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1 Introduction

In this course, we will explore various techniques for solving differential equa-
tions, building on basic techniques encountered previously. Of particular
interest will be finding ways to solve and understand inhomogeneous linear
boundary value problems (BVPs), that is an ordinary differential equation
(ODE)

Lu(x) = f(x), a < x < b (1)

where L is a linear differential operator of the form

Lu = anu
(n)(x) + an−1u

(n−1)(x) + · · ·+ a1u
′(x) + a0u(x) (2)

and the function f(x) on the right hand side (RHS) is a forcing function in
the system. Along with equation (1), we impose boundary conditions at x =
a and x = b. The number and form of the boundary conditions is essential,
and one always thinks of the operator L associated with a particular choice
of boundary conditions.

Some questions we will consider:
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1. How do we solve the system for an arbitrary function f(x)?

2. Is there always a solution? If so, is it unique?

3. What is the effect of the boundary conditions?

4. Can we solve the equation if the ak = ak(x) are functions of x?

We remark that the theory of linear BVPs is much richer than the simpler
case of linear initial value problems (IVPs) which are often seen in an in-
troductory course on differential equations. In this setting we will primarily
use the linear structure of the operator to develop solution techniques which
are, in some sense, analogous to finding solutions to matrix equations of the
form,

Ax⃗ = b⃗. (3)

Throughout, we will exploit this analogy to concepts in linear algebra, in-
cluding the ideas of eigenvectors/eigenvalues, diagonalization, the inverse
matrix, etc. Linear differential operators, roughly speaking, can be thought
of as infinite-dimensional analogues of linear operators in finite dimensional
vector spaces (e.g. matrices), although there are several subtleties in this
analogy.

There are numerous applications of developing this theory from estimat-
ing energies of quantum systems, to developing spectral methods to solve
nonlinear PDEs, to theories of how organisms develop, among many other
problems. Additionally, there is a rich theoretical setting (typically taught
in courses on Functional Analysis). Here we aim to strike a balance between
applications and theory. We will focus on the basic ideas, but will not pur-
sue a fully rigorous treatment, or any particular applications. By the end
of the course you should be familiar enough with the ideas to pursue these
things at your leisure, and in particular be able to solve specific problems
that may arise in the rest of your course.

Material to Review: Broadly speaking this course will use ideas from
Linear Algebra to generalize the techniques often seen in courses on Fourier
Series or Boundary Value Problems. If you are rusty on these topics please
review them now. See the course material for

• Prelims M1: Linear Algebra II

• Prelims: M5: Fourier Series and PDEs.
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Further Resources: There are numerous books which cover the general
approaches to boundary value problems studied in this course. For example,

• Principles of Applied Mathematics by James Keener (Chapter 1 is re-
view, 2, 4, and 7 cover some material in this course, and other chapters
cover material in next term’s course);

• The Differential Equations II Reading List also contains many books
which cover roughly the same topics (and much more).

1.1 Motivating example: reaction-diffusion equations

The diffusion equation (with or without reactions) is used to model many
phenomena. Let u = u(x, t) denote a quantity that depends on one spatial
variable x and time t > 0. This could be a chemical concentration, popu-
lation, density of a substance or even cars in traffic. The diffusion equation
can be derived in a very intuitive way: we imagine a segment of space [a, b].
In this segment the total amount of “stuff” is∫ b

a
u(x, t) dx. (4)

Now, we say that the rate of change of “stuff” in the segment is equal
to the amount that leaves/enters through the ends plus any stuff that is
added/taken away by the external world. The amount of stuff leaving the
ends is the flux, denoted q, and we let f(x, t, u) be a local source function –
this is the rate at which u is created or destroyed at position x and time t;
note it can in general depend on u itself.
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Figure 1: 1D diffusion

The balance is

d

dt

∫ b

a
u(x, t) dx = q(a, t)− q(b, t) +

∫ b

a
f(x, t, u) dx. (5)
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This statement should be familiar to you from physics as a conservation
principle. For instance, if u is a density, then (5) is a statement of conser-
vation of mass. By recognising that

q(b, t)− q(a, t) =
∫ b

a
qx(x, t) dx

we obtain ∫ b

a
(ut + qx − f) dx = 0. (6)

Equation (6) should hold for any segment and, thus, the integrand must
vanish:

ut + qx = f. (7)

To complete the system, the flux needs to be related to the quantity u. A
simple relationship is Fick’s Law, which states

q(x, t) = −Dux(x, t) (8)

where D > 0 is the diffusion constant. Combining (7) and (8), we obtain
the diffusion equation

ut −Duxx = f. (9)

The classical heat equation is the case f = 0. Many interesting and physi-
cally relevant situations are modelled with non-zero f . For example, (9) is a
popular model for population dynamics, where f is used to capture growth
and other interactions of the population. To seek stationary solutions, we
let ut = 0 in (9), and we obtain an equation of the type (1)-(2) albeit a very
simple one. Alternatively, we can use separation of variables to construct
solutions to the time-dependent problem. In both cases we must solve a
BVP in the spatial variables. This is precisely what we will consider in
this course. We will sketch an example application in Section 2.9, and use
physically-relevant examples as we develop the theory.

2 Eigenfunction methods

Our first approach to solving linear inhomogeneous BVP’s is via an eigen-
function expansion. The idea is to exploit the linearity of the operator
by constructing a solution as a superposition of a (generally infinite) set of
functions {yi(x)}. In particular, the yi will be functions satisfying

Lyi(x) = λiyi(x), (10)
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along with homogeneous boundary conditions. Here yi is an eigenfunction
with corresponding eigenvalue λi. This is analogous to the linear algebra
eigenproblem

Ax⃗i = λix⃗i, (11)

where A is a matrix and x⃗i an eigenvector with eigenvalue λi.

2.1 Function spaces

In the same way as linear algebra utilises vector spaces, with linear dif-
ferential operators we shall think of function spaces. Consider the infinite
dimensional space of all reasonably well-behaved functions on the interval
a ≤ x ≤ b.

Similar to a vector space, we can introduce a set of linearly independent basis
functions yn(x), n = 1, 2, . . .∞ such that any ‘reasonable’ function f(x) can
be written as a linear combination of these functions:

f(x) =

∞∑
n=1

cnyn(x). (12)

You should have encountered this idea before, with Fourier Series, where
the basis functions are sines and cosines; Equation (12) is merely a gener-
alisation. Hence it should be clear that we can have different sets of basis
functions.

We also define the inner product

⟨u, v⟩ =
∫ b

a
u(x)v(x) dx. (13)

Here the overbar denotes complex conjugate. In this course, we will rarely
be concerned with complex valued functions. If it is clear that we are dealing
with real functions, we may drop the overbar for simplicity.

2.1.1 Weighting functions

In some instances, the eigenvalue problem and the inner product definition
include a weighting function ρ(x), which is required to be real and not change
sign on a ≤ x ≤ b. In this case, the relations become

Lyi(x) = λiρ(x)yi(x) (14)
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and

⟨u, v⟩ =
∫ b

a
ρ(x)u(x)v(x) dx. (15)

2.2 Adjoint

We also require the notion of the adjoint of an operator. For operator L
with homogenous BC, the adjoint problem (L∗ BC*) is defined by the inner
product relation

⟨Ly,w⟩ = ⟨y, L∗w⟩. (16)

To determine the adjoint, one needs to:

1. Integrate by parts to move the derivatives of the operator from y to
w, and

2. Define adjoint boundary conditions so that all boundary terms vanish.

Example

Let Ly =
d2y

dx2
with a ⩽ x ⩽ b, y(a) = 0 and y′(b) − 3y(b) = 0. We wish to

find L∗w, such that ⟨Ly,w⟩ = ⟨y, L∗w⟩, i.e.,∫ b

a
(y′′)(w)dx =

∫ b

a
(y)(L∗w)dx

Solution
We use integration by parts to shift the derivatives from y to w:∫ b

a
wy′′dx = wy′|ba −

∫ b

a
w′y′dx

= wy′ − w′y|ba +
∫ b

a
yw′′dx

The integral gives the formal part so:

L∗w =
d2w

dx2
.

