a crisis yet, maybe our statistical interpretation of the black hole entropy

needs to be given up. Consider a black hole that was formed by a shell of matter in some pure

quantum state Ψ⟩. After the initial collapse settles down the state of the outgoing modes is

given by the exterior density matrix

ρexterior = |Ω⟩⟨Ω|ingoing ⊗

(
⊗ωlm

(
(1− e−βω)

∑
n

e−βωn|n⟩⟨n|ωlm

))
outgoing

(8.20)

As time goes on the quantum state of the radiation outside becomes more and more mixed,

its entanglement entropy is increasing. This is not too bad since this is just parametrising our

ignorance of what is happening behind the horizon. However as the black hole evaporates it

decreases in size until at some point it becomes Planckian. Until this point the entanglement

entropy of the radiation field outside continues to increase. At this point one of three things

must happen:

• The evaporation stops and the Planck sized object just sits around. This is called a rem-

nant. For the total state to remain pure, as required by unitarity, the remnant must have

an extraordinary amount of entanglement entropy. This would exceed the Bekenstein–

Hawking value which would violate the state counting statistical mechanics interpretation

of the BH entropy.

• The black hole finishes evaporating into ordinary quanta such as photons and gravitions.

Energy conservation prevents the final burst from containing nearly enough entanglemnt

entropy to purify the earlier radiation and therefore the end result of the evaporation

process is a mixed state of the radiation whose entropy is of the order of the initial black

hole entropy.

• Information is conserved via the Hawking radiation. This seems to require superluminal

transport of information from the black hole interior. We have studied QG using an effective

field theory, for the information to get out we require that the effective theory breaks down

even where curvatures are small.

Hawking argued for (2), and the process of black hole formation and evaporation is not

unitary. This also requires the violation of the principle of energy conservation. We don’t

usually like to throw our physical principles away, so can it be avoided?

This is an active research direction, and has a long and technical history to go into in

anymore detail. The moral of the story though is that GR is not enough and we need a theory

of quantum gravity.
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9 Hawking temperature: the longer version(non-examinable)

General relativity is not a complete theory. For one, the singularity theorem provides evidence

that the theory is incomplete. More convincingly, GR is a classical theory while the world

is fundamentally quantum mechanical. Trying to understand quantum gravity is one of the

leading avenues of research in high energy theory. Though there has been much progress, a

full understanding of quantum gravity remains elusive.

There are two parts to GR: spacetime curvature and its influence on matter and the

dynamics. of the metric in response to a varying energy momentum tensor. Lacking a true

theory of quantum gravity we may still use the first part, saying that the quantum mechanical

matter propagates in a curved background which we will hold fixed. Rather than obeying

some dynamical equations, we take the metric to be fixed.

To begin let us review some quantum mechanics and quantum field theory before defining

quantum field theory in curved space.

9.1 Quantum mechanics

Quantum mechanics is profoundly different from classical mechanics, despite this both try to

answer the same three fundamental questions.

• The state of the system is represented as an element of a Hilbert space. Mathematically a

Hilbert space is just a complex vector space equipped with a complex-valued inner product

with the property that taking the inner product of two states in the opposite order is

equivalent to complex conjugation. We denote elements of the Hilbert space as |ψ⟩ and
elements of the dual space as ⟨ψ| so that the inner product of |ψ1⟩ and |ψ2⟩ is ⟨ψ2|ψ1⟩ and
obeys

⟨ψ2|ψ1⟩∗ = ⟨ψ1|ψ2⟩ . (9.1)

In quantum mechanics the Hilbert space of interest are very often infinite-dimensional. For

example, if a classical system is represented by coordinate x and momentum p, the Hilbert

space could be taken to consist of all square-integrable complex-valued functions of x, or

equivalently all square-integrable complex valued functions of p but not both at once.

• Observables are represented by self-adjoint operators on the HIlbert space. An operator is

Hermitian if

A† = A , (9.2)

where

⟨ψ2|Aψ1⟩ = ⟨A†ψ2|ψ1⟩ , (9.3)
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for all states |ψ1⟩, |ψ2⟩. Many operators will not be Hermitian, but observables should be

real and this requires the operator to be Hermitian. In general such operators do not com-

mute. This means that we cannot simultaneously specify the precise values of everything

we might want to measure. There will be a maximally set of commuting observables which

would represent all we can say about a system at once.

• Evolution of hte system may be represented in one of two ways: as unitary evolution of

the state vector in Hilbert space in the Schrodinger picture, or by keeping the state fixed

and allowing observables to evolve according to equations of motion called the Heisenberg

picture.

Consider a harmonic oscillator. This has Lagrangian

L =
1

2
ẋ2 − 1

2
ω2x2 , (9.4)

which has equation of motion

ẍ+ ω2x = 0 . (9.5)

In the Schrodinger picture, where states are represented by complex-valued wave functions

that evolve with time, such as ψ(x, t). The wave function is really the set of compo-

nents of the state vector |ψ⟩ expressed in the delta function position basis |x⟩ so that

|ψ(t)⟩ =
∫
dxψ(x, t)|x⟩. Canonical quantisation consists of imposing the canonical com-

mutation relation

[x̂, p̂] = i , (9.6)

on the coordinate operator x̂ and its conjugate momentum p̂. For states represented as

wave functions depending on t and x, the operator x̂ is simply multiplication by x, so the

commutation relation can be implemented by fixing

p̂ = −i∂x . (9.7)

The Hamiltonian operator is

H = −1

2
∂2x +

1

2
ω2x2 , (9.8)

and the equation of motion is the Schrodinger equation

i∂tψ = Hψ . (9.9)

Since the Hamiltonian is time independent the solutions separate into functions of space and

functions of time, ψ(x, t) = f(t)g(x). The solutions then come in a discrete set labelled by
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an integer n ≥ 0 and we find

ψn(x, t) = e−
ωx2

2 Hn(
√
ωx)e−iEnt , (9.10)

where Hn is a Hermite polynomial of degree n and

En =
(
n+

1

2

)
ω . (9.11)

These states are all eigenfunctions of H and En is an energy eigenvalue. An arbitrary state

of the oscillator will consist of a superposition of the energy eigenstates,

ψ(x, t) =
∑
n

cnψn(x, t) , (9.12)

for some set of appropriately normalised coefficients cn.

Note that there is a discrete spectrum of energy eigenstates, this is a quantum property.

There is a ground state of lowest energy plus a set of excited states labelled by their energy

eigenvalue. The ground state has a nonvanishing energy

E0 =
1

2
ω , (9.13)

which is sometimes called the zero-point energy. The classical system would have had zero

energy representing a particle with x = p = 0. The quantum zero-point energy can be traced

to the Heisenberg uncertainty principle, which forbids us from localizing a state simultane-

ously in both position and momentum. There is a consequently a minimum amount of jiggle

in the oscillator leading to a non-zero ground state energy.

An alternative way to solve the simple harmonic oscillator is to introduce creation and

annihilation operators â† and â defined by

â =
1√
2ω

(ωx̂+ ip̂) , â† =
1√
2ω

(ωx̂− ip̂) . (9.14)

From the commutation relations for x̂ and p̂ we find

[â, â†] = 1 , (9.15)

and the Hamiltonian becomes

H = ω
(
ââ† +

1

2

)
. (9.16)

The creation and annihilation operators satisfy

[H, â] = −ωâ , [H, â†] = ωâ† . (9.17)
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We define the number operator

n̂ = â†â . (9.18)

Consider an eigenstate |n⟩ of the number operator,

n̂|n⟩ = n|n⟩ . (9.19)

By playing with the commutation relations we have

n̂â†|n⟩ = (n+ 1)â†|n⟩

n̂â|n⟩ = (n− 1)â|n⟩ ,
(9.20)

thus when acting with â† on |n⟩ we obtain another eigenstate of n̂ with eigenvalue raised by

one and â gives an eigenstate with eigenvalue lowered by 1. n takes integral values from 0 to

∞ and therefore there must be a vacuum state with

â|0⟩ = |0⟩ . (9.21)

By acting with â† we can construct all of the eigenstates

|n⟩ = 1√
n!
(a†)n|0⟩ . (9.22)

The basis states are taken to be tome independent so a physical system observing Schrödinger’s

equation will be described by a state

|ψ(t)⟩ =
∑
n

cne
−iEnt|n⟩ , (9.23)

with cn constant coefficients.

