Axiomatic Set Theory

R. W. Knight

May 3, 2024






Chapter 1

Introduction

An introductory course on set theory, including statements of all the stan-
dard ZF axioms, the development of the transfinite ordinal and cardinal num-
bers, transfinite induction and recursion, and equivalents of the Axiom of Choice.
So is an introductory course in logic going at least as far as the Completeness
Theorem for first-order predicate calculus.

I plan to edit these lecture notes from time to time throughout the term.

Videos from the time of the lockdowns are still (I believe) up on the website.
They were done by Dr Suabedissen, following a different set of lecture notes but
on the same syllabus.

One of our main aims in this course is to prove the following:

Theorem 1.1 (Gddel 1938) If set theory without the Aziom of Choice (ZF) is
consistent (i.e. does not lead to a contradiction), then set theory with the axiom
of choice (ZFC) is consistent.

Importance of this result: Set theory is the axiomatization of mathematics, and
without AC no-one seriously doubts its truth, or at least consistency. However,
much of mathematics requires AC (eg. every vector space has a basis, every ideal
can be extended to a maximal ideal). Probably most mathematicians don’t
doubt the truth, or at least consistency, of set theory with AC, but it does lead
to some bizarre, seemingly paradoxical results—eg. the Banach-Tarski paradox
(explain). Hence it is comforting to have Goédel’s theorem.
I formulate the axioms of set theory below. For the moment we have:

(AC.) Aziom of Choice (Zermelo) If X is a set of non-empty pairwise disjoint
sets, then there is a set Y which has exactly one element in common with each
element of X.

To complement Gddel’s theorem, there is also the following result which is
beyond this course:

ISee Andreas Blass, “On the inadequacy of inner models”, JSL 37 no. 3 (Sept 72) 569-571.
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Proposition 1.2 (Cohen 1963) If ZF is consistent, so is ZF with ~AC.

We shall also discuss Cantor’s continuum problem which is the following.

Cantor defined the cardinality, or size, of an arbitrary set. The cardinality
of A is denoted |A|. He showed that |R| > |N|, but could not find any set S
such that |R| > |s| > |NJ, so conjectured:

. antor’s Continuum Hypothesis For any set S, either < , or
CH.) Cantor’s Conti Hypothesis F S, either |S| < |N
1S > |R].

Again Godel (1938) showed:

Theorem 1.3 If ZF is consistent, so is ZF+AC+CH,
and Cohen (1963) showed:

Proposition 1.4 If ZF is consistent, so is ZF+AC+—CH.

We shall prove Godel’s theorem but not Cohen’s.

Of course Godel’s theorem on CH was perhaps not so mathematically press-
ing as his theorem on AC since mathematicians rarely want to assume CH, and
if they do, then they say so.

We first make Godel’s theorem precise, by defining set theory and its lan-
guage.

These notes were originally created by Peter Koepke, and adapted by Alex
Wilkie and the current lecturer.
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Basics

See D. Goldrei Classic Set Theory, Chapman and Hall 1996, or H.B. Enderton
Elements of Set Theory, Academic Press, 1977.

2.1 The language of set theory

Definition 2.1.1 The language of set theory, LST, is first-order predicate cal-
culus with equality having the membership relation € (which is binary) as its
only non-logical symbol.

Thus the basic symbols of LST are: =, €, V, =, V, ( and ), and an infi-
nite list vo,v1,...,Vp,... of variables (although for clarity we shall often use
X, Y, 2yt ..., u,v,... etc. as variables).

Definition 2.1.2 The well-formed formulas, or just formulas, of LST are those
expressions that can be built up from the atomic formulas: v; = v;, v; € vj, using
the rules:

1. if ¢ is a formula, so is —¢,
2. if ¢ and ¢ are formulas, so is (¢ V1)), and

8. if ¢ is a formula, so is Yv; ¢.

2.2 Some standard abbreviations
We write

L (¢ Ao) for =(=¢ Vv —);

2. (¢ =) for (=9 V );

3. (¢ ) for (¢ = ¥) A (v — 9));

5
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4. dx ¢ for —Vx —¢;

5. Ala ¢ for Vy(o + x =y);

6. Jz €y for Iz (v € y A ¢;
7. Ve eyo for Ve (x € y — ¢);
8. Va,y ¢ (etc.) for VaVy ¢;

9. z ¢y for ~x € y.

We shall also often write ¢ as ¢(x) to indicate free occurrences of a variable
x in ¢. The formula ¢(z) (say) then denotes the result of substituting every free
occurrence of x in ¢ by z. Similarly for ¢(x,y), ¢(z,y, 2),. .., etc.

2.3 The Axioms

(A1l.) Extensionality
Ve,y(z =y« Vit €x <t €vy))

Two sets are equal iff they have the same members.
(A2.) Empty set
JxeVyy ¢ x

There is a set with no members, the empty set, denoted &.
(A3.) Pairing

Ve,y3dzVi(t ez (t=xVi=y))
For any sets x,y there is a set, denoted {x,y}, whose only elements are 2 and
Y.
(A4.) Union

Ve IyVt(t € y <> Jw(w € At € w))
For any set x, there is a set, denoted |z, whose members are the members of

the members of x.

(A5.) Separation Scheme If ¢(x,y) is a formula of LST, the following is an
axiom:

VxVudzVy(y € z < (y ¢ u A d(x,y))

For given sets x, u there is a set, denoted {y € u : ¢(x,y)}, whose elements are
those elements y of u which satisfy the formula ¢(x, ).
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(A6.) Replacement Scheme If ¢(x,y) is a formula of LST (possibly with other
free variables u, say) then the following is an axiom:

va[vVa,y, ' (¢, y) A d(x,y') =y =y') = Vs32Vy (y € z <> Tx € sé(x,y))]
The set z is denoted {y : Iz (x,y) Az € s}.
(A7.) Power Set

VeyVt(t ey <> Vz(z €t — z € x))

For any set x there is a set, denoted P(x), whose members are exactly the subsets
of x.

(A8.) Infinity
[Ty (yeaxnVz(z ¢y AVy(yex = Iz(z€xAVE(t €z (teyVi=1y))))]

There is a set x such that @ € x and whenever y € z, they y U {y} € . (Such
a set is called a successor set.

(A9.) Foundation
Ve(3zz€x—Tz(z€xAVy €2y ¢ x))

If the set x is non-empty, then for some z € z, z has no members in common
with z.

(A10.) Aziom of Choice

Vul[Ve € udyy € zAVa,y ((x € uhy E uhx £ y) = Vz(z ¢ a2V ¢ y))] = FoVe € uIly (y € xAy € v)]

We write ZF* for the collection of axioms A1-AS8; ZF for A1-A9; ZFC for
Al1-A10.

2.4 Proofs in principle and proofs in practice

Definition 2.4.1 Suppose that T is one of the above collections of axioms. If
o is a sentence of LST (ie. a formula without free variables), we say that o is
a theorem of T, or that o can be proved from T, and write T + o, if there is
a finite sequence o1,...,0, of LST formulas such that oy, is o, and each o; is
either in T or else follows from earlier formulas in the sequence by a rule of
logic.

Proposition 2.4.2 Fvery theorem of ZF is a theorem of ZFC and every theo-
rem of ZF* is a theorem of ZF.
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Definition 2.4.3 To say that T is consistent means that for no sentence ¢ of
LST is (¢ A —¢) a theorem of T

Proposition 2.4.4 T is consistent if and only if there is some sentence which
is not provable from T .

This now makes theorem 1.1 precise: we must show that if ZF is consistent,
then so is ZFC.

2.5 Interpretations

The Completeness Theorem for first-order predicate calculus (also due to Gédel)
states:

Theorem 2.5.1 A sentence o of any first-order language is provable from a
collection of sentences S in the same language if and only if every model of S
is a model of o.

Equivalently, S is consistent if and only if S has a model.

Definition 2.5.2 A structure for LST is specified by a domain of discourse M
over which the quantifiers Vx ... and 3x ... range, and a binary relation E on
M to interpret the membership relation €.

If 0 is a sentence of LST which is true under this interpretation we say that
o is true in (M, E) or (M, E) is a model of o, and write (M, E) E 0.

If T is a collection of sentences of LST we also write (M, EY E T iff (M, E)E o
for each sentence o in T.

If ¢(x1,...,25) is a formula of LST with free variables among x1,...,%,
and ay,...,a, are in the domain M, we also write (M,E)E ¢(aq,...,a,) to
mean ¢(x1,...,%,) is true of a1, ...,an in the interpretation (M, E).

Example 2.5.3 Suppose M contains just the two distinct elements a and b,
and E is specified by a — b, ie. E(a,b), not E(b,a), not E(a,a), not E(b,b).
Then (M, E) E Empty Set, ie. M F JxVyy ¢ x, since it is true that there is an
x in M (namely a) such that for all y € M, not E(y,x). It is also easy to see
that (M, E) E Extensionality and (M, E) E —~Pairing. Notice that, by the com-
pleteness theorem, this implies that Paring is not provable from Extensionality
and Empty Set since we have found a model of the latter two axioms which is
not a model of the former.

Exercise 2.5.4 Let Q be the set of rational numbers and < the usual ordering
of Q. Which axioms of ZF are true in (Q,<)?

The completeness theorem provides a method for establishing theorem 1.1.
For we can rephrase that theorem as: If ZF has a model then so does ZFC. Indeed
we shall construct a subcollection L of V* such that if we assume (V*, €) F ZF,
then (L, €) F ZFC. (Actually our proof will yield somewhat more which ought to
be enough to satisfy any purist. Namely, it will produce an effective procedure
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for converting any proof of a contradiction (ie. a sentence of the form (¢ A —¢))
from ZFC to a proof of a contradiction from ZF.)

We now turn to the development of some basic set theory from the axioms
ZF*.

2.6 New sets from old

The axioms of ZF are of three types: (a) those that assert that all sets have a
certain property (Extensionality, Foundation), (b) those that sets with certain
properties exist (Empty Set, Infinity), and (c) those that tell us how we may
construct new sets out of given sets (Pairing, Union, Separation, Replacement,
Power Set). Our aim here is to combine the operations implicit in the axioms
of type (c) to obtain more ways of constructing sets and to introduce notations
for these constructions (just as, for example, we introduced the notation | J z for
the set y given by Union).

Notation 2.6.1 We write {x : ¢(x)} for the collection (or class) of sets x
satisfying the LST formula ¢(z).*

As we have seen, such a class need not be a set. However, in the following
definitions it can be shown (from the axioms ZF*) that we always do get a set.
This amounts to showing that for some set a, if b is any set such that ¢(b) holds
(ie. V* E ¢(b)) then b € a, so that {z : #(z)} = {x € a : #(x)} which is a set by
A5. T leave all the required proofs as exercises—they can also be found in the
books.

In the following, A,B,...,a,b,c,..., f,g,a1,a2,...,ay,... etc. all denote
sets.

