C2.6 Introduction to Schemes Sheet 1

Hilary 2024

- (1) (A) Describe all the points of the spaces A¹_ℝ and A¹_ℂ, and compute their residue fields. What are the closed points?
 What are the generic points?
- (2) (A) Prove that for rings R_1, R_2 ,

 $\operatorname{Spec}(R_1 \times R_2) \cong \operatorname{Spec} R_1 \sqcup \operatorname{Spec} R_2.$

- (3) (B) (a) Prove the following Proposition from the lectures:
 - **Proposition.** 1) $\mathfrak{p} \subset R$ prime $\implies \overline{\{\mathfrak{p}\}} = Z(\mathfrak{p})$, and $\{\mathfrak{p}\}$ is the only generic point of $Z(\mathfrak{p})$.
 - 2) A closed subset Z ⊂ Spec R is irreducible¹ if and only if Z = Z(p) for some p.
 3) Spec R is irreducible if and only if the nilradical Nil R := √(0) is prime.
 - (b) Hence, if R is an integral domain, then $\operatorname{Spec}(R)$ is irreducible. Is the converse true?
- (4) (B) (a) Prove the following Proposition from the lectures:

Proposition. There is a contravariant functor

$$\begin{array}{l} \operatorname{Spec}:\operatorname{Ring}^{op}\to\operatorname{Top}\\ R\mapsto\operatorname{Spec} R\\ (\varphi:R\to S)\mapsto \left(\begin{array}{cc} \varphi^*:\operatorname{Spec} S &\to\operatorname{Spec} R\\ \mathfrak{p} &\mapsto \varphi^{-1}\mathfrak{p} \end{array}\right)\end{array}$$

In particular, show that φ^* is a continuous map of topological spaces. (Hint: show that the preimage of a distinguished open set is a distinguished open set).

- (b) Is the image of a closed set under φ^* always closed? If not, what can we say about its closure?
- (5) (B) Prove the following Proposition from the lectures:

Proposition. Let $\varphi : R \to S$ be a ring homomorphism, with $\Phi := \varphi^* : \operatorname{Spec} S \to \operatorname{Spec} R$.

1) If φ is surjective, then

 $\Phi: \operatorname{Spec} S \xrightarrow{\sim} Z(\operatorname{Ker} \varphi) \subseteq \operatorname{Spec} R.$

where the first arrow is a homeomorphism.

¹Not a union of two closed proper subsets.

C2.6 INTRODUCTION TO SCHEMES SHEET 1

- 2) If φ is injective, then $\Phi(\operatorname{Spec} S) \subseteq \operatorname{Spec} R$ is dense. Moreover, $\operatorname{Im} \Phi$ is dense if and only if $\operatorname{Ker} \varphi \subseteq \operatorname{Nil} R$.
- (6) (B) Let X be a topological space and let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism in $\mathsf{Ab}(X)$, the category of sheaves of abelian groups on X.
 - 1) Prove that

 $(\operatorname{Ker} \varphi)_x \cong \operatorname{Ker}(\varphi_x) \quad \text{and} \quad (\operatorname{Im} \varphi)_x \cong \operatorname{Im}(\varphi_x),$

for all $x \in X$.

- 2) Prove that φ is injective (resp. surjective), if and only if φ_x is injective (resp. surjective) for all $x \in X$.
- 3) Deduce the following Corollary:

Corollary. A sequence $\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\psi} \mathcal{H}$ in Ab(X) is exact² if and only if $\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x$ is exact for all $x \in X$.

(7) (C) Let X be a topological space and let \mathcal{F} be a presheaf of sets on X. For each open subset $U \subseteq X$, we define

$$\mathcal{F}^+(U) := \left\{ s = (s_x)_x \in \prod_{x \in U} \mathcal{F}_x : \text{``locally } s \text{ is a section of } \mathcal{F}'' \right\},\$$

where "locally s is a section of \mathcal{F} " means that, for all $x \in U$, there exists an open neighbourhood $x \in V \subseteq U$, and a section $t \in \mathcal{F}(V)$, such that for all $y \in V$ we have $s_y = t_y$ in \mathcal{F}_y .

- 1) Briefly explain why \mathcal{F}^+ is equipped with natural restriction morphisms making it into a presheaf, and why there is a canonical morphism of presheaves $\mathcal{F} \to \mathcal{F}^+$.
- 2) Prove that \mathcal{F}^+ is a sheaf on X and that $\mathcal{F}_x = \mathcal{F}_x^+$ for all $x \in X$.

(This in fact defines a functor $\mathcal{F} \mapsto \mathcal{F}^+$, called *sheafification*, which is left adjoint to the inclusion of the full subcategory $\mathsf{Sh}(X) \subseteq \mathsf{PSh}(X)$).

²i.e., $\operatorname{Im} \varphi = \operatorname{Ker} \psi$.