The inner product only includes integral terms, so the boundary terms must
vanish. We will exploit this to define boundary conditions on w, i.e. this
defines BC*. Here, we require

w(b)y′(b)− w′(b)y(b)− w(a)y′(a) + w′(a)y(a) = 0.
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Using the BC’s y′(b) = 3y(b) and y(a) = 0, gives:

0 =
(
3w(b)− w′(b)

)
y(b)− w(a)y′(a) + w′(a)y(a)︸ ︷︷ ︸

=0

As these terms must vanish for all values of y(b) and y′(a), we infer two BCs
on w:

• y(b): 3w(b)− w′(b) = 0

• y′(a): w(a) = 0

Definitions

• If L = L∗ and BC = BC∗, then the problem is self-adjoint.

• If L = L∗ but BC ̸= BC∗ we still call the operator self-adjoint.

Aside. Some books use the terminology formally self-adjoint if L = L∗ and
fully self-adjoint if both L = L∗ and BC = BC∗.

2.2.1 Eigenfunction Properties

When solving the BVP, the main idea is to construct a solution as a linear
combination of eigenfunctions. Two fundamental properties of eigenfunc-
tions will be vital to this approach.

1. Eigenfunctions of the adjoint problem have the same eigen-
values as the original problem

That is,
Ly = λy ⇒ ∃w ∋ L∗w = λw.

2. Eigenfunctions corresponding to different eigenvalues are or-
thogonal

That is, if Lyj = λjyj (so L∗wj = λjwj) and Lyk = λkyk (L∗wk =
λkwk), then for λj ̸= λk, ⟨yj , wk⟩ = 0.

Proof

λj⟨yj , wk⟩ = ⟨λjyj , wk⟩
= ⟨Lyj , wk⟩
= ⟨yj , L∗wk⟩
= ⟨yj , λkwk⟩
= λk⟨yj , wk⟩.
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But λj ̸= λk so ⟨yj , wk⟩ = 0. (The proof is exactly as for matrix
problems.)

2.3 Inhomogeneous solution process

We now outline the construction of solutions to the BVP

Ly = f(x)

with linear, homogeneous, separated boundary conditions, which we denote
by BC1(a) = 0 and BC2(b) = 0.

Step 1: Solve the eigenvalue problem

Ly = λy, BC1(a) = 0, BC2(b) = 0

to obtain the eigenvalue-eigenfunction pairs (λj , yj).

Step 2: Solve the adjoint eigenvalue problem

L∗w = λw, BC∗
1 (a) = 0, BC∗

2 (b) = 0

to obtain (λj , wj).

Step 3: Assume a solution to the full system Ly = f(x) of the form

y =
∑
i

ciyi(x).

To determine the coefficients ci, start from Ly = f and take an inner
product with wk:

Ly = f(x)

⇒ ⟨Ly,wk⟩ = ⟨f, wk⟩
⇒ ⟨y, L∗wk⟩ = ⟨f, wk⟩
⇒ ⟨y, λkwk⟩ = ⟨f, wk⟩

⇒ λk⟨
∑
i

ciyi, wk⟩ = ⟨f, wk⟩

⇒ λkck⟨yk, wk⟩ = ⟨f, wk⟩

(17)

We can solve the last equality for the ck, and we are done! Note that
in the last step we have used the orthogonality property ⟨yj , wk⟩ =
0, j ̸= k.
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2.4 Some simple solutions

Note that this construction requires that we can determine the eigenvalues
and eigenfunctions. This is by no means guaranteed. We will recall some
simple cases, solvable using techniques you should have used before.

• Constant coefficients

Ly ≡ ay′′ + by′ + cy = λy

Try y = emx, then:

am2 + bm+ (c− λ) = 0

Then:

1. Find roots mi of the quadratic.

2. The general solution is: y = A1e
m1x + A2e

m2x. But note there
are 3 unknowns: A1, A2, and λ, while for a second order equation
there will only be two BC’s.

3. Apply first BC to relate A1 and A2.

4. Apply second BC to determine values for λ.

• Cauchy-Euler

Ly ≡ ax2y′′ + bxy′ + cy = λy

Try y = xm, then:

am(m− 1) + bm+ (c− λ) = 0

Then y = A1x
m1 +A2x

m2 , and repeat the steps above.

2.5 A note on boundary conditions

In the above construction we assumed homogeneous boundary conditions.
Consider now the general case of an inhomogeneous system with inhomoge-
nous boundary conditions,

Lu = f(x)

Biu = γi.
(18)

A useful technique is to split the system in two, i.e. solve both

Lu1 = f(x), Biu1 = 0 (19)
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and
Lu2 = 0, Biu2 = γi. (20)

Here, solving for u1(x) has the difficulty of the forcing function but with
zero BC’s while the other equation is homogeneous but has non-zero BC’s.
Due to linearity, it is easy to see that u(x) = u1(x) + u2(x) solves the full
system (18).

This decomposition can always be performed1 and since solving (20) tends
to be an easier matter (for linear systems!), it is safe for us to focus on tech-
niques for solving the system (19), i.e. homogeneous boundary conditions.

For completeness we note that it is possible to solve BVPs with inhomo-
geneous BC using an eigenfunction expansion and without performing a
decomposition. The key points are:

1. The eigenfunctions are always determined using homogeneous bound-
ary conditions. Thus, the eigenfunctions will not change whether you
“decompose” or not. The difference comes in step 2:

2. In going from Line 2 to 3 of (17), care must be taken when performing
integration by parts, as boundary terms will generally still be present.
(Can you see why?) These extra boundary terms then carry through
to the formula for the ck.

1As we shall see next term (and you may notice on Problem Sheet 2), it requires caution
if there is a zero eigenvalue λ = 0. We briefly discuss this in Section 2.7.3.
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2.6 Connection with linear algebra

There are direct parallels between linear algebra and linear BVPs:

Linear algebra Linear BVP

vector v⃗ ∈ Rn ←→ function y(x) for a ⩽ x ⩽ b

v⃗ · w⃗ =

n∑
k−1

vkwk︸ ︷︷ ︸
dot product

←→ ⟨f, g⟩ =
∫ b

a
f(x)g(x)dx︸ ︷︷ ︸

inner product

∥ v⃗ ∥2= v⃗ · v⃗ ⩾ 0︸ ︷︷ ︸
norm

←→ ∥ f ∥2= ⟨f, f⟩ ⩾ 0︸ ︷︷ ︸
norm

⊥ vector v⃗ · w⃗ = 0 ←→ orthogonal function ⟨f, g⟩ = 0

Matrix A ←→ Linear Differential Operator L

Given a vector v⃗, the product Av⃗ is a new vector. Similarly, given a function
y(x),

Ly = a
d2y

dx2
+ b

dy

dx
+ cy

evaluates to a new function on a ⩽ x ⩽ b.

In linear algebra, a common problem is to solve the equation

Av⃗ = b⃗

for v⃗, given matrix A and vector b⃗. Compare that to our general task of
solving Ly = f for y, given operator L and RHS f .

Eigenvalue problems

Linear algebra Linear BVP

Av⃗ = λv⃗ ←→ Ly = λy

12



How many eigenvalues?

Linear algebra Linear BVP

A is n× n L is order n

Solve |A− λI| = 0

⇒ n eigenvalues ∞ eigenvalues

Adjoint

Linear algebra Linear BVP

A→ AT L→ L∗

BC’s→ BC∗’s

Self adjoint if A = AT L = L∗, BC=BC*

A self-adjoint matrix is called Hermitian. A self-adjoint linear differential
operator is also referred to as Hermitian. We next look at a particular
class of Hermitian operator – Sturm-Liouville operators – that occurs quite
commonly and has some useful properties.

