Noncommutative Rings

Throughout this course, R is an associative but not necessarily commutative ring
with an identity element 1. We will use the letter k£ to denote a field.

1. SOME EXAMPLES OF NONCOMMUTATIVE RINGS

Definition 1.1. Let G be a group and let R be a ring. The group algebra RG
consists of formal linear combinations

D740

geG
where 7, € R for all g € G and all but finitely many r, are zero. Addition and

multiplication is given by

(Z re9) + (Z $¢9) = Z(Tg + )9

9eG geG geG
(Z rhh)(z spk) = Z( Z ThSk)g-
heG keG geG };L,llccec
=g

Recall that a k-linear representation of G is a group homomorphism
v : G — Autg(V)
where V' is some vector space over k.

Lemma 1.2. There is a natural bijection between k-linear representations of G
and left kG-modules.

Proof. A group homomorphism ¢ : G — Auty (V) extends uniquely to a k-algebra
homomorphism ¢ : kG — Endy(V) := {f : V — V : f is k-linear }, and V may
then be regarded as a left kG-module, via z.v = ¢(z)(v) for all z € kG.
Conversely, if V' is a left kG-module, there is a representation ¢ : G — Autg (V)
given by ¢(g)(v) = g.w for allv € V. O

Definition 1.3. A Lie algebra over k is a k-vector space g, equipped with bilinear
map [.]: g x g — g satisfying

(1) [x,x] =0 for all x € g and hence [y,z] = —[z,y] for all y,z € g

(2) [z, [y, z]] + [y, [z, x]] + [2, [y, x]] =0 for all z,y, z € g.

Note that this bracket is not associative.

Examples 1.4.

(1) Any (associative) k-algebra R becomes a Lie algebra under the commutator
bracket [x,y] = xy — yx.
(2) gl,,(k), the set of all n x n matrices over k with the commutator bracket.
1



(3) sl,(k), the set of traceless n x n matrices over k with commutator bracket.
(4) If V is any vector space, we can define the trivial bracket [z,y] = 0 for all

xz,y € V. This is the abelian Lie algebra.
A representation of g is a Lie algebra homomorphism ¢ : g — gl(V), where
gl(V) := Endg(V)
equipped with the commutator bracket.

Question 1.5. What is the analogue of the group algebra for representations of

Lie algebras?

Definition 1.6. The free associative algebra on n generators k(xy, ..., x,) is the k-
vector space with basis given by all possible products y; - - - y,, where y1,...,9m €
{z1,...,2,}. Multiplication is given by concatenation on basis elements and is

extended by k-linearity to the whole of k{z1,...,x,).

Note that k{x1,...,x,) is not finite dimensional over k. For example, if n = 1
then k(x) has {1,2,22,...} as a basis. In fact k(z) = k[x], the polynomial algebra.
Similarly, k(x,y) has as a k-basis the set {1,z,y, 22, zy, yx,y? 2%, 2%y, ...}. This
algebra is not commutative!

Definition 1.7. The universal enveloping algebra U(g) of the Lie algebra g is
U(g) == k{xq,...xn) /1

where {x1,x2,...,2,} is a basis for g and I is the two-sided ideal of k(x1,...x,)
generated by the set {x;z; — x;x; — [z, 2], 1 < 4,5 < n}.

For example, if g is abelian, then U(g) is just the polynomial algebra k[z1, ..., x,].

Lemma 1.8. There is a natural bijection between representations of g and left
U (g)-modules.

Proof. If ¢ : g — gl(V) is a representation, we make V into a left module over
k(x1,...,2zq) by setting (z, - x4,) - v := @(zi;)p(ziy) - - - @(x;,) (v). Because ¢ is
a Lie algebra homomorphism, we see that (z;z; — x;jz;) - v = [2;,2;] - v for all 4, j.
So the ideal I kills V' and therefore V' is actually a left U(g)-module.

Conversely, if V is a U(g)-module, then there is a k-algebra homomorphism
U(g) — Endg (V) given by r — (v +— r-v). We can view it as a Lie homomorphism
U(g) — gl(V). The map g — U(g) is also a Lie homomorphism, so we get a
representation ¢ : g — gl(V) by composing these. O

Definition 1.9. The left R-module M is said to be cyclic if it can be generated
by a single element: M = Rax for some x € M. M is finitely generated if it can be
written as a finite sum of cyclic submodules M = Rz; + Rxo + ...+ Rz,.

Lemma 1.10. Let M be a left R-module. The following are equivalent:



(a) Every submodule of M is finitely generated

(b) Ascending chain condition: There does not exist an infinite strictly ascend-
ing chain of submodules of M

(¢) Maximum condition: Every non-empty subset of submodules of M contains
at least one maximal element. (If S is a set of submodules, then N € S is a
mazimal element if and only if N’ € S, N < N’ implies N = N’).

Proof. (a) = (b). Suppose M1 C My C .... Let N = UM,,. Then N is a submodule
of M so N is finitely generated by mq,...,m, say. If m; € M,,, then it follows
that N = M,, where n = maxn;, a contradiction.

(b) = (c) If S is a nonempty subset with no maximal element, pick M; € S. Since
S has no maximal element, we can find My € S such that M; C M,. Continuing
like this gives a strictly ascending infinite chain My C My C ..., a contradiction.

(c) = (a) Let N be a submodule of M and let S be the set of submodules of
N which are finitely generated. Since 0 € §, S has a maximal element L, say. Let
x € N. Since L + Rx is a finitely generated submodule of N and L is maximal in
S, L+ Rx=Lsoxée& L. Hence N = L is itself finitely generated. O

Dually, we have the descending chain condition and the minimum condition;

these are equivalent to each other.

Definition 1.11. An R-module satisfying (a), (b), (c) of Lemma 1.10 is Noetherian.
The ring R is left Noetherian if it is Noetherian as a left R-module.

We have similar definitions “on the right hand side”. Note that if the ring is
commutative, there is no difference between “left” and “right”. If R is both left
and right Noetherian, then we will simply say that R is Noetherian. Artinian rings
are defined similarly. Here is the main engine for proving that certain rings are left

Noetherian: it is a non-commutative version of Hilbert’s Basis Theorem.

Theorem 1.12 (McConnell, 1968). Let S be a ring, R a left Noetherian subring
and suppose that for some x € S we have

(1) R+zR =R+ Rz, and

(2) S=(R,x).
Then S is also left Noetherian.

Corollary 1.13. Let R be a left Noetherian subring of S, and z € S.

(a) Suppose there is an automorphism ¢ of R is such that ra = xp(r) for all r € R.
If S = (R,x), then § is left Noetherian.

(b) Suppose z is a unit in S such that 7 'Rz = R. If § = (R,2z,271), then S is
left Noetherian.

Proof. (a) If ro = zp(r) for all r € R, then Rx = xR so R+ xR = R+ Rx and we
can apply Theorem 1.12.



(b) Let T = (R, z). Then T is left Noetherian by part (a). Let I be a left ideal of
S. Now, INT is aleft ideal of T and is hence finitely generated: INT = Z?:l Ts;,

say. If s € I, then 2™s € INT for some m > 0, so s = Y ", "a;s; for some

a; € T. Hence the s;’s generate I as a left ideal of S. O

Definition 1.14. The group G is said to be polycyclic if there is a chain
1=Gy<Gi1<...4Gp_1<G, =G

of subgroups of G such that each G;/G;_1 is cyclic for each i =1,...,n.

Examples 1.15.

(a) Infinite cyclic G = (x) = Z.

(b) Free abelian G = (x1,...,2,) X Z".
1 Z Z

(¢ G =10 1 Z|. Here we have the chain 194Gy <Gy <G3 = G where
0 0 1
1 0 Z 1 Z Z
Gi=|0 1 0]JandGo=|0 1 0
0 0 1 0 0 1

(d) {I+ N € M,(Z) : N is strictly upper triangular} is always polycyclic.

Proposition 1.16. Let R be a Noetherian ring and let G be a polycyclic group.
Then RG is Noetherian.

Proof. Choosing a chain of subnormal subgroups with cyclic quotients
1:G0<1G1<]...<1Gn,1<lGn=G

we see that it’s sufficient to show that if RG;_; is left Noetherian then so is RG;
for all i = 1,...,n. Now, choose a generator xG;_; for the cyclic group G;/G;_1;
then RG; is generated by RG;_1,x and z~'. Since G;_; < G;, RG;_; is invariant
under conjugation by x, so RG; is left Noetherian by Corollary 1.12. (]

Question 1.17. Suppose that k is a field and kG is left Noetherian. Must G

contain a polycyclic subgroup of finite index?

We will now introduce a new class of non-commutative rings, called the Weyl
algebras: these are the most elementary examples of rings of differential operators.

First, some motivation.

Lemma 1.18. Let A = k[z] and consider the k-linear maps % : A — Aand
Z: A — A, where 7 is multiplication by z. Then

0
Proof. By the product rule, [8%,:?](]") =(zf) —zf = fforall f € A O



Now consider the polynomial algebra A = k[x1,...,2,] and the k-linear maps

@:A%Aand%:A%A

o)
f = x’bf f = aa{;w

for 1 < i < n. These maps are examples of differential operators on A. It can be

verified that all these operators commute, except for % and x;, which satisfy the

relation [6%1"@] =1.
Definition 1.19. Let k be a field. The n-th Weyl algebra A, (k) over k is

An (k) = k{z1, ... @, 1, Yn) /T

where I is the ideal of the free algebra k(x1,...,Zpn,y1,...yn) generated by

TiTj — T 1<4,5 <n,
YiY; — YiYi 1<4,5<n,
yiti — Ty — 1 1<i<n,
TiYj — Y Ti i 7.

For example, if n = 1 then A;(k) = k(z,y)/(yx — zy — 1). There is a surjective
k-algebra homomorphism from A, (k) onto the k-subalgebra of Endy (k[z1,...,z,])
generated by {77,...,Z,, 6‘9;51 et %}, mapping z; to Z; and y; to 2L. But it is

6:81 :
an isomorphism if and only if the characteristic of k is zero.

Proof of Theorem 1.12. R+ Rx+...+Rx"™ = R+xzR+...+2"R: this follows from
R+xR = R+ Rx. To see this, use induction to show that z"R C R+ Rx+...+ Rx"
and Re" C R+ xR+ ...2"R for all n > 1.

Consequences:

(a) The set of all elements of S of the form
ro+axry +...+x"r,, n>0 (%)

forms a subring of S. Since it contains both R and = and S = (R, x), we see
that S is the ring of all such 'polynomials’. Note that elements of .S need not
be uniquely expressible in the form (x).

(b) The set of polynomials of degree < n, namely R+ Rz + ...+ Rz™, is both a
left and a right R-submodule of S.

(¢) For each r € R and n > 0 there exists ' € R such that 2™ = 2™r 4+ s where
degs < n.

Now, let I be a left ideal in S. We will show that I is finitely generated. Let
I,:={r, € R: thereexists s€&l suchthat s=ro+ar;+...+2"r,}.

Then I, is closed under addition. Let » € R. By part (c) above, we can find

r’ € R such that r'z™ — z™r has degree < n. Since I is a left ideal, r's € I, and

r's=r'a"r, = 2" (rr,)



modulo terms of degree < n. Hence rr, € I, so I, is a left ideal of R.
Next, if s = Y1 ja'r; € I, then zs = Z?:ll 2'ri_y € I sor, € I,;1. Hence
I, < I,y for all n > 0. Since R is left Noetherian, the increasing chain

In<L<...<I, <.

must terminate. Say I, = I;41 = .... For ¢ =0,...,m let {r;;} be finitely many
elements of R generating I; as a left ideal of R. Choose s;; = xirijJr lower degree
terms € I.