In order to transition more smoothly to quantum field theory it is useful to also have

the Heisenberg picture in which the states are fixed and the operators evolve with time. Any

state can be written formally as some fixed initial state acted on by a unitary time evolution

operator

|ψ(t)⟩ = U(t)|ψ(0)⟩ , (9.24)

where

U(t) = e−i
∫
Hdt . (9.25)

The Schrödinger picture expression for the matrix element of a time-independent operator,

A between two time-dependent states can be written in Heisenberg picture in terms of a time

dependent operator A(t) and time independent states as

⟨ψ2(t)|A|ψ1(t)⟩ = ⟨ψ2(0)|U †(t)AU(t)|ψ1(0)⟩

= ⟨ψ2|A(t)|ψ1⟩ ,
(9.26)
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with

A(t) = U †(t)AU(t) . (9.27)

Such an operator satisfies the Heisenberg equation of motion:

dA(t)

dt
= i[H,A(t)] , (9.28)

which replaces the role of Schrödinger’s equation in this picture.

9.2 Quantum field theory

Quantum field theory is a particular example of a quantum mechanical system in which we

quantise a field (a function or tensor field defined on spacetime). Let us first consider a free

scalar field in flat space. This has action

S =

∫
dnx

[
− 1

2
ηµν∂µϕ∂νϕ−

1

2
m2ϕ2

]
≡
∫

dnxL . (9.29)

The equation of motion is the Klein–Gordon equation,

□ϕ−m2ϕ = 0 . (9.30)

To translate into a Hamiltonian picture one defines the conjugate momentum to be

π =
∂L

∂(∂0ϕ)
. (9.31)

For the free scalar field this is

π = ϕ̇ . (9.32)

Of course since we are using time derivative we have assumed a particular inertial frame and

therefore the Hamiltonian procedure necessarily violates manifest Lorentz invariance. With

care however, the observables remain Lorentz invariant. The Hamiltoian is represented as

the integral of a Hamiltonian density over the spatial directions directions. The Hamiltonian

density is related to the Lagrangian by a Legendre transformation,

H(ϕ, π) = πϕ̇− L(ϕ, ∂µϕ)

=
1

2
π2 +

1

2
(∇ϕ)2 + m2

2
ϕ2 ,

(9.33)

with (∇ϕ)2 = δij∂iϕ∂jϕ. In comparison to the harmonic oscillator the field ϕ(x) plays the

role of the coordinate x and the momentum field π(x) plays the role of p. Instead of a state

being specified by two number (x, p) at some fixed time, the initial conditions are values of

the field over all of the spatial directions at a fixed time.
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Note that ϕ(xµ) is not a wave function; it is a dynamical variable generalising the single

degree of freedom x in the case of the harmonic oscillator. We will use a Heisenberg picture

of time evolution where we promote ϕ to an operator.

First we need to solve the classical theory. The solutions of the Klein–Gordon equation

include the plane wave solution

ϕ(xµ) = ϕ0e
ipµxµ = ϕ0e

−ip0t+ip⃗·x⃗ , (9.34)

where the wave vector has components

pµ = (p0, p⃗) , (9.35)

and the frequency must satisfy

(p0)2 = p⃗ 2 +m2 , p0 > 0 . (9.36)

The latter condition is in order to consider the positive frequency modes only.

We can write down the most general solution by constructing a complete orthonormal

set of modes in terms of which any solution may be expressed. We need to first define an

inner product on the space of solutions. To inner product is an integral over a constant time

hypersurface Σt and is

(f, g) = i

∫
Σt

(f∗
←→
∂t g)d

n−1x , f∗
←→
∂t g = f∗∂tg − ∂tf∗g . (9.37)

By using Stoke’s theorem and the equation of motion one can check that this is independent

of the chosen hypersurface. Let us define

ψp = Npe
ipµxµ , (9.38)

with p2 +m2 = 0. Then {ψp, ψ∗
p} form a basis of solutions and any field configuration can be

expanded as

ϕ(x) =

∫
d3p
(
apψp(x) + a∗pψ

∗
p(x)

)
, (9.39)

with ap and a∗p are complex constants. In order for the basis to be orthonormal we take

Np =
1√

2p0(2π)3/2
, . (9.40)

We quantise the theory by promoting ϕ and π to be operators and impose the standard

commutation relations:

[ϕ(t, x⃗), π(t, y⃗)] = iδ(3)(x⃗− y⃗) , [ϕ(t, x⃗), ϕ(t, y⃗)] = 0 , [π(t, x⃗), π(t, y⃗)] = 0 . (9.41)
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This may then be translated into commutation relations for the a’s, with

[ap, a
†
q] = δ(p⃗− q⃗) , [ap, aq] = 0 , [a†p, a

†
q] = 0 . (9.42)

We may then define a vacuum state by

ap|0⟩ = 0 , ∀p . (9.43)

It may seem that the definition of the vacuum state depends on the initial choice of

inertial frame, however this is not the case. Consider a different inertial frame x̃µ related by a

Lorentz transformation x̃µ = Λµνxν . In this new frame the positive frequency mode functions

are

ψ̃p = Npe
ipµx̃µ , (9.44)

and the field expansion is

ϕ(x̃) =

∫
d3p
(
ãpψ̃p + ã†pψ̃

∗
p

)
, (9.45)

and in terms of these modes the new vacuum state satisfies ãp|0̃⟩ = 0,∀p. We need to show

that

ap|0⟩ = 0 ∀p ⇒ ãp|0⟩ ∀p . (9.46)

We have

ψ̃p =
1√

2p0(2π)3/2
eipµx̃

µ
=
( p̃0
p0

)1/2 1√
2p̃0(2π)3/2

eip̃µx
µ
=
( p̃0
p0

)1/2
ψp̃ . (9.47)

More over since we restrict to the orthochronous subgroup of the Lorentz group, i.e. Λ0
0 > 0

we have p0 > 0⇒ p̃0 > 0. Therefore we have

ap|0⟩ = 0 ∀p ⇒ ãp|0⟩ ∀p , (9.48)

and the converse follows by symmetry and the vacuum state is independent of the choice of

frame.

9.3 QFT in curved spacetime

We now want to consider what changes when we try to quantise a field theory on curved

spacetime. We fix a background (M, g) and assume that it is globally hyperbolic. Recall

that this means that the spacetime admits a Cauchy surface and from initial conditions on

the Cauchy surface we can solve the equations of motion on all of spacetime. We perform
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minimal coupling of the theory so that ηµν → gµν and ∂µ → ∇µ. The Klein–Gordon equation

becomes

∇2ϕ ≡ gµν∇µ∂νϕ = m2ϕ , (9.49)

while the inner product is modified to

(f1, f2) = i

∫
Σ
d3x
√
γnµ(f∗1∂µf2 − ∂µf1f∗2 ) , (9.50)

with Σ a spacelike hypersurface and nµ a unit normal vector and γ the determinant of the

induced metric. Let the background admit a Killing vector, K, then on functions we have

[K,∇2]f = 0 . (9.51)

Since ∇2 and iK are both self-adjoint and commuting they admit a complete set of common

eigenfunctions

∇2f = m2f , iKµ∂µf = ωf . (9.52)

If K is timelike we are entitled to call the eigenvalue the frequency. Indeed this is how it works

in Minkowski space where K = ∂t. If f is an eigenfunction with positive frequency ω then f∗

is an eigenfunction of negative frequency −ω. We can then without loss of generality expand

our fields in terms of positive and negative frequency eigenfunctions of the Laplacian in a

basis {ψi} of positive frequency modes and {ψ∗
i } of negative frequency modes. We expand

our field as

ϕ =
∑
i

(aiψi + a†iψ
∗
i ) , (9.53)

with

[ai, a
†
i′ ] = δij . (9.54)