2.7 Examples

2.7.1 Homogeneous Boundary Conditions

Suppose we want to solve,

Ly = y′′ + 3y′ + 2y = f(x). y(0) = 0 = y(1). (21)

This has the associated eigenvalue problem

Ly = y′′ + 3y′ + 2y = λy, (22)

with the same homogeneous Dirichlet conditions. Equation (22) has the
characteristic equation,

r2 + 3r + 2− λ = 0 =⇒ r± =
−3±

√
1 + 4λ

2
. (23)

We next consider possible values of λ, assuming that it is real.
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• If λ > −1/4, then the solutions are y = c1e
r±t + c2e

r∓t. Substituting
this into the boundary conditions, we have that solutions of this form
give the following linear system for the constants,(

1 1
er± er∓

)(
c1
c2

)
=

(
0
0

)
. (24)

We see that the determinant of this system is never zero, and hence
we must have c1 = c2 = 0.

• If λ = −1/4, then the solutions for the homogeneous problem are

y = e−
3x
2 (c1 + c2x). The boundary condition y(0)=0 requires c1 = 0,

and then the boundary condition y(1) = 0 will force c2 = 0, so this is
not an eigenvalue either.

• If λ < −1/4, then we have a complex-conjugate pair of solutions to
(23), so solutions take the form

y = e−
3x
2 (c1 cos(ωx) + c2 sin(ωx))

where

−ω2 =
1 + 4λ

4
.

The boundary condition y(0) = 0 will force c1 = 0. The condition
y(1) = 0 then requires sin(ω) = 0, so that ω = nπ for an integer
n. Hence the eigenvalues are of the form λ = −1

4 − (nπ)2 for n =
1, 2, 3, . . . .

In order to use the eigenfunction theory, we have to study the adjoint oper-
ator. Doing the integration by parts, we find the adjoint eigenvalue problem
of the form,

L∗w = w′′ − 3w′ + 2w = λw. w(0) = 0 = w(1). (25)

We already know the eigenvalues λ, and so we in fact know these eigenfunc-
tions immediately. After using the boundary conditions, they are

w = e
3x
2 sin(ωx),

where ω is as before.

Exercise: Follow the same procedure for the BVP,

Ly = x2y′′ + xy′ = f(x), y(1) = 0 = y(2). (26)

What are the eigenfunctions? Adjoint eigenfunctions? Eigenvalues? Finally,
how can you solve the problem given an arbitrary forcing function f(x)?
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2.7.2 Inhomogeneous Boundary Conditions

Let y′′ = f(x) with 0 ⩽ x ⩽ 1, y(0) = α and y(1) = β. Then:

BC’s Incorporated Solution Route

1. Solve y′′ = λy, with y(0) = 0 and y(1) = 0.

We get yk(x) = sin(kπx) and λk = −k2π2 with k = 1, 2, 3, . . ..

The problem is self-adjoint (show this as an exercise), so wk = yk =
sin(kπx) and w′′

k = −λkwk where λk = −k2π2.

2.

y′′ = f(x)∫ 1

0
wky

′′dx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 +

∫ 1

0
w′′
kydx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 + λk

∫ 1

0
wkydx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 + λkck

∫ 1

0
wkykdx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 − k2π2ck

∫ 1

0
sin2(kπx)dx =

∫ 1

0
wkfdx

3. Now
∫ 1
0 sin2(kπx) dx = 1/2, and wk = sin(kπx), hence

y′wk − yw′
k|10 = −kπ cos(kπ)y(1) + kπ cos(0)y(0)

⇒ −βkπ(−1)k + αkπ − 1

2
k2π2ck =

∫ 1

0
f(x) sin kπxdx

⇒ ck = −
2
∫ 1
0 f(x) sin(kπx) dx

k2π2
+

2

kπ

(
α− (−1)kβ

)
.

Solving for ck gives y(x) as a Fourier series.
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Decomposed Solution Route

1. Solve two systems separately:

y′′ = f(x), y(0) = y(1) = 0

u′′ = 0, u(0) = α, u(1) = β

2. To solve for y, since BC=0 we can jump straight to the formula

ĉk = − ⟨f, wk⟩
λk⟨yk, wk⟩

= −
2
∫ 1
0 f(x) sin(kπx) dx

k2π2
.

3. The solution for u is easily obtained as

u = (β − α)x+ α

4. The full solution is y(x) + u(x).

Although they look different, both approaches give the same solution. Either
way, we see that self-adjoint problems are great: they are less work since
the wk’s are the same as the yk’s.

2.7.3 Zero Eigenvalues

We will cover the following in more detail next term, but let’s go through
the case with zero eigenvalues so you can clearly see why these issues arise.
Consider the boundary value problem,

y′′ = f(x), y′(0) = 0, y′(1) = 0. (27)

You should confirm that this is a fully self-adjoint operator and that it has
the eigenfunctions and eigenvalues,

yn = cos(nπx), λn = −(nπ)2, n = 0, 1, 2, . . .

For n = 0, y0 is a constant function (without loss of generality, we could take
y0 = 1, for instance). Note that you can find this eigenfunction directly by
solving Ly = 0, and if any solutions satisfy the boundary conditions, then
the operator automatically has a zero eigenvalue.

If we follow the procedure in Section 2.3 for any eigenfunction with n ≥ 1,
everything works as intended and we can find the corresponding cn’s. How-
ever, when n = 0, we see that ⟨y, Ly0⟩ = 0. So, the last line of the derivation
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in (17) reads 0 = ⟨f, y0⟩. As we will show next term, this means that so-
lutions only exist if this condition is satisfied. In this case, any solution to
(27) is also not unique as if y is such a solution, then so is y + αy0 for any
constant α ∈ R. If instead ⟨f, y0⟩ ̸= 0, then the boundary value problem
does not have a solution.

Example.
Let f(x) = 1 in problem (27) and let’s try solving the BVP directly. Inte-
grating (27) twice we get y = x2/2 + Bx + C. Applying y′(0) = 0 we have
B = 0, but we then see y′(1) = 1 ̸= 0, for any choice of the constant C,
and so there are no solutions to this problem. If instead we let f(x) = 0,
we see that any constant satisfies this equation and boundary conditions, as
predicted above.

Note: in general, in particular if the operator is not self-adjoint, the situa-
tion is as follows. Consider the problem Ly = f(x), the associated eigenvalue
problem Ly = λy, and adjoint eigenvalue problem L∗w = λw. If there is a
zero eigenvalue, then one of the following is true:
(i) if ⟨f, w0⟩ ≠ 0, then the problem has no solution for this f(x), or,
(ii) if ⟨f, w0⟩ = 0, then the problem has infinitely many solutions, given by
adding multiples of the associated eigenvector, y0, to the solution.

There are two technical issues we did not address here. First, how do we
know that an arbitrary function y can be expressed as a sum of eigenfunc-
tions? Secondly, how do we know to only look for real eigenvalues λ? The
first question is in general a difficult one that requires some machinery of
Functional Analysis, so we will simply assume that the eigenfunctions form a
complete set - general Theorems will guarantee this for a wide class of prob-
lems of the form we have studied. The second question can be answered via
Sturm-Liouville theory, which we address in the next subsection.
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2.8 Sturm-Liouville theory

Sturm–Liouville (SL) theory of second order concerns eigenvalue problems
of the form:

Ly = λr(x)y

where r(x) ⩾ 0 is a weighting function, and the operator L is of the form

Ly = − d

dx

(
p(x)

dy

dx

)
+ q(x)y, a ≤ x ≤ b (28)

The functions p, q, and r are all assumed to be real. It is easy to check that
the operator is formally self-adjoint. It is fully self-adjoint if the boundary
conditions take the separated form

α1y(a) + α2y
′(a) = 0

α3y(b) + α4y
′(b) = 0.

Observe also that if p(a) = p(b) = 0, then ⟨Ly,w⟩ = ⟨y, Lw⟩ irrespective
of boundary conditions. This defines the so-called natural interval [a, b] for
the problem. We will always assume that p(x) does not change sign in the
interval [a, b].

