Elliptic Curves. MT 2024. Sheet 0 solutions.

1. Determine whether the following are groups.

(a). The set of all 2×2 matrices under matrix multiplication. Solution: No: no inverses for singular matrices.

(b). The set of all 2×2 matrices under matrix addition. Solution: Yes!

2. For each of the following, decide whether ϕ is a homomorphism. When ϕ is a homomorphism, decide whether ϕ is injective, surjective, bijective, and find the kernel of ϕ .

(a). $\phi : \mathbb{Z}, + \to \mathbb{Q}^*, \times : x \mapsto x^2 + 1.$

Solution: *No: for example,* $\phi(2) \neq \phi(1)^2$.

(b). $\phi : \mathbb{Q}, + \to \mathbb{R}, + : w \mapsto \sqrt{2}w$.

Solution: Can check directly that this is a homomorphism. It is bijective (√ 2 is invertible, so multiplication by it is bijective), so the kernel is zero.

(c). $\phi : \mathbb{Z}, + \rightarrow \mathbb{Z}/3\mathbb{Z}, + : x \mapsto 2x.$

Solution: This is a surjective homomorphism, since 2 is coprime to 3. The kernel is 3Z.

3.

(a). In $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, decide whether the following are true or false: $3 = 1/27$, $-4 = 4$, $3 = 5/6$.

Solution: $3 \times 27 = 3^4$ is a square, so $3 = 1/27 \mod (\mathbb{Q}^*)^2$.

 $4 = 1$ and $-4 = -1$ mod $(\mathbb{Q}^*)^2$. But -1 is not a rational square, so $-4 \neq 4$ $mod \; (\mathbb{Q}^*)^2$.

5/18 is not a rational square (it has prime factors appearing with odd powers). (b). In $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, write each of the following as a square free integer: $-2/27$, 16, 12, 1/3.

Solution: $-2 \cdot 3^{-3} = -2 \cdot 3 = -6 \mod (\mathbb{Q}^*)^2$. $16 = 1 \mod (Q^*)^2$. $12 = 3 \mod (Q^*)^2$. $1/3 = 3 \mod (Q^*)^2$.

(c). Perform each of the following in $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, writing your answer as a square free integer: 6×10 , $10/21$, 15^{101} , 3^{-1} .

Solution: $6 \times 10 = 2^2 \cdot 3 \cdot 5 = 15 \mod (Q^*)^2$. $10/21 = 2 \cdot 5 \cdot 3^{-1} \cdot 7^{-1} = 2 \cdot 5 \cdot 3 \cdot 7 = 210 \mod (Q^*)^2$. $15^{101} = 15 \mod (Q^*)^2$. $3^{-1} = 3 \mod (\mathbb{Q}^*)^2$.

(d). How many elements are in each of the groups: $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, $\mathbb{R}^*/(\mathbb{R}^*)^2$, $\mathbb{C}^*/(\mathbb{C}^*)^2$?

Solution: The elements of $\mathbb{Q}^*/(\mathbb{Q}^*)^2$ are in bijection with square free integers. So there are (countably) infinitely many.

Every positive real is a square, so the sign map gives an isomorphism

$$
\mathbb{R}^*/(\mathbb{R}^*)^2 \cong \{\pm 1\}.
$$

Every complex number can be written as a square of another complex number. so the group $\mathbb{C}^*/(\mathbb{C}^*)^2$ is trivial.

(a). Find all singular points on the curve (defined over \mathbb{C})

$$
C: f(X, Y) = X^4 + Y^3 - 3X^2Y = 0.
$$

Solution: For (x, y) to be a singular point, we need $f(x, y) = \frac{\partial f}{\partial X}(x, y)$ $\frac{\partial f}{\partial Y}(x,y) = 0$. In particular, we have $4x^3 - 6xy = 0$ and $3y^2 - 3x^2 = 0$. We deduce from these two equations that $y^2 = x^2$, hence $y = \pm x$, and then $4x^3 \mp 6x^2 = 0$. This gives the possibilities $(x, y) = (0, 0), (\pm 3/2, 3/2)$. Only the first is a point on the curve, so the unique singular point is $(0, 0)$.

Find all tangents to $\mathcal C$ at the point $(0, 0)$.

4.

Solution: See Comment 0.100 for how to do this computation. We write

 $f(X,Y) = Y^3 - 3X^2Y + (higher order terms)$

and then factorise $Y^3 - 3X^2Y = Y(Y - \sqrt{X^2 + 3X^2Y})$ $(3X)(Y +$ √ $-\frac{3X^2Y}{\sqrt{2}} = Y(Y - \sqrt{3}X)(Y + \sqrt{3}X)$. So we have three tangents: $Y = 0, Y = \sqrt{3}X, Y = -\sqrt{3}X$. Try sketching the graph (e.g. with Wolfram Alpha.)

