
Elliptic Curves. MT 2024. Sheet 0 solutions.

1. Determine whether the following are groups.
(a). The set of all 2× 2 matrices under matrix multiplication.

Solution: No: no inverses for singular matrices.

(b). The set of all 2× 2 matrices under matrix addition.
Solution: Yes!

2. For each of the following, decide whether ϕ is a homomorphism. When ϕ is a
homomorphism, decide whether ϕ is injective, surjective, bijective, and find the
kernel of ϕ.
(a). ϕ : Z,+ → Q∗,× : x 7→ x2 + 1.

Solution: No: for example, ϕ(2) ̸= ϕ(1)2.

(b). ϕ : Q,+ → R,+ : w 7→
√
2w.

Solution: Can check directly that this is a homomorphism. It is bijective
(
√
2 is invertible, so multiplication by it is bijective), so the kernel is zero.

(c). ϕ : Z,+ → Z/3Z,+ : x 7→ 2x.
Solution: This is a surjective homomorphism, since 2 is coprime to 3. The

kernel is 3Z.
3.
(a). In Q∗/(Q∗)2, decide whether the following are true or false: 3 = 1/27,
−4 = 4, 3 = 5/6.

Solution: 3× 27 = 34 is a square, so 3 = 1/27 mod (Q∗)2.
4 = 1 and −4 = −1 mod (Q∗)2. But −1 is not a rational square, so −4 ̸= 4

mod (Q∗)2.
5/18 is not a rational square (it has prime factors appearing with odd powers).

(b). In Q∗/(Q∗)2, write each of the following as a square free integer: −2/27,
16, 12, 1/3.

Solution: −2 · 3−3 = −2 · 3 = −6 mod (Q∗)2.
16 = 1 mod (Q∗)2.
12 = 3 mod (Q∗)2.
1/3 = 3 mod (Q∗)2.

(c). Perform each of the following in Q∗/(Q∗)2, writing your answer as a square
free integer: 6× 10, 10/21, 15101, 3−1.

Solution: 6× 10 = 22 · 3 · 5 = 15 mod (Q∗)2.
10/21 = 2 · 5 · 3−1 · 7−1 = 2 · 5 · 3 · 7 = 210 mod (Q∗)2.
15101 = 15 mod (Q∗)2.
3−1 = 3 mod (Q∗)2.

(d). How many elements are in each of the groups: Q∗/(Q∗)2, R∗/(R∗)2,
C∗/(C∗)2?

Solution: The elements of Q∗/(Q∗)2 are in bijection with square free integers.
So there are (countably) infinitely many.

Every positive real is a square, so the sign map gives an isomorphism

R∗/(R∗)2 ∼= {±1}.

Every complex number can be written as a square of another complex number,
so the group C∗/(C∗)2 is trivial.
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4.
(a). Find all singular points on the curve (defined over C)

C : f(X,Y ) = X4 + Y 3 − 3X2Y = 0.

Solution: For (x, y) to be a singular point, we need f(x, y) = ∂f
∂X (x, y) =

∂f
∂Y (x, y) = 0. In particular, we have 4x3−6xy = 0 and 3y2−3x2 = 0. We deduce
from these two equations that y2 = x2, hence y = ±x, and then 4x3 ∓ 6x2 = 0.
This gives the possibilities (x, y) = (0, 0), (±3/2, 3/2). Only the first is a point
on the curve, so the unique singular point is (0, 0).

Find all tangents to C at the point (0, 0).
Solution: See Comment 0.100 for how to do this computation. We write

f(X,Y ) = Y 3 − 3X2Y + (higher order terms)

and then factorise Y 3 − 3X2Y = Y (Y −
√
3X)(Y +

√
3X). So we have three

tangents: Y = 0, Y =
√
3X,Y = −

√
3X. Try sketching the graph (e.g. with

Wolfram Alpha.)

(b). Find all singular points on the curve (defined over C)

C : f(X,Y ) = Y 2 −X(X2 − 1)2 = 0.