2.8.1 Inhomogeneous SL problems

Since a SL operator is self-adjoint, the eigenfunction expansion process is
straightforward. Consider

Ly = f(x)

with homogeneous BC’s. The system can be solved with an eigenfunction
expansion in the same manner as in Section 2.3.

Let’s assume that y =
∑

j cjyj and note that ⟨j, Lyk⟩ = 0 if j ̸= k. Then, it
is straightforward to deduce the following:

Ly = f(x)

⇒ ⟨Ly, yk⟩ = ⟨f, yk⟩
⇒ ⟨y, Lyk⟩ = ⟨f, yk⟩ (since L∗ = L, and wk = yk)

⇒ ⟨y, λkryk⟩ = ⟨f, yk⟩
⇒ λkck⟨yk, ryk⟩ = ⟨f, yk⟩,

(29)
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Thus we obtain the formula

ck =
⟨f, yk⟩

λk⟨yk, ryk⟩
(30)

and the full solution is given by

y =
∑
k

ckyk.

2.8.2 Transforming an operator to SL form

Many problems encountered in physical systems are Sturm-Liouville. In
fact, any operator

Ly ≡ a2(x)y′′(x) + a1(x)y
′(x) + a0(x)y(x)

with a2(x) ̸= 0 in the interval can be converted to a SL operator.
To transform to a self-adjoint SL operator, multiply by an integrating factor
function µ(x):

µa2y
′′ + µa1y

′ + µa0y

We then choose µ so that the first and second derivatives collapse, i.e. so it
can be expressed in the form

− d

dx
(py′) + qy

Suppose we are considering the problem

Ly = f(x)

where L is not Sturm-Liouville. We could solve following the approach in
equation (17); alternatively we could convert to Sturm-Liouville first, and
then proceed using the nice properties of a self-adjoint operator. So, is the
problem self-adjoint or isn’t it?? The key observation is that we are no
longer solving the same problem. We have transformed to a new operator

L̂y = − d

dx
(py′) + qy

which does not satisfy the same equation as the original, that is Ly = f
while L̂y = µf . They are both valid, and must ultimately lead to the same
solution.
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2.8.3 Further properties

Orthogonality.
Due to the presence of the weighting function, the orthogonality relation is∫ b

a
yk(x)yj(x)r(x)dx = 0. (31)

Eigenvalues.
The functions p, q, r are real, so L = L. Thus, taking the conjugate of both
sides of Lyk = λkyk gives

L yk = λk r yk

⇒ ⟨yk, L yk⟩ = λk⟨yk, ryk⟩
(32)

but

⟨yk, L yk⟩ = ⟨Lyk, yk⟩ = λk⟨ryk, yk⟩ = λk⟨yk, ryk⟩
⇒ λk = λk

(33)

Thus, all eigenvalues are real.

If a ≤ x ≤ b is a finite domain, then λ’s are discrete and countable:
λ1 < λ2 < λ3 < · · · < λk < · · ·

, with limk→∞ λk =∞.

Eigenfunctions.
The {yk} are a complete set, that is all h(x) with

∫
h2r dx < ∞ can be

expanded as

h(x) =
∑

ckyk(x).

Take an inner product with r(x)yj(x):

⟨ryj , h⟩ = ⟨ryj ,
∑

ckyk⟩ =
∑

ck⟨ryj , yk⟩ = cj⟨ryj , yj⟩

⇒ cj =

∫ b
a h(x)yj(x)r(x) dx∫ b

a y
2
j (x)r(x) dx

Note: We’ve used h(x) to make clear that we’re not talking about the
solution to the BVP; rather, we are expanding any function that is suitably
bounded on the same domain.
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2.8.4 Other tidbits

Regular Sturm-Liouville Problems. If the system satisfies all of the
above and the additional conditions

• p(x) > 0 and r(x) > 0 on a ≤ x ≤ b.
• q(x) ≥ 0 on a ≤ x ≤ b.
• BCs have α1α2 ≤ 0 and α3α4 ≥ 0,

then λk ≥ 0 for k = 1, 2, 3, . . . .

Proof: Using ⟨yk, Lyk − λkryk⟩ = 0,

−
∫ b

a
y(py′)′ dx+

∫ b

a
yqy dx−

∫ b

a
yλry dx = 0

⇔ −
∫ b

a
y(py′)′ dx+

∫ b

a
qy2 dx− λ

∫ b

a
ry2 dx = 0

⇒ −pyy′
∣∣∣∣b
a

+

∫ b

a
p(y′)2 dx+

∫ b

a
qy2 dx− λ

∫ b

a
ry2 dx = 0

⇒ λ =

[∫ b

a
p(y′)2 dx+

∫ b

a
qy2 dx− pyy′

∣∣∣∣b
a

]/∫ b

a
ry2 dx ≥ 0

As a side note, the Rayleigh quotient, R[y] = ⟨y, Ly⟩/⟨y, ry⟩, is used ex-
tensively in analysis.

Note: Most authors modify the third condition above to instead require
that the BCs satisfy α2

1 + α2
2 > 0 and α2

3 + α2
4 > 0 to define a regular SL

problem. However, it is then less trivial (and not always true) that one
can bound the eigenvalues below by 0 as in the above statement (though
they can still be shown to be bounded and ordered in an increasing chain
as above). One needs the first two

Oscillation theorem [Simplest version]: The kth eigenfunction will have k ze-
roes on a < x < b (k = 0, 1, 2, · · · ).

Monotonicity theorem: Comparing two SL problems, SL and S̃L, with
the same boundary conditions, the eigenvalues will satisfy λ̃k > λk if

p̃(x) ≥ p(x) and q̃(x) ≥ q(x) and r̃(x) ≤ r(x) and (ã, b̃) ⊆ (a, b)
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and the strict inequality (or strict inclusion) holds in at least one of these
cases.

2.9 Application: Linear Instability Analysis (Non-examinable)

As an application of the theory developed above, we can again consider the
reaction-diffusion equation (9) in a specific context. Consider the system to
model the density u(x, t) of some species which can survive in the interval
x ∈ (0, L) but for which the environment outside of this interval is hostile,
and so the animals cannot live there. Within the domain, the species move
via Fickian diffusion, and grow logistically (i.e., Fisher’s Equation). This is
essentially a model of Spruce budworm invasion, but we will not go into the
biological context too much. Then a model for this species’ density reads,

ut = Duxx + u
(
1− u

K

)
, (34)

where D is the diffusion coefficient, and K the carrying capacity. We model
the hostile environment with the Dirichlet boundary conditions u(0, t) =
u(L, t) = 0. We assume an initial profile of the species given as u(x, 0) =
u0(x) ≥ 0, and want to know if this species will be able to survive or not in
this region of space, and how this might depend on the parameters D, K,
and L.

It is not possible to solve (34) analytically, but we can guess steady state
solutions based on the form of the function f = u(1− u/K). We note that
the homogeneous solution u = K does not satisfy the Dirichlet conditions,
and so is not suitable. The solution u = 0 on the other hand does, and
nicely represents extinction. As the right hand side of (34) is identically 0
for this solution, once the population has become extinct it will remain so
indefinitely. We then use a linear stability analysis to determine if a small
initial density will grow away from this extinction state, or collapse onto it.

We consider a small perturbation ansatz of the form u = 0+ ϵv(x, t), where
ϵ≪ 1 indicates the size of the perturbation. Substituting this into (2.9) and
dividing the equation by ϵ we find,

vt = Dvxx + v
(
1− ϵ v

K

)
= Dvxx + v +O(ϵ). (35)

Henceforth, we neglect terms of order ϵ, as is usual in linear stability anal-
ysis. Noting that (35) is a linear equation, we can perform separation of
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variables and write v(x, t) = X(x)T (t), finding equations for the temporal
and spatial parts. In particular, the spatial function X(x) will solve a linear
boundary value problem for which we can find an infinite set of solutions ex-
plicitly, and the temporal part T (t) will be slaved to the spatial eigenvalues
of the spatial BVP. You should find the solution of (35) now, and compare
your solution to the ‘quick and dirty’ method shown below.

