Elliptic Curves. MT 2024. Sheet 0 solutions.

1. Determine whether the following are groups.
(a). The set of all 2 x 2 matrices under matrix multiplication.
Solution: No: no inverses for singular matrices.

(b). The set of all 2 x 2 matrices under matrix addition.
Solution: Yes!

2. For each of the following, decide whether ¢ is a homomorphism. When ¢ is a
homomorphism, decide whether ¢ is injective, surjective, bijective, and find the
kernel of ¢.
(@). ¢:Z,+ = Q" x x> 22+ 1.

Solution: No: for example, ¢(2) # ¢(1)2.
(b). ¢:Q,+ = R, +:w+ 2w.

Solution: Can check directly that this is a homomorphism. It is bijective
(v/2 is invertible, so multiplication by it is bijective), so the kernel is zero.
(). ¢:Z,+ = Z/3Z,+ : x — 2.

Solution: This is a surjective homomorphism, since 2 is coprime to 3. The
kernel is 37.

3.
(a). In Q*/(Q*)?, decide whether the following are true or false: 3 = 1/27,
—4=14,3=5/6.

Solution: 3 x 27 = 3% is a square, so 3 = 1/27 mod (Q*)2.

4=1 and —4 = —1 mod (Q*)%. But —1 is not a rational square, so —4 # 4
mod (Q*)2.

5/18 is not a rational square (it has prime factors appearing with odd powers).
(b). In Q*/(Q*)?, write each of the following as a square free integer: —2/27,
16, 12, 1/3.

Solution: —2-373 = —-2-3 = —6 mod (Q*)2.

16 = 1 mod (Q*)2.

12 = 3 mod (Q*)2.

1/3 =3 mod (Q*)2.

(c). Perform each of the following in Q*/(Q*)?, writing your answer as a square
free integer: 6 x 10, 10/21, 1501 3-1

Solution: 6 x 10 = 22-3-5 = 15 mod (Q*)?2.

10/21=2-5-3"1.7"1=2.5.3.7 = 210 mod (Q*)2.

15101 = 15 mod (Q*)2.

371 =3 mod (Q*)2.

(d). How many elements are in each of the groups: Q*/(Q*)2, R*/(R*)2,

Solution: The elements of Q* /(Q*)? are in bijection with square free integers.
So there are (countably) infinitely many.

FEvery positive real is a square, so the sign map gives an isomorphism

R*/(R*)? = {£1}.

Every complex number can be written as a square of another complex number,
s0 the group C*/(C*)? is trivial.



4.
(a). Find all singular points on the curve (defined over C)
C:f(X,Y)=X*+V3-3X?Y =0.

Solution: For (z,y) to be a singular point, we need f(x,y) = g—)];(:zr,y) =
%(x, y) = 0. In particular, we have 423 —6xy = 0 and 3y*>—3x% = 0. We deduce
from these two equations that y? = 2, hence y = +x, and then 42% F 622 = 0.
This gives the possibilities (x,y) = (0,0), (£3/2,3/2). Only the first is a point
on the curve, so the unique singular point is (0,0).

Find all tangents to C at the point (0, 0).
Solution: See Comment 0.100 for how to do this computation. We write

f(X,Y) =Y3 - 3X%Y + (higher order terms)

and then factorise Y3 — 3X%Y = Y (Y — V3X)(Y + v/3X). So we have three
tangents: Y = 0,Y = /3X,Y = —/3X. Try sketching the graph (e.g. with
Wolfram Alpha.)

(b). Find all singular points on the curve (defined over C)
C:f(X,Y)=Y?-X(X?*-1)?=0.

Solution: Computing the partial derivative with respect to Y, we see that
y = 0 is necessary for a singular point. So the possible singular points are

(0,0),(1,0),(—1,0). We have g—g; =—(X?%2-1)2-2X(X2%-1)(2X), so the two

singular points are (z,y) = (£1,0).
Find all tangents to € at the points (0,0) and (1,0

).
Solution: The unique tangent at (0,0) is X = 0. At (1,0) we compute

fO+X,Y)=Y?— (14 X)(X?+2X)? =Y? — 4X? + (higher order terms).

So we have two tangent lines at (1,0), Y = £2(X —1).

5. Show that C: Y2 = X3 + AX + B is smooth if 443 + 27B? # 0 and we work
over a field with characteristic # 2. What happens in characteristic 27

Solution: We set f(X,Y)=Y2 - X3 - AX — B. So g—{j(x,y) =0 implies
y=0 (if 2#0). So the possible singular points are (x,0) where x is a root of
the cubic X3 + AX + B. The vanishing g—)f((x,()) = 0 is then equivalent to x
being a repeated root of the cubic. The discriminant of the cubic polynomial is
4A3 +27B2?, so that gives the desired criterion for smoothness.

In characteristic 2, we have %(ﬂc,y) = 0 for all points (x,y). The equation
%(m,y) =0 gives us x> = A. So we have singular points (x,y) when x> = A
and y?> = B.

6. For each of the following curves, find the irreducible components over Q and
the irreducible components over C.
(a). C: Y2 = X5,

Solution: We have to factorise the polynomial Y2 — X° over Q and C. We
claim that Y2 — X® is irreducible over C. Here is a long-winded proof (a more
efficient argument might exist!). View Y? — X® as an element of (C[X])[Y],



i.e. a polynomial in'Y with coefficients in C[X]. We cannot factor it as a product
of polynomials in Y with positive degree, since X° does not have a square root
in C[X]. So we deduce that if Y?> — X° = f1(X,Y)f2(X,Y), then one of the
factors, say f1 is actually just a polynomial in X. But then fi must actually
be a constant, otherwise there would be a (complex) root xo of fi which would
satisfy y* — 23 = 0 for ally € C.