1. {a1,...;an} :={z:z=a1 V...V =ayn}.
2. aUb :=Ha,b}={z:z€aVvrecb}.
3.anb:={z:xcanzcb}.

4. a\b:={z:z€anx¢b}

- J{z:Vyeareylifa#o
5. a { undefined if a = @ :

6. (a,b) : ={{a},{a,b}}. (Lemma. (a,b) = (¢,d) <> (a=cAb=4d).)

T.axb :={x:3c€add € bx = (¢,d)}. (Remark: Of course the proof
via Comprehension that a x b is a set requires not only “bounding the
2’s”, but also showing that the expression “Je € a3d € bx = (¢, d)” can
be written as a formula of LST (with parameters a,b).)

L Actually, ¢(z) will be allowed to have parameters (ie. names for given sets), so is not
strictly a formula of LST. Notice, however, that parameters are allowed in Separation and
Replacement (the “x” and “u”).
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19.
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axbxc:=ax(bxc),...,etc.

2

a’> :=axa,ad

i=aXaXa,..., etc.

We write a C b for Vo € a(z € D).

c is a binary relation on a we take to mean ¢ C a?. (Similarly for
ternary,. .., n-ary, ...relations.)

If A is a binary relation on a we usually write zAy for (z,y) € A.

A is called a (strict) partial order on a iff

(a) Va,y € a(zAy — —yAx),
(b) Va,y,z € a((xAy A yAz) — xAz).

If in addition we have (3) Va,y € a(z =y V zAy V yAz), then A is called
a (strict) total (or linear) order of a.

Write f:a — b (f is a function with domain a and codomain b, or simply
f is a function from a to b) if f Caxband Ve € a3ld € b(c,d) € f. Write
f(c) for this unique d.

If f:a— b, fis called injective (or one-to-one) if Ve,d € a(c # d —
f(e) # f(d)), surjective (or onto) if Vd € b3c € af(c) = d, and bijective if
it is both injective and surjective.

We write a ~ b if 3f(f : a = b A f bijective).
) :={f:f:a—0b}.
A set a is called a successor set if

(a) @ €aand
(b) ¥b(b € a—bU{b} € a).

Axiom A8 states that a successor set exists and it can be further shown
that a unique such set, denoted w, exists with the property that w C a
for every successor set a. The set w is called the set of natural numbers.
If n,m € w we often write n + 1 for nU {n} and n < m for n € m and 0
for @ (in this context). The relation € (ie. <) is a total order of w (more
precisely {{z,y) : x € w,y € w Ax € y} is a total order of w).

The set w satisfies the principle of mathematical induction, ie. if ¥(x) is
any formula of LST such that ¢(0) AVn € w(i(n) — 1(n+1)) holds, then
Vn € wip(n) holds.

The set w also satisfies the well-ordering principle, ie. for any set a, if
a Cwand a# @ then 3b € aVe € alc > bV c=0b).
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20.

21.
22.

23.

Definition by recursion
Suppose that f: A — A is a function and a € A. Then there is a unique
function g : w — A such that:

(a) g(0) = a, and

(b) Vn € wg(n+1) = f(g(n)).

(Thus, g(n) = f(f---(fa))--)).)
—_———
n times

More generally, if f: Bxw x A — A and h: B — A are functions, then
there is a unique function ¢ : B X w — A such that

(a) Vb € Bg(b,0) = h(b), and

(b) Vb € BYn € wg(b,n+1) = f(b,n, g(b,n)).
Using this result one can define the addition, multiplication and exponen-
tiation functions.

(Remark I have adopted here the usual convention of writing g(b,n + 1)
for g((b,n + 1)). Similarly for f.)
A set a is called finite iff dn € wa ~ n.
A set a is called countably infinite iff a ~ w.
A set a is called countable iff a is finite or countably infinite. (Equivalently:
iff 3f(f : a = w A f injective).)

(Theorem Pw is not countable. In fact, for no set A do we have A ~ PA.
(Cantor))
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Chapter 3

Classes, class terms and
recursion

3.1 Notation and basic concepts

Definition 3.1.1 We call collections of the form {x : ¢(x)}, where ¢ is a for-
mula of LST, classes.

Definition 3.1.2 V*=the collection of all sets (assuming only ZF*).
Proposition 3.1.3 FEvery set is a class.

Proof. a ={x:x € a}. (so ¢(x) is « € a here). O

We must be careful in their use—we cannot quantify over them but some
operations will still apply.

Notation 3.1.4 IfU; = {z: ¢(z)} and Uy = {z : y(x)}, then

UnNnUy, = {$ : ¢(J7) A ’L/J(l’)}
UbuU; = {z:¢(x)V(x)}
UrxUz = {z:3y(y = (s,t) Np(s) Np(t))}

(3.1)
and so on. (x € Uy means ¢(z) and Uy C Uz means Ve (p(x) — (x))).
Classes are only a notation—we can always eliminate their use.
Proposition 3.1.5 V* is a class.

Proof. V¥ ={x:xz=2z}. O

13
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Definition 3.1.6 If F,U;,U; are classes with the properties that F C Uy x Uy
and Vx € Uy3ly € Us{x,y) € F, then F is called a class term, or just a term,
and we write F(z) = y instead of (z,y) € F.

We also write F' : Uy — Us, although F may not be a function, as Uy may
not be a set.

So if F'={x: Jy1,y2(z = (y1,y2) Ay2 = Jw1)}, so for all sets F(z) = J =,
then F' is a class term. We need class terms for higher recursion.

3.2 Recursion
(Use only ZF* throughout.)

Theorem 3.2.1 Suppose G : U — U is a class term and a € U. Then there is
a term F : w — U (which is therefore a function) such that

1. F(0) =a and
2. ¥n e wF(n+1)=G(F(n)).
Some applications:

Definition 3.2.2 A set a is called transitive if Vo € aVy € zy € a. (ie. x €
a—2xCa, ora=a.)

Lemma 3.2.3 w is transitive; and if n € w, then n is transitive.

Theorem 3.2.4 For any set a, there is a unique set b, denoted TC(a), and
called the transitive closure of a, such that

1. a Cb,
2. b is transitive,

3. whenever a C ¢ and c is transitive, then b C c.

Proof. Uniqueness is clear since if ¢ C b; and a C bs, by and by transitive and
both satisfying (3), then b; C be and be C b1, so by = bs.

For existence (give idea: b=aU|JaUJJaU...) let G be the class term
given by G(z) = Jz (for z € V*). Apply 3.2.1, to get a term F such that

1. F(0) = a, and
2. ¥newF(n+1)=G(F(n)) =UJF(n).

By replacement, there is a set B such that B = {y: 3z € wF(z) = y}.
Let b=B =U{F(n):n € w}. Then

1. Since a = F(0) and F(0) € B, we have a € B,soa C|JB =b.
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2. Suppose z € band y € x. We must show y € b. But 2 € bimplies z € | J B
implies « € F(n) for some n € w implies z C |J F(n), so y € |JF(n), so
yeF(n+1),soyelJB,soyeb.

3. Suppose a C ¢, ¢ transitive.
We prove by induction on n that F'(n) C c.
F(0)=aCec.
Suppose F(n) C c.
We want to show that F'(n+1) C ¢, sosuppose z € F(n+1),iex € | F(n).
Then for some y € F(n), z €y. Thusz €y € F(n) C¢,s0x €y € ¢, so
T € ¢, since c is transitive, as required.
Thus, by induction, Vn € wF(n) C ¢, so | J{F(n) : n € w} C ¢, ie. b C ¢,
as required.

Recursion on €.

Theorem 3.2.5 (Requires Foundation—ie. assume ZF) For i(x) any formula
of LST (with parameters) if Ve(Vy € xy(y) — (), then Vxy(x). (The hy-
pothesis trivially implies ¥ (2).)

Proof. Suppose Vz(Vy € z(y) — (x)), but that there is some set a such
that —4(a). Then a # &. Let b = TC(a), so a C b, and hence b # @. Let
C={zeb:(x)}. Then C # &, since otherwise we would have Vx € bi)(x),
hence Va € ay)(x) (since a C b), and hence ¢ (a), contradiction.

By foundation there is some d € C such that dNC = @, ie. d € b, ~)(d),
but Vz € dr € b (since b is transitive) and = ¢ C. But this means Vo € dy(x),
s0 1 (d)—contradiction. O

Our present aim is to prove that if ZF* is consistent then so is ZF—so we
won’t use 3.2.5. Instead we find another generalization of induction.

Definition 3.2.6 Suppose that a is a set and R is a binary relation on a. Then
R is called a well-ordering of a if

1. R is a total ordering of a.

2. If b is a non-empty subset of a, then b contains an R-least element.
ie. 3z € bYy € by = x V zRy).

Remark: AC iff every set is well-orderable.

Definition 3.2.7 Suppose that Ry is a total order of a, and Rs is a total order
of b. Then we say that {(a, R1) is order-isomorphic to (b, Ra), written {(a, Ry) ~
(b, Ra), if there is a bijective function f : a — b such that Vz,y € a(z < y +
fl@) < fy)-
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Definition 3.2.8 We say « is an ordinal, On(z), or x € On, if
1. x is transitive, and
2. € is a well-ordering of x.

We usually use o, B, etc., for ordinals.
On is a class.

Theorem 3.2.9 (Enderton)

1. If R is a well-order of the set a, then there is a unique ordinal o such that

(a,R) ~ (o, €).
2. & €O0n. (Write d=0.)
a € On — a+1 € On (so all natural numbers are ordinals, by induction,).
If a is a set and a C On, then |Ja € On. (Hence w € On.)
If a, 8 € On, either « = 3, a € B, or B € a, and exactly one occurs.
If a,B,v€ On, and o € B and B € v, then o € 7.

Ifa,€0n, aCBiffae f ora=24.

S B T o

If « € On and a € «, then a € On.
(Note that (3) implies that On is not a set.)

Theorem 3.2.10 (Which is required to prove the above.) Suppose that ¢(x) is a
formula of LST, such that Va € On(Vf € ap(B) — ¢(a)). Then Ya € Ond(a).

Proof. Suppose Vo € On(Vf € agp(f) — ¢(a)), and suppose that there is some
~v € On such that ~¢(y). Let X = {a € v: =¢()}, then X is a set and X C 7.
Also X # @, since if Vo € y¢(v), then ¢(y).

Let o be the least element of X. Then ag € X, so =¢(w), and for all
a€ X a=aqqor qy € .

Now let @ be any member of ag. Then « € ~, since 7 is transitive. Now we
cannot have o € X, for then ag € a or ag € «, and € would not be a strict
total ordering of ~.

So we have o € v, a ¢ X, so ¢(«) holds.

In other words Vo € apgp(a). But then ¢(ap), giving us a contradiction. [J

Definition 3.2.11 (1) An ordinal « is called a successor ordinal if « = SU{3}
for some (necessarily unique) ordinal 5. (Write « = 3+ 1.)