Knowing the form of the spatial operator, we can use the eigenfunctions
associated with Ly = yxx, together with the Dirichlet boundary conditions.
These will be of the form yk = sin(kπ/L), for k = 1, 2, . . . , in order to
match the Dirichlet conditions. The time-dependent solution will be of the
form T (t) = exp(αt), where α will depend on the rest of the problem. We
therefore consider the solution ansatz,

v(x, t) =
∞∑
k=1

eαkt sin

(
xkπ

L

)
. (36)

We note that if all of the (unknown) factors αk are negative, then v(x, t)
will decay over time and eventually return to the homogeneous steady state
of 0. If, on the other hand, αk > 0 for some k, then this small population
will grow as long as the initial distribution has some nonzero component of
this eigenfunction. We now determine how to find these growth rates αk.

Substituting (36) into (35).

∞∑
k=1

αke
αkt sin

(
xkπ

L

)
= −D

∞∑
k=1

k2π2

L2
eαkt sin

(
xkπ

L

)
+

∞∑
k=1

eαkt sin

(
xkπ

L

)
.

(37)
We can then consider this term by term, for instance by multiplying by
sin(xkπL ) for a specific k and integrating across the domain. Doing this,
and dividing out the functions, we find the infinite sequence of algebraic
relations,

αk = −Dk
2π2

L2
+ 1. (38)

We immediately have that αk < αj for k > j, so that the largest growth rate
is α1. We then have that α1 > 0 if Dπ2 < L2, and hence have determined a
condition in which a population will not become extinct which is a function
of the model parameters. One interesting observation is that whether or
not the species becomes extinct does not depend on K, although any actual
stable species distribution (which we cannot compute using these methods)
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will depend on this parameter. See the course notes for B5.5 for further
information and examples similar to this one.

Finally we remark that all of this can be generalized beyond the case of
diffusion using the Sturm-Louiville theory developed above. One major
application of these ideas about eigenfunction is precisely to be able to
compute linear stability of more complicated models, even when analytically
solving such nonlinear models is not feasible (which is true of almost all
nonlinear problems).

3 Green’s function

In this section we will develop an alternative approach to viewing and solving
linear BVPs, using the Green’s function.

3.1 Form of the eigenfunction expansion solution

Consider the form of the final solution obtained through the eigenfunction
expansion approach. Taking Equation (17) one step further, we have

y(x) =
∞∑
k=1

⟨f, wk⟩
λk⟨yk, wk⟩

yk(x)

Aside: this requires all λk ̸= 0. The case of zero eigenvalue has two sub-
cases:

• < f,wk ≯= 0: in this case, the BVP has no solution.

• < f,wk >= 0: in this case, the solution is not unique as any multiple
of yk (the eigenfunction that belongs to the zero eigenvalue) can be
added to the solution.

This observation is directly linked to the Fredholm Alternative, which will
be discussed in “Further Mathematical Methods” in HT.)
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Let nk = ⟨yk, wk⟩ (normalisation), then:

y(x) =
∞∑
k=1

1

λknk

(∫ b

a
f(t)wk(t)dt

)
yk(x)

=

∫ b

a

( ∞∑
k=1

1

λknk
wk(t)yk(x)

)
f(t)dt

=

∫ b

a
g(x, t)f(t)dt

where

g(x, t) =

∞∑
k=1

wk(t)yk(x)

λknk
. (39)

Thus, we have constructed a solution to Ly = f in the form

y(x) =

∫ b

a
g(x, t)f(t) dt. (40)

The function g(x, t) is called the Green’s function (GF), and the form (39)
is an eigenfunction expansion of g(x, t).

Of course, if we knew the Green’s function, we would have the solution with-
out any need for the expansion (i.e. no need for the eigenfunctions). The
goal in this section is to understand the properties of the GF and how to
construct it.

Side note: Observe that if L = L∗, then wk = yk and:

g(x, t) =
∑ 1

λknk
yk(t)yk(x)

In this case g(x, t) = g(t, x), and we have the important connection between
a self-adjoint operator and a symmetric Green’s function.

3.2 Inverse of differential operator

A nice way to think of the Green’s function is in terms of inverting the
differential operator. Think about the familiar equation Ax⃗ = b⃗ from linear
algebra, to be solved for the unknown vector x⃗. The solution is given by

x⃗ = A−1⃗b,

25



i.e. we find the solution by multiplying the inverse of the linear operator
(matrix) by the inhomogeneous term. Once you know the inverse operator,
you can solve the problem for any given vector b⃗. In the context of BVP’s,
L is a differential operator, so it stands to reason that the inverse operator
involve integration, hence the form (40). Constructing the Green’s function
is analogous to finding the inverse of the matrix, once we have g we can
write down the solution (40) for any forcing function f(x).

3.2.1 An example

There are numerous ways to construct a Green’s function. We’ve already
seen one: the eigenfunction expansion. Another way that you’ve probably
seen before is via variation of parameters2. This approach gives the Green’s
function in a piecewise form.

Let’s look at a simple example. Consider the BVP:

Ly ≡ −y′′ = f(x), 0 < x < 1

y(0) = y(1) = 0
(41)

The GF, via variation of parameters, is given by

g(x, ξ) =


−yl(x)yr(ξ)

W (ξ) 0 < x < ξ

−yl(ξ)yr(x)
W (ξ) ξ < x < 1

=

{
(1− ξ)x 0 < x < ξ
(1− x)ξ ξ < x < 1,

(42)

where Lyl = 0 = Lyr, Bl(yl) = 0, Br(yr) = 0, and W = yly
′
r − y′lyr is the

Wronskian.

The following properties are easily checked:

• The GF satisfies Lg = 0 if x ̸= ξ3

• g(x, ξ) satisfies the boundary conditions as a function of x.

• g is continuous on the whole interval [0, 1]

2You will not be tested on this method, but if you would like to review the approach
you might check out the textbook Elementary Differential Equations and Boundary Value
Problems, by Boyce and DiPrima.

3Here by L we mean the operator acting on the x variable, i.e. derivatives are with
respect to x – this is sometimes written Lxg(x, ξ) to clarify.
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• g is differentiable everywhere except at x = ξ, where it suffers a jump
in the derivative.

These properties are, in fact, always true of the GF of a second order linear
operator.4 To make sense of this, and to build some physical intuition, we
shall need the notion of the delta function.

3.3 Green’s function via delta function

To fix the context, consider stationary heat conduction in a rod:

−y′′(x) = f(x) 0 < x < 1 (43)

y(0) = 0, y(1) = 0. (44)

where y(x) is the temperature field and f(x) is a given heat source density.

3.3.1 Delta function

The function f(x) describes any heat added to, or removed from, the system
by the outside world. As a simple scenario, consider a point heat source, say
located at the middle of the rod. Physically, this would correspond to ap-
plying heat at a single point only. How would we describe such a situation
mathematically? What should we use for the function f(x)?

The notion of a point source is described by the “delta function” δ, charac-
terised by properties

δ(x) = 0 ∀ x ̸= 0,

∫ ∞

−∞
δ(x) dx = 1. (45)

The first property captures the notion of a point function. The second
property constrains the area under the curve (which you might think of as
infinitely thin and infinitely high). This is an idealized point source at x = 0;
a point source at x = a would be given by δ(x− a).

The problem is that no classical function satisfies (45) (think: any function
that is non-zero only at a point is either not integrable or integrates to zero).

4Note, however, that the function y(x) satisfying Ly = f is continuously differentiable
assuming continuously differentiable f , meaning that the integration with f(x) smooths
out the discontinuity in g.

27



3.3.2 Approximating the delta function

One way around this is to replace δ by an approximating sequence of in-
creasingly narrower functions with normalized area, i.e. fn(x) where∫ ∞

−∞
fn(x)dx = 1 ∀n, lim

n→∞
fn(x) = 0 ∀x ̸= 0.

