
Gödel Incompleteness Theorems: Solutions to sheet 2

A.

1. Show that the set {n : PAE ⊢ En[n]} is expressible in complexity Σ1.
The set is defined by the conjunction of the following statements, which are Σ1.
(a) n is the Gödel number of a formula.
(b) There exists m such that m = p∀v1(v1 =q

⌢
pnq⌢p→q

⌢n⌢
p)q, and PrPAE(m).

2. Show that for any two formulae F (v1) and G(v1) in LE with one free variable, there
exist sentences X and Y such that the sentences (X ↔ G(pY q)) and (Y ↔ F (pXq)) are
both true.

Define ψ(n) to be G(pF (pd(n)q)q).
Let k = pψq.
Let X = ψ[k], and let Y = F (pXq).
Then Y is equal to F (pXq), so is certainly equivalent to it.
Also, X is ψ[k]. But k = pψq. So X is Ek[k]; thus X is d(k). Also, X is ψ[k] which

is equivalent to ψ(k) which is G(pF (pd(k)q)q), which is G(pF (pXq)q) which is G(pY q).

B.

3. Show that if S is a definable set of sentences in LE , and PrS is an associated proof
predicate, and X and Y are any formulae, then

PAE ⊢ (PrS(pX → Y q) → (PrS(pXq) → PrS(pY q))).

Because, if x is a proof for X and z is a proof for X → Y , then if we concatenate x
with its last # removed, z, pY q, and #, then we get a proof for Y ; and all of this stuff
can be said in the language.

4. Show that the following functions are primitive recursive.

(i) P (n), which is n− 1 if n > 0 and 0 if n = 0.
Let h(n, k) = n. Then P (0) = 0, and P (n+ 1) = h(n, P (n)).

(ii) S(m,n), which is m− n if m ≥ n, and 0 if m < n.
Let g(m) = m, and h(m,n, k) = P (k).
Then S(m, 0) = g(m) for all m, S(m,n+ 1) = h(m,n, S(m,n)) for all m and n.

(iii) M(m,n) = m.n.
Let g(m) = 0 for all m, and h(m,n, k) = k + m (addition was shown to be PR in

lectures).
Then M(m, 0) = g(m) for all m, M(m,n+ 1) = h(m,n,M(m,n)) for all m and n.

(iv) E(m,n) = mn.
Let g(m) = 1 (which is the successor function composed with the function constant at

zero, and so is PR), and h(m,n, k) = k.m.
Then E(m, 0) = g(m), and E(m,n+ 1) = h(m,n,E(m,n)).

(v) L(m,n) = min(m,n), and U(m,n) = max(m,n).



L(m,n) = S(m,n).n+ S(n,m).m, and U(m,n) = S(m,n).m+ S(n,m).n.

(vi)G(n) = minm≤n F (m) andH(n) = maxm≤n F (m), where F is primitive recursive.
For G, let h(n, k) = min(F (n), k); this is PR.
Then G(0) = F (0), and G(n+ 1) = h(n,G(n)).
H is similar.

5. (i) Show that every true, quantifier-free sentence is provable from PAE.
The true atomic formulae are n = n for all n, all of which are logically valid and

therefore provable from PAE, and m ≤ n where n ≥ m, each instance of which can be
proved using the axiom ∀vi∀vj (vi ≤ vj ↔ (vi = vj ∨ vi

+ ≤ vj)).
The true negated atomic formulae are as follows. Firstly, ¬m = n, where m 6= n. For

the case m = 0, this follows from the axiom ∀vi ¬vi
+ = 0 (which is incorrect in the current

version of the notes, I need to correct it); for other cases it can be deduced from this by a
finite number of applications of the axiom ∀vi∀vj (vi

+ = vj
+ → vi = vj). And secondly,

¬m ≤ n, where m > n. This can be proved from the true atomic statement n ≤ m, the
true statement ¬m = n, and the axiom ∀vi∀vj (((vi ≤ vj) ∧ (vj ≤ vi)) → vi = vj).

Now, it follows that any conjunction of true atomic and negated-atomic sentences is
provable; and hence that any true quantifier-free statement in disjunctive normal form is
provable. The result now readily follows.

(ii) Prove that if φ is quantifier-free, and ∃vi ≤ nφ is a sentence, then there is a
quantifier-free sentence φ′ which is true if and only if φ is true. [Note that n here is a fixed
natural number, and the choice of φ′ will depend on the choice of n.]

Define φ′ to be (φ(0) ∨ φ(1) ∨ · · · ∨ φ(n)).

(iii) Prove that every true Σ0 sentence is provable from PAE.
Straightforward induction on the complexity of a Σ0 formula.

(iv) Deduce that every true Σ1 sentence is provable from PAE.
Suppose that φ(v1) is Σ0, and ∃v1 φ(v1) is true in N. Then this existential statement

has a witness, n say. Then φ(n) is true, Σ0, and hence provable. The result follows.

6. Let F (n) be the statement “there exists a Σ1 formula φ such that n = pφq”. [Assume
that this is expressible in complexity Σ0.]

This is justified, because all we need to say is “n is the Gödel number of a formula,
n begins with ¬∀, and any other instance of ∀ in n is immediately followed by a variable
letter vi (for some i), then by (vi ≤ σ →, where σ is a variable letter or a numeral term”,
and all of this can be said in Σ0, with all quantifiers bounded by n.

If φ is any formula, and n and k are natural numbers, write φ(n, k, 0) for the result
of substituting n for all free occurrences of v1 in φ, k for all free occurrences of v2, and 0
for all other free variables. [Assume that the statement G(m,m′, n, k) which we define as
“If φ is such that m = pφq, then m′ = pφ(n, k, 0)q” can be expressed in Σ0.]

