
C2.6 Introduction to Schemes Sheet 1

Hilary 2024

(1) (A) Describe all the points of the spaces A1
R and A1

C, and compute their residue fields.

What are the closed points?

What are the generic points?

Solution. Since R[x],C[x] are both UFDs of Krull dimension 1, the unique generic
point in both cases is η = (0) and the closed points are in bijection with nonzero
monic irreducibles.

Hence for A1
C, the closed points are {(x− a) : a ∈ C}, and for A1

R they are

{(x− a) : a ∈ R} ∪ {(x− b)(x− b) : b ∈ C \ R}.

For A1
C one has residue fields κ((x− a)) = C[x](x−a)/(x− a) ∼= C and κ(η) = C(x).

For A1
R one has residue fields κ((x − a)) = R[x](x−a)/(x − a) ∼= R, κ(η) ∼= R(x), and

for p = ((x− b)(x− b)) one has

κ(p) ∼= R[x]p/((x− b)(x− b)) ∼= C.

(2) (A) Prove that for rings R1, R2,

Spec(R1 ×R2) ∼= SpecR1 ⊔ SpecR2.

Solution. Consider the elements e1 = (1R1
, 0) and e2 = (0, 1R2

) ∈ R1 × R2. Since
e1 + e2 = 1R1×R2

and e1e2 = 0 one has Spec(R1 ×R2) ∼= Z(e2)⊔Z(e1). Now one has
an isomorphism

R1
∼= (R1 ×R2)/e2,

and there is a canonical continuous bijection

Spec((R1 ×R2)/e1) ∼= {p ∈ Spec(R1 ×R2) : p ∋ e2} = Z(e2).

Hence Spec(R1 ×R2) ∼= SpecR1 ⊔ SpecR2.

(3) (B) (a) Prove the following Proposition from the lectures:

Proposition. 1) p ⊂ R prime =⇒ {p} = Z(p), and {p} is the only generic
point of Z(p).

2) A closed subset Z ⊂ SpecR is irreducible1 if and only if Z = Z(p) for some p.

3) SpecR is irreducible if and only if the nilradical NilR :=
√
(0) is prime.

(b) Hence, if R is an integral domain, then Spec(R) is irreducible. Is the converse
true?

1Not a union of two closed proper subsets.
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Solution (a). 1) It is clear that {p} ⊆ Z(p). Conversely if p ∈⊆ Z(I) then Z(p) ⊆
Z(I). So Z(p) ⊆ {p}. For the last part, if Z(p) = Z(q) then q ⊆ p and p ⊆ q, since
Z(I) ⊆ Z(J) if and only if

√
J ⊆

√
I.

2) For the “if” part , note that Z(p) = {p} is irreducible because {p} is. For the
“only if” part, let Z(I) ⊂ SpecR be a proper closed subset. One has f, g /∈

√
I if and

only if Df ∩ Z(I), Dg ∩ Z(I) ̸= ∅. Hence by the irreducibility Dfg ∩ Z(I) ̸= ∅ and so

fg /∈
√
I. So

√
I is prime and hence, using the formula

√
I =

⋂
p⊃I p, we deduce that

I is prime and Z(I) is irreducible.

3) This follows from 2) since SpecR = Z(NilR).

(b) This is not true, e.g., consider R = k[x]/(x2) - one has SpecR = pt is irreducible,
but R is not a domain.

(4) (B) (a) Prove the following Proposition from the lectures:

Proposition. There is a contravariant functor

Spec : Ringop → Top

R 7→ SpecR

(φ : R→ S) 7→
(
φ∗ : SpecS → SpecR

p 7→ φ−1p

)
.

In particular, show that φ∗ is a continuous map of topological spaces. (Hint: show
that the preimage of a distinguished open set is a distinguished open set).

(b) Is the image of a closed set under φ∗ always closed? If not, what can we say about
its closure?

