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(1) (A) Describe the schematic fibers of SpecZ[x] → SpecZ (Try to draw a picture of it).

Solution. The fiber over (p) is SpecFp[x] and the fiber over (0) is SpecQ[x]. The
points of these fibers correspond to monic irreducible polynomials mod p, resp. irre-
ducible monic polynomials with integer coefficients in Q[x]. A famous picture of this
fibration can be found in Mumford’s red book.

(2) (B) Prove the following statements:

1) An and Pn are separated (over SpecZ). Deduce that An
S and Pn

S are separated
S-schemes for any S affine.

2) Open and closed embeddings of schemes are separated maps.

3) Compositions of separated maps are separated.

Solution For 1), An is separated because it is affine. For Pn, take the standard
covering of Pn by affine opens

Ui := SpecZ[x0/xi, . . . , x̂i/xi, . . . , xn/xi], (1)

it suffices to check (c.f. [Stacks, Tag 01KP]), that the map OPn(Ui) ⊗Z OPn(Uj) →
OPn(Uij) obtained by multiplying the restrictions, is surjective. Indeed, one has

Z[x0/xi, . . . , x̂i/xi, . . . , xn/xi]⊗ Z[x0/xj , . . . , x̂j/xj , . . . , xn/xj ]

→ Z[x0/xi, . . . , x̂i/xi, . . . , xn/xi, (xj/xi)
−1] (2)

sending xk/xi ⊗ 1 7→ xk/xi and 1⊗ xℓ/xj 7→ (xℓ/xi)× (xj/xi)
−1, and this is clearly

surjective.

I would interpret “seperated S-scheme” to mean a an S-scheme X such that the
structure morphism X → S is separated. In that case, the separatedness of Pn

S and
An

S as S-schemes, follows from the above, and the fact that separated morphisms are
stable under base change.

For 2) we claim that any morphism j : X → Y of schemes which is injective on
the underlying topological spaces, is separated. For, if z ∈ X ×Y X, then p1(z) =
p2(z) =: x (by the definition of the fiber product). Set y := j(x). Then we can choose
affine open neighbourhoods x ∈ U ⊆ X, y ∈ V ⊆ Y such that j(U) ⊆ V . Thus
z ∈ U ×V U so that X ×Y X is the union of such affines. Since ∆−1

X/Y (U ×V U) = U

and U → U ×V U is a closed immersion (morphisms of affines are always separated,

1

https://stacks.math.columbia.edu/tag/01KP


C2.6 Introduction to Schemes Sheet 3

as can be seen directly), this shows that ∆X/Y is a closed immersion and therefore j
is separated.

For 3) suppose we are given separated maps f : X → Y and g : Y → Z. Consider the
diagram

X X ×Y X X ×Z X

Y Y ×Z Y
∆Y/Z

⌟

∆X/Y

(3)

The top composite is ∆X/Z and we would like to show this is a closed immersion. By
assumption ∆X/Y is a closed immersion. The second top horizontal arrow is a closed
immersion because ∆Y/Z is a closed immersion, and closed immersions are stable
under base change. Therefore, since closed immersions are stable under composition,
∆X/Z is a closed immersion.

(3) (B) Prove that the “bug-eyed line” obtained by gluing two copies of A1 along A1 \ {0}, is
not separated.

Solution. One way to see this, is that the valuative criterion fails. Let X be the
space in the question, and let g1 : A1 → X, g2 : A1 → X be the two inclusions of
A1 into X. Let R := Q[[x]] with fraction field K := Q((x)). Consider the composite
f : SpecK → A1 \ {0} → X where the first map is induced by the inclusion of rings
Z[x, x−1] → Q((x)). Then the morphism f admits two distinct extensions to SpecR,
namely the two composites

fi : SpecR → A1 gi−→ X for i = 1, 2, (4)

where the first morphism corresponds to the inclusion of rings Z[x] → Q[[x]]. The fact
that these are distinct morphisms can be seen by looking at the image of the special
point s ∈ SpecR. Therefore X is not separated.