(2) An ordinal « is called a limit ordinal if @ # & and « is not a successor
ordinal.
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Theorem 3.2.10 is often applied in the following way:
To prove Yo € On ¢(a):

1. Show ¢(0)
2. Show Va(é(a) — ¢la+ 1))
3. Show Va < d¢(a) — ¢(9)

Theorem 3.2.12 (Definition by recursion on On) Suppose F : V* = V* is a
class term, and a € V*. Then there is a unique class term G : On — V* such
that

1. G0) =a
2. Gla+1)=F(G(a))
3. G(0) = Upes for 6 a limit.

Proof.Proof Let ¢(g, @) be the formula of LST expressing:

“g is a function with domain a+ 1 such that V5 < ag(8+1) = F(g(5)) and
if 8 is a limit g(B) = U{9(@) : & < 5} and ¢g(0) = a”.

((*) Note that if ¢(g,«) and 8 < «, then ¢(g[8+ 1,0).)

Lemma 3.2.13 Va € OnJlg ¢(g, ).

Proof. Induction on a.

a = 0: Clearly g = {(0,a)} is the only set satisfying ¢(g,0).

Suppose true for a. Let g be the unique set satisfying ¢(g, ). (Note g :
a+1 — V*) Certainly ¢* = gU{{(a+1, F(g(«)))} satisfies ¢(g*, a+1). If ¢’ also
satisfied ¢(g’, o + 1), then ¢(¢'[a + 1, @) holds, so by the inductive hypothesis
g =¢'la+1 But ¢(¢',a+ 1) implies ¢'(a + 1) = F(¢'(«)) = F(g(e)). So
g =gU{{a+1,F(g(a)))} = g*, as required.

Suppose § is a limit and Vo < §3'gp(g, ). For given a < § let the unique
g be go. Notice that S = {g, : @ < ¢} is a set by Replacement. But oy < as
implies go, = ga, a1 + 1. Let ¢g* = |JS. Then g* is a function with domain
{a:a <} =90, and Va < dg*(a + 1) = F(¢g*(a)) and if § is a limit < §, then
g*(8) = U{g*(e) : @ < B} and ¢g*(0) = a. (Since for any « < §, g* coincides
with g, on @+1, and the g,’s satisfy the condition by the inductive hypothesis.)
Further ¢g* is the only such function by (*).

Now define g = g* U {(6,U{9*(e) : @ < §})}. Then g is unique such that
?(g9).

Now set G = {(z, @) : g(d(g, @) A g(a) = x)).

Then G satisfies the required conditions since by the lemma for each a € On,
Gla + 1 is the unique g such that ¢(g, @).

We get uniqueness of G by induction. [J
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Theorem 3.2.14 Suppose F' : V¥ — V* and H : V* — V* are class terms.
Then there is a unique class term G : V* x On — V* such that

2. G(z,aa+1) = F(z,G(z,a))

3. G(z,0) =U,.s G(z,a) for § a limit.

a<d
Some applications:

Definition 3.2.15 Ordinal addition: Set F(x,y) = yU{y}, H(z) =x. We get
G such that

1. G(z,0) =z

2. G(z,a+1) = G(z,0) U{G(z,a)}
3. G(x,6) =U
Suppose a, B € On. Write a + 3 for G(a, 3). Then:

wes Gz, ).
1. a+ 0=«
2. a+(B+1)=(a+8)+1
Soatd=Ugisa+p.
Definition 3.2.16 Ordinal multiplication:
1. «.0=0 (So H(z) =0)
2. a(f+1l)=ab+a (So F(z,y) =y+z)

3. =g a.B.



Chapter 4

The Cumulative Hierarchy
and the consistency of the
Axiom of Foundation

4.1
We apply Theorem 3.2.12 with a = @ and F(x) = Pz, to obtain the following:

Definition 4.1.1 We define a class term V : On — V* so that
1. V(0) =2
2. V(a+1) =PV («), and
3. V(6) =Uaes V() for ¢ a limit.

We write V,, for V(a). Each V, is a set and we also write V' for the class
{z:3a€cOnz cVo}“="Uscon Va-

Theorem 4.1.2 For each o € On,
1. 'V, 1is transitive,
2. Voo T Voqa,
3. a€e Vi

Proof. Simultaneous induction on «a.
a =0V, = @, which is transitive. V) C V4, and 0 = & € {@} = V1.
Suppose true for c.
(1) Suppose z € y € Voy1. Vog1 =PV, s0 z € y C V,, so z € V,,. Since
Vo € Vg1 by the inductive hypothesis, we get © € V41 as required.

19
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(2) Suppose © € Vyy1. Then x C V,,. But V,, C V,41 by the inductive
hypothesis, so z C Vi41. Hence x € V(4 y1)41, as required.

(3) @ € V41 by hypothesis. So o C V41, since V41 is transitive. Thus
aU{a} C Voyr. Hence a4+ 1 =aU{a} € Viat1)41, as required.

—Hence the result is true for o + 1.

Suppose § a limit and (1), (2) and (3) are true for all a < 0.

(1) Suppose © € y € Vs = [J,c5 Va. Then 2 € y € V,, for some o < 6. So
x € V, by ind hyp. But V,, C Vj, so x € V5.

(2) Suppose z € V5. Since y € x € Vs — y € Vs, we have z C Vj, so
x € Vsp1. Thus Vs C Vsig.

(3) Now for all & < §, a € V41, by the inductive hypothesis. So Va <
da € Vs (since Vopq1 € Vs). Thus 6 C Vs (note § = {a : @ < §}) and so
0inPVs = Vsi1, as required. [

Corollary 4.1.3 (1) V is a transitive class (ie. x € y € V. — & € V) containing
all the ordinals.
(2) Vo < BVa C V.

Theorem 4.1.4 (V,€) E ZF.

Proof. (Note that (V, €) is a substructure of (V*, €), so for a,b € V, (V, €
JEaebiffaeb and (V,€)Fa=0biff a =0.)

Extensionality. Suppose z,y € V, and (V,€) EVi(t € z + t € y) (¥).
We must show (V,€)Exz =y, ie x = y. Suppose z # y. Say a € z, a ¢ y.
Since a € © € V we have a € V (by Corollary 4.1.3). But by (*), Vt €
t € x < tey. In particular a € x <> a € y—contradiction.

Sox=y.

Empty Set. We must show (V,€) F JaVyy ¢ x. Since & € V, we have
@ eV, and clearly Vy € V, ¢ @.

Pairing. Suppose a,b € V. We must show (V,€) EIVt(t € z « (t =
aVt=1"y)). Let ¢ = {a,b}. Now by 4.1.3 (ii), there is some « such that
a,b € V,. SocCV,,s0c€V,i1,s0ceV. It remains to show Vt € V(t € ¢ +
(t=aVt="0)), which is clear since this is true Vt € V*.

Union. (V, €) F Unions—exercise.

Power Set. Suppose a € V. We must show (V, €) E JyVi(t € y <> Vz(z €
t— 2z € a)).

Now suppose a € V,,.

Ezercise: Yo € On, if b€ a € V,, then b € V.

It follows that Vb € P(a), b € V,,. Thus P(a) C V,, so P(a) € Vot1. So
P(a) € V. Let ¢ = P(a).

We show (V,€) EVE(t € c <> Vz(z €t — 2z € a)).

So suppose t € V.

=) I (V,e)t € ¢, thent € ¢c,s0t Ca,ie Vz € V*(z€t— z € a), thus
VzeV(zet—z€a).

<): Suppose (V,€) EVz(z € t = z € a) (*) (ie. (V,€)Ft C a). We show
that really, t C a. Suppose d € t. Since t € V, we have d € V (by 4.1.3 (i)).
Hence, by (*), d € a. Thus t Ca, sot € ¢, so (V,€) Et € ¢ as required.

Y
v,
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[Remark: Won’t always be the case that P(a) in substructure is real P(a)—
fudge this for now?]

Infinity. Exercise (Note: w € V41, sow € V).

Foundation. Suppose a € V, a # @. We must find b € a such that
bNa=0.

[Since then b € V', by transitivity, and (V, €) EVy € by ¢ a.]

Let z € a. Then z € V', so x € V, for some «. This shows da € On,anV, #
@. Choose 8 minimal such that aNV3 # @. Then § is a successor ordinal since,
for § a limit, a NVs = aNUyes Va = Uacs(@NVy), so if aNVs # @, then
a NV, # @ for some a < 4.

Say 8 =+ 1. Now choose 8 € an V3.

We claim that bNa = @. Suppose x € anNb. Now b € Vg,s0b C V,, so
z € V,. But z € a, so aNV, # @—a contradiction to the minimality of 5.

Separation. Suppose ¢(z1,...,Z,,y) is a formula of LST and ay,...,a, €
V,and v € V. We want b € V such that

(V,e)EVyly € b (y €uhdlas,. .. an,y))).
(Give wrong proof.)

Definition 4.1.5 Relativization of formulas Suppose U is a class, say U =
{z : ®(x)}, and ¢(v1,...,v;) is a formula of LST. We define the formula
oY (v1,...,v5) (or ¢®(v1,...,vk)), which has the same free variables as ¢, as
follows (by recursion on ¢):

1. If ¢ is v; = vj or v; € vj, then oY s just ¢.
2. If ¢ is —p, then ¢V is =Y.
3. If ¢ is (W V'), then ¢V is (Y v (¥")Y).
4. If ¢ is Vv, then ¢V is VY, (®(v;) — V).
(We tacitly assume ¢ and ® have no bound variables in common.)

Lemma 4.1.6 For any ¢(v1,...,vx) and ay,...,ax € U, (U, €) E ¢(ay,...,ax)
foasU(a’lv"'vak)‘

Proof. Obvious. O

To return to the proof of A5 in (V,€): Suppose u € V,,. Let b = {y € u :
Y (ay,...,ar,y)}. Then b Cu € V,, so b eV, (by an exercise), so b € V.

Suppose y € V.

We want to show (V,€) Fye b+ (y € undlar,...,an,y)).

=): Suppose y € b. Then y € u, and ¢V (ay,...,an,y). Hence, by lemma
4.1.6,(V,e)Fyeundla,...,an,y).

<): Suppose (V, €) Ey € urg(ay,...,an,y). Theny € vand ¢V (a1, ..., an,y)
(by 4.1.6), so y € b, as required.
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Replacement. Suppose ¢(x,y) is a formula of LST (possibly involving
parameters from V).

Suppose (V, €) EVz,y,y'((¢(z,y) N d(z,y)) =y =y).

V() V(y)
— = ~—

Let ¢(x,y) be x € V Ay € V A¢Y (z,y). [Note V(x) has no parameters.|

Then we have (in V*) Va,y,y' (¥ (z,y) A(z,y')) = v = ¢'), by lemma
4.1.6.

Let se V.