Claim: X = {sij :0 < i< m,all j} generates I as a left ideal.

Let s =rg+ari+ ...+ a"r, € I, so that r, € I,; we’ll show that s € RX.
Proceed by induction on n, the case n = 0 being trivial.

If n > m then r,, € I, s0 7, = Y a;jTm; for some a; € R. Choose a;- € R such
that a’z" = 2™a;+ lower degree terms. Then s — ) a’z" ™s,,; € I and modulo

terms of degree < n,

! n—m —_—.n /I .n —_.n n _
575 a;x Smj =T rnfg ;X Ty =T Tn*E x"a;rm; = 0.

Sos—>" a}x”*msmj has smaller degree than s and we can apply induction.

If n <m then r, = ) a;ry; for some a; € R, so for suitable a} € R, s—
Zagsnj € I also has smaller degree than s. By induction, these smaller degree
elements of I lie RX, as required. ([

Definition 1.20. Let R be a ring. A (Z—)filtration on a R is a set of additive
subgroups (R;);cz such that
e R, C Ry forallicZ,
o Ri.R; CR; jforalli,jcZ,
e 1 € Ry, and
UsezR; = R.
If R has a filtration, we say that R is a filtered ring. The filtration on R is
positive if R; =0 for all i < 0.

Note that the axioms imply that Ry is a subring of R and that each R; is a left
and right Ry—module. Note also that N;czR; is always an ideal in R.

Example 1.21. Suppose R is a finitely generated k—algebra with generating set
{x1,...,2,}. Define Ry = k and let R; be the k—subspace of R spanned by words
in the z;’s of length at most 4 for ¢ > 0. Also define R; = 0 whenever 7 < 0.

Definition 1.22. A (Z-)graded ring is a ring S which can be written as
S=@ps;
i€z
for some additive subgroups S; C 9, satisfying 5;.5; C S;4; for all ¢, € Z and
1 € Sy. S; is called the i—th homogeneous component of S, and an element s € S
is homogeneous iff it lies in some S;.



Definition 1.23. Let R be a filtered ring with filtration (R;);cz. Define
gr R= (D Ri/Ri-1.
=
Equip gr R with multiplication, which is given on homogeneous components by
Ri/Ri—l X Rj/Rj_l — Ri+]‘/Ri+]‘_1
r+Ri_1 , S—I-Rj,l — T8+Ri+]‘71

and on the whole of gr R by bilinear extension. Then gr R becomes a graded ring

called the associated graded ring of R.

Note that the multiplication is well-defined because R;R; C Rit;, Ri—1R; C
Ritj—1 and R;R;_1 C R;1j—1. One should think of gr R as an approximation
to the ring R which is often easier to understand but nonetheless contains useful

information about the ring R itself.

Proposition 1.24. Let g be a Lie algebra with basis {1, ..., z,}. Equip U(g) with
the positive filtration as in Example 1.21. Then there is a surjective homomorphism
of k—algebras
"2 k[Xla R 7X’I’L] - gI‘U(g)

given by o(X;) =xz; + R, i =1,...,n.
Proof. Let R = U(g) and note that z; € R; for all i. Now because z;x; — z;x; =
[z;, ;] € Ry for all 4, j we have

(l‘i + Ro)(&'}j + Ro) =x;x; + Ry = TiT; + Ry = (.Z‘j + RQ)(xi + Ro),

meaning that ¢(X;) and ¢(X;) commute. Hence the k—algebra map ¢ exists. To
show that ¢ is surjective, it’s sufficient to show that u + R;_; lies in im ¢ for any
u e Rt\Rt—l- Now

Ty, Ty T, + R = (X, )o(Xy,) - o(XG,) €imgp

and u as a k—linear combination of words of length at most ¢ in the generators
{z1,..., 2} O
What about the Weyl algebra A,,(k)? Consider the standard monomials
=t xim Yyt =yt ynm € Ap(k) forall o= (ag,...,an) € N
It follows from Exercise 1.3 that
{z%y"” € A, (k) : o, € N}
is a basis for A, (k) as a k-vector space. Write |a| = >""" | o; for all @ € N™.

Proposition 1.25. Let R := A, (k), set Ry := k[z1,...,xz,], and define
R, = Z Royﬁ for all ¢ e N.

|BI<i
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(a) (R;) is a filtration on R.
(b) grR = k[Xy,...,X,,Y1,...,Y,] with respect to this filtration.

Proof. (a) By the defining relations in the Weyl algebra we have y; Ry = Roy;+Ro C
R; for each 7. It follows that yﬂRO C Ry for all # € N™. Hence RoyﬂROy"’ -
Rig|4||> so that R;R; C R;y; for all 4,5 € N.

(b) There is a natural map ¢ : Ro[Y1,...,Ys] — grR of graded rings which
sends Y; to o(y;) = y; + Ro. Because every element in R can be written as a
finite sum Z%Nn rgyﬁ for some rz € Ry, ¢ is surjective. Because ¢ respects
the graded structure, to show that ¢ is injective it is enough to show that ker ¢
contains no non-zero homogeneous elements. So let ZI Bl=m rgY? € ker ¢; then
> 18l=m 75y? € R,,_1, so we can find r5 € R whenever |3] < m such that

S ey’ = D> ey’

|B]=m |Bl<m

Because {z%y” € A, (k) : o, 8 € N"} is a basis for R, rg = 0 for all 3. O

Definition 1.26. The filtration on A, (k) constructed in Proposition 1.25 is called
the filtration by order of differential operator.

Theorem 1.27. Suppose R is a positively filtered ring such that gr R is left Noe-
therian. Then R is left Noetherian.

Proof. Let I be a left ideal in R, and consider the left ideal

gu;:@U”R];)*an—l.

n>0

in gr R. For each n € N, consider the projection operator 7, : gr R — gr R which

sends Y x; € gr R to x,, € gr R. Note that these operators preserve grl. This

means that gr I contains the homogeneous components of each of its elements. Now

because gr R is Noetherian, gr I has a finite generating set {X1,..., X, }, which we

may without loss of generality assume to consist of homogeneous elements.
Choose some z; € I N R,,,\Ry,_1 such that z; + R,,,_1 equals X;. To finish the

proof, we prove that

m
I= Z RJLL‘.
i=1

The inclusion D is clear. For C, it is enough to prove that TN R,, C Z;’;l Rx; for
all n > —1. Induct on n: n = —1 is clear because R_; = {0}. If z € I N R, then

m
T+ Roor =) ViX;
i=1
for some Y; € gr R. We can again assume that each Y; is homogeneous of degree
n — n;, so choose r; € R such that Y; = r; + R,_p,—1. Then z = Z:’;l ;L
(mod R,—1),s0 x — > " i € INR,_1 CY." Rx;. Sox €y ;" Ruy. O



Corollary 1.28.

(a) U(g) is Noetherian whenever dimy g < oco.
(b) A, (k) is Noetherian.

Proof. (a) By Proposition 1.24, grU(g) is a quotient of a polynomial algebra

klx1,...,2,] for some n, which is Noetherian by Theorem 1.12. Hence U(g) is
Noetherian by Theorem 1.27.
(b) Similar, using Proposition 1.25 instead. (]

Question 1.29. Let g be a Lie algebra over a field k such that U(g) is Noetherian.
Must dimy g < co?

2. SIMPLE MODULES AND ARTINIAN RINGS

Throughout this chapter, R denotes an arbitrary ring, unless stated otherwise.

Definition 2.1. An R-module M is simple or irreducible if M # 0 and the only
submodules of M are 0 and M.

Suppose M is simple. Choose 0 # x € M; then M = Rx so M = R/I where
I = ann(x) is the point annihilator of z. Note that ann(x) need not be equal to
ann(y) if 2,y are distinct nonzero elements of M, unless R is commutative.

Note that M = Rz is simple if and only if ann(z) is a maximal left ideal of R.

Definition 2.2. A poset is a set equipped with a binary relation < which is reflex-
ive, transitive and antisymmetric. A chain in a poset S is totally ordered subset C
of S: if s,t € C then either s <t or t < s. An upper bound for a subset C of S is
an element v € § such that x < u for all x € C. We say that = € § is a mazimal
element if x <y with y € S forces x = y.

Theorem 2.3 (Zorn’s Lemma). Let S be a nonempty poset. Suppose every chain

in § has an upper bound. Then S has a maximal element.
This is equivalent to the Axiom of Choice, which we will always assume.

Lemma 2.4. Suppose L is a proper left ideal of R. Then L is contained in a
maximal ideal I of R. Equivalently, every nonzero cyclic module has a simple

quotient.

Proof. Since L is proper, 1 ¢ L. Let S={K < R: LC K,1¢ K}. Since L € S,
this set is nonempty. S is partially ordered by inclusion. If C is a chain in S, then
UC also contains L and doesn’t contain 1, i.e. UC € §. Hence every chain in S has
an upper bound in §. By Zorn’s Lemma, S has a maximal element I. It’s clear

that I is now a maximal left ideal of R containing L. d

By an ideal of R we mean a two-sided ideal.
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Definition 2.5. Let I be a two-sided ideal of R. Then [ is left primitive if I is the
annihilator of a simple left R-module M:
I=Amr(M)={x € R:aM =0} = ﬂ ann(x).
zeM
The ring R itself is called left primitive if its zero ideal is left primitive, or equiva-
lently, if R has at least one faithful simple left module.

There are examples due to George Bergman of rings which are left primitive,
but not right primitive! Note that the annihilator I of any module M is always an
ideal of R.

Lemma 2.6. Let M = Rz be a cyclic left R-module. Then I = Anng(M) is the

largest two-sided ideal contained in L = ann(x).

Proof. Note that this largest two-sided ideal K exists, since the sum of all two-sided
ideals contained in L is itself a two-sided ideal contained in L. Certainly I C L, so
ICK. Now KM = KRx C Kx C Lz = 0 since K is two-sided, so K C I. [l

Corollary 2.7. Every maximal ideal of R is left and right primitive. Moreover, if

R is commutative, every primitive ideal is maximal.

Definition 2.8. The Jacobson radical J(R) of R is defined to be the intersection
of all left primitive ideals of R.

Note that J(R) is the set of elements of R which annihilate every simple left
R-module.

Lemma 2.9. J(R) is equal to the intersection K of all maximal left ideals of R.

Proof. Let I be a maximal left ideal. Then P = Anng(R/I) is primitive, so J(R) C
P C I by Definition 2.5. Hence J(R) C K.

Now let P = Anngr(M) be a primitive ideal, where M is a simple R-module.
Note that P = Noxyen ann(x) is an intersection of maximal left ideals, so K C P.
It follows that K C J(R) as required. O

Lemma 2.10 (Nakayama). Let M be a finitely generated nonzero left R-module
and let J = J(R). Then JM is strictly contained in M.

Proof. Since M is finitely generated, by choosing a minimal finite generating set
for M we see that M has a non-zero cyclic quotient module M/L, which in turn
has a simple quotient M/K by Lemma 2.4. Then J(M/K) =0 so JM C K which
is strictly contained in M. ([

Corollary 2.11. Let M be a finitely generated left R—module and let J = J(R).
If N is a submodule of M such that M = N + JM then M = N.

Proof. Apply the Lemma to M/N. a
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Recall that an element « € R is a unit if there exists y € R such that xy = yz = 1.

Proposition 2.12.
JR)={zx € R:1—axb isaunitforall abeR}=K.