(b). Find all singular points on the curve (defined over C)

$$
C: f(X, Y) = Y^2 - X(X^2 - 1)^2 = 0.
$$

Solution: Computing the partial derivative with respect to Y , we see that $y = 0$ is necessary for a singular point. So the possible singular points are $(0,0), (1,0), (-1,0)$. We have $\frac{\partial f}{\partial X} = -(X^2 - 1)^2 - 2X(X^2 - 1)(2X)$, so the two singular points are $(x, y) = (\pm 1, 0)$.

Find all tangents to $\mathfrak C$ at the points $(0,0)$ and $(1,0)$.

Solution: The unique tangent at $(0,0)$ is $X = 0$. At $(1,0)$ we compute

 $f(1+X,Y) = Y^2 - (1+X)(X^2+2X)^2 = Y^2 - 4X^2 +$ (higher order terms).

So we have two tangent lines at $(1, 0)$, $Y = \pm 2(X - 1)$.

5. Show that $C: Y^2 = X^3 + AX + B$ is smooth if $4A^3 + 27B^2 \neq 0$ and we work over a field with characteristic $\neq 2$. What happens in characteristic 2?

Solution: We set $f(X,Y) = Y^2 - X^3 - AX - B$. So $\frac{\partial f}{\partial Y}(x,y) = 0$ implies $y = 0$ (if $2 \neq 0$). So the possible singular points are $(x, 0)$ where x is a root of the cubic $X^3 + AX + B$. The vanishing $\frac{\partial f}{\partial X}(x,0) = 0$ is then equivalent to x being a repeated root of the cubic. The discriminant of the cubic polynomial is $4A^3 + 27B^2$, so that gives the desired criterion for smoothness.

In characteristic 2, we have $\frac{\partial f}{\partial Y}(x,y) = 0$ for all points (x, y) . The equation $\frac{\partial f}{\partial X}(x,y) = 0$ gives us $x^2 = A$. So we have singular points (x, y) when $x^2 = A$ and $y^2 = B$.

6. For each of the following curves, find the irreducible components over Q and the irreducible components over C. (a). $C: Y^2 = X^5$.

Solution: We have to factorise the polynomial $Y^2 - X^5$ over $\mathbb Q$ and $\mathbb C$. We claim that $Y^2 - X^5$ is irreducible over $\mathbb C$. Here is a long-winded proof (a more efficient argument might exist!). View $Y^2 - X^5$ as an element of $(\mathbb{C}[X])[Y]$, i.e. a polynomial in Y with coefficients in $\mathbb{C}[X]$. We cannot factor it as a product of polynomials in Y with positive degree, since X^5 does not have a square root in $\mathbb{C}[X]$. So we deduce that if $Y^2 - X^5 = f_1(X,Y)f_2(X,Y)$, then one of the factors, say f_1 is actually just a polynomial in X. But then f_1 must actually be a constant, otherwise there would be a (complex) root x_0 of f_1 which would satisfy $y^2 - x_0^5 = 0$ for all $y \in \mathbb{C}$.

(**b**). $C: Y^3 = X^3$.

Solution: We factorise $Y^3 - X^3 = (Y - X)(Y^2 + XY + X^2)$. So we get $Y = X$ as one component, and $Y^2 + XY + X^2 = 0$ as another. The latter is irreducible over Q but reducible over C. We factorise

$$
Y^2 + XY + X^2 = (Y - \omega X)(Y - \overline{\omega}X)
$$

where $\omega = \frac{-1 + \sqrt{-3}}{2}$, a primitive third root of unity, satisfies $\omega + \bar{\omega} = -1$ and $\omega \bar{\omega} = 1$. So over $\mathbb {C}$ the components are $Y = X, Y = \omega X$ and $Y = \bar{\omega} X$. (c). $C: Y^2 = X^3 + 1$.

Solution: As for part (a), we observe that the polynomial $Y^2 - X^3 - 1$ is irreducible viewed as a polynomial in Y with coefficients in $\mathbb{C}[X]$. Similarly to part (a), it is also not divisible by a non-constant element of $\mathbb{C}[X]$. So this curve is irreducible.

7.

(a). Find the discriminant of $X^4 - 2$.

Solution: Write down the resultant matrix for $(X^4 - 2, 4X^3)$. Repeatedly doing Laplace expansion down the columns (from right to left) gives determinant $(-2)^{3}4^{4} = -2^{11}.$

(b). Find the resultant of $X^3 - a$ and $X^2 - b$, where a, b are constants. Solution: $b^3 - a^2$.

8. Find all intersection points (with multiplicities) over $\mathbb C$ of the curves: X^3 + $Y^3 = Z^3$ and $X^2 + Y^2 = Z^2$.