We’re interested in the case when φ(m,n) defines a function. The previous version of
the sheet attempted to define a function fφ which would coincide with it, but that function
wasn’t reliably recursive.

(i) Show that the statement H(m,n, k), which we define as “F (m) is true, and if φ
satisfies m = pφq, then φ(n, k, 0)” is expressible in complexity Σ1.



Using the result that any recursively enumerable set is Σ1 definable, we argue that
the set of values (m,n, k) for which H(m,n, k) is recursively enumerable. We do that
by arguing that there is an algorithm that will terminate with the answer “yes” on input
(m,n, k) if and only if H(m,n, k) is true.

Begin by finding out whether F (m) is true. If not, then enter an infinite loop (or
carry out some behaviour other than outputting “yes” and stopping).

We can now effectively (I don’t assume people know the word “effectively”) read the
formula φ whose Gödel number is m, and what we do next depends on the complexity of
φ. If φ(n, k) is Σ0, well φ(n, k) is true if and only if it is provable, and so one of φ(n, k)
and ¬φ(n, k) will be provable. Look for proofs of those two in parallel, and when you find
one, stop and output the appropriate answer.

If φ(n, k, 0) = ∃wψ(n, k, y, 0, w), where ψ(n, k, z, w) is Σ0, then for each w in turn,
decide by the above method whether ψ(n, k, 0, w) is true or not. As soon as we find one
that is true, stop and output “yes”.

(ii) Prove that the statement K(m,n) which we define as “F (m) is true, and if φ is
such that m = pφq, then there exists k such that φ(n, k, 0)” is expressible in complexity
Σ1.

Modify the above answer as follows.
If φ(n, k, 0) = ∃wψ(n, k, y, 0, w), where ψ(n, k, z, w) is Σ0, then for each pair [y, w]

in turn, decide whether ψ(n, y, 0, w) is true or not. As soon as we find one that is true,
stop and output “yes”.

C.

7. We use the same notation as in the previous question.

(i) Show that ¬K(n, n) is not expressible in complexity Σ1.
This is another statement of the Halting Problem.
Suppose that ¬K(n, n) is expressed by a Σ1 formula φ(n).
Let φ′(n, k) be the statement “¬K(n, n) holds, and k = 0”. Then F (pφ′q) holds. Let

m = pφ′q.
Then K(m,m) holds if and only if F (m) and fφ′(m) is defined, if and only if fφ′(m)

is defined, if and only if ¬K(m,m)”, giving us a contradiction.

(ii) (Optional: hard) Let Γ be the smallest set of partial functions with the following
properties.

(α) Every recursive partial function belongs to Γ.

(β) The characteristic function of the set {(m,n) : K(m,n) is false} belongs to Γ.

(γ) Γ is closed under substitution, primitive recursion, and minimalisation.
Here the minimalisation operator, as applied to partial functions f , is defined as

follows. g is defined from minimalisation from f iff, for all n, g(n1, . . . , nk, n) is the least
m such that for all l ≤ m, f(n1, . . . , nk, l) is defined, and such that f(n1, . . . , nk, m) = 0,
if such an m exists; otherwise g(n1, . . . , nk, n) is undefined.

Sketch an argument that the elements of Γ are precisely the partial functions that can
be defined in complexity Σ2.

This is the Turing jump, applied to the Turing degree of computable functions.



The graph of any Π1 partial function f (one dimension up) is Π1, as is the set A ⊆ N

of [n1, . . . , nk] such that (n1, . . . , nk) belongs to the graph of f .
Hence the complement of A is Σ1, and so is the partial function πN\A.
Hence there exists m such that for all n, K(m,n) holds if and only if n /∈ A.
We can now define f in terms of K thus: f(n1, . . . , nk−1) = nk if and only if

χ{(m,n):¬K(m,n)}([n1, . . . , nk]) = 1; this can be done using the operations mentioned in
(γ).

So any Π1 partial function belongs to Γ.
If now f is a Σ2 function, suppose that f(n1, . . . , nk) = n if and only if ∃x ∀y φ(n1, . . . , nk, n, x, y).
Let A = {(n1, . . . , nk, n, x) : ∀y φ(n1, . . . , nk, n, x)}.
Then πA is Π1, so belongs to Γ, and f can be derived recursively from πA by running,

in parallel, processes checking whether πA(n1, . . . , nk, n, x) is defined. (I.e. every unit of
time numbered by a number which is a multiple of 2x but not 2x+1, run one step of an
algorithm to try to compute πA(n1, . . . , nk, n, x).)

Hence f is in A.
So, any Σ2 function belongs to Γ.
Now for the converse. Suppose that ∃x ∀y φ(x, y,m1, . . . , mk, n) defines the set {(m1, . . . , mk, n) :

g(m1, . . . , mk) = n}, where g is some partial function on N
k, and φ is Σ0 and has no free

variables other than the ones shown.
Then the set A = {(l, y) : ¬φ(l1, y, l2, . . . , lk+1, lk+2)}, where l1, . . . , kk+2 are such

that l = [l1, [l2, . . . , [lk+1, lk+2] . . .]], is Σ0-definable, so the set A′ = {l : ∃y (l, y) ∈ A} is
Σ1-definable, so πA′ is recursive, so is l 7→ K(k, l) for some k.

Now the function K belongs to our class, so l 7→ K(k, l) belongs to it also, so πA′

belongs to the class.
Now g(m1, . . . , mk) can be derived as follows. Let l be least such that 1− πA′(l) = 0,

where (for each i, l1+i = mi). Output lk+2.