Consider a sandwich spacetime (M, g) made up of three regions, region B bottom, region

C for centre and region T for top, and assume the Klein–Gordon equation holds throughout

spacetime. Region B is stationary and admits a timelike Killing vector KB, region C is not

stationary and all sorts of dynamical processes might take place so long as it remains globally

hyperbolic, and finally region T is once again stationary with a new timelike Killing vector

KT . If we quantise in region B we pick a set of modes {fi, f∗i } that satisfy iKBfi = ωifi

with ωi > 0. On the other hand in region T we choose another set of modes {gi, g∗i } that

satisfy iKT gi = ω̃igi with ω̃i > 0. Note that even though the positive-frequency conditions

are imposed using the Killing vectors in specific regions the modes extend throughout the

whole of spacetime. In the two cases the respective expansion is then

ϕ(x) =
∑
i

(
aifi + a†if

∗
i

)
=
∑
i

(
bigi + b†ig

∗
i

)
, (9.55)
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where the modes have been normalised with respect to the Klein–Gordon inner product so

that the commutation relations are

[ai, a
†
j ] = δij , [bi, b

†
j ] = δij . (9.56)

Since {fi} forms a basis we can also expand any function in terms of it, we have

gi =
∑
i

Aijfj +Bijf
∗
j . (9.57)

The coefficients Aij and Bij are called the Bogoliubov coefficients and the transformation

between the different bases is called a Bogoliubov transformation. Using the normalisation

conditions it can be shown that they satisfy∑
k

AikA
∗
jk −BikB∗

jk = δij ,∑
k

AikBjk −BikAjk = 0 .
(9.58)

Or in matrix notation

AA† −BB† = 1 , ABT = BAT . (9.59)

We can also relate the different operator coefficients to each other

bi =
∑
j

A∗
ijaj −B∗

ija
†
j . (9.60)

The procedure above defines a vacuum state associated with the modes {fi, f∗i } called

the in-vacuum as the states satisfy ai|0⟩in = 0 ∀i. In a stationary reference frame in region

B (i.e. an integral curve of KB this will appear empty. What about in region T? What

is the expected number of particles of the state |0⟩in with momentum i. It is given by the

expectation value

⟨Ni⟩ = in⟨0|b†ibi|0⟩in =
∑
j

BijB
∗
ij no summation over i . (9.61)

If this is non-zero there is pair production. Alternatively one can see this as the in-vacuum and

out-vacuum are different. Hence a changing spacetime geometry generically causes particle

production.

161



9.4 Unruh effect

Even though we have made an effort above to understand QFT in curved space we will

first consider a phenomenon that uses the above ideas but manifests in flat space. This is

the Unruh effect, which states that an accelerating observer in the Minkowski vacuum will

observe a thermal spectrum of particles.

The basic idea is very simple, observers with different notions of positive and negative

frequency modes will disagree on the particle content of a given state. A uniformly accelerated

observe in Minkowski moves along an orbit of a time-like Killing vector, however this is not

the usual time-translation Killing vector. We can therefore expand the field in terms of modes

appropriate for the accelerated observer and calculate the number operator in the ordinary

Minkowski vacuum. We will find that this leads to a thermal spectrum of particles.

To simplify things as much as possible let us consider a massless scalar field in two

dimensions. The wave equation is

□ϕ = 0 . (9.62)

Before trying to quantise the theory consider a uniformly accelerating observer, we have

seen this earlier in section 4.1.3, but let us review the details. In inertial coordinates the

metric can be written as

ds2 = −dt2 + dx2 . (9.63)

An observer moving at a uniform acceleration of magnitude α follows the trajectory

t(τ) =
1

α
sinh(ατ) , x(τ) =

1

α
cosh(ατ) , (9.64)

note that

x2 = t2 + α2 . (9.65)

We can choose new coordinates on two-dimensional Minkowski space that are adapted to

uniformly accelerated motion as

t =
1

a
eaξ sinh(aη) , x =

1

a
eaξ cosh(aη) , (x > |t|) . (9.66)

The new coordinates have ranges

−∞ < η, ξ <∞ , (9.67)

and cover the wedge x > |t| Rindler space corresponds to the right wedge x > |t| foliated
by the worldlines of the accelerated observers and labelled by region I in figure 32. In these
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Figure 32: Minkowski spacetime in Rindler coordinates. Region I is the region accessible to

an observer undergoing constant acceleration in the +x-direction. The coordinates (η, ξ) can

be used in region I or region IV, where they point in the opposite direction. The vector filed

∂η corresponds to the generator of Lorentz boosts and the horizons H± are Killing horizons

for this vector field, which represent the boundaries of the past and future as witnessed by

the Rindler observer.

coordinates the constant acceleration path is

η(τ) =
α

a
τ , ξ(τ) =

1

a
log

a

α
, (9.68)

and we see that the proper time is proportional to η and the spatial constant ξ is constant.

Then an observer with acceleration α = a moves along the path

η = τ , ξ = 0 . (9.69)

The metric in these coordinates takes the form

ds2 = e2aξ
(
− dη2 + dξ2

)
. (9.70)

The null line t = x labelled by H+ is a future Cauchy horizon for any η = constant spacelike

hypersurface in region I. Similarly H− is a past Cauchy horizon.
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The metric is independent of η and therefore ∂η is a Killing vector, however since this is

Minkowski spacetime there are more of course. Indeed if we express ∂η in the (t, x) coordinates

we have

∂η = a(x∂t + t∂x) . (9.71)

This is the Killing vector which generates a boost in the x-direction. It is clear that this Killing

vector naturally extends throughout the spacetime. This extends naturally throughout the

spacetime, in regions II and III it is spacelike while in region IV it is timelike but past-directed.

The horizons are Killing horizons for ∂η.

We can define coordinates (η, ξ) in region IV by flipping the signs in (9.66),

t = −1

a
eaξ sinh(aη) , x = −1

a
eaξ cosh(aη) , (x < |t|) . (9.72)

The sign guarantees that ∂η and ∂t point in opposite directions. Strictly speaking we cannot

use the (η, ξ) simultaneously in regions I and IV since the ranges are the same in each region,

we must explicitly indicate to which region the coordinate belongs to. We add labels to

distinguish so that the metric takes the same form in both regions.

Along the surface t = 0 the Killing vector ∂η is a hypersurface-orthogonal timelike Killing

vector except for the single point x = 0 where it vanishes. We can therefore use it to define

a set of positive and negative frequency modes on which we can build a Fock space for the

scalar-field Hilbert space. The massless Klein–Gordon equation in Rindler coordinates takes

the form

□ϕ = e−2aξ(−∂2η + ∂2ξ )ϕ = 0 . (9.73)

Therefore a normalised plane wave

gk =
1√
4πω

e−iωη+ikξ , ω = |k| , (9.74)

solves the equation and has positive frequency with respect to ∂η since

L∂ηgk = −iωgk . (9.75)

However this is only true in region I since we need our modes to be positive frequency

with respect to a future directed Killing vector, in region IV the relevant Killing vector is

∂−η = −∂η. To remove this problem of defining the modes we introduce two sets of modes
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one with support in region I and one with support in region IV:

g
(1)
k =

 1√
4πω

e−iωη+ikξ I

0 IV

g
(2)
k =

0 I
1√
4πω

eiωη+ikξ IV

(9.76)

with ω = |k| in each region. These then define the positive frequency with respect to the

relevant future directed timelike Killing vector. The two sets with their conjugates form a

complete set of modes for any solution to the wave equation throughout the spacetime. Both

sets are non-vanishing in regions II and III however this is obscured by the choice of (η, ξ)

coordinates. Denoting the associated annihilation and creation operators as b
(i)
k and b

(i)†
k , we

can write

ϕ =

∫
dk
(
b
(1)
k g

(1)
k + b

(1)†
k g

(1)∗
k + b

(2)
k g

(2)
k + b

(2)†
k g

(2)∗
k

)
. (9.77)

This gives an alternative expansion to the original Minkowski modes:

ϕ =

∫
dk
(
akfk + a†kf

∗
k

)
. (9.78)

The inner product of the Rindler modes gives

(g
(i)
k1
, g

(j)
k2

) = δijδ(k1 − k2) , (9.79)

and similarly for the conjugate modes. There are two sets of modes, Minkowski and Rindler,

that we can expand the solution of the Klein–Gordon equation in. Although the Hilbert

spaces are the same the Fock spaces are different, in particular the definition of the vacuum.