Hence there is a set z such that

Vyly € z < 3z € sy(x,y)) (%)

(by replacement in V*). We want to show z € V.

Now by (*), if y € z, then 3z € sp(x,y), s0 Iz € s(x € VAy € VASY (2,v),
soy € V. We want to show z € V.

Thus for each y € z, dJa € On,y € V,.

Let x(u,v) be “u € z A v is the least ordinal such that u € V,,”.

Then by replacement in V*, there is a set S such that

Vo(Ju € z(x(u,v)) <> v € S).

Clearly S is a set of ordinals, so | JS is an ordinal, 5 say.

Clearly Vy € z,y € V3. Hence 2 C Vg, 50 2 € Vg1q,s0 2 € V.

We must show (V, €) EVy(y € z <> Iz € s¢(z,y)).

=): So suppose y € V and y € z.

By (*), 3z € sy(z,y), ie. 3w € s(x € VAy € VAPV (z,y)), so (V,€) F Iz €
sp(x,y).

<): Conversely, if y € V, and (V,€) E 3z € s¢(z,y), then Iz € S(x €
VA$Y(z,y)),s03x €s(zxe VAyeV A (z,y)), ie Iz € sih(x,y), so by (¥),
yez U

Corollary 4.1.7 If ZF* is consistent, then so is ZF.

Proof. If ¢ is an axiom of ZF, we have shown that ZF* + ¢¥. Hence if
01,09, ...,0) were a proof of a contradiction from ZF, then (roughly) o}, ..., 0o}

could be converted into one from ZF*. O

From now on we assume Foundation, and hence (exercise) that ZF=Z7ZF*.
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Lévy’s Reflection Principle

5.1

Theorem 5.1.1 (Lévy’s Reflection Principle, or (LRP)) (ZF—for each indi-
vidual x)

Suppose W : On — V is a class term, and write Wy, for W(a). Suppose W
satisfies:

1.a<pB—W,CW;s (Yo, € On)
2. Ws = Upes Wa for all limit ordinals 6.
Let W =J

is a set.)

Suppose x(v1,...,vn) is a formula of LST (without parameters). Then, for
any o € On, there is f € On such that f > o, and such that Vay,...a, € Wpg,
(W, e)Ex(ar,...,an) iff (Wp,€)FE x(a1,-..,a,); ie. for lall aq,...,a, € Wpg,
Wiay,...,a,) < xVe(ay, ..., a,).

Wo (={z:3a € On,x € W,}, so W is a class; each W,

a€eOn

Proof. For any formula ¢ of LST, by the collection of subformulas of ¢, SF (&),
we mean all those formulas that go into the building up of ¢. Formally

1. SF(¢) = {o} if ¢ is of the form x = y or x € y;

2. SF(=¢) = {~¢} USF(¢);

3. SF(¢ V) ={p Vit USF(¢)USF(¢);

4. SF(Vx¢) = {Vxd} USF (o).

Clearly SF(¢) is a finite colleciton for any formula ¢, and ¢ € SF(¢).

Suppose now that S is any finite collection of formulas, which is closed under
taking subformulas—ie. if ¢ € S, then SF(¢) C S.

Define Ts = {8 € On : ¥Vx € SVa € Wz(x"V¢(a) ++ x"V(a)}. (Abuse of
notation here.) (Ts is a class since S is finite.)

23
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We must show that T is unbounded in the ordinals. (LRP follows by taking
S = SF(x).)

We first show, however, that for any S as above, Ts is a closed class of
ordinals, ie. it contains all its limits, ie. when X is a subset of Tg, then sup X €
Ts.

We prove this by induction on the total number n of occurrences of connec-
tives in formulas of S. We write this n as #5S.

If n = 0, then all formulas of S are of the form 2 = y or z € y (for variables
x and y), so Ts = On, so Ts is definitely closed.

Now suppose that #S = n + 1. Let x be a formula in S with maximal
number of connectives.

Let S = S\ {x}. Clearly S’ is also closed under taking subformulas and
#S5’ < n. Also since S’ C S, we have Ty, C Ts.

Let X C Ty, and suppose X has no greatest element. Note that X C Ty,
so sup X € Ts» by the inductive hypothesis.

We want to show that sup X € Tg.

Case 1. x is —p. Note p € §’, s0 T's = Ts:. Sosup X € T5s.

Case 2. x is 11 V 13. Then again 1,13 € S’, so we can easily check
Ts = Ts/, and the result follows by the inductive hypothesis.

Case 3. x 18 VU +19U(V1, ..., Uy Upg1).

Then ¥ (v1,...,0n,nt1) €S’ Let n = sup X. Now since X has no greatest
element 7 is a limit ordinal, so Wy = U, ., Wa = U,ex Wa-

But by the inductive hypothesis we have for all ¢ € S’, for all a € W),

¢"r(a) < 0" (@) (%)
We clearly only have to show:
vae W,x""(a) < x"(a). (1)
Now since X C T we have
VB € XVa € Wsx"e(a) < " (a). (**)

Proof of «+ in ()
Suppose a € W, and X" (a). Thus

(Vopi1h(a, vp1)Y, de. Vo € WoV(a,v,41).

But W,, C W, s0 Yup41 € Wn1/)W(a, Un+1). Let anp1 € W,,. Then YW (a,any1).
But ¢ € S’ (since 1) is a subformula of x different from ), so by (*) "7 (a, an41).
Since this holds for any a,+1 € W, we have Vv,11 € W, (a, v,41), ie. xV7
as required.

Proof of — in ()

Suppose a € W, and x"7(a). Since W;, = J,ecx Wa we have a € Wy
for some finX. Now Yv,i1 € Wn1/)W" (a(vn41). Since Wz C W, we have
Vunt1 € WapWepWn(a,v,41). Now let a1 € Ws. Then vV (a, ay,41). Hence
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by (*), ¥W(a,a,41). But 8 € X C Ts (and ¢ € S’), so ¥"#(a,a,.1). Since
an+1 € Wp was arbitrary, we have Vo, 11 € WgpVe (a,v,41), ie. x'V2(a). Hence
by (**), x"V(a) as required.
This completes the proof that Ts is a closed subclass of On, for any finite
subcollection S of formulas closed under taking subformulas.(Isolate this out)
We now show Vo € On3p € On(8 > a A € Ts).
The proof is again by induction on #5S, and the only difficult case is when
X 18 Yup119(v,vp41) and S = 5"\ {x}, S’ closed under taking subformulas.
By our inductive hypothesis we have

VadB > aB € Ty (**%)

It remains to show that given any @ € On,36 > af € Ts/, such that Va €
Ws(x"e (a) <+ x"V(a). (For then such a 8 will be in T.)

Let o € On be given.

Now x(v) is Vo 419(v1,. ., Uy Ung1)-

Define the term f : On x V® — On so that Vy € OnVay,...,a, € V
f(y,a1,...,ay,) is the least € On such that 8 > v and Ja,4+1 € Wy such that
W (ay,...,an,any1), if such a @ exists.

Now define the term F' : On — On so that ¥y € On F(7) is the least 0 € T/
such that 6 > sup{f(y,a1,...,an) : (a1,...,a,) € Wyamma"}. (This last thing
is a set by replacement since W' is. ¢ exists using (***).)

Notice that for all v, F(y) > v, F(y) € Ts/, and if a1,...,a, € W,, and
YUpt1 € WF(7)1/JW(a1, ey n,Una1), then Yo, € WV (ay,. .., an,vne1).
(1)

(For otherwise, Ja,.1 € W-¥W(ay,...,an,any1), so for some minimal
n, Jans1 € WT9W(a1,...,an,an+1) (since W = UneOn W,), so F(y) >
f(y,a1,...,an) > n, so Japy1 € WF(V)ﬂ/JW(al,...,an,anH) since Wg(y) 2
W, —contradiction.) (Isolate out as a lemma)

Now by the recursion theorem on w define the function g : w — On by

L. g(0) = F(a),
2. g(n+1) = F(g(n));

let X =rang. Clearly X has no greatest element and X C Ts/. Let 8 = sup X.
Since T is closed (proved above), we have 3 € Ts,. We also have 3 > «a, and:
For all ay,...,a, € Wpg, if Vo,41 € Wg?/}w(al, vevyQpyUpt), then Yo, 41 €
WyW(ay, ..., an, vne1). (F¥5F)
Proof. Suppose a1, ...,a, € Wg. Since Wy = UveX
W, for some v € X. Suppose Vv,+1 € Wgp (a1, ..., an, vnt1)-
Since F(y) € X, and hence Wg(,) € Wj, we have Vv, 1 € WF(7)¢W(a1, ey Ay Upg)-
Hence by (1) we have Vv, 11 € WV (ay, ..., an,v,41), as required. OJ

W,, we have ay,...,a, €

Now show that (****) implies 5 € T as required (exercise). O
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Chapter 6

Godel’s Constructible
Universe

6.1
Definition 6.1.1 For any set a and n € w we define "a to be {f : f :n — a},
and <“a =), "a.

(Exercise: this is a set.)
‘We shall construct a class term G : w x V x V — V such that

Vn € wVa,s € VG(m,a,s) C a.

Further to each formula ¢ (v, . .., vp—1, vy, ) of LST with free variables amongst
V0y -« -, U (with n > 1), there will be assigned a number m € w (m = " (vg,...,vn)")
with the property that for alla,s € V, G(m,a,s) ={b € a: {(a,€) E¥(s(0),...,s(n—
1),b)} if s € <¥a and doms > n and & otherwise.

Definition 6.1.2 We define the class term Def : V. — V by
Def(a) = {G(m,a,s) :m € w, s € ““a}.

Thus Def(a) consists of all the definable (with parameters) subsets of the struc-
ture (a, €).

Definition 6.1.3 (The constructible hierarchy)
We define the class term L : On — V (writing Ly, for L(a)) by recursion on
On as follows:

1. LO = @,’
2. Lot1 = Def(La);
8. Ls = Upyes La for limit 6.

27
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L is called the Constructible Universe.
(explain why AC and CH hold in L.)
Throughout we assume ZF holds in V.

Lemma 6.1.4 For all o, 8 € On:
1. a<fB— Ly CLg;
2. a<f—Ly€ Lg;
3. Lg 1s transitive;
4. Lg C Vg;
5. OnNnLg=p.

Proof. Fix a. We prove (1)—(5) (simultaneously) by induction on .

B = 0: trivial.

The successor case: Suppose (1)—(5) true for 5.

(1) Suffices to show Lg C Lg41. Suppose x € Lg. Then © C Lg (by TH(3)).
Let s = {(0,z); then s € <“Lg and doms = 1. Then A = G("v1 € vy, Lg, s) €
Def(ng) = LB+1'

Also A ={be Lg: (Lg,€)Eb € s(0)} = {be Lg:bex} =x (since
x C Lﬁ).

Thus x € Lg41 as required.

