Axiomatic Set Theory: Problem sheet 4

A.
1. Prove 7.1.2, 7.1.3, and 7.1.6.

7.1.2. states that the negation of a ¥ formula ¢ is logically equivalent to some X
formula ¢*.

We define ¢* by recursion, noting that in each case it is Y.

If ¢ is atomic, then let ¢* = —¢; this is 2.

If ¢ = =), where 1) is atomic, then let ¢* = 1; this is Y.

If p =1 Ax, then let ¢* = * V x*, and if ¢ = ¢ V x, then let ¢* = ™ A x™*; these are
0.

If ¢ = dx € y 1), then let ¢* =V € yo*, and if ¢ =V € y 1), then let ¢* = Jx € y*;
these are Xg.

7.1.3. states that Yy formulae are absolute between transitive classes, and 7.1.6. states
that 3, formulae are upwards absolute between transitive classes.

Suppose that U; and U, are transitive classes. We prove that, for any ¥, for-
mula ¢(zg,...,z,), and for any aq,...,a, € Uy, (Uy, €)F ¢(ag,...,a,) if and only if
(Us, €) E ¢(agp, . .., ay) by induction on ¢.

We begin with atomic formulae.

The result is automatic for atomic formulae, and likewise for Boolean combinations
of them.

Now we look at bounded quantification.

(Uy,€) F3Jx € apgp(ay,...,an,x) if and only if there exists b € Uy such that (Uy, €) F z €]}
ap Ap(a,...,an,b), and this is if and only if b € Uy, b € ag, and (Uy, €) F ¢¥(aq,. .., an,b).
Now U; is transitive, so ag C Uy, so this is equivalent to the statement that b € ag and
(U1, €) EvY(ay,...,an,b). By the inductive hypothesis, this is equivalent to that statement

that b € ag and (Us, €) E ¥(aq,...,a,,b), and reasoning similar to what we have already
used tells us that this is equivalent to the statement that (Us, €) F 3z € ag¢(ay, ..., an, x).
Now suppose that ¢(x1,...,z,) is a ¥; formula, that U; C U, are transitive classes,

that aq, ..., a, are elements of U; and that (U, €) F ¢(ay,...,a,). We argue by induction
on the complexity of ¢ that (Us, €) F ¢(ay,...,an,).

The base cases and most instances of the inductive step are as above. The one extra
thing we must do is deal with the case when ¢(x1,...,z,) = JzY(x1,...,Ts, ).

Suppose that (Uy, €) F 3z p(aq,.. ., an, ). Then there is an element b of U; such that
(U1, €) EvY(ay,...,an,b). Now by the inductive hypothesis, (Us, €) E¥(ay,...,a,,b), so
(Ur,€) Edz(ay, ... an, x).

From the assumption that 3; formulae are upwards absolute between transitive classes,i
it follows that II; formulae are downwards absolute.

2. Prove 7.1.11 (30), ie. that “x is a finite sequence of elements of y” (ie. x € <“y) is
YZF | assuming that (1)—(29) of 7.11 are all £ZF.

We express this statement in the following way.



“r is a function, there exists an element z of w such that z = domz, and for all
wEranx, w € y.”

We remove the reference to ranx as follows. Instead of saying “for all w € ranx¢”,
we say: “for all u € z, for all v € u, for all w € v, if there exists v/ € w such that
w ¢ v, then ¢” (the idea being that if u € xz, then u is an ordered pair (n,w), and
(n,w) = {{n},{n,w}}, so that w belongs to just one element of u).

We have now expressed the statement in .

B.

3. Prove that “x is a well-ordering of y” is AZF.

We express it first in »; and second in II;.

¥1: “x is a relation on y which is a total order (this is expressible in ¥), and there
exists z such that z is an ordinal, and there exists R such that R is an order-isomorphism
between y and z.”

IT;: “x is a relation on y which is a total order (this is expressible in ¥g), and for all
z, if z is a non-empty subset of y, then z has a least element.”

4. Show that for every ¥, formula ¢(z1,...,z,), there exists a corresponding g
formula ¥ (z1,...,2n, Y1, .., Ym) such that

ZF ENzy, . .xp(d(x, ..oy Tn) € Y1, o Y (T1y o oy Ty Y1y -+ 3 Ym) ) -

We do this by induction on ¢. This is trivial if ¢ is atomic, and easy for the cases
when ¢ is a disjunction or a conjunction.

Suppose that ¢(x1,...,x,) = Iz € yx(x1,...,Tn, z), and that O(zy, ..., n, 2, Y1, - -, Yn)l
is a ¥ formula such that Jyi,...,v,0(z1,...,Tn,x,y1,...,Yn) is provably equivalent to
X(T1,. .., Tp, T).

Then ¢(x1, ..., x,) is provably equivalent to Jy1, ..., y, Iz € yO(x1, ..., Tn, T, Y1, -, Yn)
which has the required form.

Now suppose that ¢(x1,...,x,) =Ve € yx(z1,...,2Tn, ), and that 0(x1, ..., 2n, 2,91, -, Yn )i
is a ¥ formula such that Jyq,...,v,0(z1,...,Zn,x,Y1,...,Yn) is provably equivalent to
X(T1, .y Ty, ).

Then ¢(x1, ..., z,) is provably equivalent to 3f1,..., f,Vx €y (fiisafunction, dom f; :I
yO(z1,...,2n, 2, fi(z),..., fo(z))), which has the required form.