The Minkowski vacuum |0M ⟩ satisfies

ak|0M ⟩ = 0 , (9.80)

while the Rindler vacuum satisfies

b
(1)
k |0R⟩ = b

(2)
k |0R⟩ = 0 . (9.81)

We see that because an individual Rindler mode cannot be written in terms of positive

frequency Minkowski modes, the Rindler annihilation modes are a superposition of both the

Minkowski creation and annihilation operators.

A Rindler observer will be static with respect to orbits of the boost Killing vector ∂η.

Such an observer in region I will describe particles in terms of the Rindler modes g
(1)
k and will
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observer a state in the Rindler vacuum to be devoid of particles, a state b
(1)†
k |0R⟩ to contain

a single particle of frequency ω = |k| and so forth. Conversely a Rindler observer travelling

through the Minkowski vacuum state will detect a background of particles, even though to

the inertial observer the vacuum is completely empty.

We would like to know what kind of particles does the Rindler observer detect? We know

how to answer this, we need to compute the Bogolubov coefficients relating the Minkowski

modes to the Rindler modes, and then use this to compute the expectation values. Unruh

found a shortcut to this somewhat tedious computation. His idea was to find a set of modes

that share the same vacuum as the Minkowski modes but for which the overlap with the

Rindler modes is more direct. We start with the Rindler modes and extend them to all of

spacetime, and then express the extension in terms of the original Rindler modes.

We have

e−a(η−ξ) =

{
a(x− t) I

a(t− x) IV

ea(η+ξ) =

{
a(t+ x) I

−a(t+ x) IV

(9.82)

We can express the spacetime dependence of a mode g
(1)
k with k > 0 in terms of the

Minkowski coordinates in region I as

√
4πωg

(1)
k = aiω/a(x− t)iω/a . (9.83)

The analytic continuation of this throughout all of spacetime is then obvious, we just use this

final expression for all (t, x). We want to express the result in terms of the Rindler modes

everywhere and so we need to bring the g
(2)
k modes into the game. We have

√
4πωg

(2)
k = a−iω/a(−t− x)−iω/a . (9.84)

This doesn’t match the behaviour of our analytically extended mode, however if we take the

complex conjugate and reverse the wave number we find

√
4πωg

(2)∗
−k = aiω/aeπω/a(−t+ x)iω/a , (9.85)

and therefore
√
4πω

(
g
(1)
k + e−πω/ag

(2)∗
−k

)
= aiω/a(−t+ x)iω/a . (9.86)

An identical result holds for the k < 0 modes. The properly normalised mode is

h
(1)
k =

1√
2 sinh πω

a

(
eπω/(2a)g

(1)
k + e−πω/(2a)g

(2)∗
−k

)
. (9.87)
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This is the appropriate analytic extension of the g
(1)
k modes, the extension of the g

(2)
k modes

is

h
(2)
k =

1√
2 sinh πω

a

(
eπω/(2a)g

(2)
k + e−πω/(2a)g

(1)∗
−k

)
. (9.88)

One can check that these are correctly normalised. We can now expand in these modes as

ϕ =

∫
dk
(
c
(1)
k h

(1)
k + c

(1)†
k h

(1)∗
k + c

(2)
k h

(2)
k + c

(2)†
k h

(2)∗
k

)
. (9.89)

The modes h
(i)
k can be expressed purely in terms of positive frequency Minkowski modes fk

and therefore they share the same vacuum state |0M ⟩ so that

c
(i)
k |0M ⟩ = 0 . (9.90)

In the Minkowski vacuum an observer in region I will observe particles defined by the operators

b
(1)
k ; the expected number of such particle of frequency ω is

⟨0M |n(1)R (k)|0M ⟩ = ⟨0M |b(1)†k b
(1)
k |0M ⟩

=
1

2 sinh πω
a

⟨0M |e−πω/ac(1)−kc
(1)†
−k |0M ⟩

=
1

e2πω/a − 1
δ(0) .

(9.91)

Planck’s law describes the spectral density of electromagnetic radiation emitted by a black

body in thermal equilibrium at a give temperature T . It says that the spectral radiance of a

body for frequency ω at temperature T is given by

B(ω, T ) =
ℏω3

4π2c2
1

eℏω/(KBT ) − 1
. (9.92)

We conclude that an observer moving with uniform acceleration through the Minkowski

vacuum observes a thermal spectrum of particles. (There is more to saying this is a thermal

spectrum than just the above, one needs to check that there are no hidden correlations in

the observed particles, this has indeed been shown and therefore the radiation detected by a

Rindler observer is truly thermal.)

The temperature T = a
2π is what would be measured by an observer moving along the

path ξ = 0, which feels the acceleration a = α. Any other path with ξ = constant feels an

acceleration

α = ae−aξ , (9.93)

and thus should measure thermal radiation with a temperature T = α
2π . As ξ → ∞ the

temperature goes to 0, which is consistent with the fact that near ∞ the Rindler observer is

nearly inertial.
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The Unruh effect tells us that an accelerated observer will detect particles in the Minkowski

vacuum state. An inertial observer would say that the same state is completely empty, the

expectation value of the energy momentum tensor ⟨Tµν⟩ = 0. If there is no energy momentum

how can the Rindler observer detect particles? If the Rindler observer is to detect background

particles, they must carry a detector. This must be coupled to the particle being detected.

However if a detector is being maintained at constant acceleration, energy is not conserved.

From the point of view of the Minkowski observer the Rindler detector emits as well as absorbs

particles, once the coupling is introduced the possibility of emission is unavoidable. When

the detector registers a particle the inertial observer would say that it had emitted a particle

and felt a radiation-reaction force in response. Ultimately the energy needed to excite the

Rindler detector does not come from the background energy momentum tensor but from the

energy we put into the detector to keep it accelerating.

9.5 Hawking temperature

We may now use a very quick argument following the above to conclude that a black hole

has a temperature. Consider a static observer at radius r1 > RS outside the Schwarzschild

black hole. Such an observer moves along orbits of the time-like Killing vector K = ∂t. The

red-shift factor is given by

V =

√
1− 2GNM

r
, (9.94)

and the magnitude of the acceleration is given by

a =
GNM

r
√
r − 2GNM

. (9.95)

For observed close to the event horizon r1−2GNM ≪ 2GNM this acceleration becomes very

large compared to the scale set by the Schwarzschild radius

a1 ≫
1

2GNM
. (9.96)

Let us assume that the quantum state of some scalar field ϕ looks like the Minkowski vac-

uum as seen by a freely falling observer near the black hole. The static observer looks just

like a constant acceleration observer in flat spacetime and will detect Unruh radiation at a

temperature T1 = a2/(2π).

Now consider a static observer at infinity. The radiation will propagate to infinity with

an appropriate red-shift factor. We find

T∞ =
V1
V∞

a

2π
. (9.97)
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At infinity we have V∞ = 1 so the observed temperature is

T∞ = lim
r1→2GNM

V1a1
2π

=
κ

2π
. (9.98)

This is the Hawking effect and the radiation is known as Hawking radiation.