(b). C: Y3 = X3,

Solution: We factorise Y? — X3 = (Y — X)(Y? + XY + X?). So we get
Y = X as one component, and Y2 + XY + X2 = 0 as another. The latter is
1rreducible over Q but reducible over C. We factorise

Y2+ XY + X2 = (Y —wX)(Y —0X)
where w = 71%‘/?3, a primitive third root of unity, satisfies w + w0 = —1 and
ww = 1. So over C the components areY = X, Y =wX and Y =wX.
(c)- C: Y2 =X3+1.

Solution: As for part (a), we observe that the polynomial Y2 — X3 — 1 is
irreducible viewed as a polynomial in'Y with coefficients in C[X]. Similarly to
part (a), it is also not divisible by a non-constant element of C[X]. So this curve
1s irreducible.

7.
(a). Find the discriminant of X* — 2.

Solution: Write down the resultant matriz for (X* —2,4X?). Repeatedly
doing Laplace expansion down the columns (from right to left) gives determinant
(—2)34% = 211,

(b). Find the resultant of X3 —a and X2 — b, where a, b are constants.

Solution: b3 — a2.

8. Find all intersection points (with multiplicities) over C of the curves: X3 +
Y3=27%and X2 +Y? =22

Solution: See Comment 0.122. We first compute intersection points with
Z # 0. We compute the resultant of f(x,y) = x3 + 4> — 1 and g(z,y) =
2% +y? — 1, viewed as polynomials in the variable y over Clx]. By 8(b) we get
resultant (1 — 2%)3 — (1 — 2%)? = —(z — 1)%2%(22% + 42 + 3). Let’s consider
the multiple roots © = 0,z = 1. We get, respectively, y> = 1,4 = 1 and
y3 =0,y% = 0. So we have intersection points (0:1:1) and (1:0: 1), both with
multiplicity 2, and two (complex conjugate) intersection points with multiplicity

1 (=14 Y200 =1 — 24 : 1), (=1 — ¥2i . =1+ 24 : 1). That gives all the
sections, since we’ve found 6 with multiplicity. We can also check directly that

there are no intersection points with Z = 0.

9.
(a). Decide whether each of 2,3, 5,10, 15 are quadratic residues modulo 1009 (if
you use quadratic reciprocity, this should not involve any lengthy computations).

Solution: Note that 1009 is prime. We have (ﬁ) = +1, since 1009 = 1
mod 8.

We have () = (199) = (1) = +1.
W have (o) = (1) = (8 = 11
We have (%) = (ﬁ) (10;)09) = +L
We have (%) = (ﬁ) (10009) =+

w



(b). Describe all primes p such that 3 is a quadratic residue modulo p. Describe
all primes p such that 5 is a quadratic residue modulo p. Describe all primes p
such that 10 is a quadratic residue modulo p.

Solution: For p > 3, we have (%) = (=1)P=1/2 (%) So 3 is a QR mod p
if and only if p = +1 mod 12.

For an odd prime p # 5, we have (5) = (g) So 5 is a QR mod p if and
only if p==+1 mod 5.

For an odd prime p # 5, we have (m) = ( ) (%) So 10 is a QR mod p if
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and only if one of the following holds:

e p=+1mod 5 and £+1 mod 8

e p==+3 mod 5 and +3 mod 8

Equivalently, 10 is a QR mod p if and only if p mod 40 € {1, £3,4+9, +£13}.
Note that this covers 8 of the 16 congruence classes in (Z/40Z)*.

10. Are there integers a, b, ¢, not all 0, such that 2a? + 5% = ¢2?

Solution: We can reduce to looking for solutions which are pairwise coprime.
Then consider the equation mod 5. It says 2a® = ¢* mod 5, which implies that
a=c=0modb (since 2 is not a QR mod 5). This contradicts coprimality of a
and c. So there are no non-trivial integer solutions.

11. For any n € N define, as usual, Euler’s ¢-function by:
o(n) =#{x:1 <z <nand ged(x,n) =1}

For any prime p, what is ¢(p")? For any distinct primes p1, p2, what is ¢(p1p2)?
Solution: There are p"~' multiplies of p in the interval [1,p"]. So ¢(p") =
pr—pt=p" (p - 1),
For each of the following examples of the type a® (mod n), reduce a® (mod n)
to a member of {0,...,n —1}.
212 (mod 13), 3'2 (mod 13), 3** (mod 13), 3120%0 (mod 13), 32902 (mod 13),
424 (mod 35), 4% (mod 35), 448000001 (1104 35),
724 (mod 35), 7*® (mod 35), 748000001 (104 35).
Solution: The first eight follow easily from Fermat—FEuler: 1,1,1,1,9,1,1,4.
We have 7** =0 mod 7 and 1 mod 5. So 7?* = 21 mod 35.
Squaring, we also have 7*® =0 mod 7 and 1 mod 5. So 7*® = 21 mod 35.
In fact, the same argument shows that 7>** = 21 mod 35 for any positive
integer k. So 748000001 — 7 5 91 = 7 mod 35.