(4) (B) Prove the following criterion: A ring homomorphism φ# : A → B is flat if and only
if the corresponding morphism of affine schemes φ : SpecB → SpecA is flat.

Solution. We first prove a Lemma:

Lemma. Let R be a ring and let M be an R-module. Then M = 0 if and only if
Mp = 0 for all p ∈ SpecR.

Proof. The “only if” direction being obvious, we prove the ”if” direction. Let x ∈ M
and let I := AnnR(x) ⊂ R. By the assumption, and the definition of localization, for
all p ∈ SpecR there exists f ∈ R \ p such that fx = 0. This implies that I is not
contained in any prime ideal and therefore, is the unit ideal. In particular x = 1.x = 0,
so M = 0.

As a corollary of this, we obtain:

Lemma. Let R be a ring. A sequence 0 → M1 → M2 → M3 → 0 of R-modules is
exact if and only if 0 → M1,p → M2,p → M3,p → 0 is exact for all p ∈ SpecR.
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Proof. This is a straightforward exercise using the previous Lemma and the fact that
localization is exact, and hence commutes with kernels and cokernels.

Now suppose that φ : SpecB → SpecA is flat and let 0 → M1 → M2 → M3 → 0 be
an exact sequence of A-modules. We would like to show that the sequence

0 → M1 ⊗A B → M2 ⊗A B → M3 ⊗A B → 0 (5)

is an exact sequence of B-modules. By the previous Lemma this is exact if and only
if

0 → M1 ⊗Aφ(p)
Bp → M2 ⊗Aφ(p)

Bp → M3 ⊗Aφ(p)
Bp → 0 (6)

is exact for all p ∈ SpecR. However, this holds since the morphisms Aφ(p) → Bp are
flat, by assumption.

Conversely suppose that φ# : A → B is a flat ring morphism, let p ∈ SpecB and
let 0 → N1 → N2 → N3 → 0 be an exact sequence of Aφ(p)-modules. By restriction
along A → Aφ(p) we view this as an exact sequence of A-modules, and by flatness
then

0 → N1 ⊗A B → N2 ⊗A B → N3 ⊗A B → 0 (7)

is exact. Since localization is exact we conclude that

0 → N1 ⊗Aφ(p)
Bp → N2 ⊗Aφ(p)

Bp → N3 ⊗Aφ(p)
Bp → 0 (8)

is an exact sequence of Bp-modules. Therefore Aφ(p) → Bp is flat.

(5) (B) Show that SpecZ[x, y]/(x2 − y2 − 5) → SpecZ is flat.

Is SpecZ[x, y]/(2x2 − 2y2 − 10) → SpecZ flat?

Explain the geometric intuition behind these examples by looking at the dimensions
of fibers.

Solution. Since Z is a PID, a Z-module is flat if and only if it is torsionfree.

For the first part, we are thus reduced to prove the following: for all f ∈ Z[x, y] and
N ∈ Z, Nf ∈ (x2 − y2 − 5) if and only if f ∈ (x2 − y2 − 5). But this follows since
(x2 − y2 − 5) is irreducible (and hence prime) in the UFD Z[x, y] = Z[y][x], as y2 − 5
is not a square in Z[y].
For the second part, the morphism is not flat since x2 − y2 − 5 is 2-torsion in
Z[x, y]/(2x2 − 2y2 − 10).

For geometric intuition: flatness is supposed to correspond to dimensions of fibers
not jumping unexpectedly. One notes that the fibers of Spec(Z[x, y]/(x2− y2− 5)) →
Spec(Z) over a prime (p) (or (0)) are Spec(Fp[x, y]/(x

2−y2−5)), (or Spec(Q[x, y]/(x2−
y2 − 5))), which is always has Krull dimension 1.