Proof. Let x € K, let I be a maximal left ideal of R and suppose that « ¢ I. Since
I is maximal, I + Rr = R, so 1 — ax € I for some a € R. Since x € K, 1 — ax
is a unit, a contradicting the fact that I is proper. Hence x € I so K C [ for all
maximal left ideals I of R. By Lemma 2.9, K C J(R).

Now let € J(R). Since J(R) is a two-sided ideal, to show that x € K it’s
sufficient to show 1 —x is a unit. Now, if R(1 — ) is a proper left ideal, we can find
a maximal left ideal L containing it by Lemma 2.4. By Lemma 2.9, z € J(R) C L
and 1 —x € Lso 1€ L, a contradiction. Hence there exists y € R such that

y(l—z) =1
Now, 1 —y = —yx € J(R), so by the above argument applied to 1 — y, we can find
z € R such that
z1-(1-y)=2y=1.
Hence zy(l1—z) =1—x=zs0z2y=1and yz=1. Hence z=1—x € R*. O
This result shows that J(R) is the largest ideal A of R such that 1 — A consists

entirely of units of R.

Corollary 2.13. The Jacobson radical is left-right symmetric. It follows that the
intersection of all maximal left ideals of R is equal to the intersection of all maximal
right ideals.

We will now work towards understanding the structure of left primitive rings. Let
V be a left R-module and let D = Endg (V). Let us write R-module endomorphisms
of V on the right, and define composition of such endomorphisms by the rule

v(a-B) = (va)f forall veV o peD.

Thus « - 8 is the product of o and § inside D in this new notation. Naturally, V" is
then a right D-module, and in fact, V' becomes an R-D-bimodule: this means that
V' is simultaneously a left R-module and a right D-module via the rule v - a = va,

and the two structures are compatible in the following sense:
r-(v-a)=(r-v)-a forall reR,aeD.

Of course, this just says that every element of D is an endomorphism of the left
R-module V.

Theorem 2.14 (Schur’s Lemma). Let V' be a simple left R-module. Then D :=
Endg(V) is a division ring.
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Proof. Let ¢ : V. — V be a nonzero R-module homomorphism. Then ker(p) < V/
and im(¢) > 0. The simplicity of V forces ker(¢) = 0 and im(p) = V, so ¢ is an

isomorphism. Thus every nonzero element of D is a unit. O

So whenever V is a simple left R-module, V' becomes a right vector space over
the division ring D = Endg(V). The following technical sounding Lemma will be
key to the proof of Jacobson’s Density Theorem.

Lemma 2.15. Let V be a simple left R-module, let D = Endg(V), let X be a finite
D-linearly independent subset of V', and let T := ann(X). Suppose that I -y =0
for some y € V. Then y € X - D, the D-linear span of X.

Proof. We proceed by induction on n = |X|. When n = 0, we have ann(f) = R
and - D = {0}. So since R -y = 0 by assumption, we have y =0 € () - D.

Assume now that n > 1 and let J = ann(X\{z}) for some =z € X so that
I =Jnann(z). If J C ann(x) then J = I, so J-y = 0 and we can apply the
induction hypothesis. So we can assume that J is not contained in ann(z). But
then the R-submodule J -z of V is non-zero, so J - x = V by the simplicity of V.

Defined : V — V by the rule (r-z)d = r-y, whenever r € J. This is well-defined,
because if -z = 0 for some r € J then r € ann(z)NJ =I,sor-y =0since I-y =0
by assumption. This function is left R-linear because (s - (r - x))d = (sr-x)d =
sr-y=s-(r-y) =s-((r-z)d) for all s € R. Thus we have found an element
d € D such that J-(y —x-d) =0. Hence y —z-d € (X\{x}) - D by induction and
therefore y € X - D. (]

Definition 2.16. Let M be a left R-module. We say that M is Artinian if every
descending chain of submodules terminates. The ring R is left Artinian if it is
Artinian as a left R-module.

Corollary 2.17. Let R be a left Artinian ring, let V' be a simple left R-module
and let D = Endgr (V). Then V is finite dimensional as a right D-vector space.

Proof. Since R is left Artinian, by Exercise 2.4 the set {ann(X) : X C V,|X| < oo}
has a minimal element I = ann(X), say. Let y € V; if -y # 0 then ann(X U{y}) <
ann(X), contradicting the minimality of ann(X). Hence I -y =0, soy € X - D for
any y € V by Lemma 2.15. Hence V = X - D. O

Theorem 2.18 (Jacobson’s Density). Let V be a simple left R-module, and let
X C V be a finite D-linearly independent subset of V' where D := Endr(V). Then
for every o € End(Vp) there exists r € R such that a(z) =r -z for all x € X.

Proof. Write X = {x1,...,2,}, fixi € {1,...,n} and write X; := X\{z;}. Since
x; ¢ X; - D we see that ann(X;) - ; # 0 by Lemma 2.15. So there is some

r; € ann(X;) such that r; - x; # 0. Since V is simple, R - (r; - ;) = V, so we can
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find some s; € R such that s; - (r; - ;) = a(z;). Now

n

Zsjrj cx; =81 x;=ar;) forall i=1,...,n
j=1
because r; € ann(X;) C ann(z;) whenever j # i. So we can take r = Z?:l sjrj. O

Lemma 2.19. Let S be a ring, let N be a right S-module and let n > 1 be an
integer. Then the ring of right S-module endomorphisms of (Ng)™ is isomorphic to
the n x n matrix ring with coefficients in T := End(Ng):

End((Ns)") = M, (T).

n

Proof. This is best seen by writing elements of N™ as column vectors » = (z;)7_;

and thinking of S-module endomorphisms acting by matrix multiplication on the
left of these column vectors.
Formally, let 0 : N < N™ and 7; : N* — N for j =1,...,n be given by

oj(x); =xd;; and m;(z) = ;.

These are right S-module homomorphisms. We define « : End((Ng)™) — M, (T)
by setting the (i, 7) element of a(f) to be the composition

N N Ly N TN,

thus a(f);; = mifo;. We can also define 5 : M, (T') — End((Ng)") by

n

6(14) = Z O'jAjiﬂ-i-

ij=1
It is a pleasant exercise to show that o and 8 are mutually inverse ring homomor-

phisms. O

Theorem 2.20 (Artin-Wedderburn). Let R be a left primitive, left Artinian ring.
Then R = M, (D) for some division ring D and integer n > 1.

Proof. Let V be a faithful simple left R-module, and let D = Endr(V'). Then D is
a division ring by Theorem 2.14. Now Vp = (Dp)™ for some positive integer n by
Corollary 2.17 and End(Dp) = D by Exercise 2.2(a). So

End((Dp)") = My, (End(Dp)) = My (D)
by Lemma 2.19. Now we have a natural ring homomorphism
¥ : R — End(Vp)

given by ¥(r)(v) = r-v. It is injective because V is faithful, and it is surjective by
Theorem 2.18. We conclude that R = M, (D). O
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Theorem 2.21 (Chinese Remainder). Let R be a ring, and let Py, ..., P, be two-
sided ideals in R such that P; + P; = R whenever ¢ # j. Then

R/(PAN PN ---NPy) = (R/P) @ (R/P2) @ - & (R/Fy).

Proof. There is a natural ring homomorphism ¢ : R — @', R/P; given by ¢(r) =
(r+ P;),. Its kernel is Py N --- N P,, so by the First Isomorphism Theorem for
rings it will be sufficient to show that ¢ is surjective. We prove this by induction
on n, the case n = 1 being clear.

Since P; + P, = R for all i < n, we can find a; € P; and b; € P, such that
a;+b;=1foralli=1,...,.n—1. Leta:=ay--ap_1 € PLN---NP,_1 and let
b:=1—a. Then

b=1—a=(a1+b1) - (an-1+bn-1)—ai - an_1 € Py.

Now, given (r; + P;) € &, R/P;, we can find some s € R such that s —r; € P; for
all © < n by induction. Let r := sb+ rpa; then r = r, mod P, and r = sb = r;

mod P; for each i < n. So ¢(r) = (r; + P;)?_; and ¢ is surjective. O

Corollary 2.22. Let R be a left Artinian ring with J(R) = 0. Then there exist

division rings D1, ..., D, and integers r1,...,7r, > 1 such that
R= Mh (Dl) DD Mrn(Dn)-

Proof. Let S be the set of finite intersections of left primitive ideals of R; it is
non-empty by Lemma 2.4. Since R is left Artinian, this set has a minimal element
I:=P nN---NP, say. If Q is another left primitive ideal of R then INQ = I
by the minimality of I, so that I C @. Hence I C J(R) = {0} by assumption.
Now R/P; & M,,(D;) for some division ring D;, and this ring is simple by Exercise
3.3(c). So each P; is a maximal two-sided ideal, and therefore P;+P; = R whenever
1 # 7. Now apply Theorem 2.21. |

Proposition 2.23. The Jacobson radical J of a left Artinian ring R is nilpotent.

Proof. The descending chain J D J? D J3 D ... must terminate since R is left
Artinian. Hence J" = J"*! = ... for some n > 0. Let X = rann(J") = {x € R:
J"x = 0}, this is a two-sided ideal of R. Suppose for a contradiction that X # R.
Then R/X has a minimal nonzero left submodule Y/ X, being left Artinian. This
module is simple. Now J-(Y/X) =0so JY C X. It follows that J"Y = J"TlY C
J"X =0, s0Y C rann(J") = X, contradicting Y/X # 0. Hence X = R so
Jr=RJ"=XJ"=0. O

Theorem 2.24 (Hopkins). Let R be a left Artinian ring. Then R is also left
Noetherian.

Proof. Let J = J(R). For any i € N, J*/J"™! is a left Artinian R/J-module, so it
is also left Noetherian by Theorem 2.20 and Exercise 3.3(c). Since J is nilpotent by
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Proposition 2.23, R is a finite extension of left Noetherian modules, and is therefore
itself left Noetherian by Exercise 1.4(a). O

3. NONCOMMUTATIVE LOCALISATION

Let A be a ring and let S be a subset of A. We want to “invert S”, meaning
that we want to find a ring homomorphism

0:A—S'A such that ¢(S)C (S71A)%,
and we want S~'A to be “minimal” in some sense.

Construction 3.1. Form the free algebra on a set which is in bijection with S
A(is 1 s € 5)
and impose the relation that is is a two-sided inverse of s € S for each s € S:
Alig:s€85)
(sis —1,igs —1:s5€9).
Then define ¢ : A — S~ A by letting ¢(s) be the image of s in S~ A. By definition,
©(S) consists of units in S~LA.

S71A =

This ring S~ A is minimal in the following precise sense.

Proposition 3.2 (Universal property of S~!1A). Suppose that § : A — B is a ring
homomorphism such that 6(S) C B*. Then there is a unique ring homomorphism
0:S5S"1A — B such that § = 0o .

A—-> S14.

x v@
B
Problems.

(1) S71A could be the zero ring!
(2) Non-examinable: S~ A will not be a flat left A-module, in general.

Definition 3.3. The left S-torsion subset of A is
ts(A):={a€ A:sa=0 forsome s€S}.

Note that ¢(ts(A)) = 0, so that ts(A) C kery. Note also that if (S) is the
sub-monoid of A generated by S, then (S)~'A = S~!A. For this reason, we will
focus on multiplicatively closed subsets of A: by definition, these are the subsets S
of A such that 1 € S and s,t € S = steS.

Definition 3.4. Let S be a multiplicatively closed subset of A.

(a) S is left localisable if
(i) ST'A = {¢(s) 'p(a) |a € A, s € S} and
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(ii) kerp =tg(A).
(b) Sis a left Ore set if

SanNAs#0 forall a€ AseS.

(c) S is left reversible if whenever as = 0 for some s € S and a € A, there is some
s’ € S such that s'a = 0. In other words, right S-torsion elements in A are also
left S-torsion.

