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What is Interpolation?

Canonical interpolation problem: given a set of nodes xi , 0 ≤ i ≤ n
and data at those nodes f (xi ), construct a function p(x) such that

p(xi ) = f (xi )

for 0 ≤ i ≤ n.



Examples
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Types of Interpolant

There are lots of functions, p(x) satisfying the interpolation
conditions so we restrict ourselves to certain classes of functions,
for example

▶ polynomials

▶ piecewise polynomials (splines in 1D)

▶ linear combinations of radial basis functions

▶ rational functions

▶ . . .



Why Interpolate?

▶ The values f (xi ) may come from measuring data so we might
want to find approximate values of f (x) when x is not a
measurement point.

▶ I might know the function f (x) but it might be very
complicated so I might want to represent it more simply to
evaluate it more easily.

▶ I might want to know
∫
f (x)dx — a good approximation

should be
∫
p(x)dx.

▶ If p(x) ≈ f (x) then we might expect roots of p(x) to be good
approximations of roots of f (x).



Lagrange Interpolation

To begin we consider interpolation in 1D by polynomials. The
problem is now:

Given the distinct points x0, x1, . . . , xn and data values f (x0),
f (x1), . . . , f (xn), construct the polynomial pn(x), of degree at
most n, such that pn(xi ) = f (xi ) for i = 0, 1, . . . , n.

The polynomial pn(x) is known as the Lagrange interpolation
polynomial (or simply the Lagrange interpolant).



Questions about the Lagrange Interpolant

There are many questions we can ask about the Lagrange
interpolant, for example:

▶ Does pn exist?

▶ Is pn unique?

▶ Does pn converge to f as n → ∞?

▶ How should we store, compute and evaluate pn?



Existence of the Lagrange Interpolant
Define

Ln,k(x) =
n∏
j=0

j ̸=k

x − xj
xk − xj

.

Clearly Ln,k(x) is a polynomial of degree n satisfying
Ln,k(xi ) = δi ,k .

We can write

pn(x) =
n∑

k=0

f (xk)Ln,k(x)

and pn(x) is a polynomial of degree at most n. The interpolation
conditions are satisfied because

pn(xi ) =
n∑

k=0

f (xk)Ln,k(xi ) =
n∑

k=0

f (xk)δi ,k = f (xi )

for i = 0, 1, . . . , n. Hence pn(x) is a Lagrange interpolant and we
have demonstrated existence of the Lagrange interpolant.



Uniqueness of the Lagrange Interpolant

Suppose that pn(x) and qn(x) are polynomials of degree at most n
and that both satisfy the interpolation conditions. Then
(pn − qn)(x) is also a polynomial of degree at most n and we have

(pn − qn)(xi ) = 0

for i = 0, 1, . . . , n (from the interpolation conditions). Thus
(pn − qn)(x) is a polynomial of degree at most n with at least
n + 1 distinct roots and so the fundamental theorem of algebra
tells us that (pn − qn)(x) ≡ 0. Hence pn(x) ≡ qn(x) and the
Lagrange interpolant is unique.

This is useful because it tells us that if we find a polynomial of
degree at most n satisfying the interpolation conditions, then we
have found the Lagrange interpolant.



Error in the Lagrange Interpolant

Theorem 1 (Error Representation)

Suppose f ∈ Cn+1 [a, b] (where xi ∈ [a, b], 0 ≤ i ≤ n). Then for all
x ∈ [a, b], there exists ξ = ξ(x) ∈ (a, b) such that

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!

n∏
k=0

(x − xk) .

In particular

|f (x)− pn(x)| ≤ Mn

(n + 1)!

n∏
k=0

(x − xk) ,

where

Mn = max
ζ∈[a,b]

|f (n+1)(ζ)| .



Error in the Lagrange Interpolant

Theorem 1 tells us that the size of the error in the polynomial
interpolant depends on both the size of the derivatives of the
function we wish to interpolate and the grid points.