Solution: Computing the partial derivative with respect to Y , we see that
y = 0 is necessary for a singular point. So the possible singular points are
(0, 0), (1, 0), (−1, 0). We have ∂f

∂X = −(X2 − 1)2 − 2X(X2 − 1)(2X), so the two
singular points are (x, y) = (±1, 0).

Find all tangents to C at the points (0, 0) and (1, 0).
Solution: The unique tangent at (0, 0) is X = 0. At (1, 0) we compute

f(1 +X,Y ) = Y 2 − (1 +X)(X2 + 2X)2 = Y 2 − 4X2 + (higher order terms).

So we have two tangent lines at (1, 0), Y = ±2(X − 1).

5. Show that C : Y 2 = X3 +AX +B is smooth if 4A3 + 27B2 ̸= 0 and we work
over a field with characteristic ̸= 2. What happens in characteristic 2?

Solution: We set f(X,Y ) = Y 2 −X3 −AX −B. So ∂f
∂Y (x, y) = 0 implies

y = 0 (if 2 ̸= 0). So the possible singular points are (x, 0) where x is a root of
the cubic X3 + AX + B. The vanishing ∂f

∂X (x, 0) = 0 is then equivalent to x
being a repeated root of the cubic. The discriminant of the cubic polynomial is
4A3 + 27B2, so that gives the desired criterion for smoothness.

In characteristic 2, we have ∂f
∂Y (x, y) = 0 for all points (x, y). The equation

∂f
∂X (x, y) = 0 gives us x2 = A. So we have singular points (x, y) when x2 = A
and y2 = B.

6. For each of the following curves, find the irreducible components over Q and
the irreducible components over C.
(a). C : Y 2 = X5.

Solution: We have to factorise the polynomial Y 2 −X5 over Q and C. We
claim that Y 2 −X5 is irreducible over C. Here is a long-winded proof (a more
efficient argument might exist!). View Y 2 − X5 as an element of (C[X])[Y ],
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i.e. a polynomial in Y with coefficients in C[X]. We cannot factor it as a product
of polynomials in Y with positive degree, since X5 does not have a square root
in C[X]. So we deduce that if Y 2 − X5 = f1(X,Y )f2(X,Y ), then one of the
factors, say f1 is actually just a polynomial in X. But then f1 must actually
be a constant, otherwise there would be a (complex) root x0 of f1 which would
satisfy y2 − x5

0 = 0 for all y ∈ C.
(b). C : Y 3 = X3.

Solution: We factorise Y 3 −X3 = (Y −X)(Y 2 +XY +X2). So we get
Y = X as one component, and Y 2 +XY +X2 = 0 as another. The latter is
irreducible over Q but reducible over C. We factorise

Y 2 +XY +X2 = (Y − ωX)(Y − ω̄X)

where ω = −1+
√
−3

2 , a primitive third root of unity, satisfies ω + ω̄ = −1 and
ωω̄ = 1. So over C the components are Y = X, Y = ωX and Y = ω̄X.

(c). C : Y 2 = X3 + 1.
Solution: As for part (a), we observe that the polynomial Y 2 −X3 − 1 is

irreducible viewed as a polynomial in Y with coefficients in C[X]. Similarly to
part (a), it is also not divisible by a non-constant element of C[X]. So this curve
is irreducible.
7.
(a). Find the discriminant of X4 − 2.

Solution: Write down the resultant matrix for (X4 − 2, 4X3). Repeatedly
doing Laplace expansion down the columns (from right to left) gives determinant
(−2)344 = −211.

(b). Find the resultant of X3 − a and X2 − b, where a, b are constants.
Solution: b3 − a2.