(d) s € Ais a regular element if sa =0 or as = 0 imply that a = 0.

(e) Ais a domain if every non-zero element is regular.

Obviously if A is a commutative ring, or more generally, if S consists of central
elements in A then S is a left Ore set. We will shortly see examples of multiplica-

tively closed sets which do not have this property.
Proposition 3.5. Every left localisable subset is a left reversible, left Ore set.

Proof. Let a € A and s € S. Then by definition, the element p(a)p(s)~! € S~1A

can be written as a right fraction

for some ¢ € A and v € S. Hence ua — cs € ker ¢ so we can find v € S such that
v(ua — ¢s) = 0. Hence (vu)a = (vc)s so take t = vu € S and b = vc € A, then

ta = bs
and hence S is a left Ore set. Next, if as = 0 for some s € S and a € A, then
p(a) = plas)p(s) ™' =0
so s'a = 0 for some s’ € A. Hence S is left reversible. O

Examples 3.6.

(a) Say that an element s € A is normal if sA = As. Then if every element s € S
is regular and normal, then S is a left Ore set. This happens, for example,
whenever every element of S is central in A.

(b) Let A = k(z,y) be a free algebra in two variables over a field. This is a domain,
so S := A\{0} is multiplicatively closed. But

Az N Ay = {0}
so Sz N Ay = (). Hence S is not left localisable by Proposition 3.5.

Theorem 3.7 (Ore, 1930). Let S be a left Ore set in A consisting of regular
elements. Then ¢ : A — S~!A is injective.
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Proof (non-examinable). Define a relation on S x A as follows:
(s,a) ~ (t,b) & Je,d € A such that cs=dt €S and ca=db.

This is an equivalence relation. Let () be the set of equivalence classes on S x A

under this equivalence relation:
Q:=(SxA))~.

Then @ is a ring, and the map ¢ : A — Q defined by ¢ (a) = [(1,a)] is an injective
ring homomorphism which inverts S. So by the universal property of S~!A, there
is a map 0 : S7'A — Q such that 1 = 0 o . Hence ¢ is injective because 1 is

injective. More details can be found in the Appendix at the end of these notes. [

Theorem 3.8 (Gabriel). Let S be a multiplicatively subset of A. Then S is left

localisable if and only if it is a left reversible, left Ore set.

Proof. We need to prove the converse of Proposition 3.5. So suppose that S is a
left reversible left Ore set, and consider the element

1

o(s1) " p(ar)p(s2) " plaz) -+ o(sn) " e(an)

in S~ A; notice that by the construction of S™!A, since S is multiplicatively closed,
every element of S~1 A is a finite sum of such elements. Using the left Ore condition,
we can rewrite it in the form ¢(s)"1¢(a) for some a € A and s € S.

Next, given a,b € A and s,t € S, choose u € A and v € S such that

ut = vs.

Since s,v € S and S is multiplicatively closed, this element lies in S. So we can
bring the sum of the two left fractions ¢(s)"'¢(a) and ¢(t)~1e(b) to a common

left denominator:

o(s) " p(a) + o(t) " o(b) = @(vs) " o(va + ub).

So every element of S71A is of the form ¢(s) tp(a) for some a € A and s € S.

It remains to prove that ker ¢ = tg(A). Now, the left S-torsion subset ts(A) of
A satisfies tg(A) - A C ts(A). It is also a left ideal in A by Exercise 4.1. So it is
a two-sided ideal. Next, let s € S and a € A and suppose that as € tg(A). Then
tas = 0 for some ¢t € S, but S is left reversible so s'ta = 0 for some s’ € S. So
a € tg(A) because s't € S. If on the other hand sa € tg(A) then tsa = 0 for some
t € Ssoactg(A) because ts € S.

Thus the image S of S in the factor ring A := A/t5(A) consists of non-zero
divisors, and S is a left Ore set in A by Exercise 4.2. Now, the universal S-inverting
ring homomorphism @ : A — S A is injective by Theorem 3.7. If m: A — A is

— 1
the natural surjection, then 7 : A — S ~ A inverts .S, so by the universal property
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of S7!A there is a ring homomorphism 6 : S~1A — S "4 such that the following

diagram commutes:
A—" 4
1k
S —=35 A
Now if a € ker ¢ then B(w(a)) = 6(¢(a)) = 0, but P is injective so 7(a) = 0, and
therefore a € tg(A) = ker . O

A similar procedure is involved in the construction of the derived category of an

abelian category.

Theorem 3.9. [Goldie, 1957] Let A be a left Noetherian domain. Then S = A\{0}

is a left Ore set.

Proof. Let x € A, y € S. We want to show that Ay NSz # (. Let k¥ € N and
consider the left ideal

I = Az + Azy + - - + Axy®

of A. These form an ascending chain Iy C I; C I C --- which has to terminate.
Choose k € N minimal such that I, = Ix1. Then xy’”‘l € I, so

oyt = aor + a1y + - + apay®

for some ag,...,ax € A. If kK = 0 then zy = agx; since A is a domain, xy # 0 so
ag # 0. Thus ag € S so that

xy = apr € Ay N Sx.

If £ > 1 then (zy* — a12 — - -+ — arpory* 1)y = apr and the minimality of &k forces
ag # 0. So ag € S and agx € Sz N Ay. O

Corollary 3.10. Every Noetherian domain has a division ring of fractions.

Proof. Let S = A\{0}. This is a left Ore set by Theorem 3.9, and it is consists of
regular elements because A is a domain. So A embeds into S~'A4 by Theorem 3.7
and S7'A = {s7la: s € S,a € A}. Now if s71z € S714 is a non-zero element
then z,s € S and 27 !s is the inverse of s~'z. Hence every non-zero element of

S71Ais a unit, so S7'A is a division ring. O

It turns out that in left Noetherian rings, we don’t have to worry about the

left-reversibility condition on left Ore sets.

Proposition 3.11. Let A be a left Noetherian ring, and let S C A be a left Ore
set. Then S is left reversible.
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Proof. Suppose that as = 0 for some s € S and a € A, and consider the ascending
chain of left annihilators

lann(s) < lann(sQ) <---

Since A is left Noetherian this chain stops, so that lann(s**1) = lann(s*) for some
integer £ > 1. Now because S is a left Ore set, we can find b € A and ¢t € S such
that ta = bs*. Then

bsktt = tas =0

so b € lann(s**1) = lann(s*). Hence ta = bsk = 0 with t € S. O

Theorem 3.12. [Goldie, 1958] Let A be a ring, and let S be the set of regular

elements of A. The following are equivalent:

(a) (1) Sis a left Ore set in A,
(2) S71Ais left Artinian,
(3) the Jacobson radical of S~1A4 is zero.
(b) (1) A has no non-trivial nilpotent two-sided ideals,
2)
(3)

3

A doesn’t have an infinite direct sum of left ideals, and

every ascending chain of left annihilators stops.
Proof. Omitted. O

Rings satisfying the conditions (b2) and (b3) are called left Goldie rings. Clearly,
every left Noetherian ring is a left Goldie ring. It follows from Corollary 2.22 that
S~1A is the direct product of finitely many matrix rings over division rings; thus

Theorem 3.12 is a generalisation of Theorem 3.9.

Definition 3.13. Let S be a left localisable subset of A and let M be a left
A—module.

(a) The localisation of M at S is defined to be the set of equivalence classes
S™T'M ={s\m:me M,s € S}
in S x M under the equivalence relation ~ given by
(s,m) ~ (t,n) if and only if wut'm =wus'n for some wu €S,

where t' € A, s’ € S are such that t's = st € S.
(b) The S-torsion submodule of M is defined to be

ts(M)={me M :sm=0 forsome secS}.

A long calculation shows that S~!'M has the structure of an S~!A-module. To
do this, it is sufficient to check that S™!M is an A-module; then S clearly acts
invertibly on S~'M so by the universal property of S~!A the ring homomorphism
A — Endz(S™1M) extends to S~1A.
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Proposition 3.14. Let S be a left localisable subset of A and let NV be a submodule

of an A-module M. Then there is an S~!A-linear isomorphism
STYM/N) = (S7*M)/(STIN).

Proof. There is a map a : STIN — S~'M which sends s\n € S7IN to s\n €
STIM. Tt is left S~!A-linear, so its image is an S~!A-submodule. If s\n maps to
zero, then there is ¢t € S such that tn = 0. So s\n = ts\tn = 0. So « is injective.
Now define 3: S™'M — S~Y(M/N) by B(s\m) = s\(m + N). It is a well-defined,
surjective, S~ A-linear map. If s\m € ker 8 then t(m + N) = 0 for some t € S so
that tm € N. But then

s\m = (ts)\(tm) € ST!N

so that ker 5 = S™IN. O
Remarks 3.15. Here is an alternative way of constructing S—M:
STIM =S5 A M.

So, it follows from Proposition 3.14 that S™'A is a flat right A-module, whenever
S is a left localisable subset of A.

4. DIMENSION THEORY FOR NOETHERIAN MODULES

We will develop some dimension theory for finitely generated modules over Noe-

therian rings, with an emphasis on minimal primes.

Definition 4.1. Let R be a ring.

(a) A proper ideal P of R is said to be prime if, whenever I, J are ideals in R such
that IJ C P, either ] C Por J C P.

(b) The set of prime ideals in R is denoted by Spec(R).

(c) Let I be an ideal in R. A prime ideal P of R is a minimal prime over I if
PDO1Iand I CQ C P with @ prime forces @ = P.

(d) P is a minimal prime of R if it is a minimal prime over the zero ideal.

(e) min(7) := {minimal primes over I}.

Be warned that if R is not commutative and P is a prime ideal, then the factor
ring R/P may well have zero-divisors. For example, the zero ideal in every simple
ring is prime, and plenty of simple rings have zero-divisors: take, for example, any
matrix algebra M, (k) over a field k with n > 2.

Proposition 4.2. Let R be a left (or right) Noetherian ring and let I be a proper
ideal. Then

(1) There exist primes P, ..., P, containing I such that P, --- P, C I.
(2) The set of minimal primes over I is finite and non-empty.
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Proof. Suppose that (1) is false. Since R is Noetherian, we can choose a maximal
counterexample I. Thus I contains no finite product of prime ideals containing I,
and [ is maximal with respect to this property. We will show that I is prime.

If I is not prime, we can find A, B < R are such that AB C I but A C [ and
B C I. By the maximality of I, I + A contains the product of primes Py,..., P,
containing I + A, and similarly Q1 ---Q,, C I + B for some primes Q1,...,Qm

containing I + B. Hence
P---PQi-QnC(I+A(I+B) CI*+AI+IB+ABCI,

so [ itself contains a finite product of primes containing it. This contradicts the
definition of I, so in fact I is prime. Thus we have a contradiction, and (1) follows.

Hence we have a finite set of primes Py, ..., P, containing I such that P, --- P, C
I. After relabelling, we may assume that {Pi,..., Py} are the distinct minimal
primes of {Py,...,P,}. Thus I contains a product of primes from {Py,..., Py},
possibly with repetition:

P,---P, CI

for some iy, ...,i, € {1,...,m}. Now, suppose @ is any prime containing /. Then
Py P, ---P;, €1 C Q which forces P;; C Q for some j. If Q is a minimal prime

over I, @ must equal P;,.

Finally, we show that each P} is a minimal prime over [ for £k = 1,...,m. If
I C@Q C Py then P; C Q C Py for some j < m by the above. But Py,..., P, are
the minimal primes in {P1,...,P,}, so P; = Q = P and (2) follows. O

Definition 4.3. Let I be an ideal in a left (or right) Noetherian ring R.