Solution: See Comment 0.122. We first compute intersection points with $Z \neq 0$. We compute the resultant of $f(x,y) = x^3 + y^3 - 1$ and $g(x,y) = 1$ $x^2 + y^2 - 1$, viewed as polynomials in the variable y over $\mathbb{C}[x]$. By $8(b)$ we get resultant $(1-x^2)^3 - (1-x^3)^2 = -(x-1)^2x^2(2x^2+4x+3)$. Let's consider the multiple roots $x = 0, x = 1$. We get, respectively, $y^3 = 1, y^2 = 1$ and $y^3 = 0, y^2 = 0$. So we have intersection points $(0:1:1)$ and $(1:0:1)$, both with multiplicity 2, and two (complex conjugate) intersection points with multiplicity $1: (-1 + \frac{\sqrt{2}}{2}i: -1 - \frac{\sqrt{2}}{2}i: 1), (-1 - \frac{\sqrt{2}}{2}i: -1 + \frac{\sqrt{2}}{2}i: 1).$ That gives all the sections, since we've found 6 with multiplicity. We can also check directly that there are no intersection points with $Z = 0$.

9.

(a). Decide whether each of $2, 3, 5, 10, 15$ are quadratic residues modulo 1009 (if you use quadratic reciprocity, this should not involve any lengthy computations).

Solution: Note that 1009 is prime. We have $\left(\frac{2}{1009}\right) = +1$, since $1009 = 1$ mod 8.

We have $\left(\frac{3}{1009}\right) = \left(\frac{1009}{3}\right) = \left(\frac{1}{3}\right) = +1.$ We have $\left(\frac{5}{1009}\right) = \left(\frac{1009}{5}\right) = \left(\frac{4}{5}\right) = +1.$ We have $\left(\frac{10}{1009}\right) = \left(\frac{2}{1009}\right) \left(\frac{5}{1009}\right) = +1.$ We have $\left(\frac{15}{1009}\right) = \left(\frac{3}{1009}\right) \left(\frac{5}{1009}\right) = +1.$ (b). Describe all primes p such that 3 is a quadratic residue modulo p . Describe all primes p such that 5 is a quadratic residue modulo p . Describe all primes p such that 10 is a quadratic residue modulo p.

Solution: For $p > 3$, we have $\left(\frac{3}{p}\right) = (-1)^{(p-1)/2} \left(\frac{p}{3}\right)$. So 3 is a QR mod p if and only if $p = \pm 1 \mod 12$.

For an odd prime $p \neq 5$, we have $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$. So 5 is a QR mod p if and only if $p = \pm 1 \mod 5$.

For an odd prime $p \neq 5$, we have $\left(\frac{10}{p}\right) = \left(\frac{2}{p}\right) \left(\frac{p}{5}\right)$. So 10 is a QR mod p if and only if one of the following holds:

- $p \equiv \pm 1 \mod 5$ and $\pm 1 \mod 8$
- $p \equiv \pm 3 \mod 5$ and $\pm 3 \mod 8$

Equivalently, 10 is a QR mod p if and only if p mod $40 \in \{\pm 1, \pm 3, \pm 9, \pm 13\}.$ Note that this covers 8 of the 16 congruence classes in $(\mathbb{Z}/40\mathbb{Z})^{\times}$.

10. Are there integers a, b, c, not all 0, such that $2a^2 + 5b^2 = c^2$?

Solution: We can reduce to looking for solutions which are pairwise coprime. Then consider the equation mod 5. It says $2a^2 = c^2$ mod 5, which implies that $a = c = 0 \mod 5$ (since 2 is not a QR mod 5). This contradicts coprimality of a and c. So there are no non-trivial integer solutions.

11. For any $n \in \mathbb{N}$ define, as usual, Euler's ϕ -function by:

$$
\phi(n) = \#\{x : 1 \leq x \leq n \text{ and } \gcd(x, n) = 1\}.
$$

For any prime p, what is $\phi(p^r)$? For any distinct primes p_1, p_2 , what is $\phi(p_1p_2)$? **Solution:** There are p^{r-1} multiplies of p in the interval $[1, p^r]$. So $\phi(p^r)$ = $p^r - p^{r-1} = p^{r-1}(p-1).$

For each of the following examples of the type $a^b \pmod{n}$, reduce $a^b \pmod{n}$ to a member of $\{0, \ldots, n-1\}.$

 2^{12} (mod 13), 3^{12} (mod 13), 3^{24} (mod 13), 3^{12000} (mod 13), 3^{12002} (mod 13),

- 4^{24} (mod 35), 4^{48} (mod 35), $4^{48000001}$ (mod 35),
- 7^{24} (mod 35), 7^{48} (mod 35), $7^{48000001}$ (mod 35).
	- Solution: The first eight follow easily from Fermat–Euler: 1, 1, 1, 1, 9, 1, 1, 4. We have $7^{24} = 0 \mod 7$ and 1 mod 5. So $7^{24} = 21 \mod 35$.

Squaring, we also have $7^{48} = 0 \mod 7$ and 1 mod 5. So $7^{48} = 21 \mod 35$.

In fact, the same argument shows that $7^{24k} = 21 \mod 35$ for any positive integer k. So $7^{48000001} = 7 \times 21 = 7 \mod 35$.