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1D Interpolation

Recall the canonical 1D interpolation problem: given a set of
nodes xi , 0 ≤ i ≤ n and data at those nodes f (xi ), construct a
function p(x) such that

p(xi ) = f (xi )

for 0 ≤ i ≤ n.

Last time we looked at the Lagrange interpolant which was global,
in the sense that it was defined by the same function on the whole
interval.

This time we look for piecewise polynomial interpolants —
functions which are polynomials on each subinterval [xi−1, xi ],
1 ≤ i ≤ n, and satisfy certain continuity conditions. These are
known as splines.



Splines

Again we are given a set of nodes xi , 0 ≤ i ≤ n and data at those
nodes f (xi ). When talking about splines, the xi are often known as
knots. The interpolating spline:

▶ is a polynomial of degree k in each subinterval [xi−1, xi ],
1 ≤ i ≤ n;

▶ is continuous and has continuous derivatives up to order k − 1;

▶ satisfies the interpolation conditions.



Linear Splines

The simplest splines are linear splines (i.e. k = 1). The continuity
and interpolation conditions are enough to determine them
uniquely since

▶ the number of unknowns is 2n (there are n intervals and 2
unknowns required to determine a linear function in each
subinterval)

▶ the number of constraints is 2n made up of
▶ n + 1 interpolation conditions (at xi , 0 ≤ i ≤ n)
▶ n − 1 continuity conditions (at xi , 1 ≤ i ≤ n − 1)

We can write the linear spline, sL(x), as

sL(x) =
xi − x

xi − xi−1
f (xi−1) +

x − xi−1

xi − xi−1
f (xi )

for x ∈ [xi−1, xi ], 1 ≤ i ≤ n.
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Convergence

Theorem 1
Suppose f ∈ C 2 [a, b] and let sL(x) be the linear spline that
interpolates f at the knots a = x0 < x1 < . . . < xn = b, then

∥f − sL∥∞ ≤ 1

8
h2∥f ′′∥∞ .

where h = maxi hi and hi = xi − xi−1.

This tells us that if we use a uniform grid, then every time we
double n (and thus we halve h) we expect the error to decrease by
a factor of 4.



Minimisation Property

The linear spline also has a nice minimisation property as follows:

Theorem 2
Let sL be the linear spline that interpolates a function f ∈ C [a, b]
at the knots a = x0 < x1 < . . . < xn = b. Then for any function v
in H1(a, b) that also interpolates f at the knots,

∥s ′L∥2 ≤ ∥v ′∥2 .

In other words, this theorem tells us that, among all functions in
H1(a, b) that interpolate f at the knots, the linear spline sL(x) is
the flattest, in the sense that its average slope is the smallest.



Global Form of Linear Splines
We may also write a global expression for the linear interpolating
spline as a sum of basis functions:

sL(x) =
n∑

i=0

ϕi (x)f (xi ) ,

where the basis functions ϕi (x) are defined as

ϕi (x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

if xi ≤ x ≤ xi+1

0 otherwise

for 1 ≤ i ≤ n − 1 and

ϕ0(x) =

{ x1−x
x1−x0

if x0 ≤ x ≤ x1
0 otherwise

ϕn(x) =

{
x−xn−1

xn−xn−1
if xn−1 ≤ x ≤ xn

0 otherwise



Basis Functions

x

1

0
x0 x1 x2 xi

ϕiϕ2ϕ0 ϕ1

Note that the basis functions are nodal, i.e. ϕi (xj) = δi ,j . Thus

sL(xj) =
n∑

i=0

ϕi (xj)f (xi ) =
n∑

i=0

δi ,j f (xi ) = f (xj) .



Cubic Splines

Cubic splines are also popular due to their increased regularity over
linear splines. This time

▶ the number of unknowns is 4n (there are n intervals and 4
unknowns required to determine a cubic function in each
subinterval)

▶ the number of constraints is 4n − 2 made up of
▶ n + 1 interpolation conditions (at xi , 0 ≤ i ≤ n)
▶ 3(n − 1) continuity conditions (s(x), s ′(x) and s ′′(x) must be

continuous at xi , 1 ≤ i ≤ n − 1)

Thus we need two more conditions to determine the cubic spline
uniquely.



Natural Cubic Splines

For natural cubic splines the two final conditions are

s ′′(x0) = s ′′(xn) = 0 .

Such splines have a minimisation property analagous to linear
splines and are characterised as follows:

Theorem 3
Let s be the natural cubic spline that interpolates a function
f ∈ C [a, b] at the knots a = x0 < x1 < . . . < xn = b. Then for any
function v in H2(a, b) that also interpolates f at the knots,

∥s ′′∥2 ≤ ∥v ′′∥2 .

This theorem essentially means that the natural cubic spline
minimises the ‘average curvature’ over functions in H2(a, b) that
interpolate f at the knots.



Construction of Natural Cubic Splines

Let σi = s ′′(xi ) for 0 ≤ i ≤ n (note these are unknown). Then we
can write

s ′′(x) =
xi − x

hi
σi−1 +

x − xi−1

hi
σi , for x ∈ [xi−1, xi ] .

Integrate twice to get

s(x) =
(xi − x)3

6hi
σi−1 +

(x − xi−1)
3

6hi
σi + αi (x − xi−1) + βi (xi − x) ,

for x ∈ [xi−1, xi ]. Here the αi and βi are constants of integration
to be determined. The interpolation conditions become

s(xi−1) =
1

6
σi−1h

2
i + hiβi = f (xi−1) , (1)

s(xi ) =
1

6
σih

2
i + hiαi = f (xi ) . (2)



Construction of Natural Cubic Splines

Using the interpolation conditions, the definition of s(x) and the
continuity of s ′ at the knots gives, after some algebra,

hiσi−1 + 2(hi+1 + hi )σi + hi+1σi+1 =

6

(
f (xi+1)− f (xi )

hi+1
− f (xi )− f (xi−1)

hi

)
along with

σ0 = σn = 0

which is a nonsingular tridiagonal system for the σi . Once we know
the σi we can also compute the αi and the βi coefficients, using
(1) and (2), and hence the natural cubic spline in each subinterval.
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