-1/n 1/n0

y

Increasing n

x

n/2

Figure 2: Hat functions, see equation (46).

Example: “hat” functions

fn(x) =

{
0 for |x| > 1/n
n/2 for |x| ≤ 1/n

(46)

You can verify the fn(x) approach δ(x) as n→∞.

3.3.3 Properties of delta function

We have defined δ by (45). We can use the approximating functions to ob-
tain further properties.

Sifting property. What happens when δ is integrated against another
function?

28



Let f(x) be a continuous function, and F (x) =
∫ x

f(s)ds its antiderivative.
Now consider approximating sequences:∫ ∞

−∞
δ(x− a)f(x)dx = lim

n→∞

∫ ∞

−∞
fn(x− a)f(x)dx,

and if fn are the hat functions (46),

= lim
n→∞

∫ a+1/n

a−1/n

n

2
f(x)dx = lim

n→∞

F (a+ (1/n))− F (a− (1/n))

2/n

= lim
s→0

F (a+ s)− F (a− s)
2s

= F ′(a) = f(a).

Thus, we have∫ ∞

−∞
δ(x− a)f(x)dx = f(a) if f is continuous at a. (47)

In particular,∫ ∞

−∞
δ(x)f(x)dx = f(0) if f is continuous at x = 0. (48)

Thus, the delta function can be seen to sift out the value of a function at a
particular point.

Antiderivative of δ(x). The antiderivative of the delta function is the
so-called Heaviside function,∫ x

−∞
δ(s)ds = H(x) ≡

{
0 x < 0
1 x > 0.

(49)

Note that (49) follows by integrating the sequence of approximating func-
tions and showing that the limit is the Heaviside function. That is, if
Hn(x) =

∫ x
−∞ fn(s)ds, then limn→∞Hn(x) = H(x). (We leave this detail as

an exercise!)

3.3.4 Point heat source

Let’s return to the heat conduction BVP with a point heat source of unit
strength at the centre of the rod:

−y′′(x) = δ(x− 1/2), 0 < x < 1 (50)

y(0) = y(1) = 0. (51)
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Since δ(x− 1/2) = 0 ∀x ̸= 1/2, this implies

−y′′(x) = 0, 0 < x < 1/2, 1/2 < x < 1. (52)

We can easily solve (52) in each of the two separate domains [0, 1/2) and
(1/2, 1] and then apply the BC (51). But be careful: there are two constants
of integration for each domain, meaning four unknown constants total, and
only two boundary conditions.

As you might expect (since δ(x − 1/2) has vanished from (52)), the extra
two conditions come in at x = 1/2. To derive the extra conditions, imagine
integrating equation (50) across x = 1/2:∫ 1/2+

1/2−
−y′′(x) dx =

∫ 1/2+

1/2−
δ(x− 1/2) dx, (53)

where 1/2− (1/2+) signifies just to the left (right) of 1/2. Using property
(45) of the delta function, we have

−y′]1/2+1/2− = 1 ⇒ y′(1/2+)− y′(1/2−) = −1. (54)

That is, the presence of the delta function defines a jump condition on y′. 5

The other extra condition comes as a requirement that y(x) is continuous
across the point source, that is

y]
1/2+
1/2− = 0. (55)

More on this condition below. Solving Equations (52), (51) together with
extra conditions (54) and (55), we obtain the solution

y(x) =

{
x
2 0 < x < 1/2
−x

2 + 1
2 1/2 < x < 1.

(56)

3.3.5 Green’s function construction

To motivate the construction of the Green’s function, consider the heat
conduction problem with an arbitrary heat source:

−y′′(x) = f(x), 0 < x < 1 (57)

y(0) = y(1) = 0. (58)

5Here, y(ξ−) = limx↑ξ y(x), and y(ξ+) = limx↓ξ y(x)
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Imagine now describing f by a distribution of point heat sources with vary-
ing strength; that is at point x = ξ we imagine placing the point source
f(ξ)δ(x− ξ).

The idea of the Green’s function is to introduce such an extra parameter ξ,
and consider the system

−g′′(x, ξ) = δ(x− ξ), 0 < x < 1 (59)

g(0, ξ) = g(1, ξ) = 0. (60)

Note that prime denotes differentiation with respect to x, while ξ is more
like a place-holding variable. So, we have replaced f(x) by a delta function,
in order to solve for the Green’s function g(x, ξ).

We have seen how to solve (59), (60) in the last section. The Green’s function
is

g(x, ξ) =

{
(1− ξ)x 0 < x < ξ
(1− x)ξ ξ < x < 1.

(61)

Notice that this is exactly the solution (42) one would obtain via variation
of parameters.

How do we get back to the solution of Equations (57), (58)? For each ξ, the
Green’s function gives the solution if a point heat source of unit strength
were placed at x = ξ. Conceptually, then, to get the full solution we must
“add up” the point sources, scaled by the value of the heat source at each
point:

y(x) =

∫ 1

0
g(x, ξ)f(ξ) dξ. (62)

To verify that this is indeed a solution, we can substitute (62) into (57):

−y′′(x) =
∫ 1

0
−g′′(x, ξ)f(ξ) dx =

∫ 1

0
δ(x− ξ)f(ξ) dx = f(x) ✓ (63)

3.4 General linear BVP

We now consider a general nth order linear BVP with arbitrary continuous
forcing function,

Ly(x) = any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
′(x) + a0y(x) = f(x) (64)
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for a < x < b, where each ai = ai(x) is a continuous function, and moreover
an(x) ̸= 0 ∀x6. Along with Equation (64), we impose n boundary conditions,
each a linear combination of y and derivatives up to y(n−1), evaluated at
x = a, b. For instance, in the case n = 2, the general form is:

B1y ≡ α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = γ1

B2y ≡ α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = γ2.
(65)

3.5 General Green’s Function

In the same way as in Section 3.3.4, to solve (64) with homogeneous BC

Biy = 0, i = 1 . . . n− 1,

we first determine the Green’s function by solving

Lg(x, ξ) = δ(x− ξ), a < x < b

Big = 0.
(66)

As before,
Lg(x, ξ) = δ(x− ξ)

implies
Lg(x, ξ) = 0 on a < x < ξ, ξ < x < b,

i.e. we have a homogeneous problem to solve on two separate domains. As
before, we require extra conditions, which come by integrating Lg(x, ξ) =
δ(x− ξ) across x = ξ:∫ ξ+

ξ−
ang

(n)(x, ξ) + · · ·+ a0g(x, ξ) dξ =

∫ ξ+

ξ−
δ(x− ξ) dx. (67)

The right hand side clearly integrates to one. If we were to perform an
integration by parts on the first term of the left hand side, we would obtain

an(x)g
(n−1)(x, ξ)]ξ+ξ− +

∫ ξ+

ξ−
(an−1 − a′n)g(n−1) + · · ·+ a0g(x, ξ) dx = 1.

This equation is balanced by setting a jump condition on the n−1st deriva-
tive:

g(n−1)(x, ξ)]ξ+ξ− = 1/an(ξ),

6We will not cover the case where an(x) = 0 somewhere in the domain, as such a
singular point can fundamentally change the solution structure, as the problem becomes
singular there – see the notes for C5.5 for further information.
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and taking all lower derivatives to be continuous across x = ξ:

g(j)(x, ξ)]ξ+ξ− = 0, j = 0, 1, . . . n− 2.

Once the Green’s function is determined, the solution to the BVP is given
by

y(x) =

∫ b

a
g(x, ξ)f(ξ) dξ. (68)

3.5.1 Example: Biharmonic Equation

Let’s look at an example of a Green’s function for a fourth-order operator
to see how the above ideas generalize, though be warned that the algebra
can become very tedious. Consider the problem,

Lu =
d4u

dx4
− u = f(x), u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.