(2) Suffices to show (by (1)) that Lg € Lg41. (Since if a < 8 then L, € Lg
(by TH) and Lz € Lg41 (by (1)).

Must show that Lg € Def(Lg).

Let s = @. Then G("v1 = vy, Lg,s) ={b€ Lg:(Lg,€) =b=">b} = Lg, so
Lg € Def(Lg), as required.

(3) If x € Lg41, then  C Lg. But Lg C Lgi1, by (1), so # € Lg41. Thus
Lgy1 is transitive.

(4) By IH Lg C V.

Alsox € Lgy1 w2 CLg =2 C Vg = x€PVg=Vgy.

Thus Lngl g VﬁJrl.

(5) By IHOnnN Lg = 6.

Suppose £ € On N Lgyi. Then x € On and = C Lg.

But every member of x is an ordinal, so x C LgNOn, so z C 3. Thus either
x € forx=p. Ineither case x € fU{B} = B+ 1. Thus OnNLg4; C B+ 1.

Suppose x € f+1. Then either x € 3, in which case x € OnNLg € OnNLgy1
(by (1)), or = . So it remains to show 8 € Lg41.

Let s = @.

Then A = G("On(v)", Lg,s) = {b € Lg : (Lg,€)EOn(b)}, and A €
Def(Lg) = Lgy1. We show A = §.

But On(vp) is a ¥p-formula (DEFINE THIS CONCEPT BEFORE
NOW IF WE REALLY NEED IT) (exercise this week) and hence absolute
between transitive classes.

Thus Vb € Lg, (Lg, €) E On(p) iff b € On.
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Thus A = Lg N On = 3 by IH, as required.
The Limit Step Suppose 6 > 0 is a limit ordinal and (1)—(5) hold for all
B < 4. Since Ls = Ug5 Lp, (1)-(5) for § are all easy. O

Lemma 6.1.5 For alln € w, L, =V,.

Proof. By induction on n.

For n = 0, this is clear.

Suppose now that L, = V.

Now L,11 € V41 by 6.1.4.

Suppose x € V,41. Then x C V,, so z is finite. Also x C L,, by IH. Say
x ={aog,...,ax-1} (k € w), so that ag,...,ax—1 € Ly.

Let s = {(0,a0),...,{k—1,a5_1)}, s0 s € ¥L,.

Let A=G("(vp =wvo V- Vo =051 Ln,s) ={b€ Ly : (L, €)E (b=
ao\/---\/b:ak_l)} :{ao,...,ak_l} =x.

Thus « € Def(L,) = Lp41-

Thus Vn+1 g Ln+1.

So VnJrl = Ln+1. O

Lemma 6.1.6 Suppose a,c € L. Then
1. {a,b} € L.
2. Ja€ L.
3. (pPanlL)e L.

Proof. (1) Suppose a,c € L,. Define s = {(0,a),(1,c)}, so s € <¥L,.

Then Loy1 2 G(Tva = vg Vwe = v1 7, Lalpha,s) = {b € Ly : (Lo,2)Eb =
aVb=c}=LyN{a,c}={a,c}.

So {a,c} € Lat1 € L.

(2) Suppose a € L,. Let s = {(0,a)}. Then Lyy1 D G("Fve € vo(vy1 €
v2) ", Lo,8) ={b € Ly : (Lo, €) EJva € a(b € v2)} = A, say.

We claim that A = Ja.

Suppose that b € A.

Then (L, €) E Jvz € a(b € va).

Say d € L, is such that (L,,€)Ed € anbed.

Thende€aAbed, sobe|Ja.

Conversely, suppose b € |Ja. Then for some d € a, b € d. But L, is
transitive, and a € L, so d € L, and hence b € L,,.

So (La,€)Fdeanbed. Hence (Lo, €} F Jvg € a(b € v2) (and b € L,) so
b € A as required.

Thus Ja € Lat1 € L.

(3) Let f: Pa — On be defined so that f(z) is the least « such that z € L,
if there is one, f(z) = 0 otherwise.

Then by replacement ran f is a set, and hence 38 € On such that 8 > « for
all @ € ran f.
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Clearly Pan L C Lg (using 6.1.4 (1)).

We may also suppose that a € Lg.

Let s = {(0,a)}.

Then Lgi1 3 G("Vug € vi(ve € v9)7,Lg,s) = {b € Lg : (Lg,€) EVuy €
b(vy € a)} = A, say.

Suffices to show A =PanN L.

Suppose b € A. Then b € Lg (so b€ L) and (Lg, €) F Vs € b(vg € a).

Now suppose d € b. Then d € Lg since Lg is transitive. Hence (Lg, €) F d €
bAd € a,sodEeE a.

Hence b Ca,so b e PanL. Thus A CPan L.

Conversely suppose b € Pa N L. Then b € Lg.

Also Yvg € b(ve € a). Hence Vva € Lg(ve € b — va € a), so (Lg,€) EVv, €
b(vz € a).

So b e A.

Hence PanNL = A. O

It is now easy to check that

Corollary 6.1.7 Extensionality, empty-set, pairs, unions, power-set, infinity
are all true in L (tho’ PS is less easy).

Lemma 6.1.8 (L, €) E separation.

Proof. Suppose u € L, and ag,...,a, € L. Say u,ag,...,an € Lo. Let
@(vo, ..., Unt1) be a formula of LST. By Lévy’s Reflection Principle, there is
some 3 > « such that Ve,c1,...,ch11 € L

(Lg, €) F (¢ € cny1N(co, -+, ns¢)) & (L, €) F (¢ € e APlco, - -, Cns €))- (%)

Let ’l/)(’l)o, ce ,’Un+2) = (’Un+2 € Unt+1 N\ (;5(’00, ey Un, vn+2).

Let s = {(0,a0),...,{n,an), (n + 1, u)}.

Then Lg1+1 3 G("Y(vo, ..., ny2) ", La,s) ={b€ Lg : (Lg,€) E(ao,...,an,u,b)} =
{beLpg:(Lg,e)FE(becund(ag,...,an,b)} =A, say. (So AeL.)

Sufficient to show (L, €) EVa(r € A ¢ (x € u A ¢d(ag, ..., an,))).

=): Suppose z € L and x € A. Then © € Lg, and (Lg,in) Fx € u A
d(ag, ..., an, ).

By (*), (L,€) Ex € uA ¢(ag, .. .,an,x), as required.

<): Suppose z € L, and x € u A phi(ao,...,an,x). Then = € Lg, since
x € Lg and Lg is transitive. Hence, using (*), (Lg, €) F € uA¢(ag, - .., an, ),
so x € A, as required. [J

Lemma 6.1.9 (L,€) F replacement.

Proof. Suppose ag,...,a, € L, a = {ag,...,an), u € L, ¢(x,y, z) a formula of
LST, and (L, €) F Vz,y,5'((¢(a, z,y) A d(a, 2,y) =y =1y).

o
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Now choose 5 so large that ag, a1, ..., an,u € Lg, and such that (by LRP) for
allz € Lg (L, €) FoATy(o(a, z,y)Az € u) & (Lg, €) E oATy(¢(a, z,y)A\z € u),
and for all c,d € Lg , (L, €)¢(a,c,d) iff (Lg, €) F ¢(a,c,d).

Now let A={be Lg:(Lg,€)F 3z cu(¢(a,z0b)}, so A€ Lgi.

Then, as in the proof of separation, (L,€) EVz € u(Jyd(a,z,y) « Ty €
A(é(a, z,y)), as required. O

Lemma 6.1.10 (L, €) E Foundation.

Proof. Suppose a € L. Choose b € V such that b€ a AbNa = . Since L is
transitive, b € L and clearly (L,€)Fb€aAbNa=. O

Theorem 6.1.11 (L, €) F ZF.
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Chapter 7

Absoluteness

7.1

Definition 7.1.1 The Yp-formulas of LST are defined as follows:
1. zey, x=y, "x €y, "x =1y are Yg-formulas for any variables x and y.

2. If ¢, ¢ are Xg-formulas, so are Y Ao, YV ¢, Vo € yo and Jx € y¢ (where
x and y are distinct variables).

3. Nothing else is a ¥qg formula.

Lemma 7.1.2 If ¢ is a Yo formula, then —¢ is logically equivalent to a g
formula.

Proof. Easy induction on ¢. Note that -V € y¢ is logically equivalent to
Jxr € y—¢. O

Lemma 7.1.3 If ¢(z1,...,2,) is a So-formula and Uy and Us are transitive
classes such that Uy C Us, then for all a1, ...,a, € U,

(U,e)Eglar,...,an) < (U, €) E@lay,...,an).
We say ¢ is absolute between Uy and Us.

Proof. Exercise—induction on ¢. [

Definition 7.1.4 The X;-formulas of LST are defined as follows:
1. x €y, x=y, ~x €y, ~x =y are 2i-formulas for any variables x and y.

2. If Y, ¢ are X1 -formulas, so are Y N, YNV ¢, Vr € yo and Iz € y¢ (where
x and y are distinct variables), and 3x¢.

8. Nothing else is a 31 formula.

33
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Remark 7.1.5 Note that every ¥g formula is 3.

Lemma 7.1.6 If ¢(x1,...,2,) is a X1-formula, and Uy and Uz are transitive
classes with Uy C Us, then for all aq,...,a, € Uy

(Uy,€) E dla,...,an) = (U, €) E d(as,...,an).
(ie. ¢ is preserved up or is upward absolute between Uy and Us.)

Definition 7.1.7 (1) A formula ¢(x) is called SFT (respectively 27T ) if there
is a o (or X1) formula ¥(x) such that ZF- Vx(p(x) ¢ P(x)).

(2) A formula ¢ is called AZY if ¢ and —¢ are XIF.

(3) Suppose n € w and F : V™ — V is a class term. Then F is called AZY
if the formula ¢(x1,..., %0, Tny1) defining F(x1,...,2) = tpp1 is AZE | and
if ZF proves that F is a class term.

Remark 7.1.8 We need only verify that ¢ in part (3) is 7, since ~¢ is ZF
thus:

ZFENZy, . o T, X1 (0(21, - ooy Ty Tpg1) < FY(d(21, -0y T, YATY = Tig1))
—and the bit on the right is SZE if ¢ is.
Remark 7.1.9 Every X5 formula is AZY by 7.1.2 and 7.1.5.

Theorem 7.1.10 Suppose ¢(x1,...,x,) is AZY and Uy and Uy are transitive
classes such that Uy C Us and (U;, €) F ZF (i = 1,2). Then for all aq,...,a, €
U17

{U,eyEo(ar,...,an) < (U, €) F @(ay,...,an).

(ie. ¢ is ZF-absolute.)