We consider two types of grid on [−1, 1]:

▶ Uniformly spaced grids xi = −1 + 2i/n, 0 ≤ i ≤ n

▶ Chebyshev grids xi = cos(iπ/n), 0 ≤ i ≤ n (these are known
as second-kind Chebyshev points and are equally spaced on
the unit circle)

(note that these can be shifted and scaled to other intervals as
appropriate).



Grid Points
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Example

We interpolate the Runge function f (x) = 1/(1 + x2) on the
interval [−5, 5] using uniformly spaced points.
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Example

We interpolate the Runge function f (x) = 1/(1 + x2) on the
interval [−5, 5] using Chebyshev points.
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Error in the Lagrange Interpolant
If we use a uniform grid on [−1, 1], Theorem 1 tells us that, for
f ∈ Cn+1[−1, 1]

|f (x)− pn(x)| ≤ Mn

(n + 1)!

n∏
k=0

(x − xk) ,

where

Mn = max
ζ∈[−1,1]

|f (n+1)(ζ)| .

Hence

max
x∈[−1,1]

|f (x)− pn(x)| ≤ Mn

(n + 1)!
max

x∈[−1,1]

∣∣∣∣∣
n∏

k=0

(x − xk)

∣∣∣∣∣ .
It can be shown that with a uniform grid of size h = 2/n

max
x∈[−1,1]

∣∣∣∣∣
n∏

k=0

(x − xk)

∣∣∣∣∣ ≤ n!hn+1 .



Error in the Lagrange Interpolant

Hence we have

max
x∈[−1,1]

|f (x)− pn(x)| ≤ Mnh
n+1

n + 1
.

This means that if Mn grows faster than hn+1/(n + 1) decays, the
polynomial interpolant on a uniform mesh can diverge. This is
known as the Runge phenomenon.



Convergence Theorems

Theorem 2
On equispaced grids, polynomial interpolation can diverge even if f
is analytic.

Theorem 3
On Chebyshev grids, if f is analytic, then ∥f −pn∥ = O(ρ−n) where
ρ depends on the position of the poles. (Geometric convergence)

Theorem 4
On Chebyshev grids, if f (ν) with ν ≥ 1 has bounded variation V ,
then ∥f − pn∥ = O(Vn−ν).



Representation of the Lagrange Interpolant

Since the Lagrange interpolant is a polynomial of degree at most n
it seems natural to write it as

pn(x) = a0 + a1x + a2x
2 + . . .+ anx

n , (1)

i.e. as a linear combination of monomial basis functions. Once we
know the coefficients ak , we can evaluate pn(x) using this
expression and this requires O(n2) operations. Alternatively we can
use the Horner scheme.



The Horner Scheme

The Horner scheme makes use of the fact that we can rewrite
Equation (1) as

pn(x) = a0 + x(a1 + x(a2 + . . .+ x(an−1 + anx) . . .)).

Then we set

bn = an

bn−1 = an−1 + bnx
...

...

b0 = a0 + b1x

pn(x) = b0 .

This is much more efficient than the näıve evaluation of pn(x)
since it requires only O(n) flops.



Calculating the Coefficients — Vandermonde Matrices

If we write

pn(x) = a0 + a1x + a2x
2 + . . .+ anx

n ,

then the interpolation conditions become

pn(xi ) = a0 + a1xi + a2x
2
i + . . .+ anx

n
i = f (xi ) ,

for i = 0, 1, . . . , n. We can represent this as a linear system of the
form V a = f, i.e.

1 x0 · · · xn0
1 x1 · · · xn1
...

...
...

1 xn · · · xnn




a0
a1
...
an

 =


f (x0)
f (x1)
...

f (xn)


The matrix V is known as a Vandermonde matrix.



Vandermonde Matrices with Monomial Basis

For the monomial basis the condition number of the Vandermonde
matrix V grows exponentially with the degree of the polynomial
which may lead to inaccuracies when solving the linear system. In
addition, V is dense so it requires O(n3) operations to solve the
linear system.