(69)
As noted before, there are several different ways to find the Green’s function,
but it will always satisfy the same equation. Namely,

Lg(x, ξ) =
d4g

dx4
−g = δ(x−ξ), g(0, ξ) = 0, g(1, ξ) = 0, g′′(0, ξ) = 0, g′′(1, ξ) = 0.

(70)
As before, we can look for the general solutions of Lu = 0 to obtain func-
tions of x which must constitute the full set of solutions, and then choose
constants to match both the boundary conditions and the conditions at
x = ξ. This homogeneous equation admits general solutions of the form
u = A sinh(x) + B cosh(x) + C sin(x) + D cos(x), where these four coeffi-
cients will be different on each side of x = ξ, and may depend on ξ (but not
on x). Here I’ve chosen to use sinh(x) and cosh(x), but these are equivalent
to working with ex and e−x, though again the algebraic details can be easier
in one form or another.

In general this will lead to a system of 8 unknowns and 8 constraints, which
is quite hard to deal with. As an alternative, we can pick two sets of solu-
tions which satisfy the boundary conditions ahead of time, and as long as
the resulting set of solutions can span the space of homogeneous solutions
given above by y, then we can worry only about the matching conditions
at x = ξ. We can therefore choose uℓ = A sinh(x) + B sin(x), and ur =
C sinh(1− x) +D sin(1− x). Then it is easy to see that uℓ(0) = u′′ℓ (0) = 0,
and ur(1) = u′′r(1) = 0.
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We then let the coefficients A,B,C,D depend on ξ, and consider the point
x = ξ. We have the four conditions uℓ = ur, u

′
ℓ = u′r, u

′′
ℓ = u′′r , and

u′′′r −u′′′ℓ = 1. Once these coefficients are found (which is often a substantial
amount of work, unless there’s a trick), the Green’s function can be written
as,

g(x, ξ) =

{
A(ξ) sinh(x) +B(ξ) sin(x) 0 < x < ξ,
C(ξ) sinh(1− x) +D(ξ) sin(1− x) ξ < x < 1,

and the general solution of (69) as,

y =

∫ 1

0
g(x, ξ)f(ξ)dξ.

3.6 Another view

There is one more way of viewing the GF. Start from Ly(x) = f(x), and
take an inner product with G(x, ξ) on both sides of the equation7. We are
not assuming we know G, rather we want to find properties it should satisfy
for us to solve the equation. We obtain

⟨Ly,G⟩ = ⟨G(x, ξ), f(x)⟩ =
∫ b

a
G(x, ξ)f(x) dx. (71)

(Note the integration is over x). Now, using the adjoint, we can write

⟨Ly,G⟩ = ⟨y, L∗G⟩ (72)

The idea now is to isolate y. This can be accomplished if

L∗G(x, ξ) = δ(x− ξ) (73)

in which case the right hand side leaves just y(ξ), and we have the solution

y(ξ) =

∫ b

a
G(x, ξ)f(x) dx. (74)

Comparing with our previous construction, here the big difference is that
the GF is constructed through the adjoint operator – hence we will refer to

7G will be the Green’s function, but not quite the same one we’ve constructed, so I am
differentiating by using capital G.
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this as the adjoint Green’s function. Compare the form of solution with the
form (40):

y(x) =

∫ b

a
g(x, t)f(t) dt, (75)

we see the subtle difference that in (74) we integrate over the first variable
of the adjoint GF, and the second variable of the GF. For a self-adjoint
operator, the constructions are the same and we must get the same GF, and
indeed as we’ve stated, the GF for a self-adjoint operator is symmetric.

4 Distributions

In Section 3 we say how the Green’s function can be a valuable tool in solving
BVPs. However, constructing the GF required us to define the “delta func-
tion”, which is not really a functionat all, and at best a limit of functions.
We also saw that the GF suffers a discontinuity in the n − 1st derivative.
We now take a short detour to consider these issues in more detail, by in-
troducing the theory of distributions.

Perhaps the most important feature of the δ-“function”: when integrated
against a continuous function, it sifts out the value at x = 0:∫ ∞

−∞
δ(x)f(x)dx = f(0).

It is the operation of δ on another function that defines the property. This
is the key idea in the theory of distributions, in which a generalized function
is only thought of in relation to how it affects other functions when “inte-
grated” against them.

We define the delta distribution δ such that when it operates on a test function
ϕ, it “sifts out” the value ϕ(0) ∈ R. We write this as

⟨δ, ϕ⟩ ≡ ϕ(0),

where δ is the δ-distribution and ϕ is the test function. ⟨δ, ϕ⟩ reads as “δ
applied to ϕ”.

We will generalise this idea momentarily. First, we need some tools and
terminology.
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Test functions ϕ : R→ R
ϕ ∈ C∞

0 (R), which is short for:

• ϕ ∈ C∞(R) differentiable any number of times

• ϕ has “compact support”, i.e. supp ϕ ⊆ [−X,X] for some X > 0, i.e.
ϕ(x) = 0 ∀x /∈ [−X,X].

So a test function is infinitely smooth, has no kinks or corners, and vanishes
outside a finite region.

Example (see figure):
Let C > 0, ϵ > 0

ϕC;ϵ =

{
exp

(
−C

ϵ2−(x−a)2

)
for a− ϵ < x < a+ ϵ

0 otherwise
(76)

a-ε a+εa

Matches zero 
’infinitely smoothly’

Matches zero 
’infinitely smoothly’

φ
C;ε(x)

x

Figure 3: Sample test function, corresponding to (76)
.

One can show (for all integer n ≥ 0):

lim
x↑a+ϵ

d

dxn
ϕC;ϵ(x) = 0

lim
x↓a−ϵ

d

dxn
ϕC;ϵ(x) = 0
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4.1 Weak derivative

Having defined test functions, we can generalise the notion of a derivative.
Start with the classical definition: let u(x) be a continuously differentiable
function with derivative f(x), so u′(x) = f(x). Now, multiply each side of
the equation by a test function ϕ and integrate over R:∫

R
u′ϕ dx =

∫
R
fϕ dx. (77)

Integrating the LHS by parts and using the compact support of ϕ, we obtain

−
∫
R
uϕ′ dx =

∫
R
fϕ dx. (78)

The idea of the weak derivative is to think of (78) as the definition of a
derivative. That is, we say f is the weak derivative of u if (78) holds for all
test functions ϕ ∈ C∞

0 (R)8. The value is that this definition does not require
u to be differentiable, just integrable. Of course, if u is continuously differ-
entiable, the weak derivative and the ordinary one will agree, but a function
that is not continuously differentiable can still have a weak derivative, where
essentially the integration smooths out discontinuities.

4.2 Distribution definition

This leads us to the notion of a distribution, or a generalised function. A
distribution is not defined at points, but rather it is a global object defined
in terms of its action on test functions. To be more precise:

Definition: A distribution u is a functional mapping test functions ϕ ∈
C∞
0 (R) to real numbers,

u : ϕ ∈ C∞
0 (R) 7→ ⟨u, ϕ⟩ ∈ R (⟨u, ϕ⟩ instead of u(ϕ)) (79)

where the mapping is linear and continuous. While we have motivated the
action ⟨u, ϕ⟩ as meaning integration, this is not a requirement.

Linearity is straightforward, and means

⟨u, αϕ+ βψ⟩ = α⟨u, ϕ⟩+ β⟨u, ψ⟩ ∀α, β ∈ R ∀ϕ, ψ ∈ C∞
0 (R) (80)

8We can also confine to smaller intervals, for instance ϕ ∈ C∞
0 (a, b) means the test

functions have compact support in a bounded subset of (a, b).
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Continuity is slightly more technical; it means that if ϕn is a sequence of
test functions that converges to zero,

ϕn(x)→ 0 as n→∞

then
⟨u, ϕn⟩ → 0 (81)

as a sequence of real numbers.

To show continuity, we need to be able to switch the order of “the action of
the distribution” (integration) and the limit, that is (81) will hold if

lim
n→∞

⟨u, ϕn⟩ = ⟨u, lim
n→∞

ϕn⟩.