We can be more rigorous in the derivation of the Hawking temperature. Consider a

spacetime that corresponds to a spherically symmetric collapsing star which forms a black

hole, recall that the Penrose diagram is given in 11. This is a curved spacetime which is

globally hyperbolic, for instance I − is a Cauchy surface. Even though the Schwarzschild

black hole solution is a static spacetime the collapsing star is not, and involves complicated

dynamics. However the spacetime is approximately stationary in the far asymptotic past (near

I +) and the far asymptotic future (near I +). We can therefore perform second quantisation

with respect to stationary observers near I − which give us “in”-modes and the “in”-vacuum

and also a second quantisation associated with stationary observers at I + leading to the

“out”-vacuum. We have a sandwich spacetime and we can ask will observes in the far future

see particles in the in-vacuum.

The field expansion defining the in-vacuum can be constructed by specifying a complete

set of positive frequency modes on I −. For the quantisation in the far future I + is not a

Cauchy surface for the spacetime, one must take I + ∪ H+. We may therefore quantise the

field in the far future by specifying a complete set on it. There are three sets of modes:

fi : positive frequency on I −

gi : positive frequency on I + and zero on H+

hi : positive frequency on H+ and zero on I +

(9.99)

Strictly speaking there is no timelike Killing vector on H so the term positive frequency

is somewhat misleading, however the choice of modes hi does not affect the outcome of the

calculation. We can choose an arbitrary set and call them positive frequency modes and

attach them to annihilation operators in the field expansion, we only require that the set

{g, h} give a basis of modes. We can therefore expand

ϕ(x) =
∑
i

aifi(x) + h.c. =
∑
I

bIgI(x) +
∑
α

cαhα(x) + h.c. . (9.100)

The Bogoliubov coefficients in the expansion satisfy

gi =
∑
j

(
Aijfj +Bijf

∗
j

)
. (9.101)
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We now want to look at the analytic solutions of the Klein–Gordon equation in the

Schwarzschild black hole background. This is hard. Instead we can ask if we impose boundary

condition to the solution at I + and investigate what its corresponding form must be on I −.

This amounts to tracing back in time the solution from I + to I −.

The metric of the Schwarzschild black hole spacetime with coordinates (t, r∗, θ, ϕ) reads

ds2 =

(
1− 2M

r

)(
− dt2 + dr2∗

)
+ r2ds2(S2) . (9.102)

We will also use the light-cone coordinates u = t − r∗ and v = t + r∗. We can find the

Klein–Gordon equation for the field ϕ(t, r∗, θ, ϕ). Expanding in spherical harmonics

ϕ(t, r∗, θ, ϕ) = χl(t, r∗)Ylm(θ, ϕ) , (9.103)

we find [
∂2t − ∂2r∗ + Vl(r∗)

]
χl = 0 , (9.104)

where

Vl(r∗) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
. (9.105)

We set

χl(t, r∗) = e−iωtRlω(r∗) , (9.106)

so that

(∂2r∗ + ω2)Rωl = VlRωl . (9.107)

We can get some intuition by looking at the potential. Both near the horizon H+ (r∗ → −∞)

and near I ± (r∗ →∞) the potential tends to zero. It takes the for of a potential barrier. If

we consider how any solution to the above evolves in time, it will be partly transmitted and

partly reflected as it comes in from r∗ =∞.

Near I ± the solutions are just plane waves. We define outgoing and ingoing as those

which correspond to r∗ increasing or decreasing with time. We define the early modes

flmω+ =
1√
2πω

e−iωuYlm
r
, outgoing

flmω− =
1√
2πω

e−iωv Ylm
r
, ingoing

(9.108)

at I − and late modes

glmω+ =
1√
2πω

e−iωuYlm
r
, outgoing

glmω− =
1√
2πω

e−iωv Ylm
r
, ingoing

(9.109)
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at I +. We will be interested mainly in ingoing early modes and outgoing late modes, so we

will use the shorthand notation:

fω ∼ flmω− , gω ∼ glmω+ . (9.110)

We need to express gω in terms of fω′ and f∗ω′ on I −. First note that plane waves such

as gω are in fact completely delocalised since they have support everywhere on I +.

We want to trace the solution of the late modes back in time in terms of the early modes.

As the wave travels inwards from I + toward decreasing values of r∗, it will encounter the

potential barrier. One part of the wave, g
(r)
ω will be reflected and end up on I − with the

same frequency ω. This will correspond to a term of the form Aωω′ ∝ δ(ω − ω′) in the

expansion in (9.101). The remaining part g
(t)
ω will be transmitted through the barrier and

will enter the collapsing matter. In that region the precise geometry of spacetime is unknown.

However since we are interested in a packet peaked at late times and at some finite frequency

ω0 we know that the packet will be peaked at a very high frequency as it enters the collapsing

matter due to the gravitational blueshift. This allows us to assume that the packet will obey

the geometric optics approximation which means that gω takes the form A(x)eiS(x) where

A(x) is slowly varying compared to S. Substituting into the Klein–Gordon equation we find

∇µS∇µS = 0, which means that surfaces of constant phase are null. Given a wave we can

trace its surfaces of constant phase back in time by following null geodesics.

Consider tracing back the wave along a particular null geodesic γ which starts off at some

u = u0 at I + and hits I − at v = v0. Denote by γH a null generator of the horizon H+ which

has been extended into the past until it hits I − at some value of v. We may set this value

to v = 0 without loss of generality since the spacetime is invariant under shifts v → v + c.

We therefore have v0 < 0 for the geodesic γ. Let n be a connecting vector between the two

curves and fix its normalisation by requiring n · ξ = −1 with ξ the generator of the Killing

horizon H+. Near the horizon the Kruskal coordinate U = −e−κu is an affine distance along

n and we can use it to measure the distance between γ and γH . In order to find the form of

the wave at I − we need to understand how the affine distance along the connecting vector n

will change by the time γ reaches I −. At I − the cooridnate v is an affine parameter aong

the null geodesic integral curves of n. If U0 = 0 then the affine distance is zero at I −. Hence

we can expand the affine distance between γ and γH at I − in powers of U0: v = cU0+O(U2
0 )

for some constant c > 0. Using u = −κ−1 log(−U) = −κ−1 log(−cv) we can conclude that if
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a mode takes the form gω ∼ e−iωu on I+, the transmitted part g
(t)
ω on I − will take the form

g(t)ω ∼

{
eiω/κ log(−v) for v < 0

0 for v > 0
(9.111)

up to a constant phase. This is exactly analogous to the Rindler modes in the previous section

with κ↔ a. We have Aωω′ = e−πω/κBωω′ and therefore

⟨Nω⟩ ∝
1

eℏω/(kBT ) − 1
, (9.112)

where the Hawking temperature is given by

T =
ℏκ

2πkB
. (9.113)

Since the temperature is inversely proportional to the mass, the black hole hets up as it

evaporates.

9.6 Black hole evaporation

If a black hole has a temperature it must evaporate. This leads to a serious problem with

unitarity. We can compute the rate of mass loss due to the Hawking radiation. Stefan’s law

for the rate of energy loss by a blackbody:

dE

dt
∼ −αAT 4 , (9.114)

Plugging in E =M and A ∝M2 and T ∝M−1 we have

dM

dT
∝ − 1

M2
, (9.115)

and hence the black hole evaporates away completely in a time

τ ∼
G2
N

ℏc4
M3 , (9.116)

note that the calculation of Hawking radiation assumed no backreaction, M was taken to be

constant. This is good when dM
dt ≪M but fails in the final stages of evaporation.

Consider a black hole which forms from collapsing matter and then evaporates away

completely, leaving just thermal radiation. It should be possible to arrange that the collapsing

matter is in a definite quantum state |ψ⟩, the associated density matrix would be the one of

a pure state, ρ = |ψ⟩⟨ψ|. When the black hole is formed the Hilbert space naturally splits

into the tensor product of Hilbert spaces, one with support in the interior of the black hole

and the other with support on the exterior of the black hole: H = Hin ⊗ Hout. An outside
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Figure 33: The evolution of the modes.

observer does not have access to Hin so their description of the black hole state is necessarily

incomplete. They will describe the state outside the horizon as a reduced density matrix

obtained by tracing over Hin: ρout = trinρ.

