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Hilary 2024

Describe all the points of the spaces Aj and Aé, and compute their residue fields.
What are the closed points?
What are the generic points?

Solution. Since R[z], C[z] are both UFDs of Krull dimension 1, the unique generic
point in both cases is n = (0) and the closed points are in bijection with nonzero
monic irreducibles.

Hence for A, the closed points are {(z — a) : @ € C}, and for A} they are
{(x—a):a € R}U{(x —b)(x —b):be C\R}.
For Af one has residue fields x((z — a)) = Clz](z—q)/(2 — a) = C and k(n) = C(z).
For Ag one has residue fields £((z — a)) = R[z](y_q)/(z — a) = R, k(1) = R(z), and
for p = ((x — b)(x — b)) one has
k(p) = Rlzy/((z — b)(z — b)) = C.

Prove that for rings R1, Ro,

Spec(R1 x Ra) = Spec Ry U Spec Ra.

Solution. Consider the elements e; = (1g,,0) and ez = (0,1gr,) € Ry x Ra2. Since
e1+ea2 = 1g, xR, and ejea = 0 one has Spec(R; X Ry) = Z(e2) U Z(e1). Now one has
an isomorphism

R1 = (Rl X RQ)/627

and there is a canonical continuous bijection
Spec((R1 x Ra)/e1) = {p € Spec(R1 X R2) : p 2 ea} = Z(e2).
Hence Spec(R; X Rg) = Spec Ry U Spec Rs.

(a) Prove the following Proposition from the lectures:
Proposition. 1) p C R prime = {p} = Z(p), and {p} is the only generic
point of Z(p).
2) A closed subset Z C Spec R is irreducible' if and only if Z = Z(p) for some p.
3) Spec R is irreducible if and only if the nilradical Nil R := \/@ s prime.
(b) Hence, if R is an integral domain, then Spec(R) is irreducible. Is the converse
true?

INot a union of two closed proper subsets.
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Solution (a). 1) It is clear that {p} C Z(p). Conversely if p €C Z(I) then Z(p) C
Z(I). So Z(p) C {p}. For the last part, if Z(p) = Z(q) then q C p and p C ¢, since
Z(I) C Z(J) if and only if v/.J C V/T.

2) For the “if’ part , note that Z(p) = {p} is irreducible because {p} is. For the
“only if” part, let Z(I) C Spec R be a proper closed subset. One has f, g ¢ /T if and
only if Dy N Z(I), Dy N Z(I) # (. Hence by the irreducibility Dy, N Z(I) # () and so
fg ¢ /I. So /T is prime and hence, using the formula v/T = ﬂp)[ p, we deduce that
I is prime and Z([I) is irreducible.

3) This follows from 2) since Spec R = Z(Nil R).

(b) This is not true, e.g., consider R = k[x]/(2?) - one has Spec R = pt is irreducible,
but R is not a domain.

(4) (B) (a) Prove the following Proposition from the lectures:

Proposition. There is a contravariant functor

Spec : Ring” — Top
R — SpecR

(0:R—S) ( @* :SpecS — SpecR )
Pl

In particular, show that ¢* is a continuous map of topological spaces. (Hint: show
that the preimage of a distinguished open set is a distinguished open set).

(b) Is the image of a closed set under ¢* always closed? If not, what can we say about
its closure?

Solution. (a) If p € SpecS is prime, then ¢~ !p is also prime: one has ab €
o lp = pab) = pla)p(b) €p <= ¢(a) eporp) €p < acplporbe
©~tp. Moreover one has (p)* = 1*p* since 1o ~tp = (pp)~1p. Clearly id* = id.
Hence, the only thing to show is continuity. Setting ® := ¢*, one has, for f € Spec R:

O 1(Z(f)) ={p € SpecS: o 'p e Z(f)}
= {p € SpecS: f € 'p}
= {p € Spec S : p(f) € p} = Z(»(f))-

Hence ®~1(Dy) = D5y Since the basic opens form a basis for the topology, the
result follows.

(b) The image of a closed subset need not be closed. For instance one can consider
the inclusion of the generic point n : Spec k(x) — Spec k[z].

We claim that for any closed subset Z(I) C Spec .S, one has
(Z(I)) = Z(p~'(1)).

Indeed, for any f € S one has ®(V(I)) C Z(f) < V() C 2 Z(f)) = Z(»([)),
by the previous part; which holds if and only if \/(¢(f)) € v/I. In turn, this holds
if and only if there exists n such that o(f)" = p(f") € I < fre€ p 1(I) <
Z(p~Y(I)) C Z(f™) = Z(f). Since subsets of the form Z(f) are a basis for the closed

subsets, one has ®(Z (1)) = Z(o~(I)).



(5) (B) Prove the following Proposition from the lectures:

Proposition. Let ¢ : R — S be a ring homomorphism, with ® := ¢* : SpecS —
Spec R.

1) If v is surjective, then
® : Spec S = Z(Ker ) C Spec R.

where the first arrow is a homeomorphism.
2) If ¢ is injective, then ®(SpecS) C Spec R is dense.
Moreover, Im ® is dense if and only if Ker o C Nil R.