It turns out that we can do this if the following holds:

(*) ∀X > 0 there exists C > 0, and integer N ≥ 0, such that

|⟨u, ϕ⟩| ≤ C
∑
m≤N

max
−∞≤x≤∞

∣∣∣∣dmϕdxm

∣∣∣∣
∀ϕ with support in [−X,X].

For our purposes we will want to show (*) to show continuity, and in fact
you can take this as the definition of continuity.

Examples

Delta distribution

⟨δ, ϕ⟩ = ϕ(0)

linearity: ✓

continuity, check (*): |⟨δ, ϕ⟩| = |ϕ(0)| ≤ max
−X<x<X

|ϕ(x)| ∀ϕ with support of

ϕ in [−X,X].
i.e. condition (*) is satisfied with C = 1, N = 0.

Generalisation
Let a ∈ R, n ≥ 0. Define ⟨Dn, ϕ⟩ = ϕ(n)(a) (nth derivative).
This is a distribution (to be proved in a problem sheet).
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Functions as distributions. For any locally integrable function f(x), a
natural distribution is defined by

⟨f, ϕ⟩ =
∫ ∞

−∞
f(x)ϕ(x)dx

Check:

Well-defined, ⟨f, ϕ⟩ ∈ R ∀ϕ ∈ C∞
0 (R) and linear.

Continuity? (*): Let X > 0 be given. Claim (*) holds for

C = C(X) =

∫ X

−X
|f(x)|dx and N = 0 :

|⟨f, ϕ⟩| = |
∫ ∞

−∞
f(x)ϕ(x)dx| = |

∫ X

−X
f(x)ϕ(x)dx|

which by the estimation lemma

≤
∫ X

−X
|f(x)|dx max

−X<x<X
(|ϕ(x)|) = C max

−∞<x<∞
(|ϕ(x)|)

Remark: Different continuous functions induce different distributions.

Heaviside function H(x)

⟨H,ϕ⟩ =
∫ ∞

−∞
H(x)ϕ(x)dx =

∫ ∞

0
ϕ(x)dx

Can check linearity, continuity as an exercise.

Remark: Different functions can lead to the same distribution.
Distributions induced by integrable functions are called regular distributions;
singular distributions if not. The δ-distribution is an example of a singular
distribution.

4.3 Operations on distributions

Now we consider some operations that can be performed on distributions.
Let u1, u2, u be distributions, and f1, f2, f be integrable functions (or the
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regular distributions induced by them). The notion of integration is not
required for distributions, but the rules for distributions are consistent with
those for locally integrable functions.

Linear combinations of distributions. Let α1, α2 ∈ R.

⟨α1f1 + α2f2, ϕ⟩ =
∫ ∞

−∞
(α1f1(x) + αf2(x))ϕ(x)dx

= α1

∫ ∞

−∞
f1(x)ϕ(x)dx+ α2

∫ ∞

−∞
f2(x)ϕ(x)dx

= α1⟨f1, ϕ⟩+ α2⟨f2, ϕ⟩

Thus, define α1u1 + α2u2 for general distributions u1, u2 via

⟨α1u1 + α2u2, ϕ⟩ ≡ α1⟨u1, ϕ⟩+ α2⟨u2, ϕ⟩ ∀ϕ ∈ C∞
0 (R)

If u1, u2 are distributions, is α1u1 + α2u2 a distribution? We need to check
linearity and continuity, but we’ll skip this here.

Differentiation of distributions. Differentiation follows the weak deriva-
tive formulated earlier. That is, for a general distribution u, define

⟨u′, ϕ⟩ ≡ −⟨u, ϕ′⟩ ∀ϕ ∈ C∞
0 (R)

If u is distribution, can we be sure that u′ : ϕ 7→ −⟨u, ϕ′⟩ is also a distribu-
tion? (It is! – try it as an exercise.)

Example. Let H be the Heaviside function, or the distribution it induces,
i.e.

⟨ H︸︷︷︸
H-distribution

, ϕ⟩ ≡
∫ ∞

−∞
H(x)︸ ︷︷ ︸

H−function

ϕ(x)dx =

∫ ∞

0
ϕ(x)dx

Show that H ′ = δ.

⟨H ′, ϕ⟩ = ⟨−H,ϕ′⟩ (Def. of derivative of a distribution)
=
∫∞
0 ϕ′(x)dx (see earlier example)

= −ϕ|x=∞
x=0

= ϕ(0) (ϕ has compact support)
= ⟨δ, ϕ⟩ (Def. of δ-distribution)
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Translation: similar considerations as before, upshot (a ∈ R, u distr):

⟨u(x− a), ϕ(x)⟩ chg of var
= ⟨u(y), ϕ(y + a)⟩ = ⟨u(x), ϕ(x+ a)⟩

Example: ⟨δ(x− a), ϕ(x)⟩ = ⟨δ(x), ϕ(x+ a)⟩ = ϕ(a)

Multiplication: let a(x) be an infinitely differentiable function. We define

⟨au, ϕ⟩ = ⟨u, aϕ⟩.

Convergence of a sequence of distributions u, u1, u2, . . . distributions.
Convergence uj → u as j →∞ means:

lim
j→∞
⟨uj , ϕ⟩ = ⟨u, ϕ⟩ ∀ϕ ∈ C∞

0 (R)

Similarly: if u(α) is a family of distributions with a continuous parameter
α, then
convergence u(α)→ u(α0) for α→ α0 means:

lim
α→α0

⟨u(α), ϕ⟩ = ⟨u(α0), ϕ⟩ ∀ϕ ∈ C∞
0 (R)

4.4 Distributed solutions

Consider the equation

Lu ≡ a2u′′ + a1u
′ + a0u = f.

We have always thought about the classical solution, that is a twice con-
tinuously differentiable function u(x) that satisfies the differential equation
identically, i.e. we can take derivatives of u, substitute in, and the equation
checks at every point. With distribution theory and the notion of a gener-
alised function, we now can define a distributed solution. That is, if u and
f are distributions, then Lu is a distribution, defined by the action

⟨Lu, ϕ⟩ = ⟨a2u′′, ϕ⟩+ ⟨a1u′, ϕ⟩+ ⟨a0u, ϕ⟩

= ⟨u, (a2ϕ)′′⟩ − ⟨u, (a1ϕ)′⟩+ ⟨u, a0ϕ⟩
define
= ⟨u, L∗ϕ⟩.

(82)

Here L∗ is the formal adjoint operator. We say that u is a distributed
solution to Lu = f if

⟨u, L∗ϕ⟩ = ⟨f, ϕ⟩
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holds for all test functions ϕ. We highlight again that a function need not
be differentiable in the ordinary sense to satisfy this definition; hence, dis-
tributions provide a way to have well-defined solutions that may have issues
in the classical sense.

In particular, this construction of a distributed solution gives us a new way
to interpret the Green’s function. Since δ is really a distribution or a gen-
eralised function, the equation Lg = δ(x − ξ) should be interpreted in the
distributional sense,

⟨Lg, ϕ⟩ = ⟨δ(x− ξ), ϕ⟩

or
⟨g(x, ξ), L∗ϕ⟩ = ϕ(ξ).

Moreover, since the Green’s function that we construct is not twice contin-
uously differentiable, it is really a distributed solution. Alternatively, if we
interpret Lg = δ(x−ξ) as meaning that Lg = 0 everywhere that x ̸= ξ, then
using the properties of δ we can work purely in the “classical” sense. In fact,
the final solution of Ly = f , obtained by integration with g, is continuous
and a classical solution.

Final thoughts: If you are interested in distribution theory, it is at the core
of functional analysis. Moreover, the idea of weak formulations has great
use in finite element methods. For us, distribution theory is somewhat of a
detour for this course. One could proceed to write things in a distributional
sense anytime we encounter a ‘delta function’, but we can as well recognise
delta as the limit of continuous functions and satisfying certain properties,
thus in effect translating to a classical system. Unless we are specifically
interested in a distributional aspect, the latter will be our approach.
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