(a) The prime radical N(R) of R is the intersection of all prime ideals of R.

(b) The prime radical /T of I is the intersection of all prime ideals of R that
contain I.

(¢) R is semiprime if N(R) = 0.

(d) I is said to be is semiprime if I = /1.

Thus [ is semiprime if and only if it is the intersection of some collection of
prime ideals of R. Note that min(/) is completely determined by VI because
min(7) = min(v/T).

Corollary 4.4. Let R be a left (or right) Noetherian ring. Then
NR= (] P
Pemin(0)

is the largest nilpotent ideal in R.

Proof. Every nilpotent ideal is contained in every prime ideal. Thus N(R) contains
every nilpotent ideal. On the other hand, it follows from Proposition 4.2, that
a finite product of the minimal primes of R is zero. If there are k terms in this
product, then N(R)* =0, so N(R) is nilpotent. O
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Definition 4.5. Let R be a left or right Noetherian ring. A dimension function
for R is a rule which assigns to every finitely generated R-module M a number
d(M) € N, such that

d(M) = max{d(N),d(M/N)}

whenever N is a submodule of M.

Theorem 4.6. Let R be a left or right Noetherian ring. Then every function
d:{R/P:P € Spec(R)} - N
such that d(R/P) > d(R/Q) whenever @) C P extends to a dimension function d
for R, given by
d(M) = max{d(R/P) : P € min(Ann(M))}
for every finitely generated R-module M.

Proof. Let N be a submodule of a finitely generated R-module M, and write
min(Ann(M)) = {P,}, min(Ann(N)) = {Ig} and min(Ann(M/N)) = {J,}. Now
some finite product of the P,’s kills M by Proposition 4.2, so it kills both N and
M/N. Tt follows that

e every Ig contains some P,, and

e every J, contains some F,.

Now d(N) = d(R/Ig) for some 3 and Iz contains some Py, so
A(N) = d(R/15) < d(R/P.) < d(M).

Similarly, d(M/N) < d(M), and we have shown that d(M) > max{d(N),d(M/N)}.
On the other hand, some product, A say, of the Ig’s kills N and some product, B
say, of the J,’s kills M /N, again by Proposition 4.2. So BM C N and AN = 0,
whence ABM =0 and AB C Ann(M). It follows that

e every P, contains either an Iz or a J,.
So if d(M) = d(R/P,) for some « then either P, contains some Iz, in which case
d(M) = d(R/Py) < d(R/1s) < d(N),
or P, contains some J,, in which case
d(M) = d(R/P.) < d(R}J,) < d(M/N).

In either case, we see that d(M) < max{d(N),d(M/N)}. O

It can be shown that if in addition R is commutative, then this extension is
unique. More precisely, any dimension function d’ for R such that d(R/P) =
d'(R/P) for all P € Spec(R) must actually be equal to d, and is therefore completely
determined by the values that it takes on modules of the form R/P, P € Spec(R)

— see Exercise 5.3.



23

It follows from Theorem 1.12 that every finitely generated commutative algebra
R over a field k is Noetherian. Therefore m is a finitely generated ideal and m/m?
is a finitely generated R/m-module. Thus m/m? is a finite dimensional vector space
over the field R/m.
Definition 4.7. Let R be a finitely generated commutative k-algebra.

(a) If R is a domain, then the Krull dimension of R is
Kdim(R) := min{dimp/m(m/m?) : m is a maximal ideal of R}.
(b) Let M be a finitely generated R-module. Then
Kdim(M) := max{Kdim(R/P) : P € min(Ann(M))}
is the Krull dimension of M.
We will need to cite the following result from commutative algebra:

Theorem 4.8. Let R be a finitely generated commutative k-algebra which is a
domain. Then Kdim(R) is the length of the longest chain of prime ideals in R:

Kdim(R) = max{n € N: thereexist Py C P, C---C P,, P; € Spec(R)}.
Proof. Omitted. O

This is the classical definition of the Krull dimension of a ring. The proof uses the
Noether Normalisation Lemma and the fact that every affine variety has a smooth,
dense, open subset. Unfortunately we don’t have time in this course to give all

details of the proof.

Corollary 4.9. Let R be a finitely generated commutative k-algebra. Then Kdim
is a dimension function for R.

Proof. In order to apply Theorem 4.6, we just need to check that
Kdim(R/P) < Kdim(R/Q) whenever Q C P.

Suppose that P = Py C P € --- C P, is the longest chain of prime ideals in R
starting with P so that n = Kdim(R/P) by Theorem 4.8. Then this chain induces
a chain of prime ideals of R/Q of length n. Thus n < Kdim(R/Q). O

Definition 4.7 is more geometric, and more suitable to our intended applications.
The vector space (m/m)* is the Zariski tangent space to the affine algebraic variety
X := Spec(R) at the point m, so dimp/m(m/m?) is (roughly speaking) the number
of linearly independent tangent vectors to X at the point x.

We also need to borrow the following consequence of the Weak Nullstellensatz
from C2.6 Commutative Algebra:
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Lemma 4.10. If k£ is an algebraically closed field, then every maximal ideal of

the polynomial algebra k[z1,...,z,] is of the form (z; — a1, -+ ,x, — @) for some
a € k™.
Proof. Omitted. O

Example 4.11. Let R = k[z,y|/(xzy) with k algebraically closed. This is the co-
ordinate ring of a pair of lines X = {(a,b) € k? : ab = 0} in the affine plane k%. By
Lemma 4.10, its maximal ideals are

MaxSpec(R) = {{(z —a,y) : 0 F a €k} U{{z,y—b): 0#be k} U{(z,y)}.

If m = (x — a,y) with a # 0 then m? = ((z — a)?, (z — a)y,y?) = ((x — a)?,y) and
m/m? is a one-dimensional vector space spanned by the image of # — a. Similarly,

if m = (x,y — b) then dimy m/m? = 1. However

<$,y)2 = (332,3:y,y2> = <$2,y2>

so dimy(x,y)/(z? y?) = 2: there are two linearly independent tangent directions
at the origin. Thus, as might be expected geometrically, Kdim(R) = 1 since it is

intuitively clear that X is a one-dimensional space.

Now, let’s return to the non-commutative setting and seek a well-behaved di-
mension function in the case where the ring in question doesn’t necessarily have

many two-sided ideals.

Definition 4.12. Let R be a filtered ring with filtration (R;);cz and let M be
a left R—module. A filtration on M is a set (M;);cz of additive subgroups of M
satisfying

o M; C M;;q forallieZ,

o R+ M; C M, foralli,j € Z,

o UjczM; =M.

Filtered right modules are defined similarly.

Example 4.13. Let M be a left R—module with generating set X. Then M, :=
R; - X for all i € Z gives a filtration of M, known as a standard filtration.

Definition 4.14. (a) Let S = ®;cz5; be a graded ring. A graded left S—module
is a left S—module V of the form
V-
i€Z
such that S;V; C Viy; for all 4,5 € Z.
(b) A graded left ideal of S is a left ideal of the form J = @;czJ;, where J; C S;
for each i € 7Z.
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Definition 4.15. Let R be a filtered ring and let M be a filtered left R—module
with filtration (M;);ez. Define the abelian group

ot M =P M;/M;_.
=
Equip gr M with a gr R—action, which is given on homogeneous components by
Ri/Ri-y  x Mj/M;j—y  — Miy;/Miyj
r+R;,_1 m+Mj_1 — rm—&—Mi_H_l
and on the whole of gr M by bilinear extension. Then gr M becomes a graded left
gr R—module, called the associated graded module of M.

Our next goal will be to define a well-behaved dimension function for certain
filtered non-commutative rings. For this, we first need to make a digression to

study Rees rings and good filtrations.

Definition 4.16. Let R be a filtered ring with filtration (R;);cz, and let M be
a filtered left R—module with filtration (M;);cz. The Rees ring is the following
subring R of the ring of Laurent polynomials R[t, t71]:

R=@PRit' C PRt =R[t,t7"].
i€z =y
The Rees module M of M is the abelian group
M =P Mt
iz
where the action of R is given by on homogeneous components by
Riti X thj — Mi+jti+j
Titi s mjtj — TimjtiJrj.
Note that ¢ € R is a central regular element, since 1 € R; always. There is a

certain amount of interplay between the Rees ring of R and the associated graded

ring gr R.

Lemma 4.17. Let R and M be as above. Then
(1) R/tR = gr R as rings,
(2) M/t]T/.f = gr M as left gr R—modules,
(3) R/(t—1)R = R as rings,
(4) M/(t— 1)M = M as left R—modules.

Proof. We will only prove the result for the rings, leaving the modules as an exercise.

(1). We have an isomorphism of abelian groups

@ieZ Rit! ~
@iez Rt

It can be checked that this is also a ring isomorphism.

E/tﬁé: @Rz/szl %grR.

1€Z
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(2). Define a ring homomorphism 7 : R — R by (3 rit!) = S r;. Since
m(R;t") = R; we see that 7 is onto. Clearly t — 1 € ker(w). Check that in fact
ker(m) = (t — 1)R. The result follows. O

So Risa ring which has both R and gr R as epimorphic images. It follows that
if R is right (or left) Noetherian, then so are both R and gr R.

Definition 4.18. Let R be a filtered ring and let M be a left R—module.
e A filtration (M;) on M is said to be good if the Rees module M is finitely

generated over R.
e Two filtrations (M;) and (M]) on M are algebraically equivalent (or just
equivalent) if there exist ¢, d € Z such that

M; C M. and M;C Mj’-+d for all 4,5 € Z.

Note that if (M;) is a good filtration, then gr M = M/t]\? is finitely generated
over gr R and M = M /(t — 1)M is finitely generated over R, by Lemma 4.17.

Proposition 4.19. Let R be a filtered ring and let M be a left R—module.

(1) A filtration (M;) on M is good if and only if there exist ki, ko,...,ks € Z
and my € Mkl,mz S ]\4}€27 Lo.,Mg € Mks such that

M; = Ri,klml + Rikamz + -+ Rifksms forall ¢€Z.
(2) All good filtrations on M are equivalent.

Proof. (1) If the graded module M is finitely generated, it has a finite homogeneous
generating set {t*1my, ... t**m,} say, withm; € Mj,. Then the i—th homogeneous

component of M is

tM; = Ry, 7R (M my) + -+ Ry_p 7R (tFmy),  so

M; = Ri_p,mq + Ri_p,mo + -+ + Ri_p_ms.

Conversely, any filtration of this form is good, since {t*1m,...,t*m,} is then
a generating set for M.
(2) Take two good filtrations (M;) and (M/). Then we have

M, = Ri_klml +"'+Ri—kumu for all 1
M; = Rjmi+-+Rj,m, forall j

We can find ¢ € Z such that m, € M; . for all s =1,...,v. Then M/ C M, for
all 4, and similarly there exists d € Z such that M; C M, for all i. ([

Corollary 4.20. Every finitely generated module over a filtered ring has at least

one good filtration.
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Proof. Let X = {x1,...,zs} be a finite generating set for M, and let
M;, :=R;x1+ ...+ Rijxzs = R; X
be the standard filtration on M. It is good by Proposition 4.19. ]

Theorem 4.21. Let R be a filtered ring such that gr R is commutative and Noe-
therian, and let M be a finitely generated R-module. Let (M;) and (M) be two
good filtrations on M, and let gr M, gr’ M be the respective associated graded mod-

ules. Then
min(Ann(gr M)) = min(Ann(gr’ M)).

Proof. By Proposition 4.19, we can find an integer ¢ > 0 such that
M,_. C Mz/ - Mi-i—c for all i€ Z.