Suppose that ¢(z1,...,z,) = 3z x(z1,...,Ts,x), and that 0(xq,...,Tn, T, Y1, .-, Yn)
is a ¥ formula such that Jyi,...,9,0(z1,...,Zn,x,y1,...,Yn) is provably equivalent to
X(T1, .y T, ).

Then ¢(z1,...,x,) is provably equivalent to IxJy1, ..., yn 0(x1,. .., Tny T, Y15+, Yn),
which has the required form.

5. Prove that ordinal addition, multiplication and exponentiation are AZ%".




These statements can be proved by repeatedly using Theorem 7.1.13.

6. Prove that for any infinite cardinal x, cof(k) is a regular cardinal.

Let p = cof(k).

Suppose that f : 4 — K is unbounded.

Define g so that for each o < k, g(a) = sup{f(B) : 5 < a}.

Then for all & < K, g(a) < k also, or else f[a has unbounded range in &, contradicting
minimality of u.

Clearly the range of g is unbounded in k.

Also g is (non-strictly) monotonically increasing.

Now suppose that A < u, h : A = pu, and the range of h is unbounded in u.

Then go h : A = k, and because g is monotonically increasing, the range of g o h is
unbounded in k.

Thus, by minimality of u, A = p.

It follows at once that cof(u) = p.

By considering the case when h is a bijection, we see that p must be a cardinal.

Thus p is a regular cardinal.

7. Suppose k, A are infinite cardinals such that £ > A. Prove that if A > cof(k), then
k> K. Suppose now that A\ < cof(k), and that x has the property that for any cardinal
u, if g < K then 2# < k. Prove that k* = k. Hence show that if GCH is assumed, then for

any infinite cardinals s, A with £ > X, we have k* = k or xkT.

Suppose that A > cof(k). Suppose, in order to obtain a contradiction, that x* < k.
Let p = cof(k). Then x* < k*. Let (g, : @ € k) enumerate all functions from u to k. Let
f: 1 — Kk be a monotonic unbounded function (as in the solution to question 6.).

Now define g : p — & so that for all & < p, for all 5 in the interval [sup{f(7y) : v < a}, f(«)),}
g(a) # gg(e); this is possible since f(a) < p = cof(k) so {gs(a) : f < f(a)} is not the
entirety of k.

Then for all 8, g # g, giving a contradiction.

Suppose that A\ < cof (), and that s has the property that for any cardinal p, if p <
then 2# < k.

Suppose that f: A = k. Then supran f < k.

Hence there exists a < k such that f: A — «a.

Note that the set of all functions f such that f : A — a has cardinality |oz|>‘.

So k< la]* < > acr b < K. =K, so since k < K, K = k.
Now for any A < &, k* < k® = 2%. Under the assumption of GCH, we must therefore

have k* < k1. So k* is either k or k.

C.

8. Suppose k is an uncountable reqular cardinal. Let g : K — K be any function.
Prove that for any a < k, there exists § < k, with a < 3, such that  is closed under g

(ie. for all v < S, g(v) < B).



Let ap = 0, and given «,, let au, 11 be the supremum of {a, +1}U{f(B)+1: 5 < a,}.
k is regular so if a,, < K, then a,+1 < K also.

Now let ay, = sup,,c,, a,. Then since x is uncountable and regular, o, < x; and «,
is closed under f.

9. Let k be an uncountable regular cardinal with the property that for any cardinal
< Kk, we have 2# < k... (*).

Prove that (i) if a is any cardinal and « < &, then |V, | < &, (ii) |Vi| = &, (iii) if & is
regular, then (Vj, €) F ZFC.

(For (iii) you need consider only the replacement scheme, since we essentially showed
that if  is a limit ordinal and o > w, then (V,,, €) satisfies all the axioms of ZFC except,
possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).

(i) We prove that if o < &, then |V,,| < &, by inductino on a.

If « =0, then [Vy| =0 < k.

If « = B+ 1, and |V3| < &, then |Vzy1| = 2/V#l < k by the property (*).

If A <k is alimit, then [Vy| = [Uycr Val <D aca Vol Nowif [V, | <k for all a < A,
then regularity of k gives that |V)| < & also.

(i) Vi = Up<s, Vs 50 Vi is a union of k-many sets of size < . So |V,| < k.

But also k C Vj,, so |Vi| = k.

(iii) Suppose that A € V,;, and F': A — Vj; is a class term (definable by some formula
¢(x,y) such that (V,;, €) F Ve € AJlyo(zx,y)).

Then since A € Vi, A € V, for some a < k, s0 A CV,, so |A| < |V,]| < k.

Now apply Replacement in V to ¢V=; let B = {y : 32 € A¢V=(x,y). Note that
|B| < |A| < k.

For each y € B, let v, be least such that y € V, ; v, < k always.

Since k is regular, v = sup{v, : y € B} < k.

Then B CV,,s0 Be V,11 <V,.

And (V,;,€) E B ={y:3x € A¢(x,y)} as required.

Now suppose that from ZFC one could prove the existence of a cardinal having
property (*). Then from ZFC one can prove the existence of an ordinal a such that
(Va, €) E ZFC. Note that this statement is ¥ in parameters V,, and «, and so is absolute.

Let a be least such that (V,, €) E ZFC. Then there does not exist S < « such that
(Vs,€) F ZFC. Hence

(Va,€) /F38(Vs,€) EZFC,

giving a contradiction.