8. Find all intersection points (with multiplicities) over C of the curves: X3 +
Y 3 = Z3 and X2 + Y 2 = Z2.

Solution: See Comment 0.122. We first compute intersection points with
Z ̸= 0. We compute the resultant of f(x, y) = x3 + y3 − 1 and g(x, y) =
x2 + y2 − 1, viewed as polynomials in the variable y over C[x]. By 8(b) we get
resultant (1 − x2)3 − (1 − x3)2 = −(x − 1)2x2(2x2 + 4x + 3). Let’s consider
the multiple roots x = 0, x = 1. We get, respectively, y3 = 1, y2 = 1 and
y3 = 0, y2 = 0. So we have intersection points (0 : 1 : 1) and (1 : 0 : 1), both with
multiplicity 2, and two (complex conjugate) intersection points with multiplicity

1: (−1 +
√
2
2 i : −1 −

√
2
2 i : 1), (−1 −

√
2
2 i : −1 +

√
2
2 i : 1). That gives all the

sections, since we’ve found 6 with multiplicity. We can also check directly that
there are no intersection points with Z = 0.

9.
(a). Decide whether each of 2, 3, 5, 10, 15 are quadratic residues modulo 1009 (if
you use quadratic reciprocity, this should not involve any lengthy computations).

Solution: Note that 1009 is prime. We have
(

2
1009

)
= +1, since 1009 = 1

mod 8.
We have

(
3

1009

)
=

(
1009
3

)
=

(
1
3

)
= +1.

We have
(

5
1009

)
=

(
1009
5

)
=

(
4
5

)
= +1.

We have
(

10
1009

)
=

(
2

1009

) (
5

1009

)
= +1.

We have
(

15
1009

)
=

(
3

1009

) (
5

1009

)
= +1.
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(b). Describe all primes p such that 3 is a quadratic residue modulo p. Describe
all primes p such that 5 is a quadratic residue modulo p. Describe all primes p
such that 10 is a quadratic residue modulo p.

Solution: For p > 3, we have
(

3
p

)
= (−1)(p−1)/2

(
p
3

)
. So 3 is a QR mod p

if and only if p = ±1 mod 12.

For an odd prime p ̸= 5, we have
(

5
p

)
=

(
p
5

)
. So 5 is a QR mod p if and

only if p = ±1 mod 5.

For an odd prime p ̸= 5, we have
(

10
p

)
=

(
2
p

) (
p
5

)
. So 10 is a QR mod p if

and only if one of the following holds:

• p ≡ ±1 mod 5 and ±1 mod 8

• p ≡ ±3 mod 5 and ±3 mod 8

Equivalently, 10 is a QR mod p if and only if p mod 40 ∈ {±1,±3,±9,±13}.
Note that this covers 8 of the 16 congruence classes in (Z/40Z)×.

10. Are there integers a, b, c, not all 0, such that 2a2 + 5b2 = c2?
Solution: We can reduce to looking for solutions which are pairwise coprime.

Then consider the equation mod 5. It says 2a2 = c2 mod 5, which implies that
a = c = 0 mod 5 (since 2 is not a QR mod 5). This contradicts coprimality of a
and c. So there are no non-trivial integer solutions.

11. For any n ∈ N define, as usual, Euler’s ϕ-function by:

ϕ(n) = #{x : 1 ⩽ x ⩽ n and gcd(x, n) = 1}.

For any prime p, what is ϕ(pr)? For any distinct primes p1, p2, what is ϕ(p1p2)?
Solution: There are pr−1 multiplies of p in the interval [1, pr]. So ϕ(pr) =

pr − pr−1 = pr−1(p− 1).

For each of the following examples of the type ab (mod n), reduce ab (mod n)
to a member of {0, . . . , n− 1}.
212 (mod 13), 312 (mod 13), 324 (mod 13), 312000 (mod 13), 312002 (mod 13),
424 (mod 35), 448 (mod 35), 448000001 (mod 35),
724 (mod 35), 748 (mod 35), 748000001 (mod 35).

Solution: The first eight follow easily from Fermat–Euler: 1, 1, 1, 1, 9, 1, 1, 4.
We have 724 = 0 mod 7 and 1 mod 5. So 724 = 21 mod 35.
Squaring, we also have 748 = 0 mod 7 and 1 mod 5. So 748 = 21 mod 35.
In fact, the same argument shows that 724k = 21 mod 35 for any positive

integer k. So 748000001 = 7× 21 = 7 mod 35.
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