Proof. Let ¢(x1,...,x,) be 1 such that ZFF ¥x(¢(x) <> 1(x) (*).
Then

(U, e)Eg(a) = (Up,e)Eyw(@)  (*) and (Uy,€) EZF
= (U, €) F1(a) by 7.1.6
=

(Us, €) E ¢(a) (*) and (U, €) EZF

(7.1)
Now let x(x1,...,2,) be X1 such that ZFF Vx(=¢(x) < 1(x) (*).
Then as above,
(Ur,€) E—¢(a) = (U,e)kEx(a) (*)and (U, €) FZF
= (Us,€)F x(a) by 7.1.6
= (Ug, €) F —¢(a) (*) and (U, €) EZF
(7.2)
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Theorem 7.1.11 The following formulas and class terms are all SZF (and
hence AZY):

=

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
2.
25.
26.

S v e

r=y
T EY
xCy
F(z1,...,2y) ={x1,..., 2} (for each n)
F(x1,...,xn) = {(x1,...,2n) (for each n)
(wheren > 1 and0 <i <n—1) F(x) = z; if x is ann-tuple (xg, ..., Tpn_1),
& otherwise.
x,y) =xUy
Fz,y)=2xNy

F(z)=Nz if x # &, F(x) = & otherwise.

y)=z\y.

x is an n-tuple.

F(
(
F(x) =
(
F(z,

x 18 an n-ary relation on y.
x 1s a function.

F(x) = domx if © is a function, & otherwise.

)
)

x) =ranx if T is a function, & otherwise.

N

x,y) =xfy] (={x(t) : t € y}) if x is a function, & otherwise.

!

x,y) = x|y if x is a function, & otherwise.

!

(
(
(
(
(r) = 27! if z is a function, & otherwise.
F(z) =z U{z}.

x 18 transitive.

x s an ordinal.

T 18 a successor ordinal.

x s a limit ordinal.

Ty — 2.

Ty~ 2.
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27. x is a natural number.
28. T =w.

29. x is a finite sequence of elements of y.

Proof. (Selections) (3) x C y < Vz € x(z € y) which is Xo.

Note that all the class terms F' above are in ZF provably class terms, so we
only have to show that the statement F(x) = y can be put in %y form.

(4) F(x1,...,2p) =y S 21 €EYyAT2a EYAN...Nxp € yAVz € y(z =
1 V... Vz=2,).

(5) F(z1,m2) =y < Iz €yFzm e y(zr = {mt Azo = {x1, 2z} AVE €yt =
z1 V't = z9)), which is Xy by (4).

(12) x is a 2-tuple iff 21 € 23z € 213w € z1(x = (w1, 22)), which is Xy by
(5).

(13) x is a 2-ary relation on y iff Vz € 23y, € yIy2 € y(z = (y1, y2)), which

(29) x is a natural number iff (z is an ordinal) A(x is not a limit ordinal)A(Vy €
x y is not a limit ordinal), which is 3o by (24), (26) and the fact that ©Z* for-
mulas are closed under —. [

Lemma 7.1.12 Suppose F and G are A?Y class terms. Then “F(x) = G(y)”
is AZE,
Proof. Let 1(x,z) and x(y,t) be X7 formulas defining (in ZF) F(x) = y and
G(y) = t respectively. Then
F(x) = Gly) & 3=((x,2) Ax(y, 2)),
ZF
which is ¥, and
F(x)# Gly) & F23t(W(x,2) Ax(y,t) Az =1),
ZF

which is Y.

Hence “F(x) = G(y)” is AZF. O

Theorem 7.1.13 Suppose F : V xV — V is a AT class term. Then the class
term G defined from F by recursion on On, ie:

1 G0,2) =
2. Gla+1,z) = F(G(a,x),x) for all « € On
3. G(d,x) = U,cs G, x) for all limit 6 € On
4. G(

Gy,x) =@ for ally ¢ On
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is AZE,

Proof. As in the proof of 3.2.12 define ¢(g, o, ) by

On(a) X1
A g is a function X2
A domg = a U {a} X3
A 9(0) =z X4
A VB € aTyiya(yr = BULBY Ay2 = g(B) Ag(y1) = F(y2)) x5
A VB € af is a limit ordinal — g(8) = J{g(a) : a € B}). x5

(7.3)

X1 is BFE by 7.1.11 (24); x2 is FF by (14); 3 is by (15), (22) and 7.1.12;
Xa can be rewritten as Jy((Vz € y(—z € 2) A g(y) = z) so is BZF by (17);
x5 is BZF by (22), (17) and the fact that F is $#F, and using 7.1.12; yg is
YZF by (26) and the fact that “g(8) = J{g(a) : @ € B}” is equivalent to
Jy3z(y = g[B] A 2 = Jy A g(B) = 2), which is ©ZF by (18), (9) and (17).

Hence ¢(g, a, z) is L2,

Now recall from the proof of 3.2.12 that G can be defined by:

G(a,z) =y < 3g(d(g, v, 2) A gla) =y) V (=On(a) Ny = @).

This shows G is #F and hence AZF by 7.1.8. [
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Corollary 7.1.14 Assuming the class term G (from the beginning of section
6) is AZFY then so is the class term L : On — V. (Strictly L : V — V, where
L(z) =@ ifx ¢ On.)

Proof. By 7.1.13 it is sufficient to show Def is A7, Recall that Def : V — V
is defined by
Def(a) = {G(m,a,s) : m € w,s € “a}.

Hence Def(a) = y iff Jwz(w = wAz = <YaAVm € wVs € 23t(t = G(m,a, s) A
t €y)) AVt € yIm € w3s € z(t = G(m,a,s))).

Now z = <“a is AZF | so Def is ©4F by 7.1.11 (29), (30), (31), and because
G is.

Hence Def is AZF by 7.1.8. O

Definition 7.1.15 V=L is the sentence of LST: Va3 (On(a)Ax € L(a)) (writ-
ing Lo for L(a)).

Theorem 7.1.16 (L,€) F V=L.

Proof. Suppose a € L. We must show (L, €) F Ja(On(a) Aa € L(a)). Now
choose a such that a € L, ie. (V,€)F € L(a).

Let X be the set L(a) (ie. Ly). Then X € Lo41 by 6.1.4 (2). Hence X € L.
Since (V,€) Fa € X we have (L,€) Fa € X. Now (V,€) FOn(a) A X = L(«).
But the formula “z = L(y)” is A?F, and On(a) is A#F, so by 7.1.10 (since
a, X € L),

(L,e)FOn(a) AN X = L(a)Na € X.
Hence (L, in) F Ja3z(On(a) Az = L(a) Aa € z), so (L,€) F Ja(On(a) Aa €
L(a)), as required. O]

Corollary 7.1.17 If ZF is consistent, so is ZF+V=L.

(Same argument as for Foundation.)
Later we’ll show ZF+V=L+-AC, GCH.



Chapter 8

Godel numbering and the
construction of Def

8.1

Notation 8.1.1 If we say “F : Uy x --- x U, = V is a AZT term” we mean
that the classes Uy,...,U, are A?Y (ie. defined by AZY formulas) and that

“F(x1,...,on) =y” can be expressed by a X1 formula.

This clearly guarantees that the extension F’ : V* — V of F defined by
F'(z1,...,2y) = F(z1,...,2,) if &1 € Uy, ...z, € U, and = & otherwise, is
AZF in the sense given.)

Definition 8.1.2 We first define F : w® — w by F(n,m,l) = 2"3"5!. Then F
is injective and easily seen to be AZY . Write [n,m,l] for F(n,m,l). We now
define "¢ by induction on ¢:

Tv; = v 0,4, ];
e = [1,4,7];
TovyT = 2,707, T
rﬁ¢j — [3, r¢77|’¢7];
"V, = [4, i, r¢7].

(8.1)

Of course this definition does not take place in ZF and is not actually used
in the following definition of Def. However it should be borne in mind in order
to see what’s going on.

Definition 8.1.3 Define the class term Sub : V4 — V by Sub(a, f,i,¢) =
fle/i) if f € <Ya, c€a andi € w and = & otherwise; where if f € <¥a, c € a
and i € w, f(c/i) € <“a is defined by dom(f(c/i)) = domf, and for j € domf,
F(e/D)G) = £(G) if j # i, and ¢ if j = i.

39
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Lemma 8.1.4 Sub is AZF.

We now define a class term Sat : w x V — V. The idea is that if m € w and
m ="¢(vo,...,2Tn,)", for some formula ¢ of LST, and a € V, then

Sat(m,a) = {f € “a:domf >n A (a,€) F ¢(f(0),...,f(n—1))}. ()

We simply mimic the definition of satisfaction from predicate logic. (This def-
inition uses a version of the recursion theorem which is slightly different from
the usual one, and which I give later.)

Definition 8.1.5 Firstly if a € V, m € w but m is not of the form [i, j, k],
for any i,j,k € w with i < 5, then Sat(m,a) = @. Otherwise, if a € V and
m = [i, 7, k] with i <5, then

Sat((0,,K,a) = {f € <“a: ke domf A £(j) = F(R)}.

Sat([1,4,k],a) = {f€ <“a:jkedomf A f(j) € f(k)}.

Sat([2,7,k],a) = Sat(j,a)U Sat(k,a).

Sat([3,7,k],a) = (“¥a\ Sat(j,a))N{ge€ ““a:3f € Sat(j,a)domf < domg}.
Sat([4,7,k],a) = {f€ <Ya:j€ domf AVx € a,Sub(a, f,j,z) € Sat(k,a)}.

(8.2)

The generalized version of the recursion theorem (on w) required here is:

Lemma 8.1.6 Suppose that w1, 7,73 : w — w are Ale class terms and H :
Vi xw— Vs a AZF class term. Suppose further that ¥n € w\ {0} mi(n) <n
fori=1,2,3. Then there is a A?T class term F : w x V — V such that

1. F(0,a)=0
2. and Vn € w\ {0}
F(n’a) = H(F(Trl(n)’ (a))aF(ﬂ-Q(n)a (a))’F(ﬂ-?)(n)a (a))’aan)'

(Thus instead of defining F(n,a) in terms of F(n—1,a), we are defining F(n, a)
in terms of three specified previous values.)

Proof. Similar to the proof of the usual recursion theorem on w. O

Thus the definition of Sat in 8.1.5 is an application of 8.1.6 with 71 (n) = 4 if
for some j, k < n, [i,j, k] = n, = 0 otherwise; and 79 and 73 are defined similarly,
picking out j and k respectively from [i, j, k], and with H : V* x w — V defined
so that

{f € <¥a:m(n),m3(n) € domf A f(ma(n))
{f € ¥a:m(n),m3(n) € domf A f(ma2(n))
yUz

(<Ya\y)N{g € <“a:3f € ydomf < domg}

{f € <¥a : ma(n) € domf AVzx € aSub(a, f,m(n),z) € z}
0

S

f(ms(n))}
f(ms(n))}

H(z,y,2,a,n) =

if m1(n)
otherwise.
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(The F got from this H,my, ma, w3 (in 8.1.6) is Sat.)

It is completely routine to show that Sat so defined satisfies the required
statement (*) (just before 8.1.5)—by induction on ¢.