(6) (B) A morphism f : X → S is called finite if S has an affine cover S =
⋃

i∈I SpecBi such
that, for all i, f−1(SpecBi) ≃ SpecAi is an affine scheme and Ai is finitely generated
as a module over Bi.

a) Give some examples of finite morphisms.

b) Show that a finite morphism has finite fibers. Is the converse true?
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c) Assume that X and S are Noetherian. Using the valuative criterion for properness,
show that finite morphisms are proper.

Moreover, the following is true (don’t prove):

Theorem. Let f : X → S be a morphism of schemes with S locally Noetherian.
Then f is finite if and only if f is proper with finite fibers.

Solution. a) Any closed immersion is finite. Another example would be the map
A1

C \ {0} → A1
C \ {0} induced by the ring morphism C[t, t−1] → C[t, t−1] sending

t 7→ t2, it is the quintessential example of a finite étale covering map.

b) Working locally, we may assume that X = SpecA and S = SpecB are both affine
and A is finitely generated as a module over B. Let p : SpecK → SpecB be a point
and let f−1(p) = Spec(C), where C := A ⊗B K; this is then a finite dimensional
algebra over K. If p ∈ SpecC then C/p is then a finite dimensional (over K) integral
domain and therefore a field. Hence all prime ideals of C are maximal. Note that C is
Artinian, by finite dimensionality. Now consider a minimal element m1 . . .mk in the
family of finite products of finitely many maximal ideals. If m is a further maximal
ideal then

mm1 . . .mk ⊆ m1 . . .mk (9)

and therefore by minimality mm1 . . .mk = m1 . . .mk so m1 . . .mk ⊆ m. By primality
and maximality it then follows that m = mi for some 1 ≤ i ≤ k, so SpecC is finite.

The converse is not true, for example, any open immersion has finite fibers (they are
either a singleton or empty), but open immersions are almost never finite morphisms,
eg. consider the inclusion A1 \ {0} → A1 - we can see that Z[t, t−1] is not finite as a
Z[t]-module.

c) Working locally once again, it suffices to treat the case when X = SpecA and
S = SpecB are both affine. Since B → A is a finite ring extension, it is integral,
(by the characteristic polynomial trick). Let R be a DVR with fraction field K, and
suppose we are given a commutative diagram

K A

R B

(10)

in which the right vertical arrow is induced by f and left vertical arrow is the inclusion.
The commutativity, plus the fact that B → A is integral, implies that the image of
A → K factors uniquely through the integral closure of R in K. However, R is
integrally closed in its field of fractions since it is a DVR, so B → A factors uniquely
through R, establishing the valuative criterion.

(7) (B) a) Let X be a complete variety over a field k (recall that this means X is an integral
proper separated scheme, of finite type over k). Show that all global sections of X
are constant.

b) Deduce that if an affine variety is complete, then it is a point (or ∅).

Solution. a) Global sections correspond to morphisms f : X → A1
k, and therefore,

we will show that any such morphism is constant.
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First, let us extend f to a morphism g : X → P1
k. Since X → Spec k is separated, g

is separated. Therefore the graph Γg := (g × id)−1∆g ⊆ X × P1
k is a closed subset.

By universal-closedness then im g := p2Γg is a closed subset of P1
k. We endow it with

the induced-reduced subscheme structure. Since P1
k is a complete variety, and im g is

a closed subset, then im g is also complete.

On the other hand, we have that im g is contained in A1
k ⊆ P1

k. If im g = A1
k then

this would imply that A1
k is complete, which is false (one can consider the image of

V (xy) ⊆ A1
k×A1

k under the second projection). Hence im g is a proper closed subset of
A1

k and hence must be a finite collection of points. Since X is topologically irreducible
this implies that im g is single point, so g (hence also f) is constant.

b) If an affine variety X is complete, then X ∼= Spec(Γ(X,OX)) and by the preceding,
Γ(X,OX) = 0 or k. So X = ∅ or X = pt.
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