Let I = \/Ann(gr M) and I’ = \/Ann(gr’ M). Since min(Ann(gr M)) = min(I),
by symmetry it will be sufficient to show that I C I’. Because these ideals are
graded and gr R is commutative, it will be enough to show that every homogeneous
element X € I lies in I’. We can assume that X = x + R,,_ for some z € R,,.

Since I/ Ann(gr M) is a nilpotent ideal by Corollary 4.4, X™ € Ann(gr M) for
some m € N. Thus 2™ + R, kills gr M:

" M; € Mijymn—1 forall ie€Z.
Apply this relation repeatedly to deduce that
" M; C Mitamn—a forall i€ Z,aeN.
Now, take a = 3¢ and use M;_. C M/ C M. to obtain

z3MM! C 23 My e € Migsemn—2e C M| for all i€ Z.

i+3cmn—c

Since X = 2 + R,_1 and ¢ > 1, we see that X3°™ kills gr’ M:
X3em ¢ Ann(gr’ M).

Because gr R is commutative, the image of X gr R in gr R/ Ann(gr’ M) is a nilpotent
ideal, so X € /Ann(gr’' M). O

Definition 4.22. Let R be a filtered ring such that gr R is a finitely generated
commutative algebra over a field k, and let M be a finitely generated R-module.

Choose a good filtration on M using Corollary 4.20.

(a) The set of characteristic primes of M is Ch(M) := min(Ann(gr M)).
(b) The dimension of M is d(M) := Kdim(gr M).

The characteristic variety of M is the affine subvariety of Spec(gr R) defined
by Ann(gr M). Its irreducible components are the affine varieties defined by the
members of Ch(M). Theorem 4.21 ensures that Ch(M) does not depend on the
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choice of good filtration on M. Since by Definition 4.7 Kdim(gr M) only depends
on Ch(M), it also does not depend on this choice.

We can now state one of the main results in this course: the proof occupies most
of Chapter 5.

Theorem 4.23 (Bernstein’s Inequality). Let k be an algebraically closed field of
characteristic zero, and let M be a finitely generated, non-zero module over the
Weyl algebra A, (k). Then

d(M) > n.

The Weyl algebra A, (k) can be thought of as a non-commutative polynomial
ring in 2n variables because gr A,, (k) 2 k[X1, ..., Xa,] by Proposition 1.25. So even
though gr A,, (k) has finitely generated modules of all possible dimensions between 0
and 2n, non-zero finitely generated A, (k)-modules M are “large”: n < d(M) < 2n.

To ensure that d really is a dimension function for R in the setting of Definition
4.22, we need to do a little more work.

Definition 4.24. Let N be a submodule of a filtered left R-module M.
e The subspace filtration (N;);cz on N is given by

e The quotient filtration ((M/N););cz on M/N is given by
(M/N); :== (M; + N)/N.

Proposition 4.25. Let R be a filtered ring, let M be a filtered left R—module with
filtration (M;);cz and let N be a submodule of M. Equip N with the subspace
filtration and M/N with the quotient filtration. Then there exists a short exact
sequence of left gr R—modules

0= gr NS gr M5 gr(M/N) 0.
Proof. The natural composition of maps N; < M, and M; - M;/M,_, has kernel
N;,NM;_1=NNM,;_1 =N,;_1. So we have an injection of abelian groups
a; i Nj/N;—1 — M;/M;_4
for all i € Z. Putting these together we get an injection
a=®a;:gr N = gr M.

Exercise: check that « is a left gr R—module homomorphism.
Consider the composition
Mi+ N o (M; + N)/N
M;_ 1+ N (M;—1+ N)/N

Bi : Mi/Mifl ig

where w;(m + M;—1) = m+ M;_1 + N and v; is the natural isomorphism.
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Note that u; is onto, whereas

Ker(ug) = M;n (M1 +N) M1+ (M;AN)  M;_1+N; (o)
v M; B M; - My ’

by the modular law. Since v; is an isomorphism, f; is onto and ker(5;) = im(o;)
for all © € Z. Letting

B =®Bi:grM — gr(M/N)

we see that 8 is onto and ker(8) = im(«).

Exercise: check that § is a left gr R—module homomorphism. (]

Proposition 4.26. Let R be a filtered ring such that the Rees ring R is left
Noetherian and gr R is a finitely generated commutative algebra over a field k.
Then

M — d(M) = Kdim(gr M)

is a dimension function for R.

Proof. We have to show that d(M) = max{d(N),d(M/N)} whenever N is a sub-
module of a finitely generated R-module M. Equip M with a good filtration using
Corollary 4.20, and endow N and M /N with the subspace and quotient filtrations,

respectively. Then by definition, the associated sequence of Rees modules

0—>ﬁ—>ﬁ—>]\//l\/J/\7—>0

is exact. Thus N and M /N are finitely generated over the left Noetherian ring ]?2,
so that the filtrations on N and M are good. Now,

0—grN—ogrM —egrM/N —0

is an exact sequence of finitely generated gr R-modules by Propostion 4.25, so we

can apply Proposition 4.9. (I

Theorem 4.27. Let R be a positively filtered ring such that gr R is left Noetherian.
Then the Rees ring R is also left Noetherian.

O

Remarks 4.28. Even though Theorem 4.21 ensures that d(M) does not depend
on the particular choice of good filtration on M, the definition still depends on the
choice of filtration on the ring R. It is quite possible that the same non-commutative
ring R has two “different” filtrations, in the sense that the respective associated
graded rings are not isomorphic. However, using more advanced techniques from
homological algebra such as the bidualising complex, it can be shown that in fact
d(M) does not depend on the choice of filtration on the ring R, and is therefore an

intrinsic invariant of the R-module M.
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5. THE INTEGRABILITY OF THE CHARACTERISTIC VARIETY
Definition 5.1. Let R be a ring. A Poisson bracket on R is a function
{,}:RxR—R

such that

(a) {,} is bi-additive,

(b) {z,z} =0 for all z € R,

(¢) {z,{y,z}} +{y, {z,2}} + {2, {x,y}} =0 for all x,y,z € R,
(d) {z,yz} ={z,y}z + y{x, 2} for all z,y,z € R.

In other words, a Poisson bracket is a Z-Lie bracket on R which is a bi-derivation
in the sense that the functions {z,—} : R — R and {—,y} : R — R are derivations
of R for all z,y € R. For example, the commutator bracket on every ring is an
example of a Poisson bracket. However, it can happen that a commutative ring
has an interesting and non-trivial additional Poisson structure. One of the main
mechanisms for constructing Poisson brackets comes from deformation theory as
follows:

Proposition 5.2. Let R be a ring and suppose that 7 € R is a central element
such that R := R/7R is commutative, and

ann(7) = 7R.
Define {,} : R x R — R by the rule
{r+7R,y+ 7R} =24+ 7R
where [z,y] = 7z. Then {, } is a well-defined Poisson bracket on R.

Proof. We will check that {,} is well-defined. Note that every commutator [z, y]
in R lies in 7R because R/TR is commutative by assumption: this ensures the

existence of z € R such that [z,y] = 7z. Now suppose that
¥ =xz+7a and 3y =y-+7b for some a,beR.
Then because 72 = 0 we have
[, Y] = [z,y] + 7]z, b] + T]a, y].

But [R,R] € 7R and 72 = 0, so in fact [2,y'] = [z,].
Finally, if [z,y] = 72z = 72’ for some 2z’ € R then by assumption,

z—2 €ann(r) =TR
so z+ TR = 2/ + 7R. The rest is straightforward. O

The following elementary Lemma will be useful many times in what follows. It

transforms questions about filtered modules into a problem in deformation theory.
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Lemma 5.3. Let R be a filtered ring and let M be a filtered left R-module. Let
R := R/t?R, 7 := t + t*R € R and let N/ := M/t2M. Then 7 € R is a central
element such that 72 = 0, and {m € N : 7m = 0} = 7.

Proof. Only the last part requires proof. Suppose that 7m = 0 for some m € N.
To show that m € 7A we may assume that m is homogeneous, and thus of the

form m = at’ + t2M for some a € M;. Now
0=7m = (t+t*R)(at' + t*M) = at'™" +*M
implies that at'*! € #2M. But the homogeneous component of 20 of degree i + 1

is M; 1t so a € M;_;. Hence at’ = t(at'~!) € tM and thus m € TN, O

Corollary 5.4. Let R be a filtered ring such that gr R is commutative. Then there
is a Poisson bracket

{,}:erRxgrR—grR
such that
{4+ Ri—1,y+Rj_1} = [x,y] + Ritj—2
whenever x € R; and y € R;.

Proof. We form the Rees ring R and set R := E/tQR Let 7 € R be the image
oft € Rin R; then 72 = 0 and 7 is central in R by Lemma 5.3. Also, R/TR =
fi/tﬁ > or R by Lemma 4.17(1), and because R is itself a filtered left R-module,

ann(7) =7TR

by Lemma 5.3. Proposition 5.2 now gives a Poisson bracket {,} on gr R 2 R/7R.
If x € Ry and y € Rj then  + R;_; and y + R;_; are the images of xtt + 2R and
yti + 2R respectively under the map R — gr R. Now since gr R is commutative,
[z,y] € Riyj_1 50 [z,y]t"7 =1 € R[t,t™"] lies in R. Hence

[2t" 4+ 2R, yt’ + t*R) = [z, y)t'T7 + *R = t([z,y]t' 7~ + £*R)
so that
{(zt” +12R) + TR, (yt! + 2R) + TR} = ([z, y]t 1+ £2R) + TR.
Therefore {x + R;—1,y + Rj_1} = [z, y] + Rit+j—2 by the definition of {, }. O

We will next calculate the Poisson bracket induced by the Weyl algebra A,, (k).
Equip A, (k) with the filtration by order of differential operator, and recall that

grAn (k) 2 k[Xq,..., X, Y1,...,Y,]
by Proposition 1.25 with X; in degree zero and Y; in degree one.
Example 5.5. The Poisson bracket on gr A, (k) is given by
{V;, X;} =6;;, and {X;,X;}={Y,,Y;} =0 forall ij=1,...n
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The goal of this Chapter is to prove the following Theorem.

Theorem 5.6 (Gabber). Let R be a filtered ring such that gr R is a commutative
Noetherian Q-algebra and let M be a finitely generated R-module. Then

(P,PyC P
for every P € Ch(M) = min(Ann(gr M)).

To see how powerful this Theorem is, we will use it to prove Bernstein’s Inequality
(Theorem 4.23) after the next Lemma.

Lemma 5.7. Let (,) be a non-degenerate bilinear form on a finite dimensional
k-vector space V', and let W be a subspace of V such that (W, W) = 0. Then

dim W < %dimV.