Solution. (a) If p ∈ SpecS is prime, then φ−1p is also prime: one has ab ∈
φ−1p ⇐⇒ φ(ab) = φ(a)φ(b) ∈ p ⇐⇒ φ(a) ∈ p or φ(b) ∈ p ⇐⇒ a ∈ φ−1p or b ∈
φ−1p. Moreover one has (φψ)∗ = ψ∗φ∗ since ψ−1φ−1p = (φψ)−1p. Clearly id∗ = id.
Hence, the only thing to show is continuity. Setting Φ := φ∗, one has, for f ∈ SpecR:

Φ−1(Z(f)) = {p ∈ SpecS : φ−1p ∈ Z(f)}
= {p ∈ SpecS : f ∈ φ−1p}
= {p ∈ SpecS : φ(f) ∈ p} = Z(φ(f)).

Hence Φ−1(Df ) = Dφ(f). Since the basic opens form a basis for the topology, the
result follows.

(b) The image of a closed subset need not be closed. For instance one can consider
the inclusion of the generic point η : Spec k(x) → Spec k[x].

We claim that for any closed subset Z(I) ⊆ SpecS, one has

Φ(Z(I)) = Z(φ−1(I)).

Indeed, for any f ∈ S one has Φ(V (I)) ⊆ Z(f) ⇐⇒ V (I) ⊆ Φ−1(Z(f)) = Z(φ(f)),
by the previous part; which holds if and only if

√
(φ(f)) ⊆

√
I. In turn, this holds

if and only if there exists n such that φ(f)n = φ(fn) ∈ I ⇐⇒ fn ∈ φ−1(I) ⇐⇒
Z(φ−1(I)) ⊆ Z(fn) = Z(f). Since subsets of the form Z(f) are a basis for the closed
subsets, one has Φ(Z(I)) = Z(φ−1(I)).
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(5) (B) Prove the following Proposition from the lectures:

Proposition. Let φ : R → S be a ring homomorphism, with Φ := φ∗ : SpecS →
SpecR.

1) If φ is surjective, then

Φ : SpecS
∼−→ Z(Kerφ) ⊆ SpecR.

where the first arrow is a homeomorphism.

2) If φ is injective, then Φ(SpecS) ⊆ SpecR is dense.

Moreover, ImΦ is dense if and only if Kerφ ⊆ NilR.

Solution. 1) If φ is surjective then S ∼= R/Kerφ. The canonical bijection between
sets of ideals

{J ⊂ R/Kerφ} ↔ {J ⊂ R : J ⊃ Kerφ},

respects inclusions and sends prime ideals to prime ideals. In particular, it induces a
homeomorphism Spec(R/Kerφ) ∼= Z(Kerφ).

2) Note that SpecS = Z({0}). Hence, using the previous question, one has

Φ(SpecS) = Z(φ−1(0)) = Z({0}) = SpecR,

since φ is injective.

For the second part we have

Φ(SpecS) = SpecR ⇐⇒ Φ(Z({0})) = SpecR

⇐⇒ Z(Kerφ) = Z({0})

⇐⇒ Nil(R) =
√

Kerφ

⇐⇒ Nil(R) ⊇ Kerφ,

since the inclusion Nil(R) ⊆
√
Kerφ always holds, and NilR is radical.

(6) (B) Let X be a topological space and let φ : F → G be a morphism in Ab(X), the category
of sheaves of abelian groups on X.

1) Prove that
(Kerφ)x ∼= Ker(φx) and (Imφ)x ∼= Im(φx),

for all x ∈ X.

2) Prove that φ is injective (resp. surjective), if and only if φx is injective (resp.
surjective) for all x ∈ X.

3) Deduce the following Corollary:

Corollary. A sequence F φ−→ G ψ−→ H in Ab(X) is exact2 if and only if Fx →
Gx → Hx is exact for all x ∈ X.

2i.e., Imφ = Kerψ.
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Solution. Before starting, we prove a useful Lemma:

Lemma. If F ,G ⊆ H are subsheaves, then F = G iff Fx = Gx, for all x ∈ X.

Proof. By considering the sheaf F + G ⊆ H we reduce to the case when F is a
subsheaf of G. Let U ⊆ X be an open subset. All we need to show is that the
inclusion F(U) ⊆ G(U), is surjective.