Solution. 1) If ¢ is surjective then S = R/ Ker . The canonical bijection between
sets of ideals B
{JCR/Kery} <« {J CR:JDKerp},

respects inclusions and sends prime ideals to prime ideals. In particular, it induces a
homeomorphism Spec(R/ Ker ) = Z(Ker ¢).

2) Note that Spec .S = Z({0}). Hence, using the previous question, one has
B(Spec 9) = Z(¢~1(0)) = Z({0}) = Spec R,

since ¢ is injective.
For the second part we have

®(SpecS) = Spec R <= ®(Z({0})) = Spec R
— Z(Keryp) = Z({0})

< Nil(R) = VKerp

<= Nil(R) D Kery,

since the inclusion Nil(R) C v/Ker ¢ always holds, and Nil R is radical.

(6) (B) Let X be a topological space and let ¢ : F — G be a morphism in Ab(X), the category
of sheaves of abelian groups on X.

1) Prove that
(Ker ), @ Ker(p,) and (Imep), = Im(p,),
for all z € X.

2) Prove that ¢ is injective (resp. surjective), if and only if @, is injective (resp.
surjective) for all z € X.

3) Deduce the following Corollary:

Corollary. A sequence F 2> G Y H in Ab(X) is exact® if and only if F, —
Gy — Hy is ezact for all x € X.

2ie., Im p = Ker1).
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Solution. Before starting, we prove a useful Lemma:

Lemma. If F,G C H are subsheaves, then F = G iff F, = G, for all z € X.

Proof. By considering the sheaf 7 + G C H we reduce to the case when F is a
subsheaf of G. Let U C X be an open subset. All we need to show is that the
inclusion F(U) C G(U), is surjective.

Let t € G(U) and & € U. Then (by assumption) there exists s, € F, with s, = t,.
Say that s, is represented by s* on a neigbourhood V,, of x. Then s* and t|y, are
two elements of V,, whose germs at x are the same. Thus replacing V, by a smaller
neighbourhood of x. (if necessary), we may assume that s* = t|y, in G(V,). Now U
is covered by the open sets V., and on each V, we have a section s* € F(V;). If z,y
are two points, then s*|v,nv, = t|lv,nv, = sY|v,nv,, so by the sheaf property, there
exists s € F(U) with s|y, = s%, for each z. Finally, s = ¢, since their restrictions to
the V, agree, by the sheaf property again. O

1) Tt is obvious that (ker¢p), = lim, _ keroy C ker(¢,). We now show that
(ker ), D ker(¢,). Let s, € ker(ys). Then there exists an open U 3> z and a
section s € F(U) with s|, = s, and @y (s)|. = 0. Then there exists an open V > =z,
U CV, with ppy(s)ly = 0. So ¢v(s|y) = 0, (as ¢ is a morphism of sheaves), so
sly € ker oy = (ker ) (V).

It is obvious that (im¢), C im(y,). The reason for this, is that the sheafification
functor preserves stalks, and so (im ), = lim, ©(U), which is clearly contained in
im(p;). For the converse, let ¢;(s,) € im(p,). Then there exists an open U 3 x and
s € F(U) with s|, = s;. Then oy (8)|e = ©2(Sz), 80 ©z(sz) € (IMmp)y.

2) Using the Lemma, ¢ is injective iff ker ¢ = 0 iff (ker ¢), = ker(¢,) = 0 (for all z).
 is surjective iff im ¢ = G, which is true iff (im ), = G, for all z, (by the Lemma),
i.e., im(¢,) = G, for all z, by 1).

3) The sequence is exact iff im ¢ = kert). Since these are both subsheaves of G, by

the Lemma, this holds if and only if (im ¢), = (kerv),, for all z € X i.e., if and only
if im(¢p,) = ker(¢y), for all x € X, i.e. if and only if the sequence is exact on stalks.

Let X be a topological space and let F be a presheaf of sets on X. For each open
subset U C X, we define

FTU):= {s = (Sz)z € H Fz : “locally s is a section of ]—'”} ,
zeU

where “locally s is a section of /7 means that, for all x € U, there exists an open
neighbourhood z € V' C U, and a section t € F(V'), such that for all y € V' we have
Sy =ty in Fy.

1) Briefly explain why F7 is equipped with natural restriction morphisms making it
into a presheaf, and why there is a canonical morphism of presheaves F — F+.

2) Prove that F* is a sheaf on X and that 7, = Ff for all z € X.

(This in fact defines a functor F — F 7T, called sheafification, which is left adjoint to
the inclusion of the full subcategory Sh(X) C PSh(X)).



Solution. 1) I have just copied this from [Stal8, Tag 007X]. Note that the condition
“locally s is a section of F” is a condition for each = € U, and that given x € U
the truth value of this condition only depends on the values s, for y in any open
neighbourhood of x. Thus, it is clear that, if V C U C X are open, the projection
maps [ [,y Fo — [[,ev Fy, map elements of ¥ (U) into elements of F* (V). Hence,
F 7 is a presheaf. The morphism F(U) — [, Faz, sending a section to the collection
of its stalks, clearly has image in F(U), and if V C U C X are opens then the
diagram
FU) —— FH(U)

| |

FV) —— FH(V)

commutes, and so we obtain a morphism of presheaves F — F+.

2) This is obvious from the definitions! If you need convincing read [Stal8, Tag 007Z],
or read something about the espace étalé of a presheaf.
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