Proof. Since (,) is non-degenerate, the map ® : V.— V* given by ®(v)(w) = (v, w)
is injective. Pick a basis {f1,..., fr} for ®(W), extend it to a basis {f1,..., fm}
for V* and let {vy,..., v} be the dual basis for V. Then {v,y1,...,v,} is a basis
for Wt := {v € V : (W,v) = 0} by construction, so dimW + dim W+ = dim V.
But (W, W) =0, so W < W and hence 2dim W < dim V. O

Proof of Theorem 4.23. Recall from Proposition 1.25(b) that the associated graded
ring of A, (k) with respect to the filtration by order of differential operators is a
polynomial algebra over k in 2n-variables:
R:=gr A, (k) 2 Kk[X1,..., Xon]
Choose a good filtration on M and let P € Ch(M). Every maximal ideal of R/P
is of the form m/P for some maximal ideal m of R containing P, and
(m/P)/(m/P)? = m/(m* + P)
as vector spaces over F':= R/m. By Definitions 4.22 and 4.7, we need to prove that

dimp _m >n

m2 4 P

for every maximal ideal m of R containing P. The Poisson bracket {,} on R given
in Example 5.5 induces a well-defined alternating F'-bilinear form

(m :m/m? x m/m? - F

given by (v +m? w + m?), = {v,w} +m. Now because k is algebraically closed,
we can write m = (X; — a1, ..., Xo, — ) for some a € k?" by Lemma 4.10. So
the natural map k& — R/m is an isomorphism, and if v; ;== X; — a + m? € m/m?
then the form (, )y is given by

1 if j=i+n

(v, Vj)m =< —1 if i=j+n
0 otherwise.
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by Example 5.5. It follows that (, )y is non-degenerate. Now {P,P} C P C m by
Theorem 5.6, 50 (, )m vanishes on the subspace (P + m?)/m? of m/m?. Hence
2

. m . m .
dimy ———F = dimy — — dimg >2n—n=n
m m

+P
by Lemma 5.7. (]

m2

We will use the techniques of Rees rings and noncommutative localisation to

prove Theorem 5.6. First, two preliminary Lemmas.

Lemma 5.8. Let R be a commutative Noetherian ring and let M be a finitely
generated, non-zero, R-module. Let P € min(Ann(M)) and let S = R\P. Then

(S7'P)w.S7'M =0
for some w € N.

Proof. Since M # 0, I := Ann(M) is a proper ideal, so min(J) is non-empty by
Proposition 4.2(1). Write min(I) = {P,..., P,} with P = P;. Then

PPy P C T
for some w; € N by Proposition 4.2(2). Now pass to the localisation S~!R:
(S71P)wi(S~ipy)w2...(§71p,) ¥ C ST
Now P; SZ P, whenever i > 2, so ;NS # () and hence S™'P; = S~'R for all i > 2.

Hence
(S71P)»r . (S7'M) =0
because S™1I-S™1M = 0. O

Our next result gives a very general mechanism for creating Ore sets. It can be

viewed as the start of the theory of algebraic microlocalisation.

Lemma 5.9. Let R be a ring contining a central element 7 € R such that 72 = 0.
Let £ : R — R := R/7R be the canonical surjection. If S C R is a left Ore set in
R, then £715 C R is a left Ore set in R.

Proof. Let a € R, s € £1(9). Then ta = bs (mod 7R) for some t € £~1(S), b € R.
So ta = bs + Tu, and also t'u = b's + Tu’ for some ¢’ € £71(S). But then,

(t't)a =t'bs + 7t'u =t'bs + 7(b's +7u') = (H'b+ 7V)s
because 72 = 0, and 't € £71(S). O

Proof of Theorem 5.6. As in the proof of Corollary 5.4, form the Rees ring R and
set R := }Nﬁ/t2§. Let £ : R — gr R be the map defined by &(zt? + t2}~3) =x+ R;_1
forx € R;, and let T =t + t2R € R. Then 7 is central in R, 72 =0 and

keré§ = 7R = ann(r)



34

by Lemma 5.3. Let S = gr R\P and set S := £71(S). Then S is a left Ore set in
R by Lemma 5.9, and R is a left Noetherian ring by Exercise 1.4(a) because gr R

is Noetherian, so S is left localisable by Proposition 3.11. Form the localised ring
B:=S8'R

and note that B/7B = S~}(R/TR) = S~!(gr R) by Proposition 3.14. Note that
P =S 1¢71(P) is a two-sided ideal in B, and
B/P=S7H(R/¢H(P)) = STH(R/P)

is the field of fractions of R/P. Thus P is a maximal ideal in B.

Choose a good filtration on M and let N := M /t?>M. This is a finitely generated
R-module, and

TN 2 N/TN =2 gr M

as gr R & R /mR-modules by Lemma 5.3 and Lemma 4.17(2). The localised module

M =8N
is finitely generated over B, and
TM=M/TM = S (gr M)

by Proposition 3.14. By Lemma 5.8, S~!(gr M) is killed by (S~'P)* for some
w €N, so P?- M C 7M. Hence P> - M = 0, so M is a finitely generated module
over

A= B/P?.
Let J be the image of P in A; then J is a maximal ideal of A such that A/J =
B/P = S~L(R/P). Since J is finitely generated as a one-sided ideal and J?* = 0,
the ring A is left Artinian. So by Theorem 5.10 below,

T, T C1J.

Pulling back to B, we deduce that [P,P] C 7P + P**. But B/7B is commutative
by construction, so [P,P] C 7B and

[P,P] C (rP +P*)N7tB C 7P + (P* N7B)

by the modular law. But if x € B and 72 € P?* then 7z kills M, so 2M C T M
and 22 M = 0. If ¢ P then z is a unit in B which would force M = 0. But then
S~1(gr M) = 0, and since gr M is finitely generated, it is killed by some s € S. But
then s € Ann(gr M) C P, which contradicts s € S. Hence z € P, so [P,P] C 7P.
Finally, let 2,y € P and choose a,b € £~1(P) such that z = £(a) and y = £(b).
Then [a,b] € 7P and P = S~1¢71(P), so there is some s € S such that s[a,b] €
T7671(P). Hence £(s){z,y} € P and £(s) € S. But S = gr R\P and P is prime, so
{z,y} € P. O

Thus it remains to prove
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Theorem 5.10 (Gabber’s Local Theorem). Let A be a left Artinian Q-algebra
with unique maximal ideal J and a central element 7 € J such that 72 =0 and
A/TA is commutative. Suppose that M is a finitely generated non-zero .A-module
such that

{meM:mm=0} =7M.

Then [J,J] C7J.
We begin the proof with a version of Hensel’s Lemma.

Lemma 5.11. Let K be a field of characteristic zero and let A be a K-algebra
such that A = K|z] for some = € A. Suppose that I is a maximal, nilpotent ideal
in A. Then there exists y € A such that y =z mod I and such that K[y] is a field.

Proof. Let f(X) € K[X] be the monic minimial polynomial of z+1 € A/I. We will
find a sequence of elements x1 := x, 2, x3,- - such that f(z,,) € I"™ and z,, = x

mod I for all m > 0. Assume inductively that f(z,,) € I"™ and consider

2
Pl 1) = Fe) + hf (@) + o ) + -

for some h € I'™; this formal Taylor series makes sense because h € I'™ is nilpotent
by assumption and because K has characteristic zero. Now if f'(x,,) € I then
f'(z) € I since x,, = mod I. So f(X) divides f'(X) in K[X]. This is impossible

over a field of characteristic zero, so f'(x,,) ¢ I. Hence f’(z,) is a unit in A. Since
f(@m +h) = f(zm) + hf (z,) mod I™T!

we can take h := —f(x,)f (vm)”t and 2,41 = T, + h. This completes the
induction. Now since I is nilpotent, I"™ = 0 for some n > 1 and hence f(z,) = 0.
But then K|[x,] is a homomorphic image of the field K[X]/{f(X)), so K|x,] is the
required subfield of A with z,, =z mod I. a

Definition 5.12. Let A be a commutative ring.

(a) A is local if it has a unique maximal ideal.
(b) Let A be a local ring with unique maximal ideal J. A coefficient field is a
subfield K of A such that K + J = A.

Every coefficient field K is isomorphic to A/J: (K + J)/J 2 K/JNK = K
because every proper ideal of a field is zero. Unfortunately coefficient fields do not
exist in general, as the example A = Z/47 shows: this ring does not contain any
subfield whatsoever. In fact coefficient fields exist in any commutative complete
Noetherian local ring that contains a field: this is the key ingredient of the proof
of Cohen’s famous Structure Theorem for complete commutative Noetherian local

rings. But we will not need the full strength of this result; the following will suffice.

Theorem 5.13. Every commutative local Artinian Q-algebra has a coefficient field.
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Proof. Let S be the set of subfields of the Artinian Q-algebra A. It is not empty
because A contains a copy of the rational numbers Q by assumption. If C is a chain
in S then UC is again a subfield of A, so UC € S. Hence by Zorn’s Lemma 2.3, S
has a maximal element K. We will show that K is the required coefficient field.
Let J be the unique maximal ideal of A, fix x € A and consider the subring
Klz] of A generated by x. Suppose for a contradiction that x is transcendental
over K. Then g(z) ¢ J for any non-zero g(X) € K[X], because J is nilpotent by
Proposition 2.23. Hence g(x) is a unit in A for all non-zero ¢(X) € K[X], which
means that the K-algebra homomorphism K[X] — A which sends X to x factors
through the field of fractions K(X) of K[X]. Then the image K(z) of K(X) in A
is a subfield of A which properly contains K, contradicting the maximality of K.
Hence x is algebraic over K. Let I := K[z| N J; then K[x]/I is isomorphic to a
K-subalgebra of the field A/J, and it is generated by the algebraic element x + I.
So K[z]/I is itself a field and hence I is a maximal ideal in K[z]. It is also nilpotent
because J is nilpotent, so by Lemma 5.11 we can find y € KJ[z] such that y = «
mod I and such that K[y] is a field. The maximality of K now forces y € K, and
we conclude that r € I+ K C J+ K. Hence A=J + K. O

Until the end of this Chapter, we assume that:

e A is a left Artinian ring with unique maximal ideal 7,
e 7 € Ais a central element,
e 72 =0 and A := A/TA is commutative.
e M is a finitely generated non-zero A-module.
Write J := J/7A and M := M/7M. Choose a coefficient field K C A using

Theorem 5.13: K +.J = A. Since J is nilpotent, J*T'M = 0 and J*M # 0 for some
t > 0. Consider the following chain of K-subspaces of M:

O<JIM<J"'M<- .- <JM < M.

Because M and J are finitely generated, each J"M/J" 1M is finite dimensional
over K, so we can find a K-basis {e1,...,es} for M such that the action of every

element z € A on M has upper triangular matrix with respect to this basis:
S
xe; = Zx(x)ijei forall j=1,...,s.
i=1

In this way we obtain a K-algebra homomorphism y : A — M (K) such x(z) is
strictly upper triangular whenever z € J: x(J) C nf (K).

Let K be the inverse image of K in A, so that K contains 7.4 as an ideal and
K/T7A = K. Choose €1,...,es € M such that e; = & := ¢; + 7M for each ¢; then
i Kei + 7M = M and hence

M = ES:ICEZ-—I—T (i:lCei—i—TM) = i:/Cei.
i=1

i=1 =1
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Lemma 5.14.
(a) For all z € J, there exist X(x) € nf(K) and F(z) € Ms(K) such that if

O(x) := x(z) + 7F(x) € Ms(K)
then
re; = Z ®(x)ije; forall j.
i=1

or a eEn there exists en such that
b) F 11w j A) th i w’ j K h th

Z Wije; = Z Wi/jei for all j.
i=1 i=1

(c) For all z,y € J there exists I'(z,y) € nf (K) such that

S

TYe; = Z(@(x)@(y) +70(z,y))ije; forall j.
i=1

Proof. (a) Since xe; € ),_. Ke;, we can find X(x);; € K such that

1<J
S

T€j; — Z%(!E)Uez eTM= ZTK:Q‘.

i<j i=1

So there is a matrix F(x) € M,(K) such that

s
TE; = Z)z(x)ijei + TZ]:(.I)HGZ'.
i<j i=1

Now set x(z);; := 0 whenever i < j. Note that x(z) = x(z).
(b) Since A = K + J, we may assume that W € nf(J). Now for any i, j, b,

Wijey, = Z X(Wij)av€a
a=1

and x(W;)as = 0 whenever ¢ > j or a > b. Hence

ZWijei = ZZX(Wij)aiea = Z (Z X(Wij)ai> €a = Z (Z X(Waj)m> €;.

i=1 a=1 a=1 \1% i=
Set W, := >0 1 X(Waj)ia € K. Now if x(W;)ia # 0 then i < a and a < j. Hence
X(Waj)ia = 0 whenever i > j, so W’ € n} (K).
(c) By (a), we have zye; = 37_, 2®(y)ijei = 22—y ([2, (y)ij]+ 2 (y)ijz)ei. Now

S o)z = Y Py Y P(a)pier =
im1 =1 k=1

= > (Z q)(y)ij@(w)ki) €k =
k=1 \i=1

S

- Z (Zq)(y)qu)(l‘)ik> €.
k=1

i=1
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Therefore

TYE; = Z(@(x)@(y) +&(z,y))ije; forall j

i=1

where
S

g(xvy)ij = [1‘, ‘I)(y)ij] + [(I)(y)kﬁ q)(x)zk] e K.
k=1

Since ®(x) = X(z) + 7F(x) and [rA, A] C 7[A, A] C 724 = 0, we have

E(z,y) Z Ykis X

Since X(z),X(y) € nF(K), X(y)r; # 0 and X ()i # 0 imply that k < j and i < k.
But then i < j, so £(x,y);; = 0 whenever ¢ > j. Being a sum of commutators in
A, E(z,y);; is also an element of 7.A4.