Before defining G we must introduce a term that picks out the largest n € w
such that “v, occurs free” in the “formula coded by m”.

More formally:

Definition 8.1.7 We define Fr(m) (“the set of i such that v; occurs free in the
formula coded by m”) as follows (again using 8.1.6):

Fr([0,i,5]) = {i,j};
Fr([Ld,j]) = {ijk
Fr([2,4,7]) = Fr(i) UFr(j);
Fr([3,i,5]) = Fr(i);
Fr([4,i,5]) = Fe(j)\ i
Fr(z) = o, if x not of the above form.

Lemma 8.1.8 Fr(x) is a finite set of natural numbers for any set x.
Definition 8.1.9 Define

0(z) = max(Fr(zx)).
0 is AZE.

Lemma 8.1.10 If ¢ is any formula of LST and m = "¢7, then 8(m) is the
largest n such that v, occurs as a free variable in ¢, and that if f € Sat(m,a),
for any a € V, then domf > 1+ 60(m) (ie. 0,1,...,0(m) € domf ).

Proof. This is proved by induction on ¢ and it is for this reason that we defined
Sat([3, 4, k], a) as we did (rather than just as <“a \ Sat(j,a)). O

Definition 8.1.11 We can now define G by

G(m,a,s) = { {bea:(sU{{f(m),b)}) € Sat(m,a)} ifse€ <“a and doms = 0(m)(= {0, ...

(%) otherwise.
Lemma 8.1.12 Then G is Ale.

Proof. This follows because 0, Sat are AZF. [

Lemma 8.1.13 G has the required properties mentioned at the beginning of
section 6.

Proof. This is because of (*) (just before 8.1.5). O

Another consequence of this is the following:

,0(m) —1}),
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Lemma 8.1.14 Suppose W is a transitive class such that On C W and W E ZF.
Then L CW.

Proof. Suppose a € L, say a € Lg.
We have ZFF Va € On3y(y = L,); hence (W, €) EVa(On(a) — Fy(y =
L.)).
But On C W, so 3 € W, and “On(B)” is AZF so (W, €) F Iy = Lg.
Let b € W be such that (W, €) F b= L,.
But “y = L,” is AZF (and W is transitive), so (V,€) Eb = L, ie. b = L.
Soa€beW. But W is transitive, soa € W. O



Chapter 9

ZF+V=LF AC

9.1

We first construct a class term H : V. — V such that if (a,R) € V and R
is a well-ordering of the set a, then H((a, R)) = (w X <“a, R’), where R’ is a
well-ordering of w x <¥a.

[We don’t need absoluteness, though it holds]

Definition 9.1.1 We define H(x) = y iff « is not of the form {(a, R), where
R well-orders a, and y = &, or x is of this form, and y is an ordered pair
the first coordinate of which is w x <*a and the second coordinate is R', where
R C (w x <¥a)?, and satisfies: ((n,s),(n’,s')) € R" iff

1. n<n/, or
2. n=n', and doms < doms’, or

3. n=n', and doms = doms’ = k, say, and 3j < k such that VI < j(s(l) =
s(l') A (s(4),s'(4)) € R).

(This is basically lexicographic order within chunks based on domain size.)
Theorem 9.1.2 H has the required property.
Now let G:w x V x V — V be as at the beginning of section 6.

Definition 9.1.3 Define J : On — V so that J(0) = 0, and J(a + 1) is the
unique binary relation S on Loy1 such that for oll x,y € Lo+,

1. Ifx € Ly and y & Ly, then (z,y) € S;

2. Ifx € Ly and y € Ly, then (z,y) € S iff (x,y) € J(a);
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3. Ifx,y € Lot1\ Lo and H({Lqy, J(@))) = (w x <¥Lq, R), and (m, s) € w X
<“q is R-minimal such that G(m, s, L,) =z, and (m’,s') € wX <¥a is R-
minimal such that G(m', s, Ly) =y, then (z,y) € S iff ({m,s),(m’,s)) €
R.

And J(0) = Uyes J (@) if 6 is a limit.
Then, from this definition, we immediately have by induction on a:

Lemma 9.1.4 (ZF) Va € On, J(«a) is a well-ordering of Ly, and J(a) C
J(a+1), and Lot is an initial segment of Lay1 under the ordering J(oa + 1).

Corollary 9.1.5 (ZF) The formula ®(x,y) : = Ja(a € On A (z,y) € J(a)) is
a well-ordering of L. (ie. @ satisfies the axioms for a total ordering of L, and
every a € L has a ®-least element. In particular Va € L, {(x,y) € a® : ®(x,y)}
is a well-ordering of a.)

Theorem 9.1.6 ZF+ V=Lt every set can be well-ordered, so ZF+V=LF AC.

Proof. Immediate from 9.1.5. [J
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Cardinal Arithmetic

10.1

Recall A ~ B means there is a bijection between A and B.
Definition 10.1.1 An ordinal  is called a cardinal if for no 8 < a is 8 ~ «a.

Cardinals are usually denoted k, A, u. Card denotes the class of all cardinals.
Now every well-ordered set is bijective with an ordinal (using an order-preserving
bijection). (Provable in ZF.) Hence if we assume ZFC, as we do throughout this
section, then every set is bijective with an ordinal.

Definition 10.1.2 (ZFC) The class term | | : V. — On is defined so that |z| is
the least ordinal o such that o ~ x.

Lemma 10.1.3 (ZFC) (1) The range of | | is precisely the class of cardinals.

(2) For all cardinals k there is a cardinal p such that p > k. (k7 is the least
such w.)

(3) If X is a set of cardinals with no greatest element then sup X is a car-
dinal.

(4) |k| = K for all cardinals k.

Proof. (1) Exercise

(2) Consider |pk| (though this result is provable in ZFC)

(3) Let 8 = supX. Suppose Iy < B(y ~ ). Choose kK € X, Kk > 7.
Then id, is an injection from v to k. However k € X, so k < [, so by the
Schroder-Bernstein Theorem k ~ y—contradicting the fact that x is a cardinal.

(4) Exercise. O

(2) and (3) allow us to make the following

Definition 10.1.4 (ZFC) The class term X : On — Card is defined by (writing
R for R, )
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1. Xg =w (ie. |N])
2. Nop1 =R
3. Ns = Ua<5N5 for 6 a limit.

Lemma 10.1.5 {R, : a € On} is the class of all infinite cardinals (enumerated
in increasing order). Thus Ny is the smallest uncountable cardinal.

Proof. Exercise. [

Definition 10.1.6 Suppose k, \ are cardinals.
1. k+ A=k x{0}H) U x {1}
2. KA = |k X\
3. kN = ‘)‘n|.
Theorem 10.1.7 Suppose k, A\, u are non-zero cardinals. Then
1. kM = kA kM,
2. KM = (KNP
3. (KA = kFAR.
4. (ZFC) 25 > k.
5. (ZFC) If k or X is infinite, k + A = k.A = max{k, A}.
6. +, . and exp are (weakly) order-preserving.
Proof. See the books. [
Definition 10.1.8 The Generalized Continuum Hypothesis (GCH) is the state-
ment of LST: for all infinite cardinals k, 2% = k+ (ie. Yo € On(2% = N441)).

Definition 10.1.9 Suppose 8 > 0 is an ordinal and 0 = (ko : @ < B) s a
B-sequence of cardinals (ie. o is a function with domain B and o(a) = ko for

all a < B). Then we define
1. Za<ﬂ = ‘Ua<ﬁ(’€a X {a})
2 Tlaes = {8 = Unep s Yo < B(f(0) € ma}|:

Lemma 10.1.10 These definitions agree with the previous ones for § = 2.
Further, if k, \ are cardinals, then k* = [locyB-

Proof. Easy exercise. [
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Lemma 10.1.11 (1) Suppose 7,0 are non-zero ordinals and (ka,g : o <7, <
0) is a sequence of cardinals (indexed by v x 6). Then

I DI EDIN | Lt

a<ly <6 fers a<<y

(ie. T] distributes over y_.)
(2) Suppose B is a non-zero ordinal and (ko : « < () is a B-sequence of
cardinals and k is any cardinal. Then
(a) k. Z Ko = Z(Fa.ma).
a<f a<f

(b) If ko = K for all a < B, then Z/ﬁa: ZH:|6|.FL.
a<f a<f
(3) >, 1 are (weakly) order-preserving.

Proof. Exercises. [

Theorem 10.1.12 (“The Kénig Inequality”) Suppose ko < Ao for all a < .

Then
Z Ka < H Aa-

a<pf a<f

Proof. Define f:J,_5(ka x {a}) = [],<5Aa by

e = {57 e

Clearly f is injective, so Za<5 Ko < Ha<5 Ao

Now suppose that h : J, (ka0 X {a}) = [[,<5 Aa- We show that & is not
onto.

For v < 8, define hy : U, 5(ka x {a}) = Ay by

hy (0, ) = (((n, @) () ()

Since Ky < Ay, hylhy X {7} cannot map onto A, so there is an a, € A, \
hayliy x {7} (*5).

Define g € [[,.5 Ao by g(7) = ay (for v < ).

Then g ¢ ranh, since if h({y,a)) = g, then h({y,a))(v) = g(v) for all
v < B, 80 h({(y,a))(a) = g(a) = aq, 16 ha ({7, @) = aq, 80 an € holka x {a}],
contradicting (**). O

Definition 10.1.13 (1) Let o be a limit ordinal and suppose S C «. Then S
is unbounded in « if V8 < aFy € S (y > B).

(2) Let k be a cardinal. Then cof(k) is the least ordinal o such that there
exists a function f: a — Kk such that ran f is unbounded in k.
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Remark 10.1.14 Suppose cof(k) = a and v < a, vy ~ a. Sayp:vy — « is
a bijection. Let f : a — Kk be such that ran f is unbounded in k. Now clearly
ran f = ran(fp), so fp: v — Kk is a function whose range is unbounded in k.
Since v < « this contradicts the definition of cof(k). Hence no such v exists,
ie. cof(k) is always a cardinal. Clearly cof(k) < k.

Definition 10.1.15 An infinite cardinal k is called regular if cof(k) = k.

Examples 10.1.16 (a) cof(Rg) = R (obvious).

(b) cof(Ny) = Ny, since if cof (Ny1) < Ry, then cof(Ry) = Ng. Say f: Vg — ¥y
is unbounded. Then Ny = |, _y, f(n), and is a countable union of countable
sets, and thus (in ZFC) countable, which is impossible.

(c) cof(N,) = Rg. > is clear. Consider f: Ry — R, defined so that f(n) =
N,

Theorem 10.1.17 For any infinite cardinal k, cof(k) is the least ordinal 8
such that there is a S-sequence (kq : o < B) of cardinals such that

1. Ko < K for all a < j3,
2. Y a<p Ko = K.
Proof. Exercise. [

Theorem 10.1.18 For any infinite cardinal k,
1. kT is regular,
2. cof(2") > k.