Since it described by a non-trivial density matrix the outside state is mixed. This is

consistent with the fact that it contains thermal radiation, so there is no issue so far. The

external state is entangled with the interior and the reduced density matrix is just a way in

which the outside observer parametrises their ignorance of the interior. If we assume that the

black hole has completely evaporated nothing is left in the interior and the exterior reduced
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density matrix will describe the full state, which is therefore a mixed state. However evolution

from a pure state to a mixed state is forbidden by unitarity in quantum mechanics.

This is the black hole information paradox. It is important to emphasise the difference

between thermal radiation produced in ordinary processes which do not violate unitarity. If

we burn a printed copy of these lecture notes, thermal radiation is produced, however the

process is unitary and in principle one could reconstruct all the information contained in the

notes by studying the radiation and ashes. The early radiation is entangled with excitations

inside the burning body, however the excitations inside the burning body can still transmit

information to the radiation emitted later on which will thus contain non-trivial information.

On the other hand, throwing the notes into a black hole, the information appears to be really

lost once the black hole has fully evaporated because the final radiation is exactly thermal.

The internal excitations are shielded by the horizon and by causality cannot influence the

later outgoing radiation.

Nearly half a century after Hawking formulated the black hole information paradox it is

still and open and active area of research. Our analysis has been in a funny hybrid theory of

quantum field theory coupled to classical general relativity. General relativity predicts a sin-

gularity at the centre of a black hole, this is a regime where quantum effects will dramatically

alter our classical expectations. We need a quantum theory of gravity.
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A A short review of GR1

To keep our conventions in order we will briefly review the essential material from GR1. For

those who have done a GR course but not studied manifolds I recommend consulting the

GR1 notes as manifolds will appear at times in the lectures.

A.1 Manifolds

The underlying structure of General relativity is differential geometry. This is the study of

manifolds.

Definition Let X be any set and T = {Ui|i ∈ I} denote a certain collection of subsets

of X. The pair (X, T ) is called a topological space if T satisfies

1. Both the set X and the empty set ∅ are open subsets: M ∈ T and ∅ ∈ T .

2. If T is any, possibly infinite, subcollection of I, then the family {Uj |j ∈ J} satisfies

∪j∈JUj ∈ T .

3. If K is any finite subcollection of I then the set {Uk|k ∈ K} satisfies ∩k∈KUk ∈ T .

Definition M is an n-dimensional differentiable manifold if satisfies:

1. M is a Hausdorff topological space,

2. M is provided with a family of pairs {(Ui, φi)};

3. {Ui} is a family of open sets which covers M : ∪iUi =M .

4. φi is a homeomorphism from Ui onto an open subset U ′
i of Rn,

5. Given Ui and Uj such that Ui ∩ Uj ̸= ∅, then the map ψij = φi ◦ φ−1
j from φj(Ui ∩ Uj)

to φi(Ui ∪ Uj) is infinitely differentiable. ψij is known as a transition function.

Differentiable maps Let f :M → N be a map from an m-dimensional manifold M to an

n-dimensional manifold N . A point p ∈ M is mapped to a point f(p) ∈ N . We may take a

chart (U,φ) on M and a chart (V, ψ) in N where for all p ∈ U , f(p) ∈ V . Then f has the

following coordinate presentation:

ψ ◦ f ◦ φ−1 : Rm → Rn . (A.1)

If we write φ(p) = {xµ} and ψ
(
f(p)

)
= {yα} then, ψ ◦ f ◦φ−1 is just the usual vector-valued

function y = ψ ◦f ◦φ−1(x) of m variables. Sometimes it is useful to abuse notation and write

y = f(x) or yα = fα(xµ) when we know the coordinate systems on M and N that are in use.
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Definition We say that a function f : M → R is smooth if the map f ◦ φ−1 : U → R is

smooth for all charts. We let the set of all small functions on M be denoted by F(M).

Definition We say that a map f :M → N between two manifolds is smooth if the map

ψ◦f ◦φ−1 : U → V is smooth for all charts φ :M → Rm and ψ : N → Rn. If y = ψ◦f ◦φ−1(x)

is C∞ then we say that f is differentiable at p. This is actually independent of the coordinate

system.

Definition Let f : M → N be a homeomorphism and ψ and φ coordinate functions. If

ψ ◦ f ◦φ−1 is invertible, f is called a diffeomorphism and M is said to be diffeomorphic to N

and vice-versa. This is denoted by M ≡ N .

Since the map is invertible it follows that if M ≡ N then dimM = dimN . Homeomor-

phisms classify spaces according to whether it is possible to deform one space into another

continuously. Diffeomorphisms classify spaces into equivalence classes according to whether

it is possible to deform one space into the other smoothly. As such a diffeomorphism is

stronger than a homeomorphism, it requires that both the map and its inverse are smooth.

Two diffeomorphic manifolds are viewed as the same manifold.

Tangent vectors We can define curves on our manifold, γ : (a, b)→M and the tangent to

such a curve. If we collect all curves passing through the point p and find all tangent vectors

to the point p, this defines the tangent space at p: Tp(M) which is a vector space. A basis of

the tangent space is given by

{eµ} =
{

∂

∂xµ

}
, (A.2)

and any vector field X may be expanded in terms of this basis as

X = Xµ ∂

∂xµ
. (A.3)

When we are looking at vector fields in Tp(M) the Xµ are just numbers, however we can

equally consider the tangent bundle which is the union of all tangent spaces in M . Then a

vector field in the tangent bundle has Xµ which are functions on M .

Let Ui, j be two coordinate patches with coordinates x = φi(p) and y = φj(p) respectively

and let p ∈ Ui ∪ Uj . Then we can give the vector field X in both sets of coordinates and we

have that
∂

∂xµ
=
∂yν

∂xµ
∂

∂yν
, (A.4)

and therefore the components of the vector field X transform as

X = Xµ ∂

∂xµ
= X̃µ ∂

∂yµ
⇒ X̃µ = Xν y

µ

xν
. (A.5)
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One-forms Since Tp(M) is a vector space there exists a dual vector space whose element is

a linear function Tp(M)→ R. The dual space is called the cotangent space at p, and denoted

T ∗
p (M). An element ω ∈ T ∗

p (M) is a linear map Tp(M)→ R and is called a cotangent vector,

dual vector or one-form.

The natural basis of the cotangent space is given by the differential of the coordinates:

{dxµ}. Using the bilinear map arising from the tangent and cotangent spaces being dual

vector spaces, one takes 〈
dxµ,

∂

∂xν

〉
= δµν . (A.6)

An arbitrary one-form can then be expanded out in this basis as ω = ωµdx
µ. Let us take

p ∈ Ui ∪ Uj as before, then for ω ∈ T ∗
p (M) we have

ω = ωµdx
µ = ω̃µdy

µ ⇒ ω̃ν = ωµ
∂xµ

∂yν
. (A.7)

Tensors We can now define tensors of type (q, r) to be a multilinear object which maps q

elements of T ∗
p (M) and r elements of Tp(M) to R. We denote the set of (q, r) tensors at p to

be T (q,r)
p (M). An element of T (q,r)(M) can be written in terms of the bases described above

as

T = T
µ1...µq

ν1...νr
∂

∂xµ1
...

∂

∂xµq
dxν1 ...dxνr . (A.8)

T is a linear function

T : ⊗qT ∗
p (M)⊗r Tp(M)→ R . (A.9)

Let Vi = V µ
i

∂
∂xµ with 1 ≤ i ≤ r and ωj = ωjµdx

µ with 1 ≤ j ≤ q then the action of T is

T (ω1, ..., ωq;V1, ....Vr) = T
µ1...µq

ν1...νr ω1µ1 ....ωqµqV
µ1
1 ....V µr

r . (A.10)

Tensor fields So far we have defined vectors, one-forms and tensors at a particular point

p ∈ M . We want to be able to smoothly assign such an object to every point of M . For a

vector we call such an object a vector field. In other words if V is a vector field then for every

f ∈ F(M) then V [f ] ∈ F(M). We will denote the set of all vector fields on M as X (M). A

vector field X at p ∈ M is denoted by X|p which is an element of Tp(M). Similarly we may

define a tensor field of type (q, r) by a smooth assignment of an element of T qr,p(M) at each

point p ∈M . The set of tensor fields of type (q, r) on M is denoted by T qr (M).

Differential forms A differential form of order r, or more succinctly an r-form, is a totally

anti-symmetric tensor of type (0, r).
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The Wedge product ∧ of r one-forms is defined to be the totally anti-symmetric tensor

product of the one-forms

dxµ1 ∧ dxµ2 ∧ ...dxµr ≡
∑
P∈Sr

sgn(P )dxµP (1) ⊗ dxµP (2) ⊗ ....⊗ dxµP (r) . (A.11)

Thus

dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ . (A.12)

The wedge product satisfies the following conditions

• dxµ1 ∧ ... ∧ dxµr = 0 if some index is repeated.

• dxµ1 ∧ ... ∧ dxµr = sgn(P )dxµP (1) ∧ ... ∧ dxµP (r) .

• dxµ1 ∧ ... ∧ dxµr is linear in each dxµ.

We will denote the vector space of r-forms at the point p ∈M by Ωrp(M), a basis is provided

by the set of all wedge products in (A.11). We can then expand an element of Ωrp(M) as

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (A.13)

where ωµ1...µr are taken to be totally anti-symmetric.

We may define the exterior product to be the map ∧ : Ωqp(M)× Ωrp(M)→ Ωq+rp (M). Its

action follows by trivial extension of the wedge product defined above. Let ω ∈ Ωqp(M) and

ξ ∈ Ωrp(M) be an q-form and and r-form respectively. The action of the (q + r)-form ω ∧ ξ
on q + r vectors Vi is

(ω ∧ ξ)(V1, ..., Vq+r) =
1

q!r!

∑
P∈Sq+r

sgn(P )ω
(
VP (1), ..., VP (q)

)
ξ
(
VP (q+1), ..., VP (q+r)

)
. (A.14)

The exterior deriavtive dr is a map Ωr(M)→ Ωr+1(M), whose action on an r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr , (A.15)

is

drω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ ... ∧ dxµr . (A.16)

It is common to drop the r subscript and simply write d. The wedge product automatically

anti-symmetrises the coefficient so it is indeed a (r + 1)-form that we obtain. It follows that

for ξ ∈ Ωqp(M), η ∈ Ωrp(M) we have

d(ξ ∧ η) = dξ ∧ η + (−1)qξ ∧ dη . (A.17)
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The exterior derivative satisfies d2 = 0.

Let X be a vector field and ω ∈ Ωr(M) then the interior product of the r-form ω with

respect to the vector X is

iXω(X1, ..., Xr−1) ≡ ω(X,X1, ..., Xr−1) . (A.18)

If we introduce coordinates: X = Xµ ∂
∂xµ then

iXω =
1

(r − 1)!
Xνωνµ1...µr−1dx

µ1 ∧ ... ∧ dxµr−1 . (A.19)

A.2 Riemannian geometry

Definition: Let M be a differentiable manifold. A Riemannian metric g on M is a type

(0, 2) tensor field on M which at each point p ∈M satisfies

• Symmetric: gp(X,Y ) = gp(Y,X),

• gp(X,X) ≥ 0 with equality iff X = 0

with X,Y ∈ Tp(M). A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies

the first condition and

• Non-degenerate. If for any p ∈M gp(X,Y ) = 0 for all Y ∈ Tp(M) then Xp = 0,

We may extend the tensor gp over the full manifold. With a choice of coordinates we can

write the metric as

g = gµν(x)dx
µ ⊗ dxν . (A.20)

We will often write this as the line elements ds2,

ds2 = gµν(x)dx
µdxν . (A.21)

We may view gµν as a matrix, which by the symmetry property above is symmetric.

This implies that the matrix is diagonalisable, with real eigenvalues. If there are i positive

eigenvalues and j negative eigenvalues the pair (i, j) is called the index of the metric. If j = 1

the metric is called a Lorentz metric, for j = 0 we have a Euclidean metric. The number of

negative entries is called the signature and by Sylvester’s law of inertia26, this is independent

of the choice of basis.

26This has nothing to do with inertia, Sylvester just wanted a law of inertia like Newton.
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Lorentzian manifolds For our purposes Riemannian manifolds are not what we want

to consider, instead we want to consider Lorentzian manifolds. The simplest example is

Minkowski space. This is R1,m−1 equipped with the metric

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + ...+ dxm−1 ⊗ dxm−1 , (A.22)

which has components ηµν = diag(−1, 1, ..., 1). Note that on a Lorentzian manifold we take

the index to run over 0, 1, ..,m− 1.

At any point p on a general Lorentzian manifold it is always possible to find an orthonor-

mal basis {eµ} of Tp(M) such that locally the metric looks like the Minkowski metric

gµν |p = ηµν . (A.23)

This is closely related to the equivalence principle (see later).

The fact that locally the metric looks locally like Minkowski space allows us to import

some of the ideas of special relativity, namely we can classify the elements of Tp(M) into three

classes

• g(X,X) > 0 −→ X is spacelike ,

• g(X,X) = 0 −→ X is lightlike or null ,

• g(X,X) < 0 −→ X is timelike .

At each point on M we can then draw light cones which are the null tangent vectors at that

point. The novelty is that the directions of these light cones can vary smoothly as we move

around the manifold. This specifies the causal structure of spacetime which determines which

regions of spacetime can interact together.

We can use the metric to determine the length of curves. The nature of a curve is

inherited from the nature of its tangent vector. A curve is called timelike if its tangent vector

is everywhere timelike. We then measure the proper time

τ =

∫ b

a
dt

√
−gµν

dxµ

dt

dxν

dt
. (A.24)

The existence of a metric comes with a large number of benefits.

The metric as an isomorphism The metric gives a natural isomorphism between vectors

and covectors, g : Tp(M)→ T ∗
p (M) for each p. In a coordinate basis we can write X = Xµ∂µ,

and map it to a one-form X = Xµdx
µ, as

Xµ = gµνX
ν . (A.25)
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We will usually say that we use the metric to lower (or raise) an index. What we really mean

is that the metric provides and isomorphism between a vector space and its dual. Since g

is non-degenerate and is thus invertible we also have the inverse map. We take the inverse

of gµν to be gµν so that gµνgνρ = δµρ . This can then be thought of as the components of a

symmetric (2, 0) tensor

ĝ = gµν∂µ ⊗ ∂ν . (A.26)

Then

Xµ = gµνXν . (A.27)

The Volume form The metric also gives a natural volume form on the manifold M . On

a Riemannian manifold we take the volume form to be

vol(M) =
√
det(gµν)dx

1 ∧ ...dxm , (A.28)

and we use the shorthand
√

det(gµν) =
√
g. On a Lorentzian manifold the determinant is

negative and therefore we take the volume form to be

vol(M) =
√
−gdx0 ∧ dx1 ∧ ... ∧ dxn−1 . (A.29)

As it is written it looks coordinate dependent however it is not.

Hodge dual On an oriented manifold M we can use the totally anti-symmetric tensor

density to define a map which takes a p-form ω ∈ Ωp(M) to a (m− p)-form ⋆ω ∈ Ωm−p(M).

We define this map to be

(⋆ω)µ1...µm−p =
1

p!

√
|g|ϵµ1...µm−pν1...νpω

ν1..νp , (A.30)

where ϵµ1...µm is the totally anti-symmetric tensor, with ϵ123...m = 1 and for even permutations,

−1 for odd permutations and 0 otherwise.

This is called the Hodge dual and is independent of coordinates. One can see that it

satisfies

⋆(⋆ω) = ±(−1)p(m−p)ω , (A.31)

with + for a Riemannian metric and − for a Lorentzian.

Connections An affine connections ∇ is a map ∇ : X (M) × X (M) → X (M), (X,Y ) 7→
∇XY which satisfies

∇X(Y + Z) = ∇XY +∇XZ , (A.32)
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∇(fX+gY )Z = f∇XZ + g∇Y Z , (A.33)

∇X(fY ) = X[f ]Y + f∇XY , (A.34)

for vector fields X,Y, Z ∈ X (M) and functions f, g ∈ F(M).

We may introduce connection coefficients so that the connection acts on an arbitrary

tensor of rank (q, r) as

∇µT
ν1...νq

ρ1...ρr =
∂

∂xµ
T
ν1...νq

ρ1...ρr + Γν1µσT
σ...νq

ρ1...ρr + ....+ Γ
νq
µσT

ν1...νq−1σ
ρ1...ρr

− Γσµρ1T
ν1...νq

σ...ρr − ...− ΓσµρrT
ν1...νq

ρ1...ρr−1σ .
(A.35)

In words, you first differentiate the tensor and then for each upper index you add in a +ΓT

and for every down index a −ΓT . The connection takes tensors to tensors, the (q, r) tensor

gets mapped to a (q, r + 1) tensor.

The connection coefficients are not tensors themselves, but transform as

Γ̃µνρ = (Λ−1)µκΛ
σ
ρΛ

τ
νΓ

κ
στ + (Λ−1)µκΛ

σ
ρ∂σΛ

κ
ν , with Λµν =

∂yµ

∂xν
. (A.36)

The difference

T κστ = Γκστ − Γκτσ , (A.37)

is called the torsion tensor, and is indeed a tensor. If the torsion tensor vanishes we say that

the connection is torsion free.

Levi–Civita connection Given a metric there we have:

Theorem There exists a unique, torsion free, connection that is compatible with the

metric g:

∇Xg = 0 , (A.38)

for all vector fields X.

The connection compatible with the metric is called the Levi–Civita connection while the

components of the Levi–Civita connection are called the Christoffel symbols and are given

by:

Γλµν =
1

2
gλρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν − ∂ρgµν

)
. (A.39)

Given a vector field X which is tangent to the curve γ with coordinates xµ, we say that

a tensor field T is parallel transported along γ if

∇XT = 0 . (A.40)
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Let γ connect two points p, q ∈ M . The condition (A.40) provides a map from the vector

space defined at p to the vector space defined at q. Consider a second vector field Y . In

components (A.40) reads

Xν
(
∂νY

µ + ΓµνρY
ρ
)
= 0 . (A.41)

If we evaluate it on the curve γ, we can write Y µ = Y µ(x(λ)) and therefore the condition is

dY µ

dλ
+XνΓµνρY

ρ . (A.42)

A geodesic is a curve tangent to a vector field X that obeys

∇XX = 0 . (A.43)

Along the curve γ with coordinates xµ and tangent vector X this implies

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 . (A.44)

This is the same geodesic equation one obtains by varying the action

S =

∫
dλ

√
−gµν(x)

dxµ

dλ

dxν

dλ
, (A.45)

and picking an affine parameter.

Using the Levi–Civita connection we can define the curvature and torsion tensors. In

components the Riemann tensor is

Rσρµν = ∂µΓ
σ
νρ − ∂νΓσµρ + ΓλνρΓ

σ
µλ − ΓλµρΓ

σ
νλ . (A.46)

It has the following symmetries and properties

Rσρµν = −Rσρνµ , (A.47)

Rµνρσ = Rσρµν , (A.48)

Rµ[νρσ] = 0 , (A.49)

∇[µRσρ]τν = 0 . (A.50)

Given a rank (1, 3) tensor we can construct a rank (0, 2) tensor by contraction, for the

Riemann tensor the resultant (0, 2)-rank tensor is called the Ricci tensor and is defined by

Rµν = Rρµρν . (A.51)

It inherits symmetry in its indices from the properties of the Riemann tensor

Rµν = Rνµ . (A.52)

We can create a scalar by contracting the indices again

R = gµνRµν . (A.53)

184



A.3 Einstein’s equation

The Einstein–Hilbert action is

SEH =

∫
d4x
√
−gR . (A.54)

Variation with respect to the metric gives Einstein’s field equations

Gµν := Rµν −
1

2
Rgµν = 0 . (A.55)

A cosmological constant term may be added to the action

S =
1

16πGN

∫
d4x
√
−g(R− 2Λ) . (A.56)

Varying the action as before yields the Einstein equations

Rµν −
1

2
Rgµν = −Λgµν . (A.57)

Coupling to matter We can couple gravity to matter. We do this via minimal coupling.

We replace covariant derivatives with the connection, add in the correct volume measure and

insert a metric for summed space-time indices.

We need to consider the combined action

S =
1

16πGN

∫
d4x
√
−g(R− 2Λ) + SMatter , (A.58)

where SMatter is the action for any matter fields in the theory minimally coupled to gravity.

The Energy-Momentum tensor is defined to be

Tµν = − 2√
−g

δSMatter

δgµν
. (A.59)

A.4 Schwarzschild solution

The Scwarzschild solution is

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (A.60)

This solves Einstein’s equations in a vacuum, Rµν = 0.

Birkhoff’s theorem The Schwarzschild solution is the unique spherically symmetric asymp-

totically flat solution to the vacuum Einstein equations.
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New coordinates The Schwarzschild solution in Schwarzschild coordinates has a coordi-

nate singularity at r = Rs = 2GNM . This surface is called the event horizon. In GR no

signals can come out from within the event-horizon, once you fall past the event horizon you

are lost to the outside world.

The apparent singularity at r = Rs is only a coordinate singularity and can be removed

by a coordinate transformation. First introduce the tortoise coordinate r∗

r∗ = r + 2GNM log

(
r − 2GNM

2GNM

)
, (A.61)

then in these coordinates the null radial in-going/out-going geodesics are particularly simple:

t = ±r∗ + constant . (A.62)

Next introduce a pair of null coordinates further adapted to the null geodesics:

v = t+ r∗ , u = t− r∗ . (A.63)

Ingoing Eddington–Finkelstein coordinates Eliminating t via t = v− r∗(r), known as

ingoing Eddington–Finkelstein coordinates, we find

ds2 = −
(
1− 2GNM

r

)
dv2 + 2dvdr + r2ds2(S2) . (A.64)

Even though the metric coefficient gvv vanishes at r = 2GNM there is no real degeneracy

there and the metric is well-defined as one can see by computing the determinant.

There is also the complementary outgoing Eddington–Finkelstein coordinates where we

eliminate t using u above. With Eddington–Finkelstein coordinates we are able to continue

the Schwarzschild solution beyond the horizon to r > 0. In fact there are two ways to do

this with either the ingoing or outgoing Eddington–Finkelstein coordinates. In fact we can

do better and write a metric which captures both of these regions simultaneously.

To begin write the Schwarzschild metric using both null (u, v)-coordinates, the metric is

ds2 = −
(
1− 2GNM

r

)
dudv + r2ds2(S2) , (A.65)

where r is a function of u− v. In these coordinates the metric is again degenerate at r = Rs

so we need to perform another change of coordinates. We introduce the Kruskal-Szekeres

coordinates,

U = − exp
(
− u

4GNM

)
, V = exp

( v

4GNM

)
, (A.66)
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both are null coordinates. The original Schwarzschild black hole is parametrised by U < 0

and V > 0. Outside the horizon they satisfy

UV = − exp
( r∗
2GNM

)
=

2GNM − r
2GNM

exp
( r

2GNM

)
, (A.67)

and similarly
U

V
= − exp

(
− t

2GNM

)
. (A.68)

The metric is then

ds2 = −32(GNM)3

r
e
− r
2GNM dUdV + r2ds2(S2) , (A.69)

with r(U, V ) defined by inverting (A.67). The original Schwarzschild metric covers just U < 0

and V > 0 however there is no obstruction to extending U, V ∈ R. Nothing bad happens at

r = 2GNM , the metric is smooth and non-degenerate and now we have a metric which covers

all regions. The Kruskal spacetime is the maximal extension of the Schwarzschild solution.
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