[Recall that if Ax = b then the perturbed system
(A+ δA)(x + δx) = b + δb has a solution for which

∥δx∥
∥x∥

≤ 1

1− ϵ

(
ϵ+ κ(A)

∥δb∥
∥b∥

)
where ϵ := ∥A−1δA∥ ≤ 1 and κ(A) = ∥A∥∥A−1∥ is the condition
number of the matrix A.]



Vandermonde Matrices with General Basis

We may write pn(x) in a more general form as

pn(x) = a0c0(x) + a1c1(x) + . . .+ ancn(x) ,

where the functions ci (x) form a basis for the space of polynomials
of degree n. The interpolation conditions can again be written as a
Vandermonde system:

c0(x0) c1(x0) · · · cn(x0)
c0(x1) c1(x1) · · · cn(x1)

...
...

...
c0(xn) c1(xn) · · · cn(xn)




a0
a1
...
an

 =


f (x0)
f (x1)
...

f (xn)


For general basis functions V is still a dense matrix but if we
choose ck(x) = Ln,k(x), known as the Lagrange basis, then V
reduces to the identity matrix.



Evaluation of Interpolant with Lagrange Basis

In the Lagrange basis we have

pn(x) =
n∑

k=0

f (xk)Ln,k(x)

where

Ln,k(x) =
n∏
j=0

j ̸=k

x − xj
xk − xj

.

Again, a näıve evaluation takes O(n2) evaluations. However, we
can do better.



Evaluation of Interpolant with Lagrange Basis (cont’d)
Define

Π(x) =
n∏

k=0

(x − xk) .

Then we have

Ln,k(x) =
Π(x)

x − xk
ωk (2)

where

ωk =
1∏

j ̸=k(xk − xj)
=

1

Π′(xk)
.

Note that the ωk are independent of x and the function to be
interpolated — they just depend on the nodes. We may then write

pn(x) = Π(x)
n∑

k=0

ωk

x − xk
f (xk) .

This is the first barycentric interpolation formula and the values
ωk are known as the barycentric weights.



Second Barycentric Interpolation Formula
Since the Lagrange interpolant is unique, we know that we can
write the interpolant of 1 as

n∑
k=0

Ln,k(x) = 1 .

Then, by Equation (2), we have
n∑

k=0

Ln,k(x) = Π(x)
n∑

k=0

ωk

x − xk
= 1 ,

so that we may write

Π(x) =

(
n∑

k=0

ωk

x − xk

)−1

.

This allows us to eliminate Π(x) in the first barycentric formula to
get the second barycentric interpolation formula

pn(x) =

∑n
k=0

ωk
x−xk

f (xk)∑n
k=0

ωk
x−xk

.



Second Barycentric Interpolation Formula with Chebyshev
Grids

The second barycentric interpolation formula has the advantage
that if the ωk all contain a large factor this can be cancelled in the
expression for pn. For example, for the Chebyshev nodes it is
known that

ωk = (−1)k
2n−1

n

for k = 1, . . . , n − 1 and half of this for k = 0 and k = n. Clearly
the factor 2n−1/n can get very large, but this term cancels out so
we have

pn(x) =

n∑′

k=0

(−1)k f (xk)

x − xk
/

n∑′

k=0

(−1)k

x − xk
.

Here
∑′

means the first and last terms are multiplied by 1/2.

(Note there are issues at the nodes but the value of the interpolant
there is known.)



Summary

For the Lagrange interpolation problem:

▶ the monomial basis is a bad idea as it leads to ill-conditioned
Vandermonde matrices;

▶ equally spaced points can be a bad idea due to the Runge
phenomenon;

▶ the Chebyshev points work well for functions with some
smoothness;

▶ the Lagrange basis works well as the Vandermonde matrix is
the identity matrix;

▶ the second barycentric formula provides an efficient way to
evaluate the Lagrange interpolant based on Chebyshev nodes.