Let t ∈ G(U) and x ∈ U . Then (by assumption) there exists sx ∈ Fx with sx = tx.
Say that sx is represented by sx on a neigbourhood Vx of x. Then sx and t|Vx are
two elements of Vx whose germs at x are the same. Thus replacing Vx by a smaller
neighbourhood of x. (if necessary), we may assume that sx = t|Vx

in G(Vx). Now U
is covered by the open sets Vx, and on each Vx we have a section sx ∈ F(Vx). If x, y
are two points, then sx|Vx∩Vy = t|Vx∩Vy = sy|Vy∩Vx , so by the sheaf property, there
exists s ∈ F(U) with s|Vx = sx, for each x. Finally, s = t, since their restrictions to
the Vx agree, by the sheaf property again.

1) It is obvious that (kerφ)x = lim−→U∋x kerφU ⊆ ker(φx). We now show that

(kerφ)x ⊇ ker(φx). Let sx ∈ ker(φx). Then there exists an open U ∋ x and a
section s ∈ F(U) with s|x = sx and φU (s)|x = 0. Then there exists an open V ∋ x,
U ⊆ V , with φU (s)|V = 0. So φV (s|V ) = 0, (as φ is a morphism of sheaves), so
s|V ∈ kerφV = (kerφ)(V ).

It is obvious that (imφ)x ⊆ im(φx). The reason for this, is that the sheafification
functor preserves stalks, and so (imφ)x = lim−→U∋x φ(U), which is clearly contained in

im(φx). For the converse, let φx(sx) ∈ im(φx). Then there exists an open U ∋ x and
s ∈ F(U) with s|x = sx. Then φU (s)|x = φx(sx), so φx(sx) ∈ (imφ)x.

2) Using the Lemma, φ is injective iff kerφ = 0 iff (kerφ)x = ker(φx) = 0 (for all x).

φ is surjective iff imφ = G, which is true iff (imφ)x = Gx for all x, (by the Lemma),
i.e., im(φx) = Gx for all x, by 1).

3) The sequence is exact iff imφ = kerψ. Since these are both subsheaves of G, by
the Lemma, this holds if and only if (imφ)x = (kerψ)x, for all x ∈ X, i.e., if and only
if im(φx) = ker(ψx), for all x ∈ X, i.e. if and only if the sequence is exact on stalks.

(7) (C) Let X be a topological space and let F be a presheaf of sets on X. For each open
subset U ⊆ X, we define

F+(U) :=

{
s = (sx)x ∈

∏
x∈U

Fx : “locally s is a section of F”

}
,

where “locally s is a section of F” means that, for all x ∈ U , there exists an open
neighbourhood x ∈ V ⊆ U , and a section t ∈ F(V ), such that for all y ∈ V we have
sy = ty in Fy.

1) Briefly explain why F+ is equipped with natural restriction morphisms making it
into a presheaf, and why there is a canonical morphism of presheaves F → F+.

2) Prove that F+ is a sheaf on X and that Fx = F+
x for all x ∈ X.

(This in fact defines a functor F 7→ F+, called sheafification, which is left adjoint to
the inclusion of the full subcategory Sh(X) ⊆ PSh(X)).
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Solution. 1) I have just copied this from [Sta18, Tag 007X]. Note that the condition
“locally s is a section of F” is a condition for each x ∈ U , and that given x ∈ U
the truth value of this condition only depends on the values sy for y in any open
neighbourhood of x. Thus, it is clear that, if V ⊆ U ⊆ X are open, the projection
maps

∏
x∈U Fx →

∏
y∈V Fy, map elements of F+(U) into elements of F+(V ). Hence,

F+ is a presheaf. The morphism F(U) →
∏
x∈U Fx, sending a section to the collection

of its stalks, clearly has image in F+(U), and if V ⊆ U ⊆ X are opens then the
diagram

F(U) F+(U)

F(V ) F+(V )

commutes, and so we obtain a morphism of presheaves F → F+.

2) This is obvious from the definitions! If you need convincing read [Sta18, Tag 007Z],
or read something about the espace étalé of a presheaf.
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