Proof. (1) Let 8 = cof(k™) and suppose 3 < k*. Then 8 < x. By 10.1.17,
there are ko < k1 (for a < ) such that Za<ﬂ ko = k1. Then k, < k for all
a. But 3o, gka <D qoph S KK = k2 = k—a contradiction.

(2) Suppose p = cof(2"), and p < k. Choose (kq : o < p) such that k£, < 2"
for all @ < p and such that }° _  Ka = 2"

By Konig, >°, ., ka <[[,<, 2% le. 27 <], 2"

But [],., 2" = (2/)" = 2%# = 2" (since p < k). This is a contradiction. O

Examples 10.1.19 cof (280) > Ny; and this is the only provable constraint on
the value of 28°. —So, for example, 280 # R,,.

Theorem 10.1.20 Suppose « is an infinite ordinal. Then |L,| = «.

Proof. Induction on «.

For a = w, L, = U,
not finite), | Ly, | = Rg = |w].
Suppose |Lqo| = |af.

Now Lot1 = {G(m,a,8):m Ew, s € <“Ly}.

L,. Since each L,, is finite, and w C L, (so L, is
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However, for z infinite, |<“z| = |z|.

S0 |Las1| < Ro. |[<9“La| = Ro. |La| = Ro. o] = |a] = |a+ 1.

Also Ly C Lot1, 80 |Lat1] > |La| = |o| = |a+ 1.

For ¢ a limit, |Ls| = }Ua<5 La} < Za<5 |Lo| < No+ Zw§a<§ |Lo| = No +
Y wcacs laf (TH) < Vo437 (510 = Ro + |6]* = |8] (since § is infinite).

—and the other way round too: § C Ls, so that works. (O
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Chapter 11

The
Mostowski-Shepherdson
Collapsing Lemma

11.1

Lemma 11.1.1 Suppose X is a set and My, My are transitive sets. Suppose
™+ X = M; are €-isomorphisms (ie. Vax,y € X (z € y <> m(x) € mi(y))). Then
m1 = 72 (and hence My = Ms).

Proof. Define ¢(z) < x ¢ X Vmi(x) = ma(x).

We prove Vz ¢(x) by €-induction (see 3.2.5).

Suppose z is any set, and ¢(y) holds for all y € . If z ¢ X we are done.
Hence suppose = € X, and 71 (x) # m2(z). Then there is z such that (say) z €
mi(x) and z ¢ mo(x). Since M; is transitive and pii(x) € M;, we have z € M.
Hence (since m is onto), Jy € X such that 71 (y) = z. Since m(y) € m(x),
we have y € x, and hence (by IH), z = m1(y) = m2(y) and m2(y) € m2(x). So
z € ma(x)—a contradiction.

Thus ¢(z) holds, hence result by 3.2.5. O

Theorem 11.1.2 Suppose X is any set such that (X,€)F FExtensionality.
(te. if a,b € X and a # b, then Jx € X such that © € a Az ¢ b or vice
versa.) Then there is a unique transitive set M and a unique function ™ such
that w is an €-isomorphism from X to M.

Proof.

Uniqueness is by 11.1.1. For existence, we prove by induction on a € On,
that Im, : X NV, ~ M, for some transitive set M,. (Since X C V,, for some
«, this is sufficient.

o1
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Note that Yo € On, (X NV,, €) F Extensionality (since V, is transitive).
Now suppose 74, M, exist for all @ < 8. It’s easy to show (by 11.1.1) that they
are unique and Vo < o/ < 8 M, C My, and 7, = 7o [M,. Hence if 3 is a
limit ordinal, then take Mg = |, Mo and 75 =, 5 Ta-

So suppose 8 =y + 1. We have m, : X NV, ~ M,. For z € X N V,41, note
that yc 2N X =y € X NV,, so we may define

Tyti(z) ={my(y) :y €N X}

Let Myy1 = my41[X NV,41]. Then myq1 : X N V41 — My is surjective.

Suppose a,b € X NVy41, a # b. Since (X N V,41,€) E Extensionality,
Jdec € X NV,41 such that (say) c€ aAc ¢ b.

Then my41(a) = {my(y) :y € anN X} > my(c).

Suppose 7, (¢) € my41(b). Then my(c) = m,(t) for some t € bN X. Since
c ¢ bN X, we have ¢ # t, so 7y is not injective—contradiction.

Thus 7, (c) ¢ my+1(D), S0 piyt1(a) # my41(b) and so w41 is injective.

We now show that if z € X NV, (C X NV,41), then my(z) = myy1(z) (*)

For, y € my(x) implies y € my(z) € M, implies y € M, (since M, is
transitive), say 7, (t) =y (t € X NV,).

Then 7, (t) € m,(z), so t € , hence t € z N X.

Thus 741 (x) ={my(2) :z€ 2N X} >3 7,(t) =y.

This shows 7 (z) C myt1(2).

Conversely, suppose y € my41(z). Then y = 7w, (¢) for some ¢t € z N X.
Since t € x € X NV, we have m,(t) € m,(z) (since 7, is an €-isomorphism).
Ie. y € my(x). So my41(z) C my(x), and we have (*).

Now suppose a,b€ X NV,y1,anda € b (soa e XNV,).

Then my41(b) = {my(y) 1y € bNX}. But a € bN X, so my(a) € my11(b).
Hence by (*) my+1(a) € my41(b).

Finally, M, is transitive, since if a € b € M1, then b = my41(z) for some
z € X NVy41, and hence a = 7, (y) for some y € xNX. Since y € X NV, we
have, by (*), m,(y) = my41(y), s0 a € ranm,41 = My41, as required. O
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The Condensation Lemma

and GCH

12.1

Theorem 12.1.1 (The Condensation Lemma) Let o be a limit ordinal and
suppose X = L, (ie. Vai,...,a, € X, and formulas ¢(v1,...,v,) of LST, (X, €
YEd(ar,...,an) iff (La,€) E@(ar,...,an), although we only need this when ¢
is a X1 formula). Then there is unique ™ and B such that 8 < o andw: X ~ Lg
is an €-isomorphism. Further if Y C X and Y is transitive, then w(y) =y for
allyeY.

We prove this in stages.
Lemma 12.1.2 Vm € w, L,, C X.

Proof. Clear for m = 0. Suppose L,, € X and let a € L;,+1, so a =
{a1,...,an} C Ly,. Then L, F 3z((a1 € xA...ANap, € 2)AVy €x(y =a1 V...V
y=ay)). Hence X E3z((a1 € xA...Nap €)AYVy € x(y =a1V...Vy = ay)).
Clearly such an x must be a, so a € X. Hence L,,+1 C X. Hence the result
follows by induction. [J

Lemma 12.1.3 X E FExtensionality.

Proof. For suppose a,b € X and a # b. Then Je,c € aAc ¢ b (say), and ¢ € L,
since L, is transitive. Thus L, E3x(z € aAx ¢ b), so X F Jz(x € aAx ¢ D),
as required. [J

By 11.1.2 there is transitive M and 7 : X ~ M. Now since M is tran-
sitive, M N On is a transitive set of ordinals so is an ordinal, £, say. Then
B < a (exercise—suppose 8 > «, so 7 (a) € X. Show 7 1(a) = a to get
contradiction). We show M = Lg.

93
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An admission! For this proof we need the fact that most of the formulas that
we have proven AZF are in fact absolute between transitive classes satisfying
much weaker axioms than ZF—in fact BS—basic Set Theory (see Devlin). BS is
such that L, F BS for any limit ordinal & > w. In particular, the formula On(z),
and ®(x,y) : = On(x) Ay = L,, is AZF and hence absolute between V and
L,, and between V and M. (Since M is transitive.) As an application, suppose
B =~U{v}. Since 8 ¢ M, and v € M, and M F On(y) (since On(7) really is
Yo and M is transitive), we have M F 3z(On(x) AVyy # zU{z}). Now X ~ M,
so X E Jx(On(x) AVyy # x U {z}), hence L, F F Jz(On(z) AVyy # x U {z}),
which is a contradiction, since « is a limit ordinal. Hence, we have shown:

Lemma 12.1.4 (3 is a limit ordinal.
Lemma 12.1.5 Lg C M.
Proof. Since § is a limit, Lg = |J

L., C M.
Now for any n < «, L, € L. Since Lo,NOn = a, we have L, F Yz (On(z) — Jy®(z,y)).

yep Lys 80 fix v < B. Sufficient to show

o

Hence X F o, since X <X L, so M F g, since X ~ M.

Since Vo € M, MEOn(u) & u € On Au < B, we have in particular
M E 3y®(y,y)—say a € M and M F ®(v,a). By absoluteness a = L., so
L, e M,so Ly C M since M is transitive. []

Lemma 12.1.6 M C Lg.

Proof. Since Lo = ., L~, we have L, F Y23y3z(On(y) A ®(y,2) Az € z).

y<a

Hence X £ 7 (since X < L), hence M E 7 (since X ~ M.
Let a € M. Then for some ¢,d € M,

M E On(c) AN ®(c,d) Na € d.
By absoluteness, ¢ € On, and hence ¢ < 8, and d = L. and a € L.. Hence
a € U,<5 Ly = Lg, as required. [J
Lemma 12.1.7 Suppose Y C X, Y transitive. Then Vy €Y 7(y) =y.

Proof. 1t’s easy to show «[Y] is transitive and 7 : Y ~ #[Y]. However, id]Y ~ Y.
Hence by 11.1.1, 7 = idJY. O

We have now completed the proof of 12.1.1.

Lemma 12.1.8 (ZFC) Let A be any set and Y C A. Then there is a set X
such thatY C X C A and (X, €) < (4, €), and |X| = max(No, | X]).

Proof. This is the downward Léwenheim-Skolem Theorem. [
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Theorem 12.1.9 (ZF+V=L) Let k be a cardinal, and suppose x is a bounded
subset of k. Then x € L.

Proof. Clear if k < w, so assume k > w. Now =z C « for some w < a < K, s0
2 C Ly. Then L, U {a} is transitive.

Using V=L, let A be a limit ordinal such that A > «, and L, U {z} C L,.
By 12.1.8, with A = L) and Y = L, U {z}, let X be such that L, U {z} C X
and X < Ly, with |X| < |[LoU{z}| = |a|]. Let 7 : X ~ Lg be as in 12.1.1.
Then |5 = |Lg| = |X| < |a| < K, so B < k. But L, U {z} is transitive so, in
particular, 7(z) = z, so € Lg C L, as required. [J

Corollary 12.1.10 ZF+V=L-GCH. Hence if ZF is consistent, so is ZFC+GCH.

Proof. By 12.1.9. ZF+V=LF for all infinite x, Px C L,.+. But ZFF for all
infinite &, |L,+| = wT, hence ZF+V=Lt for all infinite s, |Px| < £*. So
2% < g, and > is obvious. O