Hence &(z,y) € nf (K)N M (1A) = mnf (A). Choose W (x,y) € nf(A) such that
E(x,y) = 7W (z,y); then by part (b) there is some I'(z,y) € nf (K) such that

Znyw ZF:Uy”QGTM

=1

Hence Y ., E(z,y)ijei = 7Y, ['(2,y)ije; and therefore zye; = >0 (®(z)P(y)+
T (x,y)):; for all j. O

Proposition 5.15. For all z,y € 7, there exist x(z) € nf (K), F(z) € Ms(K) and
G(z,y) € nf(K) such that

[2,9le; = 7Y (X(2), F(y)] = [X(v), F(@)] + G(x,p)),; &
i=1
for all j.

Proof. By parts (a) and (c) of Lemma 5.14 we have

S

(wy —yz)e; = Y ([@(2), (y)] + 7T (z,y) — 7T (y,2)),; & forall j
=1

where ®(z) = X(z) + 7F(x) and I'(z,y),(y,z) € nf(K). Because 72 = 0, we have

[@(z),2(y)] = [X(x)+7F(2),X(y) +7F(y)] =
= [X@),XW)] + 7[x(@), F(y)] — 7[X (), F(z)].
Now [x(z),X(y)] € nd(K) N Ms(rA) = maf(A). So there is some W (x,y) € nf(A)

such that [x(z),X(y)] = 7W (x,y). By part (b) of Lemma 5.14, we can further find
some W' (z,y) € nf(K) such that

Zny” ZW (x,y)ije; € TM.

i=1
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Therefore
z,yle; =7y ([X(@), FW)] = X(w), F@)] + W (x,y) + T(x,y) — T(y, 2)),; €
i=1

for all j, and we may take G(x,y) := I'(x,y) — T(y,z) + W'(z,y) € n (K). O
Finally, we can prove Theorem 5.10.
Theorem 5.16. Let A be a left Artinian Q-algebra with unique maximal ideal J

and a central element 7 € J such that 72 = 0 and A/7A is commutative. Suppose
that M is a finitely generated non-zero A-module such that

{meM:mrm=0} =7M.
Then [J,J] C7J.

Proof. Let z,y € J and write [z,y] = 7z for some z € A. Write Z = A + u with
A € K and u € J; we have to show that A = 0. Now by Proposition 5.15, we have

Tz€5 = TZZZ‘J‘Q for all j
i=1
where Z := [X(z), F(y)] — [X(v), F(z)] + G(x,y). By the assumption on our module
M, we can deduce that

Z@j = ZZijei.
i=1
Note that x(z) = X(z) for all € J, and write F(x) := F(z), G(z,y) := G(z,y).

Because {e1,...,es} is a K-basis for M and x(1) is the identity matrix,

M + x(uw) = [x(2), F(y)] = [x(y), F(2)] + G(z,y)

inside M(K). Now x(u) and G(z,y) are strictly upper triangular, so they have
trace zero. The trace of every commutator is also zero. Therefore

sA = tr([x(z), F(y)] = x(v), F(2)] + G(z,y) — x(u)) = 0.

Because A is a Q-algebra, we can cancel the positive integer s and obtain A =0. O
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APPENDIX A. ORE’S THEOREM

Let R be a ring, and let S be a left Ore set in R consisting of regular elements.
We will define an equivalence relation on S x R, and define the structure of a ring

on the set of equivalence classes.

Definition A.1. Define a relation ~ on S x R by setting
(s,a) ~ (t,b)
if and only if there exist ¢,d € R such that ca = db and cs = dt € S.
Lemma A.2.
(a) Suppose $1,82,...,8, € S. There exist ¢1,¢a,...,¢, € R and s € S such that
€181 = €289 =+ = CpSp = S.
(b) Suppose (s,a) ~ (t,b) and ¢/, d’ € R are such that ¢’s = d't € S. Then
cda=db.
Proof. (a) Proceed by induction on n. When n = 1 we can take ¢; = 1, so assume
n > 1. By induction, we can find by, bs,...,b,_1 € R such that
b1s1 =bysg =+ =bp_18,_1=UuUES,

say. By the left Ore condition, we can find v € S and ¢, € R such that vu = ¢, s,.
Since u,v € S and S multiplicatively closed, s := vu € S. So if ¢; := vb; € R, then

C181 = " =Cp—1Sp—1 = VU = CpSp, = S.

(b) We have ca = db and c¢s = dt € S for some ¢,d € R. The left Ore condition
gives ' € S and = € R such that 2/(¢'s) = x(cs). Hence z(dt) = z(d't). Since
s,t € S are regular, xc = x’'c’ and xd = z'd’. Hence

2'da=2xca=xdb=2db
but 2’ € S is regular so ¢'a = d'b. O

The first part of this Lemma shows that “any finite collection of denominators
have a common left multiple which is a denominator”, and consequently that any
finite set of fractions of the form s;\a; “has a common denominator”, that is, each
one can be written in the form s\c¢;a; for some ¢; € R. It will also be useful to us

in the technical verifications below.
Lemma A.3. ~ is an equivalence relation on S x R.

Proof. Since 1 € S, we can take ¢ = d = 1 and obtain (s,a) ~ (s,a) for any
a € R,s € S. Hence ~ is reflexive. Also, ~ is clearly symmetric.

Suppose (s,a) ~ (t,b) ~ (u,c). By Lemma A.2(a), we can find d,e, f € R such
that ds = et = fu € S. By Lemma A.2(b), da = eb = f¢, so (s,a) ~ (u,c). O
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Denote the equivalence class of (r,s) € R x S by s\r and let Q be the set of

equivalence classes.
Definition A.4. We define the sum of the elements s\a and t\b of @ to be
s\a + t\b = 2\(za+yb)
where z,y € R are any elements given by Lemma A.2(a) such that xs = yt =2 € S.
Lemma A.5. Addition is well-defined.
Proof. Suppose a’,b',2',y' € R and §',¢', 2’ € S are such that
s\a=s'\d, t\b=t\/ and 2's'=y't'=2"€8.

By the left Ore condition, we can find u,u’ € R such that uz = vz’ € S. Hence

urs =v'z's’ € S and uyt=u'y't' €8.
By Lemma A.2(b), since s\a = s'\da’, we have uza = v'2’a’ and similarly uyb =
u'y't’. Hence

u(za+yb) =/ (z'a’ +y'b') and uz=u2"€S
and hence
2\(za + yb) = 2"\ (2'd’ + y't)

So addition is independent of the choices of a,b, s, ¢,z and y. O

Since any two fractions can be brought to a common left denominator by Lemma
A.2(a), it is easy to verify that addition is commutative and associative, that 1\0
is the zero element and that the additive inverse of s\a is s\(—a).

Definition A.6. The product of two elements s\a and t\b in Q is

(s\a) - (£\D) i= (us)\(ch)
for any ¢ € R and u € S such that ua = ct given by the left Ore condition.
Lemma A.7. Multiplication is well-defined.

Proof. First we show that this is independent of the choice of ¢ € R and u € S.
Suppose that ¢/ € R and u’ € S are such that u'a = ¢’t. By the left Ore condition,
there exist z,2’ € R with zu = 2/’ € S. Hence zct = zua = 2'v/a = 2/t
so zc = 7'c’ as t € S is regular. Hence zcb = 2'c'b and zus = z'u’s € 9, so
us\cb = u's\c'd.

Now, suppose that s\a = s'\a’ and t\b = t/\V'; we will find u, v’ € Sand ¢, € R
such that us\cb = u's'\c't’. First, we bring t\b and #'\b’ to a common denominator:
there exist w, w’ € R such that wt = w't’ € S, whence wb = w'd’ by Lemma A.2(Db).
By the left Ore condtion, there exist u,u’ € S and d,d’ € R such that ua = dwt
and v'a’ = d'w't’. Then

(s\a)(t\b) = (s\a)(wt\wb) = us\dwb and similarly (s'\a’)(t'\b') = u's"\d'w'V.
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By Lemma A.2(a) there exist x,2’ € R such that zus = z'v’s’ € S. Since s\a =
s'\a’, we obtain from Lemma A.2(b) that zua = z’u’a’. Hence
rdwt = zua = 2'v'd = 'dw't,

but wt = w't’ € S is regular so xzd = z'd’. Finally, as wb = w'V,

zdwb = 2'd'w'd’ and zus=2'u's’ €5, so wus\dwb=u's"\dw'b'.
Set ¢ := dw and ¢’ := d'w’; then us\cb = v's'\'b'. O
Lemma A.8. Multiplication in @ is associative.

Proof. Let s\a,t\b,u\c € Q. Choose d € R and v € S such that vb = ds using
the left Ore condition; then (£\b)(s\a) = vt\da. Now choose ¢ € R and w € S such
that we = evt. Now

(u\co)((t\b)(s\a)) = (u\e)(vt\da) = wul\eda, and
((u\e)(t\D))(s\a) = (wu\evd)(s\a) = wu\eda
because t\b = (vt)\(vb) and evb = eds. O

Theorem A.9. Q is a ring.

Proof. Tt is easy to check that 1\1 is the identity element in @, so by Lemmas A.5,
A.7 and A.8, it remains to check that the distributive laws hold in Q. Note first
that it follows from Definition A.6 that

(s\a).(1\b) = s\ab and (s\1).(t\b) =ts\b forany s,t€S and a,beR.

Given o = s\a and = t\b € Q, choose z,y € R so that s = yt = z € S. Let
c € R; then

(s\a + t\b)(1\c) = (z\(za + yb))(1\c) = 2\(zac + ybc) = s\ac + t\be.

We have shown that for any ¢ € R and «, 5 € (Q we have

(a+B)(1\c) = a(l\c) + B(1\c).
Now if u € S, we can apply this to obtain

(a(u\1) + B(u\1))(N\u) = a+ 3
and right multiplying this equation by u\1 gives

(a+B)(u\l) = a(u\1) + B(u\1).
Hence we obtain the right distributive law

(a+B)(u\e) = (a+ B)(u\1)(1\c) = (a(u\1) + B(u\1))(1\¢) = a(u\c) + B(u\c).
The left distributive law
(s\a)(B+7) = (s\a)(B+7)

is obtained in a similar manner, by writing s\a as the product (s\1)(1\a) first. O
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