Problem Sheet 3

Section A

QUESTION 1. Proof of the weak Maximum Principle.

Let $b \in L^{\infty}(\Omega, \mathbb{R}^n)$. Give a weak formulation of the condition

$$(\star) \qquad \Delta u + b \cdot \nabla u \le 0$$

that is well defined for functions $u \in H^1(\Omega)$.

Then show that there exists a number $c_1 > 0$ so that if $u \in H^1(\Omega)$ satisfies the weak form of (\star) for some b with $\|b\|_{L^{\infty}} \leq c_1$ and $u \geq 0$ on $\partial\Omega$, then $u \geq 0$.

Hint: You may use that $u^- = -\min(u, 0) \in H^1_0(\Omega)$ with $\nabla u^- = -\nabla u \cdot \chi_{\{u < 0\}}$ a.e.

Solution. Seen Δu as an element of $(H_0^1(\Omega))^*$ by

$$\langle \Delta u, v \rangle = -\int_{\Omega} \nabla u \cdot \nabla v \, dx, \quad \forall v \in H^1_0(\Omega),$$

a weak formulation of (\star) is given by

(1)
$$\int_{\Omega} -\nabla u \cdot \nabla v + b \cdot \nabla u \, v \, dx \le 0 \quad \forall v \in H_0^1(\Omega), \, v \ge 0 \text{ a.e.}$$

which is well defined since $b \in L^{\infty}$. Note that, since we have an inequality, we restrict to non-negative test functions.

Choose now as test function $v = u^{-}$. Then

$$D \ge \int_{\Omega} -\nabla u \cdot \nabla(u^{-}) + b \cdot \nabla u \, u^{-} \, dx \quad \text{(Now use the hint)}$$

= $\int_{\Omega} |\nabla u^{-}|^{2} \cdot \nabla(u^{-}) - b \cdot \nabla u^{-} \, u^{-} \, dx$
 $\ge ||\nabla u^{-}||^{2}_{L^{2}} - ||b||_{L^{\infty}} ||\nabla u^{-}||_{L^{2}} ||u^{-}||_{L^{2}}$
 $\ge ||\nabla u^{-}||^{2}_{L^{2}} \left(1 - c_{1} C_{Poinc}\right),$

where C_{Poinc} is the Poincaré constant of Ω . It follows that, for $c_1 \leq 1/C_{Poinc}$ we must have $\|\nabla u^-\|_{L^2} = 0$, which in turn implies (by Poincaré inequality) $\|u^-\|_{L^2} = 0$, which yields $u^- = 0$ a.e. .

Section C

QUESTION 5. H^2 regularity Show that for all $\phi \in C_0^{\infty}(\Omega)$ with $\Omega \subset \mathbb{R}^n$ we have

$$\int_{\Omega} (\Delta \phi)^2 dx = \sum_{i,j=1}^n \int_{\Omega} (\partial_{ij} \phi)^2 dx.$$

Show that this equality is also true in $H_0^2(\Omega)$, and that the map $v \to ||\Delta v||_{L^2(\Omega)}$ is a norm on $H_0^2(\Omega)$ equivalent to the usual $H^2(\Omega)$ norm.

Solution. Let $\phi \in C_0^{\infty}(\Omega)$ with $\Omega \subset \mathbb{R}^n$. Integrating by parts twice, we get

$$\int_{\Omega} (\Delta\phi)^2 dx = \int_{\Omega} \left(\sum_{i=1}^n (\partial_i^2 \phi) \right) \left(\sum_{j=1}^n (\partial_j^2 \phi) \right) dx = \sum_{i,j=1}^n \int_{\Omega} (\partial_{ij}^2 \phi) (\partial_{ij}^2 \phi) dx = \sum_{i,j=1}^n \int_{\Omega} (\partial_{ij} \phi)^2 dx.$$

Notice that both the maps $u \mapsto \int_{\Omega} (\Delta u)^2 dx$ and $u \mapsto \sum_{i,j=1}^n \int_{\Omega} (\partial_{ij}\phi)^2 dx$ are continuous from $H_0^2(\Omega)$ to \mathbb{R} . Since they coincide on the dense subset $C_0^{\infty}(\Omega) \subset H_0^2(\Omega)$, they must coincide on the whole $H_0^2(\Omega)$.

By iterating the Poincaré inequality twice, we have that $\left(\sum_{i,j=1}^{n} \int_{\Omega} (\partial_{ij}u)^{2} dx\right)^{1/2}$ defines a norm on $H_{0}^{2}(\Omega)$ equivalent to the standard H^{2} norm restricted to $H_{0}^{2}(\Omega)$. The claim then follows by the identity $\left(\sum_{i,j=1}^{n} \int_{\Omega} (\partial_{ij}u)^{2} dx\right)^{1/2} = \|\Delta u\|_{L^{2}(\Omega)}$ proved above for every $u \in H_{0}^{2}